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A CAUCHY COMPLETION OF DUALLY RESIDUATED
LATTICE ORDERED SEMIGROUPS

JASEM Milan, (SK)

Abstract. In this paper convergence with a fixed regulator in dually residuated lattice
ordered semigroups is investigated and a u-Cauchy completion of a strong dually residuated
lattice ordered semigroup is constructed. It is also shown that this completion is uniquely
determined up to isomorphism.

Key words and phrases. u-uniform convergence, Cauchy sequence, dually residuated
lattice ordered semigroups.
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1 Introduction

Dually residuated lattice ordered semigroups (DRl-semigroups) were introduced and studied
by Swamy in [14], [15], [16]. DRl-semigroups were also investigated by Kovář [10], [11], Kühr
[12] and by the author [8]. Galatos and Tsinakis [7] proved that DRl-semigroups are equivalent
to commutative GBL-algebras.

Birkhoff [1] and Luxemburg and Zaanen [13] studied relatively uniform convergence of se-
quences in vector lattices. Relatively uniform convergence in lattice ordered groups was dealt
with by Černák and Lihová [5] and Černák and Jakub́ık [6]. Convergence with a fixed regulator
in lattice ordered groups was studied by Černák [2], [3] and Černák and Lihová [4].

This paper is a continuation of the paper [9] where convergence with a fixed regulator
in DRl-semigroups was introduced and studied. In the present paper Cauchy sequences are
investigated and a u-Cauchy completion of a strong DRl-semigroup has been constructed.

2 Preliminaries

We review some notions and notations used in the paper.
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A system A = (A, +, ≤, −) is called a dually residuated lattice ordered semigroup if and
only if
(1) (A, +, ≤) is a commmutative lattice ordered semigroup with zero element 0, i. e. (A, +)
is a commutative semigroup with zero 0 and (A,≤) is a lattice with lattice operations ∧ and ∨
such that a + (b ∨ c) = (a + b) ∨ (a + c) and a + (b ∧ c) = (a + b) ∧ (a + c),
(2) given a, b in A there exists a least x in A such that b+x ≥ a, and this x is denoted by a− b,
(3) (a − b) ∨ 0 + b ≤ a ∨ b for all a, b ∈ A,
(4) (a − a) ≤ 0 for each a ∈ A.

Any DRl-semigroup can be equationally defined as an algebra with the binary operations
+, ∨, ∧,−, by replacing (2) by the equations:
x + (y − x) ≥ y, x − y ≤ (x ∨ z) − y, (x + y) − y ≤ x [14, Theorem 1].

For any a and b in a DRl-semigroup A we shall write |a − b| = (a − b) ∨ (b − a) (|a − b| is
called the symetric difference of a and b. ) This notation arising from lattice ordered groups is
different from one used by Swamy in [14], however it is most suitable for our case.

The symetric difference satisfies the following conditions:
(i) |a − b| ≥ 0, |a − b| = 0 if and only if a = b,
(ii) |a − b| = |b − a|,
(iii) |a − c| ≤ |a − b| + |b − c|.
Any DRl-semigroup is an autometrized algebra with the symetric difference [14, Theorem 9].

We use N for the set of all positive integers.
Let A be a DRl-semigroup. We denote A+ = {x ∈ A; x ≥ 0}.
An element x ∈ A+ is said to be Archimedean if whenever y ∈ A+ and ny ≤ x for each n ∈ N,
then y = 0.

A DRl-semigroup A is called strong if x, y ∈ A and 2x ≤ 2y implies x ≤ y.
Any abelian lattice ordered group is a strong DRl-semigroup and hence any Archimedean

l-group is also a strong DRl-semigroup.
We shall need the following propositions from [14].

Let A be a DRl-semigroup, a, b, c ∈ A. Then
(P1) a ≤ b if and only if a − b ≤ 0 (Lemma 7),
(P2) a ≤ b implies (b − a) + a = b (Lemma 8),
(P3) a ≤ b implies a − c ≤ b − c and c − b ≤ c − a (Lemma 3),
(P4) (a ∨ b) − c = (a − c) ∨ (b − c) (Lemma 4).

Luxemburg and Zaanen [13] introduced notions of a u-uniform convergence and of a relatively
uniform convergence of sequences for vector lattices and Černák and Lihová [5] for lattice
ordered groups.

Analogous definition of a u-uniform convergence we shall use for DRl-semigroups.

Definition 2.1 Let A be a DRl-semigroup, (xn) a sequence in A, u ∈ A+. It is said that a
sequence (xn) in A converges u-uniformly to an element x ∈ A, written xn

u→ x, if the following
condition is satisfied:
(C3) for each k ∈ N there exists nk ∈ N, such that k|xn − x| ≤ u for each n ∈ N, n ≥ nk.

The element u in the Definition 2.1 is called a convergence regulator.
If xn

u→ x, we say that x is a u−limit of (xn).

16 volume 5 (2012), number 3
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If we take the same regulator for all sequences we get convergence which is called convergence
with a fixed regulator.

Černák and Lihová have shown that if convergence regulator u in lattice ordered group
is not Archimedean then a sequence can have more u-limits. So, it is convenient to have an
Archimedean element in the role of convergence regulator.

Basic properties of the convergence with a fixed regulator in DRl-semigroups were estab-
lished in [9].

It was shown that if convergence regulator u in a strong DRl-semigroup B is an Archimedean
element, then u-limits are uniquely determined (Theorem 1) and if (xn), (yn) are sequences in
B and xn

u→ x and yn
u→ y, then xn + yn

u→ x + y, xn − yn
u→ x − y, xn ∨ yn

u→ x ∨ y,
xn ∧ yn

u→ x ∧ y (Theorem 2).

3 Cauchy sequences and a u-Cauchy completion

Definition 3.1 Let B be a DRl-semigroup, u ∈ B+. A sequence (xn) in B is called a u-Cauchy
sequence, if for each k ∈ N there exists nk ∈ N such that u ≥ k|xm − xn| for each m, n ∈ N,
m, n ≥ nk.

Throughout the rest of the paper A will be a strong DRl-semigroup and an Archimedean
element u of A will be a fixed regulator for all sequences in A.

In [9] it was showed that each u-convergent sequence in A is a u-Cauchy sequence (Theorem
6) and that if (xn) and (yn) are u-Cauchy sequences, then (xn + yn), (xn − yn), (xn ∨ yn),
(xn ∧ yn) are u-Cauchy sequences, too (Theorem 7).

Let C be the set of all u-Cauchy sequences in A.
Let (xn), (yn) ∈ C. We put (xn) + (yn) = (xn + yn). Further we set (xn) ≤ (yn) if and only if
xn ≤ yn for each n ∈ N.

If (xn), (yn) ∈ C and 2(xn) ≤ 2(yn), then (xn) ≤ (yn) [9, Theorem 2(v)].

We denote by (x) the sequence (x, x, x, . . .) in A. Clearly, the u−limit of this sequence is x.
In [9] it was also proved that (C, +, ≤) is a strong DRl-semigroup with zero (0) and lattice op-
erations ∨ and ∧ such that (xn)∨(yn) = (xn∨yn), (xn)∧(yn) = (xn∧yn) for all (xn), (yn) ∈ C.
Further, (xn) − (yn) = (xn − yn) for all (xn), (yn) ∈ C.

Swamy [16, p. 71] defined an ideal and a convex sub-DRl-semigroup of a DRl-semigroup as
follows.

Definition 3.2 A non-empty subset I of A is called an ideal of A if and only if:
(i) a, b ∈ I implies a + b ∈ I,
(ii) a ∈ I, b ∈ A and |b − 0| ≤ |a − 0| imply b ∈ I.

Definition 3.3 Non-empty subset S of A is called a convex sub-DRl-semigroup if and only if
the following conditions are satisfied:
(i) if a, b ∈ S, then a + b, a − b, a ∧ b, a ∨ b ∈ S,
(ii) if a, b ∈ S, x ∈ A and a ∧ b ≤ x ≤ a ∨ b, then x ∈ S.

volume 5 (2012), number 3 17
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The set E of all sequences (xn) in A such that xn
u→ 0 is an ideal of C and a convex sub-DRl-

semigroup of C. [9, Theorems 9 and 10 ]

By a congruence relation on a DRl-semigroup B we mean an equivalence relation, having the
substitution property with respect to all the operations: +,∨,∧ and −. Swamy [16, Theorem
1.2] showed that ideals of any DRl-semigroup correspond one to one to its congruence relations.
Further, he showed that if I is an ideal of B, then the binary relation ϑ(I) defined by (a, b) ∈
ϑ(I) if and only if |a − b| ∈ I is a congruence relation on B [16, p. 72].

Hence, the factor semigroup A∗ = C/ϑ(E) is a DRl-semigroup.
We denote by (xn)∗ the congruence class modulo ϑ(E) containing the sequence (xn). Re-

call that (xn)∗ + (yn)∗ = (xn + yn)∗, (xn)∗ − (yn)∗ = (xn − yn)∗, (xn)∗ ∧ (yn)∗ = (xn ∧ yn)∗,
(xn)∗ ∨ (yn)∗ = (xn ∨ yn)∗, for all (xn)∗, (yn)∗ ∈ A∗.

Lemma 3.4 (i) E = (0)∗.
(ii) If (xn) ∈ C, (x

′
n) ∈ (xn)∗, then (x

′
n) − (xn), (xn) − (x

′
n) ∈ E.

Proof. (i) Let (xn) ∈ E. Since E is a DRl-semigroup, we have |(xn) − (0)| ∈ E. Hence
(xn) ∈ (0)∗ and thus E ⊆ (0)∗.

Let (yn) ∈ (0)∗. Then |(yn)− (0)| ∈ E. Since |(yn)− (0)| = ||(yn)− (0)| − (0)| ∈ E, we have
(yn) ∈ E. Hence (0)∗ ⊆ E.
(ii) If (x

′
n) ∈ (xn)∗, then (x

′
n)∗ = (xn)∗. Thus (x

′
n − xn)∗ = (x

′
n)∗ − (xn)∗ = (xn)∗ − (xn)∗ =

(xn − xn)∗ = (0)∗ = E. Hence (x
′
n) − (xn) ∈ E. Analogously, (xn) − (x

′
n) ∈ E.

Lemma 3.5 Let (xn), (yn) ∈ C. Then the following conditions are equivalent:
(i) (xn)∗ ≤ (yn)∗,
(ii) (xn) ≤ (yn) + (tn) for some (tn) ∈ E, (tn) ≥ (0),
(iii) for each (x

′
n) ∈ (xn)∗ there exists (y

′
n) ∈ (yn)∗ such that (x

′
n) ≤ (y

′
n).

Proof. (i)⇔(ii) Clearly, (xn)∗ ≤ (yn)∗ iff (xn)∗ ∨ (yn)∗ = (yn)∗ iff ((xn) ∨ (yn)) − (yn) =
|((xn) ∨ (yn)) − (yn)| ∈ E. Let (zn) = ((xn) ∨ (yn)) − (yn). Thus (zn) ≥ (0). If (xn)∗ ≤ (yn)∗,
then (zn) ∈ E. In view of (P2) we obtain (xn) ≤ (xn) ∨ (yn) = (((xn) ∨ (yn)) − (yn)) + (yn) =
(zn) + (yn) = (yn) + (zn).

Conversely, if (xn) ≤ (yn) + (zn), where (0) ≤ (zn) ∈ E, then from (P3) it follows that
(xn) − (yn) ≤ ((zn) + (yn)) − (yn) ≤ (zn). According to (P4), ((xn) ∨ (yn)) − (yn) = ((xn) −
(yn)) ∨ (0) ≤ (zn) ∨ (0) = (zn) ∈ E.

The equivalence of (i) and (iii) is obvious because ϑ(E) is a lattice congruence.

Lemma 3.6 A∗ is a strong DRl-semigroup.

Proof. Let (xn)∗, (yn)∗ ∈ A∗, 2(xn)∗ ≤ 2(yn)∗. Then (2xn)∗ ≤ (2yn)∗. By Lemma 3.5, (2xn) ≤
(2yn)+(tn) ≤ (2yn)+(2tn), where (tn) ∈ E, (0) ≤ (tn). This implies 2xn ≤ 2yn+2tn = 2(yn+tn)
for each n ∈ N. Then xn ≤ yn + tn for each n ∈ N. This implies (xn) ≤ (yn) + (tn). By Lemma
3.5, (xn)∗ ≤ (yn)∗. Hence DRl-semigroup A∗ is strong.
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Lemma 3.7 (u)∗ is an Archimedean element in A∗.

Proof. Let (xn)∗ ∈ A∗, (0)∗ ≤ (xn)∗, m(xn)∗ ≤ (u)∗ for each m ∈ N. From (0)∗ ≤ (xn)∗ and
Lemma 3.5 it follows that (0) ≤ (x

′
n) for some (x

′
n) ∈ (xn)∗. Thus 0 ≤ x

′
n for each n ∈ N,

(x
′
n)∗ = (xn)∗. Then (mx

′
n)∗ = m(x

′
n)∗ = m(xn)∗ ≤ (u)∗ for each m ∈ N. By Lemma 3.5,

(mx
′
n) ≤ (u) + (tn) for some (tn) ∈ E, (tn) ≥ (0). Since tn

u→ 0 for each k ∈ N there exists
nk ∈ N such that tn = |tn − 0| ≤ k|tn − 0| ≤ u for each n ∈ N, n ≥ nk. Thus for each m ∈ N we
have mx

′
n ≤ u+ tn ≤ 2u, where n ∈ N, n ≥ nk. Hence 2px

′
n ≤ 2u for each p ∈ N. Then px

′
n ≤ u

for each p ∈ N. This yields x
′
n = 0 for each n ∈ N, n ≥ nk. Thus x

′
n

u→ 0 and hence (x
′
n) ∈ E.

Then (xn)∗ = (x
′
n)∗ = E. Therefore (u)∗ is an Archimedean element in A∗.

Lemma 3.8 Let (xn) be a sequence in A. If xn
u→ 0, then (xn)∗

(u)∗→ (0)∗.

Proof. Let (xn) be a sequence in A, xn
u→ 0. Hence for each k ∈ N there exists nk ∈ N such

that k|xn − 0| ≤ u for each n ∈ N, n ≥ nk. Then (u) ≥ (k|xn − 0|) = k(|xn − 0|) = k|(xn)− (0)|
for each n ∈ N, n ≥ nk. Thus (u)∗ ≥ k|(xn)∗ − (0)∗| for each n ∈ N, n ≥ nk. Hence (xn)∗→(0)∗.

Lemma 3.9 Let (xn) ∈ C, l ∈ N, a1, . . . , al ∈ A. Let yn = xl+n−1 for each n ∈ N i. e.
(yn) = (xl, xl+1, xl+2, . . .). Let z1 = a1, . . . , zl = al, zn = xn for each n ∈ N, n ≥ l + 1 i. e.
(zn) = (a1, . . . , al, xl+1, xl+2, . . .). Then
(i) (yn), (zn) ∈ C,
(ii) (xn)∗ = (yn)∗ = (zn)∗.

Proof. Since (xn) ∈ C, for each k ∈ N there exists nk ∈ N such that k|xm − xn| ≤ u for each
m,n ∈ N, m, n ≥ nk.
(i) Since l + m− 1 ≥ nk, l + n− 1 ≥ nk, we have u ≥ k|xl+m−1 − xl+n−1| = k|ym − yn| for each
m,n ∈ N, m, n ≥ nk. Therefore (yn) ∈ C.

Further, if we take nk ∈ N, nk ≥ l, then we have k|zm − zn| = k|xm − xn| ≤ u for each
m,n ∈ N, m, n ≥ nk. Hence (zn) ∈ C.
(ii) If we take m = l + n − 1, we have u ≥ k|xl+n−1 − xn| = k|yn − xn| = k||yn − xn| − 0| for
each n ∈ N, n ≥ nk. Thus |yn − xn| u→ 0. Hence |(yn) − (xn)| ∈ E. This implies (xn)∗ = (yn)∗.

Clearly |zn − xn| u→ 0 and hence |(zn) − (xn)| ∈ E. Therefore (xn)∗ = (zn)∗.

Denote by C∗ the set of all (u)∗-Cauchy sequences in A∗.

Theorem 3.10 Let (xn) be a sequence in A. Then (xn) ∈ C if and only if ((xn)∗) ∈ C∗.

Proof. Let (xn) ∈ C. Then for each k ∈ N there exists nk ∈ N such that k|xm − xn| ≤ u
for each m,n ∈ N, m, n ≥ nk. Thus (u) ≥ (k|xm − xn|) and hence (u)∗ ≥ (k|xm − xn|)∗ =
k|(xm)∗ − (xn)∗| for each m,n ∈ N, m, n ≥ nk. Therefore ((xn)∗) ∈ C∗.

Let ((xn)∗) ∈ C∗. Then for each k ∈ N there exists nk ∈ N such that k|(xm)∗ − (xn)∗| =
|(k(xm − xn))∗| ≤ (u)∗ for each m,n ∈ N, m, n ≥ nk.

From Lemma 3.5 it follows that (k|xm − xn|) ≤ (u) + (tl), where (tl) ∈ (0)∗, (0) ≤ (tl).
Hence tl

u→ 0. Thus for each p ∈ N there exists np ∈ N, such that p|tl| ≤ u for each l ∈ N,
l ≥ np. For k = 1 we have tl ≤ u for each l ∈ N, l ≥ n1.
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Hence k|xm − xn| ≤ 2u, for each m, n ∈ N, m, n ≥ nk0 = max{nk, n1}. Then for any k ∈ N

there exists nk1 ∈ N such that 2k|xm − xn| ≤ 2u for each m,n ∈ N, m, n ≥ nk1 . This implies
that for each k ∈ N there exists nk1 ∈ N such that k|xm−xn| ≤ u for each m,n ∈ N, m, n ≥ nk1 .
Therefore (xn) ∈ C.

Theorem 3.11 Let (xn) ∈ C. Then (xn)∗
(u)∗→ (xn)∗.

Proof. If (xn) ∈ C, then for each k ∈ N there exists nk ∈ N such that u ≥ k|xm − xn| for each
m,n ∈ N, m, n ≥ nk. If we take n = nk, we get u ≥ k|xm − xnk

| for each m ∈ N, m ≥ nk.
Similarly, if we take n = nk+1, n = nk+2, . . . , we can get u ≥ k|xm−xnk+1|, u ≥ k|xm−xnk+2|,
. . . , for each m ∈ N, m ≥ nk. Hence (u)∗ ≥ (k|xm − xnk

|, k|xm − xnk+1|, k|xm − xnk+2|, . . .)∗. In
view of Lemma 3.9 we obtain (u)∗ ≥ (k|xm−x1|, k|xm−x2|, . . . , k|xm−xnk

|, k|xm−xnk+1|, . . .)∗ =

(k|(xm) − (xn)|)∗ = k|(xm)∗ − (xn)∗| for each m ∈ N, m ≥ nk. Therefore (xn)∗
(u)∗→ (xn)∗.

Theorem 3.12 Let ϕ : A → A∗ be the mapping such that ϕ(x) = (x)∗ for each x ∈ A. Then
(i) ϕ is a monomorphism,
(ii) every element of A∗ is the (u)∗-limit of some sequence in ϕ(A).

Proof. (i) Let x, y ∈ A. Clearly ϕ(x + y) = ϕ(x) + ϕ(y), ϕ(x − y) = ϕ(x) − ϕ(y), ϕ(x ∧ y) =
ϕ(x) ∧ ϕ(y), ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y).

If ϕ(x) = ϕ(y), then (x)∗ = (y)∗. This implies (x) ∈ (y)∗. Then |(x) − (y)| = (|x − y|) ∈ E.
Since 0 is the u−limit of the sequence (|x − y|), we have |x − y| = 0. Hence x = y.
(ii) Let (xn)∗ ∈ A∗. Then ((xn)∗) is a sequence in ϕ(A). Since (xn) ∈ C, from Theorem 3.11 it

follows that (xn)∗
(u)∗→ (xn)∗.

Definition 3.13 Let B be a DRl-semigroup. If every u−Cauchy sequence (xn) in B is u−con-
vergent, then B is called u−Cauchy complete.

Definition 3.14 Let B be a DRl-semigroup.
A DRl-semigroup D is said to be a u−Cauchy completion of B, if the following conditions

are satisfied:
(i) B is a sub-DRl-semigroup of D,
(ii) D is u−Cauchy complete,
(iii) Every element of D is a u−limit of some sequence in B.

Theorem 3.15 A∗ is a (u)∗−Cauchy complete DRl-semigroup.

Proof. Let X1 = (x1
m)∗, X2 = (x2

m)∗, . . . be a sequence in C∗. Let n ∈ N. Let Xn
m = (xn

m)∗

for each m ∈ N. Hence Xn
m ∈ ϕ(A) for each m ∈ N. By Theorem 3.11, the sequence

(Xn
1 , Xn

2 , Xn
3 , . . .) (u)∗−converges to Xn. Hence for choosen n ∈ N there exists mn ∈ N, such

that n|Xn
m − Xn| ≤ (u)∗ for each m ∈ N, m ≥ mn. If we let run n over N, we can take

m1 ≤ m2 ≤ · · · . Further, if we take m = mn, we get n|Xn
mn

− Xn| ≤ (u)∗ for each n ∈ N. Let
Zn = Xn

mn
for each n ∈ N. Then n|Zn − Xn| ≤ (u)∗ for any n ∈ N.
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Now we show that (Zn) ∈ C∗. Since (Xn) is an (u)∗−Cauchy sequence, for each l ∈ N

there exists nl ∈ N, nl > l such that l|Xm − Xn| ≤ (u)∗ for each m, n ∈ N, m, n ≥ nl. Since
l ≤ m,n, we get l|Zm −Xm| ≤ m|Zm −Xm| ≤ (u)∗, l|Xn −Zn| ≤ n|Xn −Zn| = n|Zn −Xn| ≤
(u)∗ for each m, n ∈ N, m, n ≥ nl. Then we have 2(u)∗ ≥ l|Zm − Xm| + l|Xm − Xn| =
l(|Zm − Xm| + |Xm − Xn|) ≥ l(|Zm − Xn|) for each m, n ∈ N, m, n ≥ nl. Hence for any
l ∈ N there exists nl1 ∈ N, nl1 ≥ nl such that 2(u)∗ ≥ 2l|Zm − Xn| for each m, n ∈ N,
m, n ≥ nl1 . Therefore (u)∗ ≥ l|Zm − Xn| for each m, n ∈ N, m, n ≥ nl1 . Further, we obtain
2(u)∗ ≥ l|Zm −Xn|+ l|Xn −Zn| = l(|Zm −Xn|+ |Xn −Zn|) ≥ l|Zm −Zn| for each m, n ∈ N,
m, n ≥ nl1 . Thus for any l ∈ N there exists nl2 ∈ N, nl2 ≥ nl1 such that 2(u)∗ ≥ 2l|Zm − Zn|
for each m, n ∈ N, m, n ≥ nl2 . Therefore for each l ∈ N there exists nl2 ∈ N such that
(u)∗ ≥ l|Zm − Zn| for each m, n ∈ N, m, n ≥ nl2 . Therefore (Zn) ∈ C∗.

If we put zn = xn
mn

, then Zn = (zn)∗. Since (Zn) ∈ C∗, from Theorem 3.10 it follows that
(zn) ∈ C. By Theorem 3.11, Zn → (zn)∗.

Let t ∈ N. Since Zn → (zn)∗, there exist nt ∈ N, nt ≥ t such that t|Zk − (zn)∗| ≤ (u)∗ for
each k ∈ N, k ≥ nt.

Since t ≤ k, we have t|Xk − Zk| = t|Zk − Xk| ≤ k|Zk − Xk| ≤ (u)∗ for each k ∈ N, k ≥ nt.
Then we have 2(u)∗ ≥ t|Xk − Zk| + t|Zk − (zn)∗| = t(|Xk − Zk| + |Zk − (zn)∗|) ≥ t|Xk − (zn)∗|
for each k ∈ N, k ≥ nt. Thus for any t ∈ N there exists nt1 ∈ N, nt1 ≥ nt such that 2(u)∗ ≥
2t|Xk − (zn)∗| for each k ∈ N, k ≥ nt1 . Hence for each t ∈ N there exists nt1 ∈ N such that

(u)∗ ≥ t|Xk − (zn)∗| for each k ∈ N, k ≥ nt. Therefore Xn (u)∗−→ (zn)∗.

If x and ϕ(x) = (x)∗ will be identified for each x ∈ A, then A is a subgroup of A∗ and
(u)∗ = u. Then we get as a consequence of Theorems 3.12 and 3.15 the following proposition.

Theorem 3.16 A∗ is an u−Cauchy completion of A.

Theorem 3.17 If A1 and A2 are u−Cauchy completions of A, then there exists a semigroup
l-isomorphism of A1 onto A2 leaving all elements of A fixed.

Proof. From the assumptions it follows that A is a sub-DRl-semigroup of A1 and A2. Let
x

′ ∈ A1. Then there exists a sequence (xn) in A such that xn
u→ x

′
in A1. Since (xn) is

a convergent, (xn) is an u−Cauchy sequence in A1 and then also in A and A2. Since A2 is
u−Cauchy complete, there exists x

′′ ∈ A2 such that xn
u→ x

′′
in A2. We put ψ(x

′
) = x

′′
.

Now we show that the mapping ψ is correctly defined. Let (yn) be another sequence in A
such that yn

u→ x
′

in A1. Analogously as above we can get that there exists x
′′′ ∈ A2 such

that yn
u→ x

′′′
in A2. Then we have xn − yn

u→ 0, yn − xn
u→ 0 in A1 and xn − yn

u→ x
′′ − x

′′′
,

yn − xn
u→ x

′′′ − x
′′

in A2. Since 0 ∈ A ⊆ A2, we have xn − yn
u→ 0 in A2, yn − xn

u→ 0 in
A2, Because u-limits are uniquely determined we obtain x

′′ − x
′′′

= 0, x
′′′ − x

′′
= 0. Then (P1)

yields x
′′ ≤ x

′′′
x

′′′ ≤ x
′′
. Therefore x

′′
= x

′′′
.

Let z
′′ ∈ A2. Then there exists a sequence (zn) ∈ A such that zn

u→ z
′′

in A2 and z
′ ∈ A1

such that zn
u→ z

′
in A1. Then ψ(z

′
) = z

′′
. Therefore ψ is a surjective mapping. Let a

′
, b

′ ∈ A1,
ψ(a

′
) = a

′′
, ψ(b

′
) = b

′′
. Hence there are sequences (an) and (bn) in A such that an

u→ a
′
, bn

u→ b
′

in A1 and an
u→ a

′′
, bn

u→ b
′′

in A2. Then an + bn
u→ a

′
+ b

′
, an − bn

u→ a
′ − b

′
, an ∨ bn

u→ a
′ ∨ b

′
,

an∧ bn
u→ a

′ ∧ b
′
in A1, an + bn

u→ a
′′
+ b

′′
, an− bn

u→ a
′′ − b

′′
, an∨ bn

u→ a
′′ ∨ b

′′
, an∧ bn

u→ a
′′ ∧ b

′′

in A2. Therefore ψ(a
′
+ b

′
) = a

′′
+ b

′′
= ψ(a

′
) + ψ(b

′
), ψ(a

′ − b
′
) = a

′′ − b
′′

= ψ(a
′
) − ψ(b

′
),

ψ(a
′ ∨ b

′
) = a

′′ ∨ b
′′

= ψ(a
′
) ∨ ψ(b

′
), ψ(a

′ ∧ b
′
) = a

′′ ∧ b
′′

= ψ(a
′
) ∧ ψ(b

′
).
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If a
′′

= b
′′
, then an−bn

u→ 0, bn−an
u→ 0 in A2 and also in A and A1. Since an−bn

u→ a
′−b

′
,

bn − an
u→ b

′ − a
′
in A1, we get a

′ − b
′
= 0, b

′ − a
′
= 0. By (P1), a

′ ≤ b
′
, b

′ ≤ a
′
. Therefore

a
′
= b

′
. Clearly, ψ(x) = x for each x ∈ A.
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ON   THE  HYPER-WIENER   INDEX   AND 

   POLYNOMIAL   OF  A GRAPH 
 

SEIBERT Jaroslav, (CZ) 
 
 

Abstract. There exist more than thousand topological indices and various polynomials which 
characterize the structure of graphs. Most of them have some applications in chemistry, physics, 
biochemistry, computer and communication sciences.  The Wiener and hyper – Wiener indices 
are the most studied topological indices, both for algebraic aspects and rich applications. In this 
contribution the hyper – Wiener index and polynomial of some specific classes of graphs are 
found. Further, one of the most interesting extension of the Wiener index introduced by Eliasi 
and Taeri is shown.  
 
Key words and phrases. Simple graph, distance matrix, hyper-Wiener index, hyper-Wiener 
polynomial, extension of Wiener index 
 
Mathematics Subject Classification:  Primary  05C12, 05C85; Secondary 05C50 

 
 
1 Introduction 
 
 
 The advantage of using the graph theory in chemical studies lies in the possibility to apply 
directly its mathematical apparatus and proof techniques. A given problem  may be considered on a 
higher level of abstraction which enables a relatively simple insight into the structural features of 
the molecule. The obtained graph–theoretical results have a general validity and may be formulated 
as theorems and rules which can then be applied to any similar group of molecules without any 
further numerical or conceptual work. 
 Various topological indices are real numbers related to a molecular graph. They must be 
structural invariants which do not depend on the labeling of the concrete  representation of a graph. 
Some of these topological indices have found applications as means to model chemical, 
pharmaceutical and other properties of molecules. 
 roughout this contribution we will use connected graphs without loops and multiple edges. 
Several invariants were derived from the distance matrix of a graph.  
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Definition 1. Let ),( EVG   be a graph with the vertex set  nvvV ,...,1 . Then the distance matrix 

of G  is defined as the nn  matrix )()( ijdGD  , where 0ijd  for ji   and ijd  is the distance 

between vertices iv and jv  for  ji  . 

 
Definiton 2. The Wiener index )(GW  of a graph G  is the sum of all entries above the main 

diagonal of the distance matrix, so that 



ji

ijdGW )( . Let ),( kGd be the number of pairs of 

vertices in G  that are distance k apart, and nGd )0,( . The graph polynomial defined 

as 



N

k

kxkGdxGH
0

),(),( , where N  is the diameter of the graph G , is called the Wiener 

polynomial.  
 
 The Wiener polynomial was introduced by Hosoya in 1988. It is easy to see that the first 
derivative of ),( xGH  at 1x  equals the Wiener index. 

We let nnn KCP ,,  and nL  denote the path, circuit, complete graph and wheel on n  vertices, srK ,  

the complete bipartite graph on parts of size sr, . The Wiener polynomials for these types of graphs 
are given e. g. in [6, Theorem 1.2.]. 
 
 
Theorem 1. (Theorem 1.3 in [6], Theorem 3 in [7]). 
The folowing relations hold for the Wiener index of the above–mentioned types of graphs: 

 








 


3

1
)(

n
PW n  , 

3

8

1
)( nCW n    for n  even,  







 


3

1

4

3
)(

n
CW n   for n  odd, 











2
)(

n
KW n , 




















2
2

2
2)( ,

s
rs

r
KW sr , 








 


2

1
2)(

n
LW n . 

 

In the case of large graphs it is practical to use some of „decomposition“ rules to compute the 
Wiener index of such graphs. Two statements were proved in [7]. 
 
 
Theorem 2. ([7], Theorem 1] 
Let G  be a graph having a bridge incident with the vertices 1, pp vv  . The deletion of this bridge 

disconnects G  into two connected subgraphs pG  and 1,1,  qpGq , with the sets of vertices 

 pvv ,...,1  and  qpp vv  ...,,1 , respectively. Then 

 







p

i

qp

pj
jpipqp dpdqpqGWGWGW

1 1
1)()()( . 
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A similar statement was also proved for using an articulation vertex instead of a bridge.  
 
 
2 The hyper – Wiener  index 
 
 
 Many authors have tried to generalize the Wiener index and the Wiener polynomial of a 
graph. Randić  in 1993 introduced an extension of the Wiener index for trees, and this has come to 
be known as the hyper–Wiener index. In 1995 Klein, Lucovits and Gutman generalized this 
extension to cyclic structures (see more in [3]). Then the hyper–Wiener index )(GWh  of a graph G  

is expressed in the form 
2

2

1
)(

2

1
)( 




ji

ijh dGWGW  or equivalently  

 
 








 





ji

ij

ji ji

ijij
ijijh

ddd
ddGW

2

1

2

)1(
)(

2

1
)( 2 . 

 
 It is easy to see that the following relations between )(GWh  and polynomial ),( xGH  hold.  

If we denote   )(),(
2

2

xfxGHx
dx

d
  and )(),(

2

1
),(

2

2

xgxGH
dx

d
xGH

dx

d
  then 

)1()1()( gfGWh  . All attemps to extend the Wiener polynomial were done with respect  to the 

previous relations. 
 

 In [2] Cash has defined the hyper-Wiener polynomial by k
N

k
h xkGd

k
xGH ),(

2

1
),(

0




 .  

The value of its derivative at 1x  is )(GWh  as  

 ),(),( xGHxGH
dx

d
hh  
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kxkkGd
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1),(
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1
. 

Then  )1,(GH h  
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1
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2

1
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

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Now we express the hyper–Wiener polynomials and indices for the path nP , complete graph nK , 

circuit nC  and wheel nL  on n  vertices and the complete bipartite graph srK , .  

 
 
Theorem 3. The following statements hold for the hyper–Wiener indices. 
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Proof.  The formulas can be proved by direct computation of the hyper–Wiener index. We will do it 

only for a circuit nC  using the basic relation   
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First, let 4n  be an even integer. Then 1ijd  for n  pairs of vertices ( ji vv , ),  2ijd  also for n  
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Now let 3n  be an odd integer. Then we have by the same reasons 
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Theorem 4.  The following relations hold for the hyper–Wiener polynomials of the mentioned 
types of graphs. 
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Proof. These polynomials are derived from the definition given by Cash. 
 
 
 A direct calculation of the index  )(GWh  and the polynomial ),( xGH h  is possible only for 

several classes of graphs or for graphs on a  small number of vertices. In the case of large graphs it 
is necessary to use a computer program. Such program can be found in [8]. 
 
 
3 Other extension of the Wiener index 
 
 
 In this section we will comment on one of the most interesting way for a generalization of 
the Wiener and hyper–Wiener indices of graphs.  Eliasi and Taeri [3] introduced the notion of the    
y -Wiener index of graphs. They used the Gamma function as a generalization of the well-known 

factorial function. It is defined as 
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Definition 3.  ([3], Definition 1).  
 
Let y  be a positive real number. Then the y -Wiener index ),( yGW  of a graph G  is defined as 
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Putting 1y  in the relation for ),( yGW  we have 
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which means that the 1–Wiener index is the Wiener index. 
Putting 2y  in the definition of ),( yGW  we have 
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which  means that the 2-Wiener index is the hyper–Wiener index. 
By a similar way Eliasi and Taeri introduced the y -Wiener polynomial ),,( yxGH  of a graph G . 
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The value of the first derivative of ),,( yxGH  at 1x   is ),( yGW . The authors also obtained some 
mathematical properties of this new topological index. 
 
 
4 Concluding remarks 
 
Some authors, e.g. [6], have found as more practical and natural for applications in chemistry to 

express the Wiener polynomial in the ordered form. Then  
ji

k
ij xdxGH

,

),( where the sum is now 

over all ordered pairs  ji vv ,  of vertices in G , including those where ji vv  . It means that 

  nxGHxGH  ,2),( . Further invariants can be obtained of this definition. 
 

 It is also possible to introduce the hyper-Wiener index for trees by another way , e.g. [5]. Let 
P  be the unique path connecting the vertices ji vv ,  and   let ji nn ,  be the number of vertices on the 

two sides of the path P . Then   j
ji

ih nnGW 
,

 with summation going over all pairs of vertices of a 

tree G . 
 
 
References 
 
[1] ABU GHNEIM, O. A., AL-EZEH, H., AL-EZEH, M.: The Wiener Polynomial of the k-th 

Power Graph. International Journal of Mathematics and Mathematical Sciences, Hindawi 
Publishing Corporation, Vol. 2007, Article ID 24873, 6 pp. 

[2] CASH, G. G.: Relationship Between the Hosoya Polynomial and the Hyper-Wiener Index. 
Applied Mathematical Letters, 15 (2002), 893 – 895. 

[3] ELIASI, M., TAERI, B.: Extension of the Wiener Index and Wiener Polynomial. Applied 
Mathematical Letters, 21 (2008), 916 – 921. 

[4] GUTMAN, I.: Some Properties of the Wiener Polynomial. Graph Theory Notes of New York 
XXV, 1993, 13 – 18. 

[5] GUTMAN, I.: A New Hyper-Wiener Index. Croatica Chemica Acta 77 (2004), 61– 64.[6]  
SAGAN, B. E., YEH, Y. N., ZHANG, P.: The Wiener Polynomial of a Graph. International 
Journal of Quantum Chemistry, 60 (1996), 959 – 969. 

[6] SEIBERT, J., TROJOVSKY, P.: Double Invariants and Wiener Index of Graphs. Proceedings 
of the 5th International Conference APLIMAT 2006, 151 – 156. 

[7] SEIBERT, J., TROJOVSKY, P.: Wiener Polynomial and Some Topological Indices of a 
Graph. Proceedings of the 6th International Conference APLIMAT  2007, 115 – 121. 

 
 
Current address 
 
Jaroslav Seibert 
Institute of Mathematics 
Faculty of Economics and Administration 
University of  Pardubice 
Czech Republic 
e-mail: jaroslav.seibert@upce.cz 
 



HEXAGONAL AND GOLDEN QUASIGROUPS
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Abstract. Our aim is to investigate two subvarieties in the variety of idempotent medial
quasigroups, namely hexagonal quasigroups and golden section quasigroups. For both
classes, we present here a construction of special finite examples of low order, particularly
those arising from an additive group of a finite field and a suitable left translation (with
respect to multiplication). As useful tools, we use the concept of isotopism and a modified
version of the Toyoda theorem.
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1 Basic concepts

We consider mostly binary systems Q = (Q, ·) here, algebras of type ( · , 2), with one binary
operation on the non-empty carrier set Q, that are called groupoids or magmas. If not otherwise
stated, we write the operation multiplicatively, and additive notation is reserved for groups only.
Juxtaposition is preferred to composition where the product is explicitly written.

The left and right translation in (Q, ·) by a fixed element u are the maps L·
u, R

·
u : Q → Q,

L·
u : x �→ ux, respectively R·

u : x �→ xu. A dual magma (Q, ∗) to (Q, ·) has the operation related
by a ∗ b = b · a.

Under a pointed magma (or quasigroup) we mean the algebraic system together with a
distinguished element from the underlying set. We use the notation (Q, ·; q) etc. In the case of
a pointed group or loop, we agree to distinguish just the identity element.

1.1 Isotopism of quasigroups

Quasigroups can be characterized in two ways. Either equationally, as algebras with three
binary operation ·, / and \ (called multplication, right and left division) which are related by
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the identities [9], [7]
xy/y = y\yx = (x/y)y = y(y\x) = x,

or as magmas in which the equations ay = b, xa = b admit unique solution, denoted a\b or
b/a, respectively, for which the above identities can be verified; left and right translations are
permutations of Q. In the finite case, both approaches are interchangable. For the sake of
simplicity, we follow the second view-point here.

A loop is a quasigroup with two-sided identity element. Recall that a group can be intro-
duced as a quasigroup which is at the same time a semigroup, i.e. is associative, [3]. Denote by
Aut(G) the automorphism group of the given group G.

Under an isotopy of a magma (Q, ·) onto (Q′, ·′) we mean a triplet of bijections

(α, β, γ) : Q → Q′

such that α(x)·′β(y) = γ(x · y) for all x, y ∈ Q, or equivalently, x′·′y′ = γ(α−1(x′) · β−1(y′)) for
all x′, y′ ∈ Q′, [9], [8]. In the case α = β = γ, we speak about isomorphism.

The class of isotopisms coincides with the class of isomorphisms for groups, hence for groups,
isotopism plays no role whatever. But for quasigroups and loops, isotopism plays the central
role; isomorphism is too restrictive since too strong. We speak about the principal isotopy of a
quasigroup if γ = id. The LP-isotopy of a quasigroup is a principal isotopy onto a loop.

Under a pointed magma or quasigroup we mean the algebraic system together with a dis-
tinguished element from the underlying set. We use the notation (Q, ·; q) etc. In the case of a
pointed group, we agree to distinguish just the identity element.

1.2 Idempotent medial quasigroups

In the term algebra of type (·, 2), consider the unary term j(x) = x · x = x2, the ternary term
t(x, y, z) = xy · z and the quaternary terms m(x, y, z, u) = xy · zu, p(x, y, z, u) = x(yz · u).

We are interested in magmas Q = (Q, ·) which are reducts of quasigroups and in which the
identity jQ(x) = x holds together with some of the identities mQ(x, y, z, u) = mQ(x, z, y, u),
pQ(x, y, z, u) = pQ(y, x, z, u), or tQ(x, t(x, y, z), z) = y.

An element q ∈ Q is idempotent in the magma (Q, ·) if q2 = q holds. If the identity
jQ(x) = x holds, i.e. all elements are idempotent, the magma itself is called idempotent. If the
identity

xy · zu = xz · yu (1)

is satisfied, i.e. if mQ(x, y, z, u) = mQ(x, z, y, u) holds for the term function, the magma Q
is called medial [7], entropic [11], [12], also abelian, [13], [14]. The identity pQ(x, y, z, u) =
pQ(y, x, z, u) will be called the left hexagonal identity ; explicitly,

x(yz · u) = y(xz · u). (2)

The identity tQ(x, t(x, y, z), z) = y is the left GS-identity ; explicitly,

(x · (xy · z)) · z = y. (3)

Mediality together with idempotency imply elasticity since xy · xx = xx · yx, and also left
and right distributivity:

Lemma 1.1 Any idempotent and medial quasigroup is distributive.

Proof. Indeed, xy · xz = xx · yz = x(yz) and xz · yz = xy · zz = (xy)z.
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2 Toyoda-like Theorems

It is known for some time that idempotent medial quasigroups are in fact isotopes of abelian
groups. In what follows we make use of the following results, [13], [16], [8]:

Lemma 2.1 Let G = (Q, +; e) be a commutative group with the identity element e and let
α, β ∈ Aut(G) be commuting automorphisms of the group. Introduce the operation

x · y = α(x) + β(y) for all x, y ∈ Q. (4)

Then Q = (Q, ·) is a medial quasigroup with the idempotent element e, and the given mappings
can be interpreted as translations of the quasigroup, namely, α = R·

e and β = L·
e.

Lemma 2.2 If Q = (Q, ·; e) is a pointed medial quasigroup then the binary operation +e defined
on Q by

x +e y = R−1
e (x) · L−1

e (y) = (x/e) · (e\y) for x, y ∈ Q (5)

is associative and commutative. Moreover, if e ∈ Q is an idempotent element of (Q, ·) then
(Q, +e; e) is a commutative group with the identity element e, and the translations R·

e and L·
e

are commuting automorphisms of the group G, [13], [16].

Proof. In [13], [16], it is checked that (Q, +e) is a commutative semigroup. Verify that (Q, +e)
is a quasigroup: (Re, Le, idQ) is a principal isotopy of (Q, ·) onto (Q, +e) since we can write (5)
equivalently as

xy = Re(x) +e Le(y) = xe +e ey for all x, y ∈ Q.

Let e ∈ Q be idempotent. Then for all x ∈ Q, xe = xe +e ee = xe +e e holds, and ex =
ee +e ex = e +e ex. Hence e is the identity element, and (Q, +e) is an LP -isotope of Q.

Together, we have

Theorem 2.3 A pointed magma (Q, ·; e) is a medial quasigroup with idempotent element e if
and only if there is a commutative group G = (Q, +; e) and a pair of commuting automorphisms
α, β ∈ Aut(G) such that

x · y = α(x) + β(y).

If this is the case then α = R·
e and β = L·

e.

We say that a magma (Q, ·) is linear over the commutative group G = (Q, +; e) under the
automorphism ϕ when ϕ ∈ Aut(G) and the binary dot operation on Q is related to the group
operation by

x · y = x + ϕ(y − x) = (idQ − ϕ)(x) + ϕ(y) for x, y ∈ Q. (6)

Theorem 2.4 Let G = (Q, +; e) be a commutative group, ϕ ∈ Aut(G) a non-trivial automor-
phism of G. Let Q = (Q, ·) be a magma linear over G with the automorphism ϕ. Then Q is an
idempotent medial quasigroup and ϕ = L·

e.
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Proof. We can check that ψ = idQ − ϕ is also the group automorphism: ψ(x + y) = x + y −
ϕ(x + y) = (x − ϕ(x)) + (y − ϕ(y)) = ψ(x) + ψ(y). Further, ψϕ(x) = ϕ(x) − ϕ2(x) = ϕψ(x),
hence the automorphisms commute. We use the Theorem 2.3 and set α = R·

e = idQ − ϕ,
β = L·

e = ϕ to finish the proof.

Theorem 2.5 If (Q, ·) is a non-trivial (card(Q) ≥ 1) idempotent medial quasigroup, then for
any fixed element e ∈ Q there is a commutative group G = (Q, +; e) satisfying xy = xe+ey such
that the translations R·

e, L
·
e are commuting automorphisms of the group G and for all x ∈ Q,

x + e · x = x holds. Moreover, (Q, ·) is linear over G with the automorphism ϕ = L·
e. The

groups (Q, +e; e) are pairwise isomorphic for all possible choices of element e ∈ Q.

Proof. Let (Q, ·) satisfy the assumptions and e ∈ Q be a fixed element. First check that
Re, Le ∈ Aut(G). We have Re(x)+eRe(y) = xe+eye = (x+ey)·(e+ee) = (x+ey)·e = Re(x+ey),
analogously for Le. We get x = xx = xe +e ex and xy = xe +e ey = xe +e ex −e ex +e ey =
x +e Le(y −e x) for all x, y ∈ Q, where Le �= idQ. Hence (Q, ·) is linear over G with the
automorphism ϕ = Le. For any x ∈ Q, ReLe(x) = ex · ee = ee · xe = LeRe(x), hence Re and
Le commute. Since each of the groups (Q, +e), e ∈ Q, is isotopic to (Q, ·) they are necessarily
pairwise isotopic, and therefore isomorphic.

Note that the assumption Le = idQ would imply ex = x = xx, x = e, hence Q = {e} would
be trivial.

3 Hexagonal quasigroups

The class of hexagonal quasigroups, introduced by V. Volenec in [22], is an interesting subclass
in the variety of idempotent medial quasigroups.

According to [22], a quasigroup (Q, ·) is called hexagonal if it satisfies the “hexagonal”
identity

x(yz · ww) = y(xz · w). (7)

Idempotency can be checked by taking x = y in (7) and using left calcellation. In what fol-
lows we show that hexagonal quasigroups are, among others, elastic, medial, (left and right)
distributive, and can be equivalently characterized also in another way, by idempotency, medial-
ity, elasticity and “semisymmetry”. A quasigroup is called semisymmetric in [22] if it satisfies
the identities (xy)x = y and x(yx) = y. If this is the case then the pair of quasi-identities
xy = z ⇔ x = yz hold, [22, p. 113].

Theorem 3.1 In a quasigroup Q = (Q, ·), the following conditions are equivalent:

(i) Q is hexagonal;

(ii) Q is idempotent and satisfies left hexagonality (2), i.e. x(yz · u) = y(xz · u);

(iii) Q is idempotent and satisfies

(x · yz)w = (x · yw)z (“right hexagonality”). (8)

Proof. We can easily see that (7) and (2) are equivalent provided idempotency holds; mirror
arguments prove (7)⇔(8).
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Lemma 3.2 In an idempotent quasigroup Q, the right hexagonality implies the identity

(xy)x = y, (9)

and left hexagonality implies the dual identity

x(yx) = y. (10)

Proof. If we put x = y = w in (8) we get (x · xz)x = (x · xx)z, which is equivalent with

(x · xz)x = xz (11)

provided idempotency holds. If a, b ∈ Q are arbitrary fixed elements and g is the unique
solution of the equation ay = b in Q (i.e. g = a\b) then (ab)a = (a · ag)a = ag = b. Hence (9)
holds. The proof of the second part is mirror.

As a consequence, a hexagonal quasigroup is elastic, i.e. it satisfies:

(xy)x = x(yx). (12)

Lemma 3.3 If the identity (xy)x = y is valid in a quasigroup Q = (Q, ·), then the following
two identities are equivalent in Q:

(i) left hexagonality,

(ii) mediality.

Proof. Let x, y, z, w ∈ Q and let the mediality is satisfied. Let us check left hexagonality.
Denote u = x(yz · w), v = y(xz · w). By (xy)x = y,

ux = (x(yz · w))x = yz · w, ux · yz = (yz · w) · yz = w,

and similarly

vy = (y(xz · w))y = xz · w, vy · xz = (xy · w) · xz = w.

It follows ux · yz = vy · cz. By mediality, ux · yz = uy · xz. Comparing right hand sides and
using cancellation we get u = v, hence (2) is satisfied. Vice versa, if (2) holds then u = v, and
the mediality follows.

The mirror proof checks the following.

Lemma 3.4 If x(yx) = y holds in Q then the right hexagonality is equivalent with mediality.
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4 Golden quasigroups

A magma (Q, ·) is said to be a golden magma if it is idempotent, satisfies (3) and the following
condition (“right golden ratio identity”):

x · ((x · yz) · z) = y. (13)

Obviously, (Q, ·) satisfies (3) (or (13), respectively), if and only if its dual magma satisfies the
“dual” identity. In a cancellative magma Q = (Q, ·), (3) and (13) are equivalent, [21]. In fact,
plugging yz for y, by (3) we get (x · ((x · yz) · z)) · z = yz. Accordingly, (13) follows by right
cancellation. Similarly for the converse implication.

Note that at least theoretically, the identity (3) might have some application in cryptography
when both parties use the same key.

Lemma 4.1 Any magma satisfying both (3) and (13) is a medial quasigroup.

Proof. Indeed, (3) guarantees solvability in Q of the equations of the form xc = b for b, c ∈ Q.
To verify uniqueness, let ax1 = ax2. Then, according to (3), x1 = (a(ax1·a))·a = (a(ax2·a))·a =
x2. Hence x1 = x2, and Q is left cancellative. Similarly, solvability of the equations of the
form cy = b and right cancellation are consequences of (13). Let us check the mediality:
ac · (ab · cd)d = a(ab · (ab · cd)d) · (ab · cd)d = b = ac · (ac · bd)d holds for arbitrary elements, and
it is sufficient to use cancellation again.

It follows from the discussion above that we can adopt the following definition of a golden
quasigroup, or a GS-quasigroup, as an idempotent quasigroup that satisfies (3), or equivalently,
(13), [8], [19]. Originally, the term golden section, instead of more correct golden ratio, was
used, which explains the abbreviation.

5 Specialization of Toyoda theorem

Now let us show the consequences of the hexagonal identity, or the golden ratio identity, re-
spectively.

Theorem 5.1 For any GS-quasigroup Q = (Q, ·) there is a commutative group G = (Q, +; e)
and there is an automorphism ϕ ∈ Aut(G) such that (Q, ·) is linear over the group G with the
non-trivial automorphism ϕ, i.e. (6) holds, and the following is satisfied:

ϕ2 − ϕ − idQ = ε (14)

where ε : Q → Q is the constant mapping ε(a) = e for any a ∈ Q.

Proof. Consider a GS-quasigroup (Q, ·); it is idempotent and medial, hence by Theorem 2.4,
there is a commutative group G = (Q, +; e) and ϕ ∈ Aut(G) such that ab = a + ϕ(b − a)
for all a, b ∈ Q. Step by step, we get ab · c = a + ϕ(b − a) + ϕ(c − a) − ϕ2(b − a), simiarly
a(ab · c) = a + ϕ2(b − a) + ϕ2(c − a) − ϕ3(b − a), and a(ab · c) · c = a + ϕ(c − a) + ϕ2(b −
a) + ϕ2(c − a) − 2ϕ3(b − a) − ϕ3(c − a) + ϕ4(b − a). According to (13) we calculate e =
−(b − a) + ϕ(c − a) + ϕ2((b − a) + (c − a)) − ϕ3(2(b − a) + (c − a)) + ϕ4(b − a). Let us set
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x = b − a, y = c − a. We obtain ϕ4(x) − ϕ3(2x + y) + ϕ2(x + y) + ϕ(y) − x = e for any
x, y ∈ Q. Paricularly for x = e, it follows −ϕ3(y) + ϕ2(y) + ϕ(y) = e. Setting z := ϕ(y) we
get z + ϕ(z) − ϕ2(z) = e, an this equality holds for all z ∈ Q as ϕ is bijective. Hence (14),
i.e. ϕ2 − ϕ − idQ = ε, holds.

Theorem 5.2 For any hexagonal quasigroup Q = (Q, ·) there is a commutative group G =
(Q, +; e) and an automorphism ϕ ∈ Aut(G) such that (Q, ·) is linear over G with the (non-
trivial) automorphism ϕ, and the following is satisfied:

ϕ2 − ϕ + idQ = ε. (15)

Proof. We already know by the Theorem 2.4 that the operation takes the form ab = a+ϕ(b−a)
for some automorphism ϕ of a commutative group G = (Q, +; e). By y = xy · x, we get
b = ab · a = a + ϕ(b − a) − ϕ2(b − a), hence ϕ2(b − a) − ϕ(b − a) + (b − a) = e. Any element c
from Q can be written as c = b − a for convenient a, b ∈ Q. Hence (15), i.e. ϕ2 − ϕ + idQ = e,
is satisfied.

To prove the converse is easier:

Theorem 5.3 Let Q = (Q, ·) be a magma linear over a commutative group G = (Q, +; e) with
an automorphism ϕ ∈ Aut(G).

(i) If ϕ satisfies ϕ2 − ϕ + idQ = ε then Q is a hexagonal quasigroup.

(ii) If ϕ satisfies ϕ2 − ϕ − idQ = ε then Q is a GS-quasigroup.

Proof. According to Theorem 2.3, Q is an idempotent and medial quasigroup. If (14) holds
then ab·c = 2a−b+ϕ(c−a), a(ab·c) = c+ϕ(c−b), and a(ab·c)·c = c+ϕ(c−b)−ϕ2(c−b) = b. If
(15) holds then ab·a = a+ϕ(b−a)−ϕ2(a−b) = b for all a, b ∈ Q, a·ba = a+ϕ(b−a)−ϕ2(a−b) = b
holds, and we use Lemma 3.3.

6 Examples

The following examples explain a motivation and justify the introduced geometrical terminol-
ogy, [21]:

Example 6.1 Let (F, +, ·) be a field in which the equation

x2 − x − 1 = 0, or x2 − x + 1 = 0 (16)

has a root q ∈ F , and define on F a binary operation

a ◦ b = (1 − q)a + qb = a + q(b − a) a, b ∈ F. (17)

Then the left translation ϕ(x) = qx, ϕ = Lq : F → F , which will be called here the standard
dilatation by q, is an additive automorphism of the group (F, +; 0) of the field, ϕ ∈ Aut(F, +),
and we can write the equality (17) as a ◦ b = a + ϕ(b − a). Hence (F, ◦) is linear over (F, +; 0)
with the automorphism ϕ,

ϕ2 − ϕ − idQ = ε (18)
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holds in the first case, and
ϕ2 − ϕ + idQ = ε (19)

is satisfied in the second case (since q is a root of the corresponding equation). The Theorem
5.3 guarantees that (F, ◦) is a hexagonal quasigroup, or a GS-quasigroup, respectively.

Example 6.2 Consider the field of complex numbers (C, +, ·); the elements are represented
by points in the Gaussian plane. Define an operation (17) with q = exp(iπ/3). Then (C, ◦)
is a hexagonal quasigroup. The points 0, 1, q are vertices of a positively oriented equilateral
triangle, and a, b, a ◦ b are vertices of a similar triangle since we have

(a ◦ b − a) : (b − a) = (q − 0) : (q − 0).

Hence a ◦ b can be considered as the centre of a (positively oriented) regular hexagon with
vertices a, b.

Example 6.3 In C, take q as one of the roots of the equation x2 − x − 1 = 0, q = 1
2
(1 ±√

5).
The corresponding magma (C, ◦) is a GS-quasigroup. In the Gaussian plane, the equality (17)
with a �= b may be written as a◦b−a

b−a
= q, which means that the point a ◦ b divides the segment

between a and b in the ratio q. If q = 1
2
(1 −√

5) then the golden ratio of the pair (b, a ◦ b) is

a. If q = 1
2
(1 +

√
5) then the golden ratio of the pair (a, a ◦ b) is b.

Example 6.4 Over GF (3), we have a 3-element hexagonal quasigroup with the operation ◦2

which arises from left multiplication by the element 2:

◦2 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

Example 6.5 Over GF (4), we get two hexagonal quasigroups which are also GS-quasigroups,
are dual to each other, and isomorphic; one of them is given by the operation ◦ given in the
Table below.

Example 6.6 Over GF (5), there is a GS-quasigroup with star operation ∗ which is self-dual,
i.e. commutative.

◦ 0 1 c d
0 0 d 1 c
1 c 1 d 0
c d 0 c 1
d 1 c 0 d

∗ 0 1 2 3 4
0 0 3 1 4 2
1 3 1 4 2 0
2 1 4 2 0 3
3 4 2 0 3 1
4 2 0 3 1 4

By a computer search, using Maple, we succeeded to discuss existence and in the affirmative
case, constructed examples whith orders up to 1000.
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P201/11/0356 with the title: ”Riemannian, pseudo-Riemannian and affine differential geom-
etry” and by the project of specific university research of the Brno University of Technology,
No. FAST-S-11-47.

References
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Abstract. The paper is concerned with the representative principle describing medial
quasigroups by means of corresponding commutative groups. We present Toyoda-like the-
orems: how to pass from a medial quasigroup to the corresponding commutative group,
and conversely. Then we give a modification for the variety of quasigroup modes (idem-
potent medial quasigroups).
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1 Introduction

First we give a short survey on quasigroups, recall the concept of quasigroup isotopy which
plays an important role in the quasigroup theory, and particularly we mention loop principal
isotopy that is used as a useful tool in what follows. Especially, we show the form of all loop
principal isotopes of a given quasigroup (Lemma 1.4). For groups, the concept of isotopism
coincides with the concept of isomorphism.

1.1 Groupoids, quasigroups

A groupoid is an ordered pair G = (G, ·) where G is a non-empty set, the carrier set of G, and
“·” a binary operation on G. Often, the dot for a binary operation is omitted when there is no
danger of confusion.

Let (G, ·) be a groupoid. An element e ∈ G is said to be left-neutral (right-neutral) if it
satisfies the equality ex = x (xe = x) for all x ∈ G. Being both left-neutral and right-neutral
the element is said to be neutral ; a groupoid cannot have two different neutral elements.

A groupoid (G, ·) is left cancellative if (ca = cb ⇒ a = b) for a, b, c ∈ G, and right cancellative
if (ac = bc ⇒ a = b) for a, b, c ∈ G; cancellative if it is left and right cancellative. A groupoid
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(G, ·) is a quasigroup if for any a, b ∈ G there is just one x ∈ G solving the equation xa = b
and denoted x = b/a; and just one y ∈ G solving the equation ay = b and denoted y = a\b.
Any quasigroup is cancellative.

A quasigroup with a neutral element is called a loop. A loop with the carrier set L and the
neutral element e will be denoted (L, ·; e).

For a groupoid (G, ·) we define a left translation by a ∈ G, L·
a : x �→ ax, and a right

translation, R·
a : x �→ xa. A groupoid is a quasigroup if and only if all left translations as well

as all right translations of the groupoid are permutations of the carrier set.

If (G, ·) is a groupoid then a ∈ G is called an idempotent element if a2 = a. A groupoid
(G, ·) is idempotent if all its elements are idempotent. A groupoid (G, ·) is commutative if for
any a, b ∈ G, the equality ab = ba is satisfied. A groupoid (G, ·) is medial if the following
identity is satisfied

(xy)(uv) = (xu)(yv); (1)

sometimes, the law is also called surcommutative (Soublin), entropic (Etherington), alternative
(Sholander), abelian (Murdoch), symmetric (Frink), or bisymmetric (Aczél). A groupoid (G, ·)
is associative if it satisfies the identity (xy)z = x(yz); an associative groupoid is called a
semigroup. A groupoid (G, ·) is a group if it is an associative quasigroup. Each group has a
uniquely determined neutral element 1, and to every element x ∈ G there exists one and only
one element x−1, the inverse of x, satisfying xx−1 = 1 = x−1x; the group will be denoted by
(G, ·; 1).

Given a groupoid (G, ·), under a dual groupoid we understand the groupoid (G, ∗) (with
the same underlying set) where “∗” is the so-called dual operation to “·” in G, a ∗ b := ba for
a, b ∈ G.

1.2 Substructures

A groupoid (G1, ·1) is a subgroupoid of the groupoid (G2, ·2) if G1 ⊆ G2 and x ·1 y = x ·2 y
for all x, y ∈ G1. A subgroupoid of an associative groupoid is associative. A nonempty set
G′ ⊆ G is a carrier set of a subgroupoid of a groupoid (G, ·) if and only if G′ is closed under
the dot operation. A nonempty set G′ ⊆ G is a carrier set of an associative subgroupoid of an
associative groupoid (G, ·) if and only if (x, y ∈ G′ ⇒ x · y ∈ G′).

Given quasigroups (G1, ·1), (G2, ·2), the first one is said to be a subquasigroup of the second
one if G1 ⊆ G2 and for all x, y ∈ G1, x ·1 y = x ·2 y, x\·1y = x\·2y, x/·1y = x/·2y. A
nonempty set G′ ⊆ G is a carrier set of a subquasigroup of a quasigroup (G, ·) if and only
if (x, y ∈ G′ ⇒ x · y, x\·y, x/·y ∈ G′), i.e. G′ is closed under all three operations ·, \·, /·.
In the preceding, if G is a finite set then the implication (x, y ∈ G′ ⇒ x\·y, x/·y ∈ G′) is a
consequence of (x, y ∈ G′ ⇒ x · y ∈ G′).

Given two loops (L1, ·1; e1), (L2, ·2; e2) the first one is said to be a subloop of the second one
if L1 ⊆ L2 and x ·1 y = x ·2 y for all x, y ∈ L1.

A nonempty set L′ ⊆ L is a carrier set of a subloop of a loop (L, ·; e, ) if ad only if (x, y ∈
L′ ⇒ x · y, x\·y, x/·y ∈ L′). If L is a finite set then (x, y ∈ L′ ⇒ x\·y, x/·y ∈ L′) is a
consequence of (x, y ∈ L′ ⇒ x · y ∈ L′).

Given groups (G1, ·1; e1), (G2, ·2; e2) the first one is a subgroup of the second one if G1 ⊆ G2

and x ·1 y = x ·2 y for all x, y ∈ G1. A nonempty set G′ ⊆ G is a carrier set of a subgroup
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of a group (G, ·; e) if and only if x, y ∈ G′ ⇒ e/x, x · y ∈ G′. If G is a finite set the condition
(x, y ∈ G′ ⇒ e/x ∈ G′) is a consequence of the implication (x, y ∈ G′ ⇒ x · y ∈ G′).

1.3 Isotopy, isomorphism

If (G, ·), (G′, ·′) are quasigroups, then an isotopy of (G, ·) onto (G′, ·′) is an ordered triple
(α, β, γ) of bijections of G onto G′ such that α(x) ·′ β(y) = γ(x · y) holds for all x, y ∈ G.
Thus x · y = γ−1(α(x) ·′ β(y)), and x′ ·′ y′ = γ(α−1(x′) · β−1(y′)) for all x′, y′ ∈ G′. If there
is an isotopism of (G, ·) onto (G′, ·′) then we call (G′, ·′) an isotope of (G, ·); (G, ·) and (G′, ·′)
are then isotopic quasigroups. Note that isotopism is an equivalence relation on the class of all
quasigroups which defines the decomposition into isotopy subclasses as maximal subclasses of
isotopic quasigroups.

In the case α = β = γ, we speak on isomorphism of quasigroups, and we write α only. The
isomorphic image of a loop (group) with neutral element 1 under an isomorphism α is a loop
(group) with the neutral element α(1).

An isotopy (α, β, idQ) between two quasigroups over the same carrier set Q is called principal.
An isotopy onto a loop is called a loop isotopy. Especially, if (α, β, idQ) gives a loop then we
speak of a loop principal isotopy (briefly LP -isotopy, and of LP -isotopes.

For quasigroups, isotopisms are much more important than isomorphisms. Isotopy plays
the central role in loop theory.

1.4 Isotopes of quasigroups

First let us extend informations on quasigroup isotopes by the following:

Lemma 1.1 Let (Q, ·) be a quasigroup and (α, β, γ) be bijective mappings of Q onto Q′. Let
x′ ·′ y′ = γ(α−1(x′) · β−1(y′)) for all x′, y′ ∈ Q′. Then (Q′, ·′) is a quasigroup.

Proof. Let us examine the equation a·′y = b for fixed a, b ∈ Q′. Obviously, y = β(α−1(a)\ γ−1(b))
is the unique solution of the equation under consideration. Indeed, a ·′ y = b ⇔ α−1(a) ·
β−1(y) = γ−1(b) ⇔ β−1(y) = α−1(a)\ γ−1(b) ⇔ y = β(α−1(a)\ γ−1(b)). Similarly for the
equation x ·′ a = b with a, b ∈ Q′.

Composition of isotopisms is an isotopism, too:

Lemma 1.2 Let (α, β, γ) be an isotopy of the quasigroup (Q, ·) onto (Q′, ·′), and (α′, β′, γ′) an
isotopy of (Q′, ·′) onto (Q′′, ·′′). Then (αα′, ββ′, γγ′) is an isotopy of (Q, ·) onto (Q′′, ·′′).
Lemma 1.3 Every isotope of a quasigroup is isomorphic to its principal isotope.

Proof. Let (α, β, γ) be an isotopy of a quasigroup (Q, ·) onto a quasigroup (Q1, ·1). Thus we
have the equality α(a) ·1 β(b) = γ(a·b) for all a, b ∈ Q. Let us take the isotopy (γ−1α, γ−1β, idQ)
which maps (Q, ·) onto a quasigroup (Q, ·2) such that γ−1α(a) ·2 γ−1β(b) = a · b holds for all
a, b ∈ Q. Hence γ−1(α(a) ·1 β(b)) = a · b = γ−1α(a) ·2 γ−1β(b) holds for all a, b ∈ Q. Since
α, β are bijective mappings the first of the above equalities can be rewritten as γ−1(x ·1 y) =
γ−1(x) · γ−1(y) for all x, y ∈ Q, and we obtain an isomorphism γ−1 of (Q, ·) onto (Q1, ·1).

Loop principal isotopes of a quasigroup can be characterized as follows:

volume 5 (2012), number 3 43



Aplimat - Journal of Applied Mathematics

Lemma 1.4 Any LP -isotope of a quasigroup (Q, ·) is just an isotope of the form (R·
b, L

·
a, idQ)

for some a, b ∈ Q; the corresponding neutral element is ab.

Proof. Let (Q, ·) be a given quasigroup. All principal isotopisms of (Q, ·) are of the form
(α, β, idQ) where α, β are arbitrary permutations (i.e. bijections onto itself) of the carrier set
Q. The corresponding isotopes will be denoted by (Q, ·α,β), thus α(a) ·α,β β(b) = a · b for all
a, b ∈ Q. Now we are interested in the case when (Q, ·α,β) is a loop (i.e. has a neutral element).
The element α(a) is left-neutral in (Q, ·α,β) if and only if a · b = α(a) ·α,β β(b) = β(b) holds for
all b ∈ Q. This means that β = L·

a. Similarly, β(b) is right-neutral in (Q, ·α,β) if and only if
α = R·

b. So there is a neutral element in (Q, ·α,β) if and only if α = R·
b and β = L·

a for some
a, b ∈ Q; this neutral element is just R·

b(a) = L·
a(b) = ab.

Lemma 1.5 Any loop L isotopic to a quasigroup Q = (Q, ·) is isomorphic to an LP -isotope
of Q.

Proof. According to lemma 1.3, L is isomorphic to a loop Q′ = (Q, ·′; e′) derived from Q by
means of the principal isotopy (α, β, idQ) where α(x) ·′ β(y) = xy for all x, y ∈ Q. Equivalently,
x ·′ y = α−1(x) · β−1(y). Plugging y = e′ we have

x = x ·′ e′ = α−1(x) · β−1(e′) = R·
β−1(e′)(α

−1(x)) for all x ∈ Q,

that is α = R·
β−1(e′). Now setting x = e′ we get

y = e′ ·′ y = α−1(e′) · β−1(y) = L·
α−1(e′)(β

−1(y)) for all y ∈ Q.

That is, β = L·
α−1(e′). Hence Q′ is an LP -isotope of Q under the isotopism (R·

β−1(e′), L
·
α−1(e′), idQ).

1.5 Isotopes of commutative groups

The following results explain why isotopy plays no role in group theory. The first of them is
sometimes called the “Albert’s theorem”, the second one the “Isotopic groups rule”.

Lemma 1.6 Every loop isotopic to a group is isomorphic to it.

Proof. Suppose that Q = (Q, +; 0) is a group and consider its arbitrary LP -isotope L =
(Q, ·ab; ab) where xb ·ab ay = xy for all x, y ∈ Q, or equivalently, x ·ab y = x · b−1 · a−1 · y for all
x, y ∈ Q. Now consider the right translation θ = R·

ab. We obtain

θ(x) ·ab θ(y) = xabb−1a−1yab = xyab = θ(xy)

for all x, y ∈ Q which shows that θ is an isomorphism of Q onto L. We obtain the result by
means of Lemma 1.3.

Lemma 1.7 Isotopic groups are isomorphic.
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2 Medial quasigroups

Now let us pay attention to quasigroups that satisfy mediality (1).

Corollary 2.1 Any two LP -isotopes of a medial quasigroup are isomorphic.

Lemma 2.2 Any medial loop is a commutative group.

Proof. If (Q, ·) is a medial loop with the neutral element e we put a = e, d = e into
the mediality law and get bc = cb, the commutativity of the dot operation. To check the
associativity it is sufficient to put c = e: (ab)d = a(bd).

Lemma 2.3 Let (Q, ·) be a medial quasigroup, e ∈ Q some element, and define x ·e y =
R−1

e (x) · y. Then (Q, ·e) is a medial quasigroup for which e is a right-neutral element.

Proof. As Re is a permutation, (Q, ·e) is a quasigroup. The element e is right-neutral as for
any x ∈ Q, x ·e e = R·−1

e (x) · e = R·
eR

·−1
e (x) = x holds. Now check mediality. For any ã, b̃ ∈ Q

the mediality of “·” implies

(ãb̃)e = (ãb̃)((e/e) · e) = (ã · (e/e)) · (b̃e)
which can be written as R·

e(ãb̃) = R·
e/e(ã)·R·

e(b̃). Let us take a, b ∈ Q such that R·
e/e

−1(R·
e
−1(a)) =

ã, R·
e
−1(b) = b̃. We can write R·

e(ãb̃) = R·
e/e(ã) · R·

e(b̃) equivalently as R·
e(R

·
e/e

−1(R·
e
−1(a)) ·

R·
e
−1(b)) = R·

e
−1(a) · b. Finally we get

R·
e/e

−1(R·
e
−1(a)) · R·

e
−1(b) = R·

e
−1(R·

e
−1(a) · b). (2)

For any a, b, c, d ∈ Q we check step by step (by means of (2), (1) and the definition of ·e)
(a ·e b) ·e (c ·e d) = (R·

e
−1(a) · b) ·e (R·

e
−1(c) · d)

= R·
e
−1(R·

e
−1(a) · b) · (R·

e
−1(c) · d)

= ((R·
e/e

−1(R·
e
−1(a)) · R·

e
−1(b)) · (R·

e
−1(c) · d)

= ((R·
e/e

−1(R·
e
−1(a)) · R·

e
−1(c)) · (R·

e
−1(b) · d)

= (R·
e
−1(a) · c) ·e (R·

e
−1(b) · d) = (a ·e c) ·e (b ·e d).

Note that an analogous statement holds if we define x ·e y = x · L−1
e (y).

Theorem 2.4 Every LP -isotope of a medial quasigroup is a commutative group.

Proof. Let (Q, ·) be a medial quasigroup. Fix an arbitrary element q ∈ Q. Then the groupoid
(Q, ◦q), where ◦q is a binary operation on Q defined by x ◦q y = x · L·

q
−1(y), is a medial

quasigroup in which q is the left-neutral element. The proof is similar to those in Lemma
2.3. Further, we know that every LP -isotope (Q, 
) of a given medial quasigroup (Q, ·) has its
binary operation 
 of the form x 
 y = R·

v
−1(x) · L·

u
−1(y) with convenient u, v ∈ Q, and has

the neutral element uv by Lemma 1.4. By Lemmas 2.2, 2.3, (Q, 
) is a medial loop; note that
x 
 y = x ·v L·

u
−1(y) = R·

v
−1(x) ·L·

u
−1(y). Moreover, by Lemma 2.1, it is a commutative group.
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Example 2.5 On the other hand, there exist LP -isotopes of commutative groups that are
not medial. Indeed, consider the multiplication group G = (R+, ·; 1) of positive reals and a
bijection σ : R

+ → R
+ that fixes all reals with the only exception of the pair of numbers 1, 2

that are interchanged. The image (R+, ◦) of the group G under the isotopism (id, σ, id) has
the operation of the form x ◦ σ(y) = x · y, or equivalently, x ◦ y = x · σ−1(y). It can be
checked that (R+, ◦) is the LP -isotope with the identity element 2 which is not medial (since
(1 ◦ 3) ◦ (1 ◦ 4) = (1 · 3) · (1 · 4) = 12 while (1 ◦ 1) ◦ (3 ◦ 4) = (1 · 2) · (3 · 4) = 24).

Theorem 2.6 If (G, +; 0) is a commutative group, q ∈ G a fixed element, and f , g are com-
muting automorphisms of the group, then (G, ·) with x · y = f(x) + g(y) + q, x, y ∈ G, is a
medial quasigroup isotopic to the reduct (G, +), q = 0 · 0 holds, and the automorphisms take
the form f = R·

q\q, g = L·
q/q.

Proof. Let a, b, c, d ∈ G. We deduce (by means of the definition of “·”, commutability of
automorphisms, and distributivity of the composition of maps)

(ab)(cd) = ϕ(ϕ(a) + ψ(b) + h) + ψ(ϕ(c) + ψ(d) + h) + h

= ϕ2(a) + ϕψ(b) + ϕ(h) + ψϕ(c) + ψ2(d) + ψ(h) + h

= ϕ2(a) + ϕψ(c) + ϕ(h) + ψϕ(b) + ψ2(d) + ψ(h) + h

= ϕ(ϕ(a) + ψ(c) + h) + ψ(ϕ(b) + ψ(d) + h) + h = (ac)(bd).

Due to the definition of the dot operation, we get the unique solutions of the equations xa = b
and ay = b in the form

x = ϕ−1(b − ψ(a) − h), y = ψ−1(b − ϕ(a) − h)

where minus is the inverse of the group addition. Hence (G, ·) is a quasigroup. Further, we have
qq = ϕ(q) + ψ(q) + h = q + q + h = h and q = (q/q)q = ϕ(q/q) + ψ(q) + h = ϕ(q/q) + q + h =
ϕ(q/q) + h. Since L·

q/q(x) = (q/q)x = ϕ(q/q) + ψ(x) + h we obtain ψ = L·
q/q. Similarly,

ϕ = R·
q\q . Finally, we can write xy = ϕ(x) + ψ(y) + h as ϕ−1(x̂) · ψ−1(ŷ) = R+

h (x̂ + ŷ), which

shows that (ϕ−1, ψ−1, R+
h ) is an isotopism of (G, +) onto (G, ·).

Corollary 2.7 If h = q is an idempotent element in (G, ·) then xy = R·
q(x) + L·

q(y).

Theorem 2.8 Every medial isotope (G, ·) of a commutative group (G, +; 0) has its binary
operation “·” of the form x · y = ϕ(x) + ψ(y) + h for a suitable element h ∈ G and suitable
commuting automorphisms ϕ, ψ of (G, +; 0).

Proof. Due to Lemma 1.3, we can restrict ourselves onto a principal isotope of a commutative
group (G, +; 0), without loss of generality. Let (α, β, idG) be the corresponding isotopy. Hence
the operations satisfy xy = α(x) + β(y), x, y ∈ G. From mediality, it follows

α(α(a) + β(b)) + β(α(c) + β(d)) =

= α(α(a) + β(c)) + β(α(b) + β(d)) for all a, b, c, d ∈ G. (3)
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Let us put â = α(a), d̂ = β(d), c = 0. We obtain

α(â + β(b)) + β(α(0) + d̂) = α(â + β(0)) + β(α(b) + d̂) for all â, b, d̂ ∈ G.

Adding −β(α(0) + d̂) − α(â + β(0)) to both sides and using commutativity we get

α(â + β(b)) − α(â + β(0)) = β(d̂ + α(b)) − β(d̂ + α(0)) for all â, b, d̂ ∈ G. (4)

The right-hand side is independent of â. Once we use the formula (4) as it is, and next time
we substitute 0 instead of â into the left-hand side; after subtraction we have

α(â + β(b)) − α(â + β(0)) = αβ(b) − α(β(0)) for all â, b ∈ G.

Hence
α(â + β(b)) = −α(β(0)) + α(â + β(0)) + α(β(b)) for all â, b ∈ G. (5)

Plugging β(b) = b̂ we get

α(â + b̂) = −α(β(0)) + α(β(0) + â) + α(b̂) for all â, b̂ ∈ G. (6)

Similarly,
β(â + b̂) = −β(α(0)) + β(α(0) + â) + β(b̂) for all â, b̂ ∈ G. (7)

According to commutativity, interchanging â, b̂ in (6) and (7) we have

α(β(0) + â) + α(b̂) = α(β(0) + b̂) + α(â).

Particularly for b̂ = 0,

α(β(0) + â) − α(â) = α(β(0) + b̂) − α(b̂) = α(β(0) + 0) − α(0) = α(β(0)) − α(0),

and consequently

α(β(0) + â) = −α(0) + α(β(0)) + α(â) for all â ∈ G. (8)

Interganging the role of α and β we get

β(α(0) + â) = −β(0) + β(α(0)) + β(â) for all â ∈ G. (9)

After substituting (8), (9) into the right hand sides of (6), (7) we get

α(â + b̂) = −α(β(0)) − α(0) + α(β(0)) + α(â) + α(b̂) = −α(0) + α(â) + α(b̂),

and further, adding −α(0),

−α(0) + α(â + b̂) = (−α(0) + α(â)) + (−α(0) + α(b̂)) for all â, b̂ ∈ G. (10)

Similar considerations give

−β(0) + β(â + b̂) = (−β(0) + β(â)) + (−β(0) + β(b̂)) for all â, b̂ ∈ G. (11)

Consider permutations of G introduced by ϕ : x �→ α(x)−α(0), ψ : x �→ β(x)−β(0). We easily
check that ϕ and ψ are automorphisms of (G, +; 0). It remains to show that ϕ and ψ commute.
Since xy = α(x) + β(y) = ϕ(x) + ψ(y) + ê where ê = α(0) + β(0) we can write

(ac)(bd) = ê + ϕ(ê) + ψ(ê) + ϕ2(a) + ψ2(d) + ϕψ(b) + ψϕ(c),

(ab)(cd) = ê + ϕ(ê) + ψ(ê) + ϕ2(a) + ψ2(d) + ϕψ(c) + ψϕ(b).

Mediality of the dot operation, i.e. the equality of left sides, implies the equality of right sides.
Consequently, ϕψ(b) + ψϕ(c) = ϕψ(c) + ψϕ(b). Hence ϕψ(b) − ψϕ(b) = 0 for all b ∈ G, that
is, ϕψ = ψϕ.
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3 Medial quasigroups and Toyoda’s theorem

Theorem 3.1 (Toyoda’s theorem for medial quasigroups) For every medial quasigroup (Q, ·)
there exists a commutative group (Q, +), an element q ∈ Q and a pair of commuting automor-
phisms ϕ, ψ of (Q, +) such that

xy = ϕ(x) + ψ(y) + q for all x, y ∈ Q.

Proof. Every LP -isotope of a given medial quasigroup (Q, ·) is a commutative group (Theorem
2.4). Given such a commutative group (Q, +), there must exist its commuting automorphisms
ϕ, ψ and an element q ∈ Q such that xy = ϕ(x) + ψ(y) + q (Theorem 2.8).

According to Theorems 2.6, 2.8 and 3.1 we can formulate a deeper version of the Toyoda’s
theorem as follows:

Theorem 3.2 Let (Q, ·) be a medial quasigroup. Then for every q ∈ Q there is a commutative
group (Q, +q; q) such that xy = Rq\q(x) +q Lq/q(y) +q (q · q) holds for all x, y ∈ Q where
Rq\q, Lq/q are commuting automorphisms of (Q, +q; q). All the groups (Q, +q; q), q ∈ Q, are
isomorphic.

Corollary 3.3 If a medial quasigroup (Q, ·) contains an idempotent element e let us introduce
a binary operation +e on Q by x +e y = R·−1

e (x) · L·−1
e (y) for all x, y ∈ Q. Then (Q, +e; e)

is a commutative group, and R·
e, L·

e are commuting automorphisms of the group. Moreover, if
(Q, ·) is idempotent then the groups (Q, +e; e), e ∈ Q are pairwise isomorphic.

4 Quasigroup modes

An idempotent medial quasigroup is called a quasigroup mode. We easily verify:

Lemma 4.1 Any quasigroup mode is elastic, i.e. it satisfies (xy)x = x(yx).

The last part of Corollary 3.3 is closely related also to the following theorem:

Theorem 4.2 Let Q = (Q, ·) be a quasigroup mode. For any element q ∈ Q let us introduce a
binary operation +q on Q by x +q y = (R·

q
−1(x)) · (L·

q
−1(y)) for x, y ∈ Q. Then (Q, +q; q) is

a commutative group, principally isotopic to Q, and R·
q, L·

q are commuting automorphisms of
the group such that R·

q(x) +q L·
q(x) = x holds identically in x ∈ Q. All the groups (Q, +q; q),

q ∈ Q, are isomorphic.

Proof. By Theorem 2.4, (Q, +q; q) is a commutative group. Let us check that R·
q and L·

q

are commuting automorphisms of (Q, +q; q). Indeed, by elasticity, mediality and idempotency,
we have R·

q(R
·
q(x) +q L·

q(y)) = R·
q(xy) = (xy)q, R·

q(R
·
q(x)) +q R·

q(L
·
q(y)) = R·

q(R
·
q(x)) +q

L·
q(R

·
q(y)) = R·

q(x) · R·
q(y) = (xq)(yq) = (xy)(qq) = (xy)q for all x, y ∈ Q. Hence R·

q is an
automorphism of (Q, +q; q). Similarly, also L·

q is an automorphism of (Q, +q; q). Moreover,
L·

qR
·
q(x) = q(xq), R·

qL
·
q(x) = (qx)q for all x ∈ Q. Hence by elasticity, L·

qR
·
q = R·

qL
·
q. Further,
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using the definition of +q and elasticity, R·
q(x) +q L·

q(x) = x · x = x for all x ∈ Q. Now fix
elements a, b ∈ Q and write, for any x, y ∈ Q,

xy = R·
a(x) +a L·

a(y) = R·
b(x) +b L·

b(y).

Now putting x̂ = R·
a(x), ŷ = L·

a(y) we get x̂ +a ŷ = R·
bR

·
a
−1(x̂) +b L·

bL
·
a
−1(ŷ), which defines

an isotopy of (Q, +a) onto (Q, +b), and hence an isomorphism of the group (Q, +a; a) onto the
group (Q, +b; b).

As a corollary of Theorem 2.6, with h = 0, we get the converse:

Theorem 4.3 If G = (G, +; 0) is a commutative group and ϕ, ψ is a pair of commuting
automorphisms of G such that ϕ(x) + ψ(x) = x holds for all x ∈ G then on the carrier set G,
the operation · introduced by the formula x · y = ϕ(x) + ψ(y) determines a quasigroup mode
Q = (G, ·) which is a principal isotope of G under the isotopy (ϕ−1, ψ−1, idQ ) : G → Q.
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[14] VANŽUROVÁ, A., DOLEŽALOVÁ, J.: Hexagonal quasigroups over finite fields. Proc. of
7th Conf. on Mathematics and Physics at Technical Universities with internat. participa-
tion, Brno, September 22, 2011, part 1 - mathematics, pp. 411-419, 2011.

Current address
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GEODESIC MAPPINGS
PRESERVING THE EINSTEIN TENSOR OF WEYL SPACES
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Abstract. In this paper, we consider geodesic mappings preserving the Einstein tensor
between Weyl spaces. We prove that the generalized concircular curvature tensor is invari-
ant under the geodesic mapping preserving the Einstein tensor if and only if the covector
field of the mapping is locally a gradient.
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concircular curvature tensor.
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1 Introduction

Geodesic mappings of manifolds with affine connection and Riemannian spaces were studied
by many authors (e.g., [1,3,6,9,10,11]). In [12], we studied geodesic mappings between Kahler-
Weyl spaces. In [4], I. Hinterleitner and J. Mikes investigated geodesic mappings of special
manifolds with affine connection and with general condition of recurrency onto Weyl spaces.
In [2], authors considered geodesic mappings preserving the Einstein tensor between Pseudo-
Riemannian spaces and they proved that the concircular curvature tensor is invariant under
the geodesic mappings preserving the Einstein tensor.

In this work, we consider geodesic mappings preserving the Einstein tensor between Weyl
spaces and we obtain a necessary and sufficient condition for generalized concircular curvature
tensor to be invariant under the geodesic mapping preserving the Einstein tensor between Weyl
spaces.
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2 Preliminaries

An n-dimensional differentiable manifold Wn is said to be a Weyl space if it has a conformal
metric tensor g and a symmetric connection ∇ satisfying the compatibility condition given by
the equation

∇k gij − 2 Tk gij = 0 , (1)

where Tk denotes a covariant vector field. Under the renormalization

g̃ = λ2 g (2)

of the metric tensor g, T is transformed by the law

T̃k = Tk + ∂k ln λ

where λ is a function defined on Wn.
An object A defined on Wn(g, T ) is called a satellite of weight {p} of the tensor gij, if it

admits a transformation of the form

Ã = λp A

under the renormalization of the metric tensor gij [5,7].

The prolonged covariant derivative of a satellite A is defined by

∇̇k A = ∇k A − p Tk A . (3)

We note that the prolonged covariant derivative preserves the weight.
Writing (1) in local coordinates and expanding it we find that

∂kgij − ghj Γh
ik − gih Γh

jk − 2 Tk gij = 0

where Γi
jk are the coefficients of the Weyl connection ∇ obtained by

Γi
jk =

{
i

jk

}
− ( δi

j Tk + δi
k Tj − gim gjk Tm ), (4)

in which

{
i

jk

}
are the coefficients of the Levi-Civita connection.

Consider two Weyl spaces Wn and W n with connection ∇ and ∇, respectively.
A diffeomorphism between two Weyl space Wn and W n is called geodesic mapping if it is

geodesic preserving, that is, when it maps any geodesic of Wn into an arbitrarily parametrized
geodesic of W n again.

It is known that, the curve

L : xi = xi(t)
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is a geodesic of a afin space if and only if

d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= ρ(t)

dxi

dt

is hold, where ρ(t) is a determinate function of t [3].
Let f : Wn → W n is a geodesic mapping. Then, by f , the geodesic L of Wn passes to the

geodesic L̄ of W n and

d2xi

dt2
+ Γ̄i

jk

dxj

dt

dxk

dt
= ρ̄(t)

dxi

dt

is hold where x̄i = xi.
In [12], we obtained that a necessary and sufficient condition for existence of a geodesic

mapping between Wn and W n to satisfy the following condition

Γ̄i
jk = Γi

jk + δi
kψj + δi

jψk (5)

holds, where Γi
jkand Γ̄i

jk are components of the Christoffel symbols in Wn and W n, respectively,
and

ψj =
1

n + 1

[
∂j ln

√
ḡ

g
− nPj

]
, (6)

where ḡ = det ḡij , g = det gij and Pj = T̄j − Tj

If ψj �= 0, then a geodesic mapping is called nontrivial; otherwise it is said to be trivial or
affine.

Applying the formula (5) we find the relationships for the curvature and Ricci tensors of
Wn and W n as

R̄h
ijk = Rh

ijk + δh
i (ψkj − ψjk) + δh

kψij − δh
j ψik , (7)

R̄ij = Rij + nψij − ψji, (8)

where ψij = ∇̇jψi − ψiψj and Rij = Rh
ijh.

The tensor Z of type (1,3) whose components are given by [8]

Zh
ijk = Rh

ijk −
R

n(n − 1)
(gijδ

h
k − gikδ

h
j ) (9)

is called the generalized concircular curvature tensor of Wn.
Contraction on the indices h and k in (9) gives the generalized concircularly tensor

Zij = Rij − R

n
gij (10)

where R = Rabg
ab is the scalar curvature of Wn.
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3 Geodesic mappings preserving the Einstein tensor of Weyl spaces

If a geodesic mapping f : Wn → W n satisfies

Ēij = Eij (11)

it is said to be the geodesic mapping preserving the Einstein tensor.
Since the Ricci tensor of Wn is not symmetric, the Einstein tensor Eij is

Eij = R(ij) − R

n
gij, (12)

where R(ij) denotes the symmetric part of the Ricci tensor.
Let Wn(g, T ) and W n(ḡ, T̄ ) be two manifolds which are in geodesic mapping preserving the

Einstein tensor. Then, from (8) we obtain

R̄(ij) = R(ij) + (n − 1)ψ(ij). (13)

In view of (11) and (12) we get

ψ(ij) =
1

n(n − 1)
(R̄ ḡij − Rgij). (14)

Using (9), the generalized concircular curvature tensor of W n(ḡ, T̄ ) can be written as

Z̄h
ijk = R̄h

ijk −
R̄

n(n − 1)
(ḡijδ

h
k − ḡikδ

h
j ). (15)

By virtue of (7), (15) becomes

Z̄h
ijk = Rh

ijk + δh
i (ψkj − ψjk) + δh

kψij − δh
j ψik − R̄

n(n − 1)
ḡijδ

h
k +

R̄

n(n − 1)
ḡikδ

h
j . (16)

Inserting (14) into (16) and making the necessary arrangements we obtain

Z̄h
ijk = Zh

ijk + δh
i (ψkj − ψjk) +

1

2
δh
k (ψij − ψji) +

1

2
δh
j (ψki − ψik). (17)

Contraction on the indices h and k in (17) gives

Z̄ij = Zij +
(n + 1

2

)
(ψij − ψji). (18)

Also, from (15) we obtain

Z̄ij = R̄ij − R̄

n
ḡij = Ēij + R̄[ij]. (19)

Using (10),(11),(18) and (19) we have

R̄[ij] − R[ij] =
(n + 1

2

)
(ψij − ψji) . (20)
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Remembering that the anti-symmetric part of the Ricci tensor of Wn(g, T ) satisfies

R[ij] = n∇[iTj] ,

we get

∇̄[iT̄j] −∇[iTj] =
(n + 1

n

)
ψ[ij]. (21)

Considering Pj = T̄j − Tj and using (21), we may conclude that

∇[iPj] =
1

2
(∂iPj − ∂jPi) =

(n + 1

n

)
ψ[ij]. (22)

Suppose now that Z̄h
ijk = Zh

ijk. Then, we have from (17) that

δh
i (ψkj − ψjk) +

1

2
δh
k (ψij − ψji) +

1

2
δh
j (ψki − ψik) = 0

which follows that

ψij = ψji. (23)

In view of (22) and (23) we obtain

∂iPj − ∂jPi = 0 (24)

which means that P is locally a gradient so, by (6), the covector field ψ is also locally a gradient.
Conversely, if the equation (24) holds, then from (22) we have ψij = ψji. In this case, using

(17) we find that Z̄h
ijk = Zh

ijk.
Consequently, we have proved
Theorem 3.1 The generalized concircular curvature tensor is invariant under geodesic

mapping preserving the Einstein tensor if and only if the covector field of the mapping is locally
a gradient.
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SMOOTH CURVES APPROXIMATION
BY CHORD-LENGTH CURVES

BASTL Bohumı́r, (CZ), LÁVIČKA Miroslav, (CZ)

Abstract. This paper is devoted to one practical application of planar rational curves with
chord length parameterization (shortly RCL curves). Rational curves with chord length
parameterizations are a chord-length analogy to the socalled Pythagorean-hodograph
curves characterized by closed form formulas for their arc-lengths. They represent a new
representation of objects in CAGD which can be used for formulating alternative model-
ling techniques. Using the universal formula for planar RCL curves, we design a simple
G1 Hermite interpolation algorithm based on solving a small system of linear equations. In
particular, we show how to approximate a general planar curve using arcs of RCL curves.
The efficiency of the designed method is presented on two particular examples.
Key words and phrases. Rational curves, chord length parameterizations, Hermite
interpolation.
Mathematics Subject Classification. Primary 51N35; Secondary 14H45.

1 Introduction and related work

The investigation of rational varieties with chord length parameterization (shortly RCL vari-
eties) has become a popular research field in recent years. It started in [5] for curves in plane
by proving that the chord length parameter condition is fulfilled for circular arcs in standard
rational quadratic form. An independent geometric proof of this fact is also presented in [11],
where a circle-preserving variant of the four-point subdivision scheme is thoroughly analyzed.

Studying chord length parameterizations in geometric modelling was mainly influenced by
the use of chord length or chordal method for interpolation and approximation of discrete
data points, cf. [9]. RCL parameterizations can be considered as an alternative to arc-length
parameterizations because (as an arc-length parameter) the chord-length parameter is also
uniquely determined by the loci of the curve. Thus, RCL parameterizations can be seen, in
some sense, as a chord-length analogy to the so called Pythagorean hodograph (PH) curves
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characterized by closed form formulas for their arc-lengths, see [6, 7] and references therein for
more details. We would like to recall that RCL curves are worth studying especially because of
the following advantages: they provide a simple inversion formula applicable e.g. for computing
their implicit form, they do not have self-intersections, and they are suitable for point-curve
evaluation.

Later, a thorough analysis of curves with RCL property followed. The close connection
between bipolar coordinates and curves with RCL parameterization was studied in [13]. It was
shown that these curves are exactly those whose parameter coincides with one of the bipolar
coordinates. Independently, computations in the complex plane for studying rational curves
which can be parameterized by chord length were used in [10]. Finally, some curves with chord
length parameterization were found among curves possessing a complex rational form, see [12].
Besides straight lines and circles in standard form, the family of RCL curves contains e.g.
Bernoulli’s lemniscate, Pascal’s Limaçon and equilateral hyperbolas.

Interesting observations about RCL curves led to the idea to extend this approach also to
rational surfaces. First, it was proved in [1] that the equal chord property holds for certain
quadratic rational Bézier patches describing a segment of a sphere. This result is a direct
surface analogy to the planar result of [5]. In addition, it was shown how to characterize the
RCL property of surfaces using tripolar coordinates in space, which extend the results of [13]
concerning the bipolar coordinates (see also [4, 8]). A thorough analysis of surfaces with RCL
property was provided in [2]. Rational triangular Bézier surfaces of an arbitrary degree were
considered and conditions under which they are rationally parameterized by chord lengths with
respect to the reference circle were investigated.

Finally, the RCL property was extended to arbitrary k-dimensional rational varieties and a
general approach to rational chord length parameterizations in any dimension was formulated
in [3]. It was shown that the observations from [1, 2, 5, 10, 13] can be identified as special cases
of the results provided by the general approach.

In this paper, we show that the RCL curves are very suitable for constructing G1 Hermite
interpolating splines. The extra feature of these splines consist of all benefits of the RCL
curves, i.e., they do not possess self-intersections, and they are suitable for point-curve testing
(of course, piecewise now). The main advantage of the designed algorithm is its simplicity as
the designed method is based only on solving a simple system of linear equations.

2 Construction and properties of RCL curves

Given a parametric curve p(u) over a certain domain u ∈ [a, b], its chord-length at a given point
p(u) is defined as

chord(u) :=
||p(u) − A||

||p(u) − A|| + ||p(u) − B|| , A = p(a), B = p(b). (1)

The curve is said to be chord length parameterized if

chord(u) = u (2)

Rational curves with chord length parameterization have recently been studied as special
instances of RCL k-varieties in d-dimensional Euclidean space. We recall the definition from [3].
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Definition 2.1 Let S ⊂ Ek be a (k − 1)-dimensional sphere and γ(u), where u = (u1, . . . , uk),
a rational parameterization of the space Ek. We say that a k-dimensional surface P(u) is RCL
with respect to S and γ if

|P(u) − Ã| : |P(u) − Ā| = |γ(u) − Ã| : |γ(u) − Ā| (3)

holds for any Ã, Ā ∈ S and any u.

As the notion of being RCL is covariant with respect to similarities, we can choose the
reference sphere S as the unit sphere in the (x1, . . . , xk)-plane. It was proved in [3]:

Theorem 2.2 A variety P(u) is a rational chord length parameterization with respect to the
(k − 1)-dimensional reference sphere S and the rational parameterization γ(u) if and only if
there exists a rational mapping q(u) : R

k → R
n−k such that

P(u) = M(x̃1(u), . . . , x̃k−1(u), x̃k(u)N(q(u))), (4)

where M is the inversion with respect to the (n − 1)-dimensional sphere centered
at (0, . . . , 0, −1︸︷︷︸

k−th

, 0, . . . , 0)� with radius
√

2, x̃i is defined by

M(P(u)) = (x̃1(u), . . . , x̃k−1(u), x̄k(u), . . . , x̄n(u)), (5)

where
x̄k(u)2 + . . . + x̄n(u)2 = x̃k(u)2,

and

N(q1, . . . , qn−k) =
(1 − q2

1 − . . . − q2
n−k, 2q1, . . . , 2qn−k)

1 + q2
1 + . . . + q2

n−k

. (6)

For n = 2, k = 1, we obtain RCL curves in the plane. The reference sphere consists of two
points (±1, 0)� and the inversion has the equation

M(x, y) =
1

(x + 1)2 + y2

(
1 − x2 − y2

2y

)
. (7)

Let us consider the trivial parameterizaton of the x-axis γ(u) = (u, 0)�. Then

M(γ(u)) =

(
1 − u2

(u + 1)2
, 0

)�
. (8)

Moreover, N depends only on one rational function q and takes the form

N =

(
1 − q2

1 + q2
,

2q

1 + q2

)�
. (9)

Substituting (8) and (9) to (4) we obtain the following explicit formula with respect to the
trivial parameterizaton of the line, which is equivalent to the construction obtained in [13].

Theorem 2.3 A planar curve p is a rational chord length parameterization with respect to the
reference points (±1, 0)� if and only if there exists a rational function q(u) such that

p(u) =

(
(1 + q2)u

1 + q2u2
,

q(1 − u2)

1 + q2u2

)�
. (10)
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3 G1 Hermite interpolation with arcs of RCL curves

In this section, we describe an algorithm for construction of G1 Hermite interpolant represented
by an arc of a suitably chosen RCL curve.

Let two points A, B with associated unit tangent vectors tA, tB be given G1 Hermite data
which we want to interpolate. In the first step, we need to transform given data using a similarity
such that A is mapped to the point (−1, 0)� and B is mapped to (1, 0)� (see Theorem 2.3).
Concurrently, we obtain also the transformed unit tangent vectors t̃A, t̃B. Then, we can use
the general formula (10) describing all chord length parameterizations of planar curves. It is
obvious that it is enough to find a suitable function q(u) such that given data are interpolated.
Substituting the boundary values of the parameter interval of the parameterization (10), we
arrive at

p(−1) = (−1, 0)�, p′(−1) =

(
1 − q(−1)2

1 + q(−1)2
,

2q(−1)

1 + q(−1)2

)�
,

p(1) = (1, 0)�, p′(1) =

(
1 − q(1)2

1 + q(1)2
,− 2q(1)

1 + q(1)2

)�
.

(11)

Thus, we need to focus only on the given unit tangent vectors and determine the function q(u)
such that

p′(−1) = t̃A, p′(1) = t̃B.

It can be seen that expressions for p′(−1) and p′(1) in fact represent a rational parameterization
of the unit circle with the center at the origin obtained via the stereographic projection and
that q(−1) and q(1), respectively, correspond to the choice of a parameter determining one
particular point on this unit circle. Therefore, using the inverse stereographic projection we
can obtain the following system of equations relating q(u) and t̃A =

(
t̃xA, t̃yA

)
, t̃B =

(
t̃xB, t̃yB

)

q(−1) =
t̃yA

1 + t̃xA
, q(1) = − t̃yB

1 + t̃xB
. (12)

The simplest choice for q(u) providing a unique solution of G1 Hermite interpolation problem
is linear, i.e., we choose

q(u) = q0 + q1u. (13)

By substituting (13) to (12) we obtain a simple system of linear equations which has an explicit
solution in the form

q0 =
1

2

(
t̃yA

1 + t̃xA
− t̃yB

1 + t̃xB

)
, q1 = −1

2

(
t̃yA

1 + t̃xA
+

t̃yB
1 + t̃xB

)
. (14)

This leads to the explicit form of q(u), i.e.,

q(u) = − t̃yA
2(1 + t̃xA)

(u − 1) − t̃yB
2(1 + t̃xB)

(u + 1). (15)

By computing q(u) for given data, the interpolant parameterization is known. The final step is
the transformation back to initial position. The whole process is summarized in Algorithm 1.
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Algorithm 1 G1 Hermite interpolation by RCL curves

Require: Points A, B with associated unit tangent vectors tA, tB

Ensure: RCL curve p(u), u ∈ [−1, 1], interpolating the given data

1: Find a similarity φ which maps A to (−1, 0)� and B to (1, 0)�

2: Transform the given unit tangent vectors

t̃A = Normalize(φ(tA)), t̃B = Normalize(φ(tB))

3: Compute the function q(u)

q(u) = − t̃yA
2(1 + t̃xA))

(u − 1) − t̃yB
2(1 + t̃xB))

(u + 1)

4: Compute the parameterization of the interpolating RCL curve

p̃(u) =

(
(1 + q2)u

1 + q2u2
,

q(1 − u2)

1 + q2u2

)�
, u ∈ [−1, 1]

5: Transform p̃(u) back to the initial position

p(u) = φ−1(p̃(u))

Remark 3.1 Because of the division in (15) t̃A �= (−1, 0)� and t̃B �= (−1, 0)� must hold.
This fact is caused by the derivation of a rational parameterization of the unit circle via the
stereographic projection involved in (11).

Example 3.2 Let us consider G1 Hermite data

A = (−1, 0)�,B = (1, 0)�, tA =

(
1√
2
,

1√
2

)�
, tB = (0, 1)� .

Using Algorithm 1 we can find an interpolating RCL arc matching given data, see Fig. 1 (left).

Example 3.3 Let us consider G1 Hermite data

A = (−1,−1)�,B = (1, 0)�, tA =

(
− 3√

13
,

2√
13

)�
, tB =

(
1√
10

,
3√
10

)�
.

Using Algorithm 1 we can find an interpolating RCL arc matching given data, see Fig. 1 (right).
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Figure 1: Left: RCL interpolant for data from Example 3.2; Right: RCL interpolant for data
from Example 3.3.

4 Approximation order and examples

Using Algorithm 1 we can formulate a simple non-adaptive method for conversion of an arbitrary
planar curve c(t), t ∈ [0, 1], with well-defined tangent vector everywhere into G1 RCL spline.

We choose the number of segments n on c(t) and sample G1 Hermite data

iA = c

(
i − 1

n

)
, iB = c

(
i

n

)
, itA =

c′
(

i−1
n

)
||c′ ( i−1

n

) || , itB =
c′

(
i
n

)
||c′ ( i

n

) || , i = 1, . . . , n.

Then we compute the corresponding RCL curve ip(u) matching these data.
Further, we evaluate the approximation error by measuring the Hausdorff distance

ε = max

(
max
u∈[0,1]

(
min
t∈[0,1]

||c(t) − pn(u)||
)

, max
t∈[0,1]

(
min

u∈[0,1]
||c(t) − pn(u)||

))
, (16)

where pn(u), u ∈ [0, 1], is RCL spline curve obtained by the linear reparameterization. If ε is
greater than the prescribed error ε, we set n = 2n and repeat the whole process.

Example 4.1 Let us consider two Bézier quartic curves on the interval t ∈ [0, 1]. The first
curve has the control points (0, 0)�, (0, 1)�, (1, 2)�, (2, 1)� and (1, 0)� and no inflections (see
Fig. 2). The second curve has the control points (0, 0)�, (2, 1)�, (2,−1)�, (3, 2)� and (4, 0)�

and two inflection points (see Fig. 3). Table 1 summarizes the approximation error and its
improvement (ratio of two consecutive errors) for the first Bézier curve. The error was obtained
by measuring the Haussdorf distance. The improvement ratio tends to 8 = 23 which indicates
that the approximation order of the curve approximation by the above mentioned procedure is
3.

5 Conclusion

In this paper, a simple G1 Hermite interpolation algorithm with arcs of RCL curves was pre-
sented. The method is based only on solving a small system of linear equations. We also showed
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Figure 2: Bézier curve and its approximation by G1 RCL spline curve for n = 1 (left), n = 2
(middle) and n = 3 (right).

Figure 3: Bézier curve with inflection points and its approximation by G1 RCL spline curve for
n = 1 (left), n = 2 (middle) and n = 3 (right).

how to approximate an arbitrary planar curve with well-defined tangent vectors everywhere by
RCL spline curve and numerically derived the approximation order of this procedure which
turned out to be 3.

Based on the results from [3], the method could be also generalized for an interpola-
tion/approximation of space curves and also even of surfaces because general formulas for
all space RCL curves and also for all RCL surfaces are presented there. This will be our future
work on this topic.
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[10] LÜ, W. Curves with chord length parameterization. Computer Aided Geometric Design
26, 3 (2009), 342–350.

[11] SABIN, M. A., and DODGSON, N. A. A circle-preserving variant of the four-point subdi-
vision scheme. In Mathematical Methods for Curves and Surfaces: Tromsø 2004, Modern
Methods in Mathematics (2005), Nashboro Press, pp. 275–286.
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ON COMPUTING APPROXIMATE PARAMETERIZATIONS

OF ALGEBRAIC SURFACES

BIZZARRI Michal, (CZ), LÁVIČKA Miroslav, (CZ)

Abstract. In this paper we present a novel approach which can be used for computing
approximate parameterizations of selected algebraic surfaces. The algorithm is based on
determining the topological graph of a given surface S and replacing its triangular faces
by suitable triangular Bézier patches. The computation of the topological graph of S uses
the critical curves of S and their topological graphs, see [1]. The union of the specially
constructed topological graphs of the critical curves of S leads to the topological graph of
S.
Key words and phrases. Algebraic curve, algebraic surface, critical point, topological
graph, triangular Bézier patch.
Mathematics Subject Classification. Primary 60A05, 08A72; Secondary 28E10.

1 Introduction

When the computers allowed machining of 3D shapes, a necessity to define a computer-
compatible description of those objects appeared. The most promising representation was
soon identified to be in forms of parametric curves and surfaces. Parameterizations allow us to
generate points on curves and surfaces, they are also suitable for surface plotting, computing
transformations, determining offsets, computing curvatures e.g. for shading and colouring, for
surface-surface intersection problems etc. – see e.g. [2, 3]. Among all parameterizations, the
most important ones are those that can be described with the help of polynomials or ratio-
nal functions since these representations can be easily included into standard CAD systems.
However, not every geometric object (curve/surface/volume) can be described using rational
parameterizations and therefore approximate techniques must be applied.

For algebraic curves and surfaces, various symbolic techniques can be found – see e.g.
[4, 5, 6] for parameterization of curves, and [7, 8, 9] for surfaces. However, these techniques are
algorithmically quite difficult and they cannot be used for all algebraic curves and surfaces, since



Aplimat - Journal of Applied Mathematics

an exact rational parameterization does not exist in the generic case. Approximate algorithms,
which generate a parameterization within a certain region of interest, are used to overcome
these problems. Hence, it is worth exploring also approximate techniques for parameterizing
planar curves, space curves, and surfaces. Various related results for planar curves exist, cf.
[10, 11]. Numerical methods for space curves have been discussed e.g. in [1, 12].

In this paper we present a novel approach which can be used for computing approximate
parameterizations of selected algebraic surfaces. The algorithm is based on determining the
topological graph of a given surface S without curves of singular points and replacing its tri-
angular faces by suitable triangular Bézier patches. The first step for finding the topological
graph of S is an identification of the critical curves of S followed by computing their topological
graphs, see [1]. Then, the union of the specially constructed topological graphs of the critical
curves of S leads to the topological graph of S. The functionality of the designed method is
presented on two examples.

The remainder of this paper is organized as follows. The next section summarizes several
fundamental facts concerning the algebraic varieties, especially algebraic curves and surfaces.
The topology of space algebraic curves is studied in Section 3. Section 4 is devoted to the com-
putation of the topological graphs of algebraic surfaces. Finally, after presenting the method for
constructing the approximate parameterizations of algebraic surfaces based on their topological
graphs in Section 5, we conclude this paper and mention some open problems.

2 Preliminaries

In this section, we recall some fundamental properties of algebraic and rational curves and
surfaces which are then used in the following sections. More details can be found e.g. in
[5, 6, 13]. Throughout this paper, let K be an algebraically closed field of characteristic zero
and the affine space of dimension n over the field K will be denoted by A

n.
An affine algebraic variety V in A

n is defined as the set of all points satisfying
f1(x1, . . . , xn) = . . . = fk(x1, . . . , xn) = 0, i.e.,

V =
{
(a1, . . . , an)� ∈ A

n | fi(a1, . . . , an) = 0 for all i = 1, . . . , k
}

. (1)

The polynomials f1, . . . , fk ∈ K[x1, . . . , xn] are called defining polynomials of the variety V .
The degree of the variety V is d1 · · · dk, where d1, . . . , dk are the algebraic degrees of f1, . . . , fk,
respectively. The dimension of V is the transcendence degree over K of the function field K(V)
of all rational functions on V , with values in K, see [13].

In this paper we will focus on algebraic plane and space curves (the algebraic varieties of
dimension 1) in A

2 and A
3, respectively) and on algebraic surfaces (the algebraic varieties of

dimension 2) in A
3. An affine plane algebraic curve D is the set of zeros of a polynomial, i.e.,

D = {(a1, a2)
� ∈ A

2 | f(a1, a2) = 0}. (2)

An affine space algebraic curve C is defined as the set all solutions of a system of two polynomial
equations, i.e.,

C = {(a1, a2, a3)
� ∈ A

3 | f(a1, a2, a3) = g(a1, a2, a3) = 0}. (3)

Finally, an affine algebraic surface S is the set of zeros of a polynomial, i.e.,

S = {(a1, a2, a3)
� ∈ A

3 | f(a1, a2, a3) = 0}. (4)
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Let V be a variety of dimension d over a field K. Then V is said to be unirational, or
parametric, if there exists a rational map P : K

d → V such that P(Kd) is dense in V . We speak
about a (rational) parameterization P(t1, . . . , td) of V . Furthermore, if P defines a birational
map then V is called rational, and we say that P(t1, . . . , td) is a proper parametrization. By a
theorem of Riemann, a planar curve has a parametrization iff it has a proper parametrization iff
its genus (see [13] and Section 2.1 for a definition of this notion) is zero. Hence, for planar curves
the notions of rationality and unirationality are equivalent for any field. In the surface case, the
theory differs as Castelnuovo’s theorem holds only for algebraically closed fields of characteristic
zero. By this theorem, a surface has a parametrization iff it has a proper parametrization iff
the arithmetical genus pa and the second plurigenus P2 are both zero (see [13] for a definition
of these notions).

Finally, we recall basic property of triangular Bézier patches, see [3]. Bézier triangular
patch, constructed from a triangular domain is defined as

x(u) =
∑

i+j+k=n

bijkB
n
i (u), (5)

where u = (u, v, w)� are barycentric coordinates fulfilling u+v+w = 1, Bn
i (u) are the Bernstein

polynomials in the form

Bn
i (u) =

n!

i!j!k!
uivjwk, (6)

and bijk are a given control points determining the shape of the surface. A Bézier triangle
consists of all points x(u) with the barycentric coordinates u within the domain triangle,
0 < u, v, w < 1.

3 Topology of space algebraic curves

In this section we give a brief sketch of computing the topology of implicitly given space algebraic
curves in some region of interest. By determining the topology of a space curve C we understand
a construction of a certain arrangement of polylines which is topologically equivalent to the
given curve. Such arrangement of polylines is called a topological graph of C and is denoted by
G(C). It is beyond the scope of this paper to go into details, so we recall only basic steps – the
reader more interested in this topic is kindly referred to [1, 14].

Let C be a space curve defined by f = g = 0 and tp = ∇f(p) ×∇g(p) denote the tangent
vector of C at p. Then the point p ∈ C is called:

(i) an x-critical point if tp · (1, 0, 0)� = 0;

(ii) a y-critical point if tp · (0, 1, 0)� = 0;

(iii) a z-critical point if tp · (0, 0, 1)� = 0;

(iv) a singular point if tp = (0, 0, 0)�.

All these points are called by a unified name critical points. A non-critical point is a point
which is not critical.
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Now, we shortly outline the steps of the construction of the topological graph G(C) in the
region of interest R = [X1, X2]× [Y1, Y2]× [Z1, Z2] of a space algebraic curve C. Firstly, we need
C to be in the so called general space position, see [1] for an explanation of this notion. Next
we compute all critical points of C – in the algorithm for computing the topology of algebraic
surfaces, we need the topological graphs of some specially chosen space curves containing all
their critical points, see Section 4. Next we add all the intersections of C with the boundary
of R to the set of the vertices of G(C). Thus, we obtain new points b1, . . . ,bs by solving the
following six systems of three non-linear equations:

f(x, y, z) = 0,
∂f(x, y, z)

∂z
= 0, x = Xi, i = 1, 2;

f(x, y, z) = 0,
∂f(x, y, z)

∂z
= 0, y = Yi, i = 1, 2;

f(x, y, z) = 0,
∂f(x, y, z)

∂z
= 0, z = Zi, i = 1, 2.

(7)

Obviously, only one branch of C (assuming bi is not an x-critical point of C) goes from each
point bi. Next, we find the corresponding projection πz(C) of C and construct the planar
topological graph G(πz(C)) containing the projections of all vertices of G(C). Finally, we delete
some redundant vertices of G(πz(C)) and lift its edges back to space, see Algorithm 1.

Algorithm 1 TOP GRAPH CURVE [f, g,R]

INPUT: A space curve C defined by the polynomials f and g and some region of interest
R = [X1, X2] × [Y1, Y2] × [Z1, Z2].

1: Compute the x-coordinates X1 ≤ x1 < . . . < xk ≤ X2 of the x- y- and z-critical points of C,
of the singular points of πz(C) obtained only by the projection πz and of the boundary
points (by solving (7));

2: For every xi, compute the real roots of h(xi, y): Y1 ≤ yi,1 < yi,2 < . . . < yi,s ≤ Y2, where
h = Resz(f, g);

3: Delete such points (xi, yi,j)
� which have not the corresponding z-coordinates in the interval

[Z1, Z2];
4: For all points (xi, yi,j)

� compute the number of left and right branches going from these
points;

5: Connect the points (xi, yi,j)
� with the points (xi+1, yi+1,j)

� appropriately;
6: Delete such singular points of πz(C) which are not the projections of the singular points of

C, see [1];
7: Delete all vertices of G(πz(C)) which are not the projections of x- y- z-critical and boundary

points;
8: Lift the edges of G(πz(C)) to the space and hence obtain G(C);

OUTPUT: The topological graph G(C) of C having its x- y- z-critical and the boundary
points as its vertices.

Thus, we need to compute the number of the left branches and right branches going from a
particular point p (Step 4 in Algorithm 1) on the plane curve πz(C). This can be done by the
following method: We enclose p by a small box B such that the curve πz(C) does not intersect
the box B in the bottom and in the top and, moreover, there exists exactly one intersection
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point (the point p) of the vertical line going through the point p with the curve πz(C) in the box.
Then the number of the right and left intersection points yields the number of half-branches to
the right and to the left at p, respectively, cf. [15] for more details.

Finally, we show how the vertices of G(πz(C)) can be connected. We write the sequence
Ri of vertices (xi, yi,j)

� where each vertex occurs as many times as it has half-branches to the
right, and the sequence Li+1 of vertices (xi+1, yi+1,j)

� where each vertex again occurs as many
times as it has half-branches to the left, for particular i. Then, the m-th vertex from Ri is
connected with the m-th vertex from Li+1. Note that the way how to connect the vertices
by edges is uniquely determined since any incorrect connecting vertices leads to at least one
intersection of two edges at a non-critical point.

Remark 3.1 Let us emphasize that if a given curve is in the general space position, the lifting
process is determined uniquely, see [1] for the explanation.

4 Topology of algebraic surfaces

This section is devoted to the construction of the topological graphs of algebraic surfaces without
the curves of singular points. We compute the critical points of a given algebraic surface S
defined by the polynomial f(x, y, z) and connect them appropriately (with the help of the
topologies of some specially chosen curves on S).

Let np = ∇f(p) denote the normal vector of the surface S at p. Then the point p ∈ S is
called:

(i) an x-critical point if np · (0, 1, 0)� = np · (0, 0, 1)� = 0;

(ii) a y-critical point if np · (1, 0, 0)� = np · (0, 0, 1)� = 0;

(iii) a z-critical point if np · (1, 0, 0)� = np · (0, 1, 0)� = 0;

(iv) a singular point if np = (0, 0, 0)�.

All these points are called by a unified name critical points. A non-critical point is a point
which is not critical.

Then the algorithm for computing the topology of a given algebraic surface proceeds as
follows: First, we compute the topological graphs G(Cx), G(Cy) and G(Cz) of the so called
critical curves Cx, Cy and Cz of a given surface S (defined by the polynomial f), i.e.,

Cx : f(x, y, z) = fx(x, y, z) = 0;
Cy : f(x, y, z) = fy(x, y, z) = 0;
Cz : f(x, y, z) = fz(x, y, z) = 0,

(8)

where fα denotes the derivative of f with respect to α. Next, we compute the topological
graphs G(C1), . . . , G(C6) of the boundary curves C1, . . . , C6 – the intersection curves of S with
the boundary of R = [X1, X2] × [Y1, Y2] × [Z1, Z2], i.e.

C1,2 : f(x, y, z) = 0, x = Xi, i = 1, 2;
C3,4 : f(x, y, z) = 0, y = Yi, i = 1, 2;
C5,6 : f(x, y, z) = 0, z = Zi, i = 1, 2.

(9)
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Then all 9 topological graphs together generate the topological graph of a given surface S.
Since the x-critical points of Cy, Cz and S coincide, see Theorem 4.1 (analogously for y- and z-
critical points) the topological graphs G(Cx), G(Cy) and G(Cz) are connected together at these
points (the critical points of S). Next, since all topological graphs G(Cx), G(Cy) and G(Cz)
contain the boundary points as its vertices, the boundary curves will connect them at these
points.

Theorem 4.1 Let an algebraic surface S is defined by the polynomial f and Cx, Cy and Cz be
its corresponding critical curves. Then it holds:

(1) x-critical points of Cy, Cz and S coincide;

(2) y-critical points of Cx, Cz and S coincide;

(3) z-critical points of Cx, Cy and S coincide.

Proof. We prove only (1) since (2) and (3) can be proved by analogy. Thus, x-critical points
of Cy are defined by the equations

f = fy = fyfyz − fzfyy = 0. (10)

Since fy = 0, the equation fyfyz−fzfyy = 0 degenerates to the equation fz = 0. Next, x-critical
points of Cz are defined by the equations

f = fz = fyfzz − fzfyz = 0. (11)

Again, since fz = 0, the equation fyfzz − fzfyz = 0 degenerates to the equation fy = 0. Thus
in both case we arrived at the equations

f = fy = fz = 0, (12)

which are exactly the equations of the x-critical points of S. �

Remark 4.2 Let us note, that some of the curves Cx, Cy, Cz, C1, . . . , C6 can have a common com-
ponent. We can delete some of these common components by considering new curves K1, . . . ,Ks

defined by the tuples of polynomials (f, g1), . . . , (f, gs), where g1, . . . , gs are irreducible factors
of fx, fy, fz, x − X1, x − X2, y − Y1, y − Y2, z − Z1, z − Z2.

The method of constructing the topological graph is summarized in Algorithm 2.

Example 4.3 We construct the topological graph of the ellipsoid given by

f =
x2

3
+

y2

2
+ z2 − 1. (13)

The critical curves are shown in Fig. 1 (left) and the topological graph G(S) of S in Fig. 1
(right).
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Algorithm 2 TOP GRAPH SURFACE [f,R]

INPUT: An algebraic surface S defined by the polynomial f and some region of interest
R = [X1, X2] × [Y1, Y2] × [Z1, Z2].

1: Construct curves K1, . . . ,Ks defined by the tuples of polynomials (f, g1), . . . , (f, gs), where
g1, . . . , gs are irreducible factors of fx, fy, fz, x−X1, x−X2, y−Y1, y−Y2, z−Z1, z−Z2.

2: Compute the topological graphs for all Ki, i.e., G(Ki) = TOP GRAPH CURVE [f, gi,R];
3: The topological graph G(S) =

⋃
i=1,...,s G(Ki);

OUTPUT: The topological graph G(S) of S having its x- y- z-critical and the boundary
points as its vertices.

Figure 1: The critical and boundary curves from Example 4.3 (left), and their corre-
sponding topological graphs which give us the topological graph G(S) of S (right).

Example 4.4 We construct the topological graph of the algebraic surface (see Fig. 2) defined
by the polynomial

f = x3 − 9y2 − 9z2 − 3x + 2. (14)

The critical and boundary curves are defined by equations, see Fig. 3 (left):

Cx : −x3 + 3x + 9y2 + 9z2 − 2 = 1 − x2 = 0;
Cy : −x3 + 3x + 9y2 + 9z2 − 2 = y = 0;
Cy : −x3 + 3x + 9y2 + 9z2 − 2 = z = 0;
C1 : −x3 + 3x + 9y2 + 9z2 − 2 = x − 3 = 0.

(15)

Thus, we construct the topological graphs G(Cx), G(Cy), G(Cz), G(C1) of Cx, Cy, Cz, C1, which
give us the topological graph G(S) of S, see Fig. 3 (right).

5 An approximate parameterization algorithm

In this section we describe a simple method how the triangular faces of the constructed topolog-
ical graph of a given algebraic surface can be replaced by cubic Bézier triangular patches. The
method is formulated as an optimization problem when the objective function approximates
the integral of the squared Euclidean distance of the constructed approximate surface to the
implicit one.
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Figure 2: Tschirnhausen cubic surface S from Example 4.4.

Figure 3: The critical and boundary curves from Example 4.4 (left), and their corre-
sponding topological graphs which give us the topological graph G(S) of S (right).

Suppose, that the three points p1,p2,p3 and the normal vectors n1,n2,n3 at these points
are given. Then the cubic Bézier triangle patch is given by the equation

x(u, v, w) =
∑

i+j+k=3 bijk
3!

i!j!k!
uivjwk =

= b300u
3 + 3b210u

2v + 3b201u
2w + 3b120uv2 + 6b111uvw+

+3b102uw2 + b030v
3 + 3b021v

2w + 3b012vw2 + b003w
3,

(16)
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where u + v + w = 1. Acording to [16] the control points bijk can be computed as follows:

b300 = p1;
b030 = p2;
b003 = p3;
b210 = (2p1 + p2 − w12n1) /3;
b120 = (2p2 + p1 − w21n2) /3;
b021 = (2p2 + p3 − w23n2) /3;
b012 = (2p3 + p2 − w32n3) /3;
b102 = (2p3 + p1 − w31n3) /3;
b201 = (2p1 + p3 − w13n1) /3;
b111 = E + (E − V )/2,

(17)

where wij = (pj − pi) · ni, E = (b12 + b21 + b102 + b120 + b201 + b210) /6 and V =
(p1 + p2 + p3) /3.

Then, the whole process of approximate parameterization of algebraic surfaces can be for-
mulated as follows: For each triangle face Ti of the topological graph G(S) construct its cor-
responding Bézier patch x(u, v, αi1 , αi2 , αi3) such that we substitute to (17) the normal vectors
with the lengths as free parameters i.e., αi1ni1 , αi2ni2 and αi3ni3 . Then, the following objective
function measures the Euclidean distance of the constructed approximate surface to the implicit
one

F (α1, . . . , αk) =

1∫
0

⎛
⎝ 1−u∫

0

⎛
⎝ k/3∑

i=1

f 2(x(u, v, αi1 , αi2 , αi3))

‖∇f(x(u, v, αi1 , αi2 , αi3))‖2

⎞
⎠ dv

⎞
⎠ du. (18)

Finally, minimizing the objective function (18) can be done by the Newton’s method which is
characterized by the fast convergence, see for instance [17].

Example 5.1 We construct one Bézier triangular patch on the ellipsoid from Example 4.4.
The Bézier patch is given by the following data:

p1 = (1.732, 0, 0)�, p2 = (0, 1.414, 0)�, p3 = (0, 0, 1)�

n1 = (1, 0, 0)�, n2 = (0, 1, 0)�, n3 = (0, 0, 1)�.
(19)

The optimization process gives us the following lengths of the normal vectors

α1 = α2 = α3
.
= 1.33108. (20)

The approximate Bézier triangular patch is shown in Fig. 4.

6 Conclusion

In this paper, we presented a novel approach for computing approximate parameterizations of
algebraic surfaces based on computing their topological graphs and consequently replacing their
triangular faces by triangular Bézier patches. The optimization of the lengths of the normal
vectors at the join points is realized using the classical Newton’s method. The main advantage
of the presented method, combining symbolical and numerical steps to the approximation
problem, lies in its straightforwardness and simplicity.
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Figure 4: Bézier triangular patch from Example 5.1.

On the other hand, there is not guaranteed that the constructed topological graph will
contain only triangular faces. In such cases some additional connections of its vertices must be
constructed – this is the subject for our further research. Furthermore, it is an open problem
how to deal with the surfaces having the curves of singular points.
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Abstract.
In this paper, we obtained the necessary and sufficient conditions for a Kahler-Weyl space
to admit a nontrivial holomorphically projective mapping onto another Kahler-Weyl space
and we found the relations between the curvature and Ricci tensors of two Kahler Weyl
spaces admitting a holomorphically projective mapping.
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1 Introduction

Many authors studied holomorphically projective mapping between special Kahler spaces and
generalization of the theory of holomorphically projective mapping [1,2,4,5,8,11,12]. In [6], it is
investigated objects which are invariant under the holomorphically projective mappings of two
parabolically Kahler spaces . In [10], the authors determined that conformally Kahler spaces
being a generalization of Kahler spaces do not admit a nontrivial holomorphically projective
mapping preserving the complex structure onto almost Hermitian spaces.

In this work, our main aim is to obtain the necessary and sufficient conditions for a Kahler-
Weyl space to admit a holomorphically projective mapping onto another Kahler-Weyl space
and to find the relationships between curvature tensors and Ricci tensors of two these spaces.

An n-dimensional Weyl manifold having a conformal metric g and a symmetric connection
∇ satisfies the compatibility condition

∇̇k gij = ∇k gij − 2 Tk gij = 0 , (1)

where Tk denotes a covariant vector field and ∇̇ denotes the prolonged derivative of g.
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Under the renormalization

∼g = λ2 g (2)

of the metric tensor g, T is transformed by the law

∼
Tk = Tk + ∂k ln λ ,

where λ is a scalar function defined on Wn [3,7].

If an object A in the Weyl transforms of the form
∼
A = λp A under the renormalization of g,

A is said to be a satellite of weight {p} of g.
Let Wn be a Weyl space of dimension n = 2m and let Wn be endowed with an almost

complex structure F j
i of weight {0}, i.e.,

F j
i F k

j = −δk
i , (3)

suppose further that
gijF

i
hF

j
k = ghk , (4)

∇̇kF
j
i = 0 , for all i,j,k. (5)

and
Fij = gjkF

k
i = −Fji , F ij = gihF j

h = −F ji (6)

where the tensors Fij and F ij of weight {2} and {−2} , respectively.
Such a Weyl space is called a Kahler-Weyl space and we will denote it by KWn .

2 Holomorhically Projective Mappings of Kahler-Weyl Spaces

A curve C given by the equations xi = xi(t) (i = 1, 2, · · · , n) with tangent vector
dxi

dt
in

KWn is a analytically planar curve if the conditions [4]

d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= a(t)

dxi

dt
+ b(t) F i

j

dxj

dt
(7)

hold, where a = a(t) and b = b(t) are functions of t and Γi
jk are the Christoffel symbols of the

form

Γi
jk =

{
i

jk

}
− ( δi

j Tk + δi
k Tj − gli gjk Tl ). (8)

Consider a diffeomorphism ρ from a Kahler-Weyl space KWn onto another Kahler space
¯KW n preserving the complex structure and having a common coordinate system xi = x̄i . If

ρ : KWn → ¯KW n maps all analytically planar curves of KWn into analytically planar curve in
¯KW n then the mapping ρ is a holomorphically projective mapping [4,6,12].

Under the holomorphically projective mapping ρ : KWn → ¯KW n we have

d2xi

dt2
+ Γ̄i

jk

dxj

dt

dxk

dt
= ¯a(t)

dxi

dt
+ ¯b(t) F̄ i

j

dxj

dt
(9)
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where Γ̄i
jk is the coefficients of connection ∇̄.

Substracting (7) and (9) and by considering the fact F i
k = F̄ i

k we obtain

(
Γ̄i

jk − Γi
jk

)dxj

dt

dxk

dt
= 2ψj

dxj

dt

dxi

dt
+ 2ϕj F i

k ψj
dxj

dt

dxk

dt
(10)

which implies that
Γ̄i

jk = Γi
jk + ψjδ

i
k + ψkδ

i
j + ϕjF

i
k + ϕkF

i
j , (11)

where 2ψj
dxj

dt
= ā − a and 2ϕj

dxj

dt
= b̄ − b.

It can be easily seen that under the condition (11) , the equations (7) and (9) are satisfied
which denotes ρ : KWn → ¯KW n is a holomorphically projective planar mapping .

By (11), in the local coordinates, the compatibility condition of the metric tensor ḡ of ¯KW n

with respect to ∇ can be written as the equation

∇̇kḡij = ∇kḡij − 2Tkḡij

= 2(ψk + Pk)ḡij + ḡkjψi + ḡikψj + ϕi F
m
k ḡmj + ϕj Fm

k ḡim , (12)

where Pk = T̄k − Tk.
Similarly, the prolonged derivative of complex structure with respect to ∇ gives

∇̇kF̄
h
i = ∇kF̄

h
i

= −[δh
k (ψm F̄m

i + ϕi) + F̄ h
k (ϕm F̄m

i + ψi)]. (13)

By remembering that

∇̇kF̄
j
i = ∇̇kF

j
i = 0 ,

we obtain
ψi = ϕm Fm

i . (14)

Thus, we proved that, if the relation given by (11) holds, the equations (12) and (14) are
satisfied.

Conversely, if we have the equations given by (12) and (14), one can see that

(
Γ̄m

ik − Γm
ik

)
ḡmj +

(
Γ̄m

jk − Γm
jk

)
ḡim = (ψkδ

m
i + ψiδ

m
k + ϕiF

m
k )gmj + (ψkδ

m
j + ψjδ

m
k + ϕjF

m
k )gim

= (ψkδ
m
i + ψiδ

m
k + ϕiF

m
k + ϕkF

m
i )gmj

+ (ψkδ
m
j + ψjδ

m
k + ϕjF

m
k + ϕkF

m
j )gim (15)

or

Γ̄i
jk = Γi

jk + ψjδ
i
k + ψkδ

i
j + ϕjF

i
k + ϕkF

i
j ,

which denotes the mapping between two Kahler Weyl spaces is a holomorphically projective
mappping.
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In (11), if ϕi �= 0 then the mapping is nontrivial. Otherwise, it is said to be trivial or affine.
Thus, we can state the following theorem.

Theorem 2.1 A Kahler-Weyl space admits a nontrivial holomorphically projective mapping
onto another Kahler-Weyl space if and only if one of the following equivalent conditions holds.

a) Γ̄i
jk=Γi

jk + ψjδ
i
k + ψkδ

i
j + ϕjF

i
k + ϕkF

i
j .

b) ∇̇kḡij=2(ψk + Pk)ḡij + ḡkjψi + ḡikψj + ϕi F
m
k ḡmj + ϕj Fm

k ḡim , ψi = ϕm Fm
i .

Theorem 2.2 The covector field ψi of the holomorphically projective mapping between two
Kahler-Weyl spaces is in the form

ψi =
1

n + 2

[
∂i ln

√
ḡ

g
− nPi

]
where g = det(gij) and ḡ = det(ḡij) and Pj = T̄j − Tj .

Proof. Contraction (11) on the indices i and k gives

Γ̄i
ji − Γi

ji = (n + 2)ψj

from which follows

ψj =
1

n + 2

[
∂j ln

√
ḡ

g
− nPj

]
, (16)

where Pj = T̄j − Tj .
It can be stated that, unlike the covector field of a holomorphically projective mapping

between two Kahler spaces, instead of being gradient, the covector field ψ is different from a
gradient for Kahler-Weyl spaces in general case.

Let Rh
ijk and R̄h

ijk be the mixed curvature tensors of KW n and ¯KW n, respectively.
After some calculations, the relation between the curvature tensors of two Kahler-Weyl

spaces under the holomorphically projective mapping are obtained as

R̄h
ijk = Rh

ijk + δh
j ψik − δh

kψij + δh
i (ψjk − ψkj) + F h

j ϕik − F h
k ϕij + F h

i (ϕjk − ϕkj) (17)

where
ψij = ∇̇jψi + ϕiϕj − ψiψj , ϕij = −ψmj Fm

i .

The Ricci tensors R̄ij and Rij are related by the equation

R̄h
ijh = R̄ij

= Rij + ψji − (n + 1)ψij − (ψhk + ψkh) F h
i F k

j (18)

The antisymmetric part of the Ricci tensor, from (18) and (16) obtained as

R̄[ij] = R[ij] + (n + 2)ψ[ji]

(19)

=
(n + 2)

2

(∂iψj

∂xi
− ∂ψi

∂xj

)
(20)

= nP[i,j] ,
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where brackets indicate antisymmetrization.
Hence we have
Theorem 2.3 For a nontrivial holomorphically projective mapping between two Kahler-Weyl

spaces, the antisymmetric part of the Ricci tensors satifies the relation

R̄[ij] = R[ij] +
n

n + 2
ψ[ij] .
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Güler Gürpınar Arsan, Assoc. Prof. Dr.
Istanbul Technical University, Faculty of Science and Letters,
Department of Mathematics, 34469, Maslak-Istanbul, TURKEY
tel.+(90) 2122853269 , e-mail: ggarsan@itu.edu.tr

volume 5 (2012), number 3 83



Aplimat - Journal of Applied Mathematics

84 volume 5 (2012), number 3



HOLOMORPHICALLY PROJECTIVE MAPPINGS
OF HYPERBOLICALLY KÄHLER SPACES
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Abstract. In this paper there are discussed the holomorphically projective mappings of
hyperbolically Kähler spaces which preserved the Einstein tensor. We proved that the
tensor of h-concircular curvature is invariant under Einstein tensor-preserving holomor-
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1 Introduction

From the very beginning, the theory of geodesic and holomorphically projective mappings of
classical and hyperbolically Kähler spaces attracted attention by a wide scale of possibilities for
applications, not only in geometry itself, but also as a useful tool of modeling various processes
in mechanics and physics [1]–[24].

If we distinguish some class of mappings between spaces from a fixed class, a natural ques-
tions arises, what objects and properties of spaces are preserved, invariant, under all mappings
under consideration.

As far as invariant objects under holomorphically projective mappings are concerned, let us
mention generalized Thomas’ parameters and the tensor of holomorphically projective curva-
ture. To mention some invariant properties, note that the class of spaces of constant curvature
and the class of Einstein spaces are closed under holomorphically projective mappings.

In this paper, we examine nontrivial holomorphically projective mappings of hyperboli-
cally Kähler spaces preserving the Einstein tensor. We prove that the tensor of h-concircular
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curvature is an invariant of holomorphically projective mappings. Further, we examine some ge-
ometric properties of such spaces. These results are analogous, as in theory of holomorphically
projective mappings of Kähler spaces, see [4].

2 Basic concepts

A (pseudo-) Riemannian space Kn is called a hyperbolically Kähler space if it is endowed,
besides a metric tensor g, with an affinor structure F (�= Id) satisfying the following relations
[17, 19, 20, 21]

F 2 = Id , g(X,FX) = 0 , ∇F = 0 .

Here X are all tangent vectors of TKn and ∇ is a connection of Kn. The structure F is a
product structure.

It is known, that the diffeomorphism f between hyperbolic Kähler spaces Kn and K̄n is
called a holomorphically projective mapping, if f maps any analytical planar curve of Kn onto
a analytical planar curve of K̄n. Due to the diffeomorphism f , we can suppose that M̄ = M ,
where M is “common” manifolds on which the metrics g and ḡ and the complex structure F
on Kn and K̄n are defined.

A holomorphically projective mapping f from Kn onto K̄n preserves the structures and is
characterized by the following condition

(∇̄ − ∇)(X,Y ) = ψ(X)Y + ψ(Y )X + ψ̄(X)FY + ψ̄(Y )FX (1)

for any vector fields X,Y , where ∇̄ and ∇ are affine connections of Kn and K̄n, ψ is a linear
form and ψ̄(X) = ψ(FX).

The mapping from Kn onto K̄n is holomorphically projective if the equations hold

∇Z ḡ(X,Y ) = 2ψ(Z)ḡ(X,Y ) + ψ(X)ḡ(Y, Z) + ψ(Y )ḡ(X,Z)

+ψ̄(X)F̄ (Y, Z) + ψ̄(Y )F̄ (X,Z),
(2)

where ∇ is Levi-Civita connection of Kn, ψ is a linear form and X,Y, Z are tangent vectors,
F̄ (X,Z) = −ḡ(X,FZ). If ψ = 0, then a holomorphically projective mapping is called trivial
or affine. The equations (2) we rewrite in local coordinates:

ḡij,k = 2ψkḡij + ψiḡjk + ψj ḡik + ψ̄iF̄jk + ψ̄jF̄ik, (3)

where ḡij(x), ψk(x), ψ̄k(x) and F̄ij are components of ḡ, ψ, ψ̄, F̄ and “ , ” is a covariant
derivative on Kn, x = (x1, x2, . . . , xn) is a point of coordinate neighbourhood U ⊂ M . Equa-
tions (2) and (3) hold when Kn and K̄n ∈ C1, i.e. gij(x) and ḡij(x) ∈ C1 in any coordinate
neighbourhood U .

The following conditions are necessary for a holomorphically projective mapping:

R̄h
ijk = Rh

ijk + ψijδ
h
k − ψikδ

h
j − ψiαFα

j F h
k + ψiαFα

k F h
j − 2 ψjαFα

k F h
i , (4)

R̄ij = Rij + (n − 1)ψij. (5)
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Here Rh
ijk is the Riemannian curvature tensor, Rij is the Ricci tensor, and

ψij = ψi,j − ψiψj + ψ̄iψ̄j.

On the other hand, necessary and sufficient condition for existence of holomorphically pro-
jective mappings of the given hyperbolically Kähler space onto hyperbolically Kähler spaces is
existence of a solution for the system of equations [8, 14, 17, 19, 20]

aij,k = λigjk + λjgik − λ̄iFjk − λ̄jFik, (6)

nλi,j = μgij + aαiR
α
j − aαβRα· ij ·β, (7)

μ,k = 2λαRα
k (8)

with respect to a regular symmetric tensor aij, a co-vector λi and a function μ. Here Ri
j =

Rαjg
αi; Rk· ij

h· = Rαijβgαkgβh; Fij = Fα
i gαj; and gij are elements of the matrix inverse to gij.

According to the known solutions of the above system of differential equations the metrics
of the resulting image spaces under holomorphically projective mappings can be determined
from the equations [14, 20]:

aij = e2ψḡαβgαigβj; (9)

λi = −e2ψψαḡαβgβi. (10)

The important invariants under holomorphically projective mappings of hyperbolically Kähler
spaces are the generalized Thomas’ parameters

T̄ h
ij = T h

ij; T h
ij = Γh

ij −
1

n + 2
(δh

i Γα
jα + δh

j Γα
iα + F h

i F β
j Γα

βα + F h
j F β

i Γα
βα) (11)

and the tensor of holomorphically projective curvature

P̄ h
ijk = P h

ijk; P h
ijk = Rh

ijk −
1

n + 2
(δh

kRji − δh
j Rki − F h

k Fα
j Rαi − F h

j Fα
k Rαi − 2F h

i Fα
j Rαk). (12)

3 Basic equations for Einstein tensor-preserving holomorphically projective map-
pings

We call a holomorphically projective mapping Einstein tensor-preserving if it satisfies:

Ēij = Eij, (13)

where

Eij = Rij − R

n
gij (14)

is the Einstein tensor and R = Rαβgαβ is the scalar curvature.
If this is the case, the deformation tensor for the Ricci tensor takes the form:

Tij = R̄ij − Rij =
R̄

n
ḡij − R

n
gij. (15)
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On the other hand, accounting (5) we obtain

Tij = R̄ij − Rij = (n − 1)ψij. (16)

Comparing we get:

ψij =
R̄

n(n − 1)
ḡij − R

n(n − 1)
gij. (17)

Substituting the last expression into (4) and using the notation

Y h
ijk = Rh

ijk −
R

n(n − 1)
(δh

kgij − δh
j gik − F h

k Fα
i gαj + F h

j Fα
i gαk − 2 F h

i Fα
j gαk) (18)

(and similarly with bar) we find
Ȳ h

ijk = Y h
ijk. (19)

Here Y h
ijk are components of the tensor of h-concircular curvature on hyperbolically Kähler

space, where Y is an analog of the tensor of concircular curvature [14, 18, 19, 20, 25].
Hence we have proved:

Theorem 3.1 The tensor of h-concircular curvature is invariant under Einstein tensor-preserving
holomorphically projective mappings of hyperbolically Kähler space.

Let us apply covariant differentiation to the formula (10):

λi,j = −e2ψψα,j ḡ
αβgβi + e2ψψαψβ ḡαβgji + e2ψψjψαḡαβgβi. (20)

By (9) and (17), we get

λi,j = μgij +
R

n(n − 1)
aij, (21)

where

μ = e2ψ

(
ψαψβ ḡαβ − R̄

n(n − 1)

)
. (22)

Obviously using (9), (10), from (20) and (21) we get (17), and consequently also (13), hence
we have proved:

Theorem 3.2 A hyperbolically Kähler space admits an Einstein tensor-preserving holomorphi-
cally projective mapping on hyperbolically Kähler spaces if and only if the conditions (6), (21)
and (22) are satisfied.

We say that a hyperbolically Kähler space Kn belongs to the class Kn[B] if it admits a
holomorphically projective mapping and the corresponding vector satisfies [13, 15, 19]

λi,j = μgij + Baij (23)

for some function B. Further analysis, make sure that B is the constant.
So we have actually proved that a hyperbolically Kähler space Kn admitting Einstein

tensor-preserving holomorphically projective mappings belongs to the class Kn[B] where B =
− R

n(n−1)
= const.
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Abstract. In this paper we study general properties of composition conformal and holo-
morphically projective mappings f (i.e. f = f1◦f2◦f3, where f1, f3 are conformal mappings
and f2 is a holomorphically projective mapping) between conformally Kählerian spaces
Kn and K̄n.
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1 Introduction

Many monographs and papers are devoted to the theory of conformal, geodesic and holomor-
phically projective mappings, see [1] - [28]. Compositions of conformal and geodesic mappings
were studied in the papers by Zudina, Stepanov [29] and Hinterleitner, Mikeš [7], [8].

We suppose, that metrics of the considered Riemannian spaces Vn have a general signature,
i.e. we talk about Riemannian or (pseudo-) Riemannian spaces.

2 Main Properties of Kählerian and Conformally Kählerian Spaces

It is known [17, 21, 22, 27, 28] that an n-dimensional (pseudo-) Riemannian space Hn with a
metric tensor g will be called an almost Hermitian space if there an almost hermitian structure
is defined, i.e. there is an affinor field F such that

F 2 = −Id, g(X,FX) = 0 (1)
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for all tangent vector X.

An almost hermitian space Kn will be called Kählerian, if the structure F is covariantly
constant, i.e. ∇F = 0. Where ∇ is the Levi-Civita connection on Kn .

Any Riemannian space which may be conformally mapped onto Kähler space, will be called
a conformally Kählerian space.

Clearly, any conformally Kählerian space Kn may be considered as an almost Hermitian
space and it may be characterised by an almost Hermitian structure (1). This structure has
the following properties, see [25]:

∇Y (F (X)) = ϕ(X) · Y − g(X,Y ) · Φ + ϕ(FX) · F (Y ) − g(FX, Y ) · FΦ,

where ϕ(X) = g(X, Φ) = ∇XF , F is a function on Kn and X,Y are tangent vector fields.

3 Main Properties of the Holomorphically Projective Mappings

It is known [17, 22, 27, 28] that a diffeomorphism f between Kählerian spaces Kn and K̄n is
called a holomorphically projective mapping, if f maps any analytic planar curve in Kn onto an
analytic planar in K̄n.

Using properties of a diffeomorphism f , we can suppose that M is a “common” manifold
on which metrics g and ḡ of Kn and K̄n are defined.

A mapping of Kn onto K̄n is holomorphically projective if and only if the following equations
holds

(∇̄ − ∇)XX = 2ψ(X) · X − 2ψ(FX) · FX, (2)

for all tangent vector field X. Here ∇ and ∇̄ are the Levi-Civita connections on Kn and K̄n,
ψ is a linear form. If ψ = 0 then the holomorphically projective mapping is called trivial or
affine.

The equations (2) we re-write in local coordinates:

Γ̄h
ij = Γh

ij + ψiδ
h
j + ψjδ

h
i − ψ̄iF

h
j − ψ̄jF

h
i , (3)

where Γh
ij(x) and Γ̄h

ij(x) are the Christoffel symbols on Kn and K̄n, ḡij(x) and ψk(x) are com-
ponents of ḡ and ψ, δh

i is the Kronecker symbol. x = (x1, x2, . . . , xn) is a point of a coordi-
nate neighbourhood U ⊂ M . Equations (2) and (3) hold when Kn ∈ C1 and K̄n ∈ C1, i.e.
gij(x) ∈ C1, ḡij(x) ∈ C1 in any coordinate neighbourhood U .
It is known that

ψi = ∇Ψ, Ψ =
1

2(n + 2)
ln

∣∣∣∣ ḡg
∣∣∣∣ .

It follows that ψi(x) ∈ C0.
The tensor of the holomorphically projective curvature of Kählerian space has the form:

P h
ijk = Rh

ijk −
1

n + 2
(δh

kRij − δh
j RikF

h
k RiαFα

j − F h
j RiαFα

k − 2F h
i RjαFα

k ), (4)
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where Rh
ijk are components of the Riemannian tensor and Rij = Rα

ijα are components of the
Ricci tensor.

The tensor of the holomorphically projective curvature is an invariant under holomorphically
projective mappings Kn → K̄n, i.e. P = P̄ .

It is known, that a Kähler manifold Kn is a space of the constant curvature if and only if
the tensor of the holomorphically projective curvature is vanishing (P = 0).

4 Main Properties of the Conformal Mappings

A diffeomorphism f between Riemannian spaces Vn and V̄n is called a conformal mapping, if f
preserves angles among all curves on Vn.

The mapping of Vn = (M, g) onto V̄n = (M, ḡ) is conformal if and only if, in each coordinate
system x, metrics are proportional, i.e. the following condition holds [6, 22, 24, 27]:

ḡ = ρ · g, (5)

where ρ is a nonzero function, which depends on a point in M .
¿From the equation (5) it follows, that

(∇̄ − ∇)XX = 2 σ(X) · X − g(X,X) · Σ, (6)

where σ(X) = 1
2
∇X ln |ρ|, σ(X) = g(X, Σ) and X is an arbitrary tangent vector. In local

coordinates:
Γ̄h

ij = Γh
ij + σiδ

h
j + σjδ

h
i − σhgij, (7)

where gij(x), σi(x) and σh(x) are components of g, σ and Σ on a coordinate neighborhood U .
When we have a conformal mapping Vn → V̄n the Weyl tensor of the conformal curvature

is an invariant (i.e. C̄ = C) and it has the form:

Ch
ijk = Rh

ijk + δh
j Lik − δh

kLij + Lh
j gik + Lh

kgij (8)

where Lij =
1

n − 2
(Rij − R

2 (n − 1)
gij), Lh

i = ghαLαi, R = Rαβgαβ is the scalar curvature and

gij are components of the inverse matrix of gij.
It is known, that for n = 2 and n = 3 the Weyl tensor of the conformal curvature C always

vanishes identically.
For n > 3 a Riemannian space is (locally) conformally flat if and only if, the Weyl tensor

of the conformal curvature is vanishing (C = 0).

5 On Conformally Holomorphically Projective Mappings

In papers by I. Hinterleitner [7, 8] there were studied mappings, which are the composition
of conformal and holomorphically projective mappings – conformally projective mappings and
further H. Chudá, J. Mikeš conformally geodesic mappings [3].

In our case we study more general situation, when the conformally holomorphically projec-
tive mapping

f : Kn = (M, g, F ) → K̄n = (M, ḡ, F̄ )
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is a composition of following mappings

f = f1 ◦ f2 ◦ f3

f1 : Kn = (M, g) →
1

Kn = (M,
1
g ) − conformal mapping

f2 :
1

Kn = (M,
1
g ) →

2

Kn = (M,
2
g ) − holomorphically projective mapping

f3 :
2

Kn = (M,
2
g ) → K̄n = (M, ḡ) − conformal mapping.

We suppose, that a holomorphically projective mapping f ∈ Cr, if Kn and K̄n are confor-

mally Kählerian manifolds and
1

Kn and
2

Kn are Kählerian manifolds.
Evidently, for a conformal mappings f1 and f2 the following conditions hold

1
g =

1
σ · g and ḡ =

2
σ · 2

g , (9)

where
1
σ and

2
σ are the functions on M belonging to the class Cr.

Remark 5.1 Conformally holomorphicall projective mappings do not generate equivalent clas-
ses of Kählerian manifolds.

Evidently, id: Kn → Kn is a trivial conformally holomorphical projective mapping. Confor-
mally holomorphical projective mappings are also symmetric relations, i.e. if f = f1 ◦ f2 ◦ f3:
Kn → K̄n is a conformally holomorphical projective mapping, then f−1 = f−1

3 ◦ f−1
2 ◦ f−1

1 :
K̄n → Kn is also a conformally holomorphical projective mapping.

Finally, unfortunately the composition of conformally holomorphically projective mappings
might not be conformally holomorphical projective, i.e. this relation is not transitive.

Theorem 5.2 A diffeomorphism f (∈ C1): Kn = (M, g) → K̄n = (M, ḡ) is a conformally
holomorphically projective mapping if and only if the following condition holds

(∇̄ − ∇)XX = 2ψ(X) · X − 2ψ(FX) · FX + g(X,X) · Σ + ḡ(X,X) · Ω, (10)

where ψ is a linear form, Σ and Ω are vector fields and there exist functions �∗
1, �∗

2 and �∗
3 on

M for which
∇X�∗

1 = g(X, Σ), ∇X�∗
2 = ḡ(X, Ω), ∇X�∗

3 = ψ(X).

Proof. The necessary relation (10) follows from equations (2) and (6). The sufficient condition
follows from additional analysis of these relations. Further we prove with suitable ordering, that
a conformally holomorphically projective mapping f is expressed as the composition f1 ◦f2 ◦f3,
where f1 a f3 are conformal mappings and f2 is a holomorphically projective one, see the scheme

Kn
f1−→

1

Kn
f2−→

2

Kn
f3−→ K̄n.

We construct metrics

1
g = exp(−2 �∗

1) · g, and
2
g = exp(2 �∗

2) · ḡ.
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After computing the difference between connections of spaces
1

Kn = (M,
1
g ) and

2

Kn = (M,
2
g ),

we see that

(
2

∇ −
1

∇ )XX = (2ψ(X) −∇X�∗
1 −∇X�∗

2) · X − 2ψ(FX) · FX. (11)

It follows that spaces
1

Kn and
2

Kn are in a holomorphically projective correspondence.
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[19] MIKEŠ, J.; CHODOROVÁ, M.: On concircular and torse-forming vector fields on compact
manifolds, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 26, no. 2, 329–335, 2010.
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+420 57 603 5007, chuda@fai.utb.cz

Shiha Mohsen, Ph.D.
Department of Mathematics, University of Homs
Homs, Syria
e-mail: mohsen sheha@yahoo.com

96 volume 5 (2012), number 3



MULTIPLE COVARIANT DERIVATIVE
AND DECOMPOSITION PROBLEMS
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Abstract. This paper deals the properties of m-covariant derivative with respect to the
general decomposition of tensor fields on manifolds with affine connection. It is shown that
properties of multiple covariant derivative ∇∇· · ·∇︸ ︷︷ ︸

m×
are transferred to the components

of given decomposition.
Key words and phrases. multiple covariant derivative, decomposition of tensor.
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1 Introduction

The trace decomposition of tensors on an n-dimensional Riemannian manifold Mn was described
by Weyl [19]. This decomposition problem may be naturally generalized for a number of certain
other cases (see for example [1, 3, 4, 7, 8, 11, 12, 18, 20]).

The theory of decompositions of tensors has been used in the studying geodesic and other
mappings of special Riemannian spaces (see [10, 13, 14, 15, 16, 17]).

In this paper, we bring certain more general results for decompositions of tensor (and also
tensor fields) than they are contained in [5, 19]. Crasmareanu [2] has studied decompositions
of tensor fields for the case covariant derivative of such tensors satisfies certain conditions.

These results are generalized for multiple derivative ∇∇ · · ·∇︸ ︷︷ ︸
m×

. We show that multiple

derivative ∇∇· · ·∇︸ ︷︷ ︸
m×

of given tensor is transferred to components of studied decompositions.

2 General decomposition of tensors

It is well known that on every manifold Mn a positive definite metric g determining the structure
of Riemannian manifold on Mn may by introduced. For practical reasons (e.g. in theoretical
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physics) the pseudo-Riemannian manifolds with indefinite pseudometric g are considered, too.
Through the following we will in both cases use terms Riemannian manifold and metric, only.

Let a manifold Mn with a metric g be given. We introduce the following denotation:
For every ordered system of indices i1, i2, . . . , iq, 1 ≤ iρ ≤ n, and every couple (iρ, iσ), ρ < σ,
of them we will by

(ρ,σ)

M
i1,···iρ−1

ρ� iρ+1···iσ−1
σ� iσ+1··· iq

denote the tensor of the type (0, q − 2), where the ρ-th and σ-th indices are omitted.

Then we have the following theorem:

Theorem 2.1 Let a tensor Ti1···iq of the type (0, q) and s (≤ 1
2
q(q − 1)) couples of indices

(ik1 , il1), (ik2 , il2), . . . , (iks , ils), with kσ < lσ, (1)

be given. Then there exists the following decomposition of the tensor Ti1···iq :

Ti1 ··· iq = T̃i1 ··· iq +
s∑

σ=1

gikσ ilσ
·

(kσ ,lσ)

M
i1,···ikσ−1

kσ� ikσ+1···ilσ−1

lσ� ilσ+1··· iq
, (2)

where the tensor T̃ fulfilling
T̃i1··· ikσ ··· ilσ ··· iq · gikσ ilσ = 0, (3)

for every indices (1), is determined uniquely and
(kσ,lσ)

M are certain tensors of the type (0, q−2).

Proof.Let Mn be a Riemannian manifold with metric g. Now, let us consider an a priori
choosen point x0 at Mn. Values of metric g as well as of all given tensors will be considered in
this choosen point.

Considering such coordination system that the matrix of g fulfils

gij = g0 · D, where g0 ∈ R, and D = diag(±1,±1, . . . ,±1), (4)

we obtain that the inverse matrix g−1 has the form:

gij = g−1
0 · D. (5)

The existence of the coordinated system above is guaranteed only for a concrete point x0.
A metric (4) exists globally in Euclidean and pseudo-Euclidean spaces.

Therefore the relation (3) may be written by

n∑
kσ ,kσ=1

T̃i1··· ikσ ··· ilσ ··· iq · gikσ ilσ
= 0. (6)
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Let us define the inner product ◦ on T 0
q by

1

T ◦ 2

T
def
=

n∑
i1,...,iq=1

1

T i1···iq · 2

T i1 ··· iq . (7)

Now, let us construct a linear subspace
∗
T⊆⊆ T 0

p which is generated by all tensors in the form

s∑
σ=1

gikσ ilσ
·

(kσ ,lσ)

M
i1,···ikσ−1

kσ� ikσ+1···ilσ−1

lσ� ilσ+1··· iq
. (8)

Considering a linear subspace in T 0
p which contains all tensors fulfilling (3) we clearly for any

tensors T̃ of this subspace get T̃◦ ∗
T= 0. Therefore this subspace is contained in the orthogonal

complement of the subspace
∗
T , which implies the unicity of the decomposition (2) of the tensor

Ti1···ip .

3 Special decompositions of tensors

Comparing the decomposition in the following theorem with decompositions in Theorem 2.1
(and Theorem 3.3) as well as the fundamental theorem proved by Weyl (see [19]) we may
remark that in the following one there is uniquely determined not only tensor T̃ but also all

tensors
(∗)
M .

Theorem 3.1 Let a tensor Ti1i2 ··· iq of the type (0, q) and following couples of indices

(i1, i2), (i1, i3), . . . , (i1, iq) (9)

be given. Then for n > q − 1 there exists exactly one decomposition of the tensor Ti1···iq in the
form

Ti1 ··· iq = T̃i1 ··· iq +
n∑

σ=2

gi1iσ ·
(1,σ)

M 1� i2,···is−1
σ� is+1··· iq

, (10)

where the tensor T̃i1···iq fulfilling

T̃i1···iσ ···iq · gi1iσ = 0, (11)

for any couples of indices (9), and all tensors
(i1iσ)

M of the type (0, q−2) are determined uniquely.

Proof.With respect to the Theorem 2.1 we only need to prove the unicity of the tensors
(i1iσ)

M .
Contracting (10) with gi1is for s = 2, . . . , n and using (11) for the tensor T̃ we obtain the
following system of linear equations
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Ti1...iq gi1is = 0 + n ·
(1,σ)

M 1� i2,···is−1
σ� is+1··· iq

+

q∑
σ=2,σ �=s

M1� i2···iσ−1
σ� iσ+1···is−1

s� is+1··· iq
.

(12)

It follows from the fixed point theorem that this system of equations with variables
(i1i2)

M , . . . ,
(i1in)

M has for n > q − 1 exactly one solution.

Let us recall the raising indices of tensor. If a tensor T of the type (0, p + q) is given then
we may construct a tensor of the type (p, q) by the following:

T
i1···ip
j1···jq

def
= gi1α1gi2α2 · · · gipαpTα1··· αpj1··· jq . (13)

Raising indices we get from Theorem 3.1 known unique decomposition of the tensor T i1
i2···ip :

T i1
i2···ip = T̃ i1

i2···ip + δi1
i2

12

M i3···ip +δi1
i3

13

M i2i4···ip + · · · + δi1
ip

1p

M i2···ip−1 , (14)

where the tensor T̃ is traceless, i.e.

T̃α
···α··· = 0 (15)

and tensor T̃ as well as tensors
1∗
M of the type (0, p − 1) are uniquely determined.

As we have mentioned above decomposition (14) is presented by Weyl in [19], but the unicity

of tensors
1∗
M is not contained there.

Using (13) we get from Theorem 2.1, immediately

Theorem 3.2 Let a tensor T
j1···jq

i1···ip of the type (p, q) and s (≤ p q) couples of indices

(ik1 , jl1), (ik2 , jl2) , . . . , (iks , jls) with 1 ≤ kσ ≤ p, 1 ≤ lσ ≤ q, (16)

be given. Then there exists the following decomposition of the tensor Ti1···ip:

T
i1···ip
j1···jq

= T̃
i1···ip
j1···jq

+
s∑

σ=1

δ
ikσ
jlσ

·
(kσ)

M
(lσ)

i1,···ikσ−1

kσ� ikσ+1··· ip

j1,···jlσ−1

lσ� jlσ+1··· jq

, (17)

where the tensor T̃ fulfilling

T̃
i1··· ikσ ··· ip
j1··· jlσ ··· jq

· δjlσ
ikσ

= 0, (18)

for every indices (16), is determined uniquely and
(kσ)

M
(lσ)

are certain tensors of the type (p−1, q−1).
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The condition (18) means that the tensor T̃ is traceless over any pair of indices (16). This
may be expressed by

T̃
i1··· ikσ−1 α ikσ+1··· ip
j1··· jlσ−1 α jlσ+1··· jq

= 0. (19)

Let us remark that Theorem 3.2 holds on every manifold since the metric tensor (which was
used in the proof of Theorem 2.1) may be constructed in any case.

Immediately, we obtain from this the following Theorem which is presented in [11, 5].

Theorem 3.3 Let T
j1···jp

i1···ip be a tensor of the type (p, q). If n+1 ≥ p+q then there exists unique

decomposition of the T
j1···jp

i1···ip in the following form.

Ti1···ip = T̃i1···ip +

min{p,q}∑
t=1

∑
L

δ
iρ1
jσ1

δ
iρ2
jσ2

· · · δiρt
jσt

�

M
···
··· , (20)

where

⊕ =

{
ρ1, ρ2, . . . , ρt = 1, 2, . . . , p (ρ1 < ρ2 < · · · < ρt)

σ1, σ2, . . . , σt = 1, 2, . . . , q (σi are mutually different) ,

� =

{
ρ1 ρ2 · · · ρt

σ1 σ2 · · · σt

} (21)

and tensors T̃i1···ip a
∗

M are tracelles.

4 Multiple derivative and decomposition

Let us consider m-tuple covariant derivative ∇∇· · ·∇︸ ︷︷ ︸
m×

.

Clearly, we may write

1) ∇∇ · · ·∇︸ ︷︷ ︸
m×

(
1

T ± 2

T ) =∇∇· · ·∇︸ ︷︷ ︸
m×

1

T ± ∇∇ · · ·∇︸ ︷︷ ︸
m×

2

T ;

2) ∇δ = 0;

3) ∇g = 0,

(22)

where
1

T ,
2

T are arbitrary tensors of the same type and δ is a Kronecker tensor.

Respecting these properties and using Theorem 2.1 we may prove following lemmas.

Lemma 4.1 Let T be a tensor of the type (0, p) with the decomposition (2), for choosen couples
of indices (1).

If ∇∇ · · ·∇︸ ︷︷ ︸
m×

T̃ = 0 and ∇∇ · · ·∇︸ ︷︷ ︸
m×

∗
M= 0, where ∗ = (kσ, lσ), then ∇∇· · ·∇︸ ︷︷ ︸

m×
T = 0.
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Lemma 4.2 Let T be a tensor of the type (0, p) with the decomposition (2), for choosen couples
of indices (1).

If ∇∇ · · ·∇︸ ︷︷ ︸
m×

T = 0 then ∇∇ · · ·∇︸ ︷︷ ︸
m×

T̃ = 0.

Let a C∞(M)-module of m-differential forms Ωm(M) be given on the manifold Mn.
Considering a m-diferential form ω ∈ Ωm(M) (see [2]) with

∇Xm · · ·∇X1T = ω(X1, . . . , Xm) · T, (23)

and choosing indices according to the Theorem 3.1 we may prove the following theorem.

Theorem 4.3 Let a tensor T of the type (0, p) and the decomposition of the T in the form
(10) for couples of indices (9) be given. Then

∇∇ · · ·∇︸ ︷︷ ︸
m×

T = ωT, (24)

if and only if

∇∇· · ·∇︸ ︷︷ ︸
m×

T̃ = ωT̃ and ∇∇ · · ·∇︸ ︷︷ ︸
m×

1σ

M= ω
1σ

M (25)

where ω is a m-differential form in Ωm(M).

Proof.Let a decomposition of the tensor T in the form (10) for couples of indices (9) be given.
For purposes of this proof, let us for an arbitrary tensor T denote ∇∇ · · ·∇︸ ︷︷ ︸

m×
T by LT , only.

Firstly, let us suppose that

LT̃ = ωT̃ and L
1σ

M= ω
1σ

M . (26)

Substituting (26) into (10) we get LT = ωT , immediately.
Now, let us suppose LT = ωT . Applying L on the expression of T in the form (10) we have

LTi1···ip = LT̃i1···ip + gi1i2 L
12

M i3···ip +gi1i3 L
13

M i2i4···ip + · · · + gi1ip L
1p

M i2···ip−1 (27)

i.e.

ωT = LT̃i1···ip + gi1i2 L
12

M i3···ip +gi1i3 L
13

M i2i4···ip + · · · + gi1ip L
1p

M i2···ip−1 (28)

Applying a form ω on the expression of T in the form (10) we obtain

ωT = LT̃i1···ip + gi1i2 ω
12

M i3···ip +gi1i3 ω
13

M i2i4···ip + · · · + gi1ip ω
1p

M i2···ip−1 . (29)

Comparing 28 and 29 we have

(LT̃ − ωT̃ ) + (gi1i2 L
12

M i3···ip −gi1i2ω
12

M i3···ip) + (gi1i3 L
13

M i2i4···ip −gi1i3ω
13

M i2i4···ip)+

+ · · · + (gi1ip L
1p

M i2···ip−1 −gi1ipω
1p

M i2···ip−1) = 0

(30)
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Contracting (30) with gi1iσ for σ = 2, . . . , n we may derive a system of linear equations

n · (L
1σ

M −ω
1σ

M) +

p∑
τ=2,τ �=σ

(L
1τ

M −ω
1τ

M) = 0 (31)

For n > p − 1 this system has the following unique solution L
1σ

M −ω
1σ

M= 0 pro σ = 2, . . . , n,
which implies that LT̃ − ωT = 0.

Further, it follows from Theorem 4.3

Theorem 4.4 Let a tensor T of the type (0, p) and the decomposition of the T in the form
(10) for couples of indices (9) be given. Then

∇∇ · · ·∇︸ ︷︷ ︸
m×

T = 0 (32)

if and only if

∇∇ · · ·∇︸ ︷︷ ︸
m×

T̃ = 0 and ∇∇· · ·∇︸ ︷︷ ︸
m×

1σ

M= 0. (33)
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[11] MIKEŠ, J.: On general trace decomposition problem. Diff. Geom. and its Appl., Proc. of
6th Int. Conf., Brno, Czech Republic, pp. 45–50, 1995.
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THE CURVATURES OF SPECIAL FUNCTIONS IN ECONOMY
APPLICATION OF CARTAN’S MOVING FRAME METHOD

KAŇKA Miloš, (CZ), ELIÁŠOVÁ Lada, (CZ)

Abstract. The aim of this article is to give geometrical analysis of a special type of
Cobb-Douglas surface, especially the formula of Gauss curvature

γ(x, y) = (x, y, Axαyβ), where A = 1, x > 0, y > 0, α = 1, 2, β = 1.

For this purpose we use the Cartan’s moving frame method.

Key words and phrases. Orthogonal frame, orthonormal frame, Cartan’s forms, Gaus-
sian curvature, Mean curvature, Maurer-Cartan equations.

1 Introduction

Let U ⊂ R2 and x : U → R3 is a map. We say that this map is regular if the Jacobian matrix
J(x)(u, v) has rank 2 for all (u, v) ⊂ U . Let us suppose that for every point p ∈ M ⊂ R3 exist
an open set U ⊂ R2, an open set V ⊂ R3, p ∈ V , and a regular differentiable homeomorphism
x : U → V ∩ M . A subset M ⊂ R3 is called a two-dimensional regular surface in R3. Let
x(U) ⊂ V ∩ M ⊂ R3 be a neighbourhood of p ∈ M such that the restriction x|U is an
differentiable homeomorphism into x(U) ⊂ V ∩ M and that it is possible to choose in x(U)
an orthonormal moving frame {E1, E2, E3} in such a way that E1, E2 are tangent to x(U) and
E3 is a non-vanishing normal to x(U). We first discuss the Cartan structural equations for a
two-dimensional surface in R3.

2 Structural equations

We first discuss the Cartan structural equations for a two-dimensional surface in R3. Differen-
tiating a patch x(u, v) we obtain

dx = xudu + xvdv,
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where xu, xv are tangent vector fields. Let us denote

n(u, v) = xu × xv

the normal vector field. With respect to the orthonormal moving frame {E1, E2, E3} we define
forms

θi = Eidx = Eixudu + Eixvdv, i = 1, 2,

Since xu and xv are tangent to x(U) we have dx · E3 = 0 which implies θ3 = 0 so we have

θ1 = E1xudu + E1xvdv,

θ2 = E2xudu + E2xvdv. (1)

Each vector Ei : U ⊂ R3 → R3 is a differentiable map and the differential

dEi : R3 → R3

is a linear map. So we may write (using Einstein’s notation)

dEi = ωijEj

where ωij are linear forms on R3 and since Ei are differentiable, ωij are 32 = 9 differentiable
forms. So we have

dE1 = ω11E1 + ω12E2 + ω13E3,

dE2 = ω21E1 + ω22E2 + ω23E3, (2)

dE3 = ω31E1 + ω32E2 + ω33E3.

Differentiating the equation Ei · Ej = δij we obtain

dEiEj + EidEj = ωij + ωji = 0.

Forms ωij are antisymmetric

ωii = 0, ωij = −ωji. (3)

From (2) and (3) we have

dE1 = ω12E2 + ω13E3,

dE2 = −ω12E1 + ω23E3, (4)

dE3 = −ω13E1 − ω23E2.

Forms dx and dEi have vanishing exterior derivatives

0 = d2x = dE1 ∧ θ1 + E1dθ1 + dE2 ∧ θ2 + E2dθ2. (5)

Substituting (4) for (5) we obtain

(ω12E2 + ω13E3) ∧ θ1 + E1dθ1 + (ω21E1 + ω23E3) ∧ θ2 + E2dθ2 = 0. (6)
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From (6) there immediately follows

(dθ1 + ω21 ∧ θ2)E1 + (dθ2 + ω12 ∧ θ1)E2 + (ω13 ∧ θ1 + ω23 ∧ θ2)E3 = 0. (7)

The linear independence of vectors E1, E2, E3 and equation (7) gives the following equations:

dθ1 = ω12 ∧ θ2, (8)

dθ2 = ω21 ∧ θ1, (9)

0 = ω13 ∧ θ1 + ω23 ∧ θ2. (10)

Differentiating (4) gives:

0 = d2E1 = dω12E2 − ω12 ∧ dE2 + dω13E3 − ω13 ∧ dE3,

dω12E2 − ω12 ∧ (ω21E1 + ω23E3) + dω13E3 − ω13 ∧ (ω31E1 + ω32E2) = 0,

(dω12 − ω13 ∧ ω32)E2 + (dω13 − ω12 ∧ ω23)E3 = 0. (11)

From (11) we have

dω12 = ω13 ∧ ω32,

dω13 = ω12 ∧ ω23. (12)

Analogically:

d2E2 = dω21E1 − ω21 ∧ dE1 + dω23E3 − ω23 ∧ dE3 = 0,

dω21E1 − ω21 ∧ (ω12E2 + ω13E3) + dω23E3 − ω23 ∧ (ω31E1 + ω32E2) = 0,

(dω23 − ω21 ∧ ω13)E3 + (dω21 − ω23 ∧ ω31)E1 = 0. (13)

From (13) we have
dω23 = ω21 ∧ ω13. (14)

Equations (8), (9), (10), (12) and (14) are called Maurer-Cartan structural equations. From
equation (9) and Cartan’s lemma we have

ω13 = α11θ1 + α12θ2,

ω23 = α12θ1 + α22θ2. (15)

From (15) and (12) we have

dω12 = ω13 ∧ ω32 = −ω13 ∧ ω23 = −(α11θ1 + α12θ2) ∧ (α12θ1 + α22θ2). (16)

Equation (16) gives
dω12 = −(α11α22 − α2

12)θ1 ∧ θ2 = −Kθ1 ∧ θ2, (17)

where K = α11α22 − α2
12 is the Gaussian curvature.

Differentiating the equation E3 · E3 = 1 we have

dE3 · E3 = 0,

which means that dE3 is a tangent vector, i.e. dE3 ∈ Tp(M). The mapping

W (αxu + βxv) = −α
∂E3

∂u
− β

∂E3

∂v

is a linear mapping
W : Tp(M) → Tp(M).
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3 Example 1

Let x(u, v) = (u, v, u · v) be a parametrized utility surface in R3. Moving frame is

xu = (1, 0, v),

xv = (0, 1, u),

n = (−v,−u, 1).

Orthonormal frame is

E1 =
1√

1 + v2
(1, 0, v),

E2 =
1√

1 + v2 · √1 + u2 + v2
(−uv, 1 + v2, u),

E3 =
1√

1 + u2 + v2
(−v,−u, 1).

From (1) follows

θ1 =
√

1 + v2 du + uv√
1+v2 dv, (18)

θ2 =
√

1+u2+v2√
1+v2 dv. (19)

Further we have

dE1 =

(
−v

(1 + v2)
3
2

, 0,
1

(1 + v2)
3
2

)
dv,

ω12 = dE1 · E2 =
u

(1 + v2)
√

1 + u2 + v2
dv.

Analogically we have

ω13 = dE1 · E3 =
1√

1 + v2
√

1 + u2 + v2
dv.

Further we have

∂uE2 =

√
1 + v2

(1 + u2 + v2)
3
2

· (−v,−u, 1), (20)

∂vE2 =
1

(1 + v2)
3
2 · (1 + u2 + v2)

3
2

(E1
2v, E

2
2v, E

3
2v), (21)

where

E1
2v = −u(1 + v2)(1 + u2) + uv2(1 + u2 + v2),

E2
2v = u2v(1 + v2),

E3
2v = −uv

[
(1 + u2 + v2) + (1 + v2)

]
.

From (20) and (21) follows

∂uE2 · E3 =

√
1 + v2

1 + u2 + v2
, ∂vE2 · E3 =

−uv√
1 + v2(1 + u2 + v2)

,
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and

ω23 = dE2 · E3 =

√
1 + v2

1 + u2 + v2
du − uv√

1 + v2(1 + u2 + v2)
dv.

Summarizing the previous results, we have

ω12 = −ω21 =
u

(1 + v2)
√

1 + u2 + v2
dv,

ω13 = −ω31 =
1√

1 + v2
√

1 + u2 + v2
dv,

ω23 = −ω32 =

√
1 + v2

1 + u2 + v2
du − uv√

1 + v2(1 + u2 + v2)
dv,

θ1 =
√

1 + v2 du +
uv√

1 + v2
dv,

θ2 =

√
1 + u2 + v2

√
1 + v2

dv.

From equations (18) and (19) follows

dθ1 = 0, dθ2 =
u√

1 + v2
√

1 + u2 + v2
du ∧ dv

and
θ1 ∧ θ2 =

√
1 + u2 + v2 du ∧ dv. (22)

From (12) we have

dω12 = ω13 ∧ ω32 =
1

(1 + u2 + v2)
3
2

du ∧ dv.

Thanks to (22) we have

du ∧ dv =
1√

1 + u2 + v2
θ1 ∧ θ2

and

dω12 =
1

(1 + u2 + v2)2
θ1 ∧ θ2. (23)

From (23) and (17) immediately follows that

K = − 1

(1 + u2 + v2)2
, (24)

which means that every point of studied surface is hyperbolical. The equation (17) gives

W (xu) = −∂uE3 and W (xv) = −∂vE3,

where

∂uE3 = 1

(1+u2+v2)
3
2
(uv,−v2 − 1,−u),

∂vE3 = 1

(1+u2+v2)
3
2
(−1 − u2, uv,−v).
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From the fact W : Tp(M) → Tp(M) follows

∂uE3 = β11xu + β12xv, ∂vE3 = β21xu + β22xv. (25)

After a short calculation we obtain

β11 =
uv

(1 + u2 + v2)
3
2

,

β12 = − 1 + v2

(1 + u2 + v2)
3
2

,

β21 = − 1 + u2

(1 + u2 + v2)
3
2

,

β22 =
uv

(1 + u2 + v2)
3
2

.

From equations (25) follows that the mapping W can be described by the matrix

W =
1

(1 + u2 + v2)
3
2

( −uv 1 + v2

1 + u2 −uv

)

Determinant

det W = K =
1

(1 + u2 + v2)3
det

( −uv 1 + v2

1 + u2 −uv

)
= − 1

(1 + u2 + v2)2
,

as was given in 24 and the formula for mean curvature

H =
1

2
trW = − uv

(1 + u2 + v2)
3
2

.

4 Example 2

Let x(u, v) = (u, v, u2v) be a parameterized utility function. Orthogonal frame is

xu = (1, 0, 2uv)

xv = (0, 1, u2)

n = (−2uv,−u2, 1).

Orthonormal frame is

E1 =
1√

1 + 4u2v2
(1, 0, 2uv),

E2 =
1√

1 + 4u2v2 · √1 + 4u2v2 + u4
(−2u3v, 1 + 4u2v2, u2), (26)

E3 =
1√

1 + 4u2v2 + u4
(−2uv,−u2, 1).
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The forms θ1 and θ2 have the form

θ1 =
√

1 + 4u2v2du +
2u3v√

1 + 4u2v2
dv, θ2 =

√
1 + 4u2v2 + u4

√
1 + 4u2v2

dv. (27)

Further we have

dE1 = ∂uE1du + ∂vE1dv =
1

(1 + 4u2v2)
3
2

[(−4uv2, 0, 2v)du + (−4u2v, 0, 2u)dv].

After a short calculation we obtain

ω12 = dE1 · E2 =
1

(1 + 4u2v2)
√

1 + 4u2v2 + u4
(2u2v du + 2u3 dv).

Analogically

ω13 = dE1 · E3 =
1√

1 + 4u2v2
√

1 + 4u2v2 + u4
(2v du + 2u dv).

From (26) follows

dE3 = (∂uE3)du + (∂vE3)dv.

After a short calculation we obtain

ω32 = dE3 · E2 =
1√

1 + 4u2v2(1 + 4u2v2 + u4)
[(−4u3v2 − 2u)du + 4u4v dv].

Summarizing the previous results we obtain

ω12 = −ω21 =
1

(1 + 4u2v2)
√

1 + 4u2v2 + u4
(2u2v du + 2u3 dv),

ω13 = −ω31 =
1√

1 + 4u2v2
√

1 + 4u2v2 + u4
(2v du + 2u dv),

ω23 = −ω32 =
1√

1 + 4u2v2(1 + 4u2v2 + u4)
[(4u3v2 + 2u)du − 4u4v dv].

From equations (16) and (27) we obtain

dω12 = ω13 ∧ ω32 =
4u2

(1 + 4u2v2 + u4)
3
2

du ∧ dv =
4u2

(1 + 4u2v2 + u4)2
θ1 ∧ θ2,

from which follows: Gaussian curvature has the form

K = − 4u2

(1 + 4u2v2 + u4)2
.
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5 Conclusion

Two economical examples served as an illustration of Maurer-Cartan equations and we reached
the following results:

1. The Gaussian and mean curvatures of the first surface are

K = − 1

(1 + u2 + v2)2
, H =

1

2
trW = − uv

(1 + u2 + v2)
3
2

.

2. The Gaussian curvature of the second surface is

K = − 4u2

(1 + 4u2v2 + u4)2
.
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THE   UTILITY   OF  THE  VIRTUAL   REALITY   IN  DEEPER 
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Abstract. A principal strength of Virtual Reality (VR) technology offered to the field of health 
is in the creation of simulated environments in which performance can be tested and trained in a 
systematic manner. The aims of this paper were: (1) to observe the influence of the virtual 
baby's behaviour on user's feeding performance in a virtual environment, and (2) to compare the 
effect of positive and negative feeding situation on user’s emotional response. Methods: Two 
studies were conducted. In the first study, 33 subjects with (n=21) and without (n=12) feeding 
experience fed the virtual baby with different levels of baby’s initial happiness. The second 
study was designed to observe the effect of the virtual baby’s behaviour on subjects’ emotions 
(12 experts and 5 parents. After the feeding task the subjects filled a questionnaire for subjective 
rating of their experience. Results: The participants displayed increased confidence with their 
ability to feed the baby and to make it happy. The repeated virtual feeding increased the 
efficiency of feeding. The results also indicated a positive correlation between changes in the 
baby’s behaviour and the emotional state of the subject. Conclusion: The virtual feeding 
application has positive training effect while creating positive subjective experience and 
feelings of accomplishments. There is a great potential for the application to be therapeutically 
beneficial, stimulating and effective. 
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1 Introduction 

About 20-25% of parents report some feeding difficulties with their infants in the first two 
years with the most frequent problem being the refusal of solid foods [1,2]. Mealtimes can 
become stressful, and if children fail to gain weight adequately, it is common for parents to 
describe them as picky eaters with poor appetites and they fear that their child is not eating 
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enough [3]. Feeding problems are often symptoms of difficulties in caregiver - infant 
relationships [4] and strategies used by caregivers during meals to encourage eating might 
lead to deterioration of child behaviour [5]. Then it is critical to establish an emotionally 
healthy reciprocal relationship between parent and child to achieve optimal feeding 
interactions [6]. 

The existing treatments usually combine specific psycho-educational intervention with parent 
training. The goal is to change the parent’s perception and interpretation of infant behavior 
through therapists’ explanations, discussion and questionnaires, as well as examination of the 
nature of the parent-child interaction at mealtimes [4]. While necessary knowledge can be 
acquired through books and courses, the training of a relaxed parent - child interaction still 
can be only achieved through direct interaction with the child. However, the behavioral 
feeding problems that are a result of a history of maladaptive interaction at mealtime make 
treatment implementation difficult. Then a key approach is in activation of a specific 
emotional experience, its guiding and processing; [7] as the emotions are states of 
motivational arousal and they urge individuals to behave in particular way trying to achieve a 
specific goal or outcome [8].  
VR has been shown to be an effective tool in many areas of psychotherapy because it 
facilitates focused collaboration between the patient and therapist [7]. VR technology has 
enough capabilities to influence user cognitive operations and thus offer a new approach to 
therapy [9]. The warm, sensitive and personal social interaction within the virtual 
environment is considered as one of the important elements of sense of presence [14]. 
However there has not been any research done on the use of VR for parents with baby 
feeding difficulties. Therefore in our Study 1 we studied the utility of the VR feeding 
environment for determining the extent to which the users may be affected by interaction 
with the virtual infant. In Study 2, the emotional impact of the VR baby’s food 
rejection/acceptance on the user was analysed while taking into account individuals’ personal 
differences.  
Our research virtual scenario consists of the baby sitting on the highchair in the dining room, 
a bowl with food and a spoon. Interaction is done with a Nintendo Wii controller, see Figure1. 

 
 
 
The user’s task is to assess the situation, respond appropriately to the changing mood of the baby 
and feed the baby using the provided controller. Five parameters in the application define the baby’s 
attention, tiredness and happiness, how hungry the baby is and if he/she likes food and its texture or 
not. Depending on changes to the spoon and the position controlled by the user and the current 

Figure 1: An example of a participant using the virtual baby

feeding application 
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values of parameters, the system decides on the response of the baby and makes changes to the 
parameter values [10]. For the purpose of the study three parameters were used as follows: 
tiredness - the value 1 represents fresh and active to 5 as very tired and sleepy, happiness - 
from very happy (5) to unhappy and sad (1), hunger - from very hungry (5) to not hungry at 
all (1). 
 
 
2 Study 1 
 
2.1 Methods 
We aimed to recruit at least 30 participants to have sufficient power in our analyses. We recruited 33 
subjects, where 13 were females and 20 males with a mean age of 27.8 (20 to 58 years old). 21 of 
33 participants reported that they had already fed a baby, i.e. their own children, a friend's or a 
sister's baby. 7 participants worked in the University Nursery as child care professionals. Most of 
the participants had not played games at all or only up to one hour per day on average. 6 
participants spent more than an hour a day using computer games. 
 
 
2.2 Instruments 
 
2.2.1 Questionnaire 
A questionnaire based on a heuristic evaluation for playability was used [11]. The items 
relevant to this study were administered and rated on a scale of 1 to 4. The movements and 
the behaviour of the virtual baby were rated for their naturalness, like-ability and 
expectation. The extent of agreement was provided for the meaningful feedback from sound 
and correlation of the experience with a real life. The feeling of personal involvement, the 
difficulty level of the task and participant’s subjective feelings were described. 
 
2.2.2. Tasks 
The task was to feed the virtual baby until it is not hungry (hunger=1). One feed was represented by 
a mini-game with two possible endings; the baby was either not hungry anymore or still hungry and 
too tired to be fed. Each participant completed five games with alternating levels of baby’s initial 
level of happiness. 17 participants fed initially happy (happiness=5) in trials 1, 3 and 5, and they fed 
unhappy baby (happiness=2) in trials 2 and 4. Other 16 participants fed initially unhappy baby in 
trials 1, 3 and 5, and they fed happy baby in trials 2 and 4. For all participants, the baby was initially 
hungry (hungriness=5) and not tired (tiredness=1). Before the first trial all users were demonstrated 
with a proper control of the spoon and they were allowed to try controlling it by themselves.  
 
 
2.3 Data analysis 
 
To assess the utility of this VR environment we studied three hypotheses: 

1. Baby that eats (refuses to eat) has positive (negative) emotional effect on user,  
2. Feeding performance depends on the baby’s initial state of happiness,  
3. Repeated feeding with the VR application improves the feeding performance.  

Considering the first hypothesis, we counted number of users who felt happy (unhappy) 
when baby was eating (refused to eat) and calculated the probability of this count being 
beyond chance assuming Binomial distribution with the probability of chance being 0.5. For 
the second hypothesis the feeding performance between the two initial states of baby’s 
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happiness (happy and unhappy) was compared via Mann-Whitney [12] test for 2-
independent-samples using exact p-values. Considering the training effect, we compared 
users’ performance between the first and the last feeding via non-parametric Wilcoxon test 
[12] of two related samples across two levels of the initial happiness. All tests were 
performed at the 0.05 level of significance. Means and standard deviations (SD) of individual 
parameters were calculated. 
 
 
2.4 Results 
 
2.4.1    Emotional effect 
When the virtual baby ate the food the VR environment had tendency to create feelings of 
happiness in 20 of 33 participants though there was not enough evidence for significance (p-
value=0.15). However, only 8 of 33 participants (p-value=0.99) felt stressed when the baby refused 
food.  
 
2.4.2 Feeding performance 
In the first feeding trial, the initially happy baby was significantly less hungry (p-
value<0.001), less tired (p-values=0.0013), more happy (p-value=0.002) and fed slower (p-
value=0.026) than the initially unhappy baby. In the third trial the differences in feeding 
performances across two initial states of baby’s happiness were smaller than in first trial. 
Specifically, in third feeding trial, the originally happy baby is roughly equally happy, less 
hungry (p-value<0.020), equally tired (p-value=0.445) and fed in roughly same time (p-
value=0.064) than the initially unhappy baby. In the fifth trial the differences in feeding 
performance across two initial states of baby’s initial happiness were again smaller than in 
first trial. The initially happy baby was in average slightly happier (p=0.066), less hungry (p-
value<0.022), roughly equally tired (p-value=0.088) and fed in roughly equal time (p-
value=0.129) than the initially unhappy baby. We conclude that the initially happy baby leads 
to significantly better feeding performance of the participants making the happy baby 
happier, fuller and less tired than the initially unhappy baby. These differences in 
performance appear to decrease in later trials, probably because users felt overconfident due 
to ease of feeding of the happier baby.  
 
 
Initial 
condition 

Feeding trial Happiness Hungriness Tiredness Time (sec) 

Mean SD Mean SD Mean SD Mean SD 

 
Happy baby 
(17 subjects) 

1 3.41 0.8 1.29 0.59 3.88 0.78 164.59 65.48 

3 2.29 1.16 1.88 0.86 4.53 0.62 109.53 33.35 

5 3.06 1.14 1.59 0.62 4.35 0.79 113.29 45.25 

 
Unhappy 
baby 
(16 subjects) 

1 2.88 0.72 3.75 1.73 4.81 0.4 80.63 71.54 

3 3 0.73 3.38 1.78 4.69 0.6 76.31 55.43 

5 2.94 0.93 2.56 1.36 4.81 0.4 86.81 48.86 

Table 1: Mean values and Standard deviations (SD) of the baby's parameters and time of the feeding 
performance through feeding trials. 

2.4.3 Training effect 
The first and last feeding of the happy baby were statistically the same with respect to the 
final baby’s hunger (see Table 1, p-value=0.313), the final state of tiredness (p-value=1.79) 
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and the final state of the happiness (p-value=0.319). However, the total feeding time in last 
trial is significantly shorter than that of the first one (p-value=0.017). The feeding of the 
initially unhappy baby also improved over task repetition, but in a different way. Participants 
filled the unhappy baby’s tummy much better in the last trial than in the first trial (p-
value=0.05), but did not improve in terms of baby’s tiredness, final happiness and time of 
feeding (p-values=1.00, 0.875 and 0.782).  
 
 
3          Study 2 
 
3.1 Methods 
 
In second study we again aimed to recruit 30 participants to facilitate statistical comparisons. 
However only 17 of 30 asked subjects took part in the second study. They were all female aged 25 
to 57 (40.65 in average). Eight participants worked as speech and language therapists at the 
Children’s hospital in Birmingham working with children and families to manage feeding 
difficulties, which might be motor, sensory or behavioural, giving advice to parents concerned with 
feeding issues like developed aversions to textures and tastes. Two nurses, one speech and language 
therapist and one dietitian were from Gulson Feeding Clinic in Coventry. The other five participants 
were parents. Three of them regularly attended a special session in the feeding clinic with one of 
their children.  
 
 
3.2 Instruments 
 
3.2.1    Questionnaires 
Each participant reported their feelings through the positive and negative affect schedule 
(PANAS) [13]. They filled the questionnaire before the experiment and after each of two 
interaction with the virtual baby. After completing the VR tasks, the participants were asked 
to fill in a questionnaire for subjective rating of an applications utility as a training tool for 
parents and interactive teaching tool for parents or clinicians considering the current state of 
the application on a scale of 1 to 4 (strongly disagree=1, strongly agree=4). They also rated 
the naturalness and like-ability of the movements, the behaviour and sounds of the baby on 
same scale. Participants who worked with children with eating disorders listed all their duties 
related to their work. Parents were asked to report their feeding difficulties. 
 
3.2.2 Tasks 
There were two VR tasks during which respondents were asked to feed the VR baby during two 
minutes. One task was a positive feeding trial in which the participants fed the baby that was 
initially very hungry (hunger=5) and happy (happiness=5) hence it was easy to feed. Other task was 
a negative feeding trial were subjects were feeding the baby that was initially tired (tiredness=5) 
and almost not hungry (hunger=2). Nine of the participants started with the positive feeding 
situation. This group consisted of 7 experts, 2 parents with feeding problems and 1 parent with no 
feeding problems. Remaining 8 participants started with negative task followed with a positive task. 
This group included 5 experts, 1 parent with feeding problem and 1 parent with no feeding problem.  
3.3 Data analysis 
 
Due to insufficient data for formal hypothesis testing, we did descriptive evaluation of the 
data. We were interested if the VR baby’s food rejection/acceptance have emotional impact 
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on the user. To remove the intra-personal variability the analysis was done on the changes in 
mood scores across two PANAS reports: differences between the initial test and the test after 
the positive feeding trial, differences between the initial test and the test after the negative 
feeding trial; and differences between the test after positive trial and test after negative trial. 
Differences in affects may take values from -40 to 40. Positive values indicate that the 
emotional impact increased, the negative differences mean that the intensity of feelings 
decreased. 
 
 
3.4 Results 
 
The parents appear to suggest large inter-subject differences in emotional reactions during feeding 
trials, see Table 2. The parent without feeding difficulties was affected mainly by the negative 
feeding situation by decreased intensity of PA (except in alertness). The parents with feeding 
problems appear to have stronger behavioural reactions (especially more excited) to he negative 
feeding trials then positive trials. The virtual baby's behaviour did not markedly affect a parent with 
no feeding difficulties. However, the happy baby positively improved his PA values during the 
second feeding when compared to negative feeding trials. The emotional effect does not have the 
same magnitude in all parents. Dismissive reactions of the baby appear to be insufficient to produce 
any related changes in NA for parents accustomed to negative behaviour. 
 
 

Subject Changes in PA Changes in NA 

 

Parents  experiencing the positive feeding as the first one 
after positive 

situation – initial 
rating 

after negative 
situation – initial 

rating 

Negative situation 
– positive situation

after positive 
situation – initial 

rating 

after negative 
situation – initial 

rating 

Negative situation 
– positive situation

Parent WO 2 -28 -30 0 8 8 

Parent W 3 7 4 -7 -10 -3 

 

Parents  experiencing the negative feeding as the first one 
after negative 

situation – initial 
rating 

after positive 
situation – initial 

rating 

Positive situation –
negative situation

after negative 
situation – initial 

rating 

after positive 
situation – initial 

rating 

Positive situation –
negative situation

Parent WP 1 -4 4 8 -1 -1 0 

Parent WP 2 4 5 1 0 0 0 

Parent WOP 2 5 3 -1 -2 -1 

Table 2: The values of changes in positive affect (PA) and negative affect (NA) in individual parents with (W) and 
without (WO) feeding difficulties. 

The experts appear to show lower inter-subject variability in emotional changes than parents, see 
Table 3. Seven (out of 12) experts experienced the negative feeding in second feeding trial which 
caused a decrease in PA. Almost all experts increased in NA after negative feeding experience. Five 
experts did negative feeding in first trial and it resulted in a reduction of PA values. In their second 
trial with positive feeding their PA increased. Usually, a positive feeding experience followed by a 
negative one led to a reduction or no changes in NA.  
The psychologists and clinicians expressed see potential in using the application by parents for 
training (mean rating 2.75 out of 4) and as an interactive educational tool (mean rating 2.83) as it 
can increase parental awareness. They see VR’s feeding environment as a complementary tool 
alongside behavioural support especially for families who have entrenched maladaptive feeding 
problems. They also positively rated the naturalness and pleasantness of the movements and the 
behaviour of the virtual baby (means 2.67 and 2.83). The sounds were considered as realistic and 
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likable (means 3.08 and 2.92). The ratings of the VR baby behaviour by the parents with the feeding 
difficulties was notably higher than other parents and experts’ rating.  
 
 
4 Discussion 
 
Here we presented VR application in a novel area: a virtual baby feeding environment for 
enhancing the therapy of parents whose infants refuse to eat. Our studies were aimed to investigate 
a usefulness of VR in helping parents to read signs of refusal, to increase parental awareness 
and to solidify their understanding of the child’s behaviour.  
Our studies were designed to be first investigations of VR application for treatment of parents 
whose infants have feeding difficulties. Therefore our main priority was to recruit relevant subjects: 
parents, care givers and feeding professionals. The number of participants in our two studies was 
not always high enough to gain power in statistical tests. Therefore the generalizability of our 
results to the larger population is partly limited, yet they studies bring several important insights and 
suggestions for further development.  
 

Subject Changes in PA Changes in NA 

 

Experts  experiencing the positive feeding as the first one 
after positive 

situation – initial 
rating 

after negative 
situation – initial 

rating 

Negative situation –
positive situation 

after positive 
situation – initial 

rating 

after negative 
situation – initial 

rating 

Negative situation –
positive situation 

1 1 -5 -6 4 13 9 

2 2 -3 -5 1 4 3 

3 -7 -13 -6 1 6 5 

4 -5 -10 -5 -3 -1 2 

5 -3 -4 -1 -2 -1 1 

6 -4 -6 -2 12 18 6 

7 6 -4 -10 5 10 5 

 

Experts  experiencing the negative feeding as the first one 
after negative 

situation – initial 
rating 

after positive 
situation – initial 

rating 

Positive situation – 
negative situation 

after negative 
situation – initial 

rating 

after positive 
situation – initial 

rating 

Positive situation – 
negative situation 

8 -10 -7 3 0 0 0 

9 -5 2 7 4 -1 -5 

10 -18 -7 11 12 0 -12 

11 -3 4 7 0 -3 -3 

12 -10 -6 4 19 6 -13 

Table 3: The values of changes in positive affect (PA) and negative affect (NA) for individual experts. 

Our studies showed that the virtual baby affected the emotional state and the performance of 
the user in a way that is consistent with real feeding situations. Furthermore there was a 
strong training effect in VR. Finally, as we anticipated, our studies suggest a much greater 
variability in responses of the parents when compared to the feeding experts.  
We conclude that our study shows great potential in promoting a rational use of VR 
technology in Health Care with emphasis on the accessibility of the delivered treatment, and 
human-computer interaction research associated with this.  For the purpose of this research, a 
simplified model of a child’s behaviour was created. Hence, emotions can be recognised as 
ambiguous and overlapping experiences not as discrete values,15 they were merged to the parameter, 
which made the baby act negatively or positively changing emotional arousal. However, for the 
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future development of the application, it is important to model the baby’s mood in a greater detail as 
it can bring further insight in the baby-parent interaction dynamics and their emotions. The 
refinement of the baby’s emotional model and its extension to the model of affective experiences 
should be considered. This may allow to study parents’ behaviour in special provoked and well 
controlled situation. Another potential improvement can be in monitoring of users’s facial 
expressions and in using them as an input for VR mode to make infant-parent interactions more 
realistic.  
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CIRCLE-PRESERVING SUBDIVISION SCHEME
BASED ON APOLLONIUS’ CIRCLE

SLABÁ Kristýna, (CZ), BASTL Bohumı́r, (CZ)

Abstract. In this paper, we introduce a new Hermite subdivision scheme. The main idea
of inserting a new point corresponding to an edge and its associated tangent vector is to
intersect suitably chosen Apollonius’ circle with an axis of the angle between one of the
associated tangent vectors and this edge. The scheme is proved to converge to a continuous
curve and, moreover, the limit curve is G1 continuous. One of main the properties is that
it is circle-preserving, i.e., if the initial vertices and their associated tangent vectors are
sampled from a circle, then the subdivision process converges to this circle.

Key words and phrases. Subdivision scheme, Hermite subdivision scheme, Apollonius’
circle, Circle-preserving subdivision scheme

Mathematics Subject Classification. Primary 65D17, 68U05; Secondary 53A04.

1 Introduction

The beginning of subdivision techniques for curves and surfaces dates back to 1970s, when G.
Chaikin (see [1]) firstly defined a recursive process described by simple linear rules for refinement
of a given control polygon converging to quadratic uniform B-spline curve. The generalization
to other types of spline functions and the thorough analysis followed (see e.g. [10]).

One of the first interpolatory subdivision schemes was presented in [4], where refinement
rules are derived from cubic interpolation of four consecutive points. The generalization of
this method, the well known 4-point scheme (see [6]), introduces an optional tension parameter
which significantly influences the shape of a limit curve. Many other generalizations followed,
e.g. modification for non-uniform parameterization of a cubic interpolant of four consecutive
points leading to modified refinement rules was presented in [5], circle-preserving variant of the
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4-point scheme was described in [9] or family of subdivision schemes with cubic precision based
on 4-point scheme was given in [7].

In [8], J. L. Merrien firstly defined the so-called Hermite subdivision scheme where input
data to subdivision process consist not only of an initial control polygon but also of associated
tangent/normal vectors. These schemes are typically non-linear and it is usually much harder
to analyse their convergence or continuity of limit curves. Despite this fact, a lot of Hermite
subdivision schemes appeared during the last years. Especially big effort was put into studying
interpolatory schemes preserving circles which is considered to be a desirable feature of a
subdivision scheme due to technical importance of circles. For example, non-linear subdivision
scheme preserving circles is described in [2] which is based on a minimization procedure to find
best circle fitting two consecutive points and associated normal vectors. Or, paper [3] presents
a method where a new point is inserted as an incenter a suitably chosen triangle.

In this paper, we introduce a new Hermite subdivision scheme. The main idea combines two
approaches – generating curves with chord-length parameterizations (which uses Apollonius’
circle) and incenter subdivision scheme (see [3]). A new inserted point is obtained as an
intersection of a suitably chosen Apollonius’ circle and an axis of an edge of the initial polygon
and its associated tangent vector. The scheme is proved to converge to a continuous curve and,
moreover, the limit curve is G1 continuous. One of the important properties is that the scheme
is circle-preserving.

The rest of the paper is organized as follows. Section 2 describes the subdivision scheme.
In Section 3, we give proofs of a convergence of the scheme to a continuous curve and of G1

continuity of the limit curve. Then, Section 4 shows that the scheme is circle-preserving and we
demonstrate the subdivision scheme on several examples. In Section 5, we conclude the paper.

2 Description of subdivision scheme

In this section, we introduce a new subdivision scheme that preserves circles. The main idea
of inserting a new point is based on combination of two methods – generating curves with a
chord-length parameterization (see [9]) and incenter subdivision scheme (see [3]).

Let v0
i be given points forming an initial polygon and let t0

i , i = 0, 1, . . . , n−1, be associated
unit tangent vectors (top index is the step of subdivision process). A new inserted point lies
on Apollonius’ circle, where a centre of the circle is on the line defined by points vk

i and vk
i+1.

Then, the new vertex is an intersection of this Apollonius’ circle and an axis of vectors vk
i+1−vk

i

and p, where p = tk
i ∨tk

i+1 (a choice of p depends on position of the centre of Apollonius’ circle).
The choice of unit tangent vectors is not completely arbitrary. Each tangent vector t0

i has
to be between vectors v0

i+1 − v0
i and v0

i−1 − v0
i , where v0

i−1 = v0
i + (v0

i − v0
i−1) (see Fig. 2). If

tangent vectors are not given, we can always choose suitable ones by the following two methods:

• Computation of tangent vectors can be based on circles passing through three adjacent
points.

• Tangent vector can be computed as

t0
i =

v0
i+1 − v0

i−1

‖v0
i+1 − v0

i−1‖
. (1)
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Figure 1: Tangent vector t0
i and initial polygon (red).

We denote the following two oriented angles

αk
i = �(tk

i ,v
k
i+1 − vk

i ), βk
i = �(vk

i+1 − vk
i , t

k
i+1),

see Fig. 2. Moreover, we require |α0
i |, |β0

i | < 2
3
π and |α0

i | + |β0
i | < π, ∀i, that can be always

ensured with an application of the incenter scheme in the first step of subdivision process (see
[3]).

Further, we need to describe a classification of edges that form an initial control polygon.
Edges are distinguished into three categories:

• The edge vk
i v

k
i+1 is convex, if αk

i β
k
i > 0 (Fig. 2, left).

• The edge vk
i v

k
i+1 is inflexion, if αk

i β
k
i < 0 (Fig. 2, middle).

• The edge vk
i v

k
i+1 is straight, if αk

i β
k
i = 0 (Fig. 2, right).

If there exists an inflexion edge in the initial control polygon, it is necessary to replace it by
two convex edges. We insert a new point v0

i+ 1
2

between points v0
i a v0

i+1, where

v0
i+ 1

2
= (1 − ω)v0

i + ωv0
i+1 (2)

and parameter ω ∈ (0, 1) (in the following we choose ω = 1
2
). The tangent vector t0

i+ 1
2

in the

point v0
i+ 1

2

is

t0
i+ 1

2
= R

(
α0

i

|α0
i |

min{|α0
i |, |β0

i |}
)

v0
i+1 − v0

i

‖v0
i+1 − v0

i ‖
, (3)

Figure 2: Angles αk
i a βk

i . Left: convex edge; Middle: inflexion edge; Right: straight edge.
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where R(ξ) =

(
cos ξ − sin ξ
sin ξ cos ξ

)
is rotation matrix (see Fig. 2). If all inflexion edges are

removed before subdivision process starts, then no other inflexion edges can appear during the
subdivision process. In the following paragraphs the rules for inserting a new vertex vk+1

2i+1 and

Figure 3: The point v0
i+ 1

2

and tangent vector t0
i+ 1

2

.

a new tangent vector tk+1
2i+1 are presented. We denote

• W as an intersection of lines m : x = vk
i + rtk

i a n : x = vk
i+1 + stk

i+1, where r, s ∈ R,

• a = ‖vk
i − W‖, b = ‖vk

i+1 − W‖.
Now, we need to find the centre S of Apollonius’ circle k. If a = b, the circle degenerates
to the axis of the edge vk

i v
k
i+1. Otherwise, the circle passes through points W and P, where

P = vk
i + a

a+b
(vk

i+1 − vk
i ). Thus, we obtain S as

S ∈ o ∩ p, (4)

where

o : x =
1

2
(W + P) + g(W − P)⊥,

p : x = vk
i + h(vk

i+1 − vk
i ), (5)

and (x, y)⊥ = (−y, x). Consequently, we solve the system of two linear equations for variables
g and h. Finally, the new inserted point depends on value of parameter h. For

• h < 0

vk+1
2i+1 ∈ k ∩ o1, (6)

where o1 : x = vk
i + s

(
tk
i +

vk
i+1−vk

i

‖vk
i+1−vk

i ‖

)
, s ∈ R. Thus,

vk+1
2i+1 = vk

i + R

(
−αk

i

2

)
(P − vk

i ). (7)

• h > 1

vk+1
2i+1 ∈ k ∩ o2, (8)
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Figure 4: Inserting the new vertex vk+1
2i+1 and the tangent vector tk+1

2i+1.

where o2 : x = vk
i+1 + r

(
tk
i+1 +

vk
i+1−vk

i

‖vk
i+1−vk

i ‖

)
, r ∈ R. Thus,

vk+1
2i+1 = vk

i+1 + R

(
βk

i

2

)
(P − vk

i+1). (9)

For h = 0 or h = 1, Apollonius’ circle degenerates to the point vk
i or vk

i+1, respectively,
which would coincide also with the new vertex vk+1

2i+1. Thus, there would be no refinement of
control polygon. Further, it cannot happen that h ∈ (0, 1), because the centre of Apollonius’
circle cannot lie inside the edge vk

i v
k
i+1. If the Apollonius’ circle degenerates to the axis, a new

vertex is an intersection of o1 and k. Since there are two intersections vk+1
2i+1, vk+1

2i+1 of the axis
of relevant vectors and of Apollonius’ circle, we have to add a condition that the new vertex
vk+1

2i+1 lies inside the triangle �vk
i v

k
i+1W. New tangent vector is defined as

tk+1
2i+1 =

vk
i+1 − vk

i

‖vk
i+1 − vk

i ‖
. (10)

Then we re-mark vertices and vectors from the previous step k, i.e.,

vk+1
2i = vk

i ,

tk+1
2i = tk

i . (11)

Inserting new vertices and vectors is shown in Fig. 2.

3 Analysis of subdivision scheme

In this section, we focus on an analysis of the subdivision scheme described in Section 2. We
need to show that our subdivision scheme converges to a continuous curve and determine the
continuity of limit curve.
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Theorem 3.1 Let θk
i = max{|αk

i |, |βk
i |} and θk = max

i
{θk

i }. Then lim
k→∞

θk = 0.

Proof. Because we insert new point inside the triangle �vk
i v

k
i+1W, it holds that

θk
i = ξiθ

k−1
i , (12)

where ξi ∈
〈

1
2
, 1

)
. To be more specific, for h < 0 (h determines the position of the centre of

Apollonius’ circle)

|αk+1
2i | =

|αk
i |

2
, |βk+1

2i | =
|αk

i |
2

, |αk+1
2i+1| = (1 − δi)|βk

i |, |βk+1
2i+1| = δi|βk

i |, δi ∈ (0, 1)

where
αk+1

2i = �(tk
i ,v

k+1
2i+1 − vk

i ), βk+1
2i = �(vk+1

2i+1 − vk
i , t

k+1
2i+1),

αk+1
2i+1 = �(tk+1

2i+1,v
k
i+1 − vk+1

2i+1), βk+1
2i+1 = �(vk

i+1 − vk+1
2i+1, t

k
i+1).

Analogously for h < 0. If the Apollonius’ circle degenerates to axis of edge vk
i v

k
i+1, it holds

|αk+1
2i | =

|αk
i |
2

, |βk+1
2i | =

|αk
i |
2

,

|αk+1
2i+1| =

|βk
i |
2

, |βk+1
2i+1| =

|βk
i |
2

.

If we denote ξi = max{δi, 1 − δi,
1
2
}, then (12) follows. Let ξ = max

i
{ξi}. Then

θk ≤ (ξ)k θ0 (13)

is geometric sequence with common ratio q = ξ < 1 and thus lim
k→∞

θk = 0. �

Theorem 3.2 For subdivision scheme described in Section 2, the sequence of polygons con-
verges to a continuous curve.

Proof. We denote Γk polygon obtained in the step k of subdivision process. To prove that the
scheme converges to a continuous curve, we need to compute an estimation of the distance dk

between Γk+1 and Γk. Theorem 3.1 implies that there exists k0 such that θk < π
2
, if k > k0.

Now, for k > k0 and for h < 0 with the help of the sine formula we derive the following
expression

‖vk+1
2i+1 − vk

i ‖ =
‖vk

i+1 − vk
i ‖ sin

(
|βk+1

2i+1|
)

sin
(
|αk+1

2i | + |βk+1

2i+1|
) ≤ ‖vk

i+1 − vk
i ‖, (14)

where αk+1
2i = �(tk

i ,v
k+1
2i+1 − vk

i ) a β
k+1

2i+1 = �(vk
i+1 − vk

i ,v
k
i+1 − vk+1

2i+1) and

|αk+1
2i | =

|αk
i |

2
. (15)

Analogously, we obtain that ‖vk
i+1 − vk+1

2i+1‖ ≤ ‖vk
i − vk

i+1‖. Similar procedure can be used for
h > 1. If Apollonius’ circle degenerates to the axis of the edge vk

i v
k
i+1, then

‖vk+1
2i+1 − vk

i ‖ =
‖vk

i+1 − vk
i ‖ sin

(
|βk

i |
2

)
sin

(
|αk

i |+|βk
i |

2

) ≤ ‖vk
i+1 − vk

i ‖ (16)
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and analogously ‖vk
i+1 − vk+1

2i+1‖ ≤ ‖vk
i − vk

i+1‖. Further, we denote

L ≡ max
i

{‖vk0
i+1 − vk0

i ‖} ≥ . . . ≥ max
i

{‖vk
i+1 − vk

i ‖} ≥ max
i

{‖vk+1
i+1 − vk+1

i ‖}. (17)

Now, the distance between the new vertex vk+1
2i+1 and the edge vk

i v
k
i+1 for h < 0 is

dk
i = ‖vk+1

2i+1 − vk
i ‖ sin

( |αk
i |

2

)
< ‖vk

i+1 − vk
i ‖

|αk
i |

2
≤ Lθk

2
(18)

and for h > 1

dk
i = ‖vk

i+1 − vk+1
2i+1‖ sin

( |βk
i |
2

)
< ‖vk

i+1 − vk
i ‖

|βk
i |
2

≤ Lθk

2
. (19)

If the Apollonius’ circle degenerates to the axis of the edge vk
i v

k
i+1, both equations (18) and

(19) hold. If we denote dk = max
i

{dk
i } and due to (13), we arrive at

dk ≤ Lθk

2
≤ L

2
ξk−k0θk0 . (20)

This implies that the sequence of polygons {Γk} forms a Cauchy sequence and it converges
uniformly. Because each polygon is a piecewise linear curve, the limit curve is continuous. �

Theorem 3.3 Limit curve obtained by subdivision scheme described in Section 2 is G1 contin-
uous.

Proof. Let ϕ : R
2 → R

2 be a mapping which maps any unit tangent vector tk
i to the point

ϕ(tk
i ) ∈ S

1 such that ϕ(tk
i ) − 0 is parallel to tk

i . Let ψk be a polygon determined by {ϕ(tk
i )}i

in the step k of the subdivision process.
Now, we map vector tk+1

2i+1 and we obtain the triangle �ϕ(tk+1
2i+1)ϕ(tk

i )ϕ(tk
i+1) (see Fig. 3).

It is obvious that

‖ϕ(tk+1
2i+1) − ϕ(tk

i )‖ ≤ αk
i ,

‖ϕ(tk
2i+1) − ϕ(tk

i+1)‖ ≤ βk
i , (21)

because ‖ϕ(tk+1
2i+1)−ϕ(tk

i )‖ is less than the length of the arc that passes through points ϕ(tk+1
2i+1)

and ϕ(tk
i ). The new vector tk+1

2i+1 is parallel to vk
i+1 − vk

i and thus the length of the arc that
passes through points ϕ(tk+1

2i+1) and ϕ(tk
i ) is equal to αk

i (analogously for ‖ϕ(tk
2i+1) − ϕ(tk

i+1)‖).
We denote hk

i the distance between ϕ(tk+1
2i+1) and the edge ϕ(tk

i )ϕ(tk
i+1) in the triangle

�ϕ(tk+1
2i+1)ϕ(tk

i )ϕ(tk
i+1). Now, we can estimate the difference ‖ψk+1 − ψk‖, because it holds

that

‖ψk+1 − ψk‖ ≤ max
i

{hk
i } ≤ max

i
{‖ϕ(tk+1

2i+1) − ϕ(tk
i )‖, ‖ϕ(tk

2i+1) − ϕ(tk
i+1)‖} ≤

≤ max
i

{αk
i , β

k
i } = θk ≤ (ξ)k θ0,

where the last inequality is proved in Theorem 3.1. The final estimation ‖ψk+1 − ψk‖ implies
that {ψk} is a Cauchy sequence, which converges uniformly. As ψk is a continuous curve, the
limit curve is also continuous. Due to the construction of ψk the limit curve of the subdivision
process is G1 continuous. �
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Figure 5: The triangle �ϕ(tk+1
2i+1)ϕ(tk

i )ϕ(tk
i+1).

Figure 6: Left: Equidistantly distributed data; Right: Randomly distributed data. Original
points and vectors (red), initial polygon (dashed).

4 Properties and examples

In this section, we prove that the proposed subdivision scheme fulfills one of the main desirable
properties of subdivision schemes – it preserves circles, i.e., if initial vertices and associated
tangent vectors are sampled from a circle k, then the limit curve obtained by our subdivision
scheme is the circle k. At the end, we show several examples of an application of our subdivision
scheme.

Theorem 4.1 Subdivision scheme described in Section 2 preserves circles.

Proof. Let us assume that data vk
i , vk

i+1 and tk
i , tk

i+1 in the step k are data from a circle k0.
It is enough to show that the new vertex vk+1

2i+1 lies on the circle k0 and the tangent vector tk+1
2i+1

Figure 7: Left: The first step of subdivision; Middle: The second step of subdivision; Right:
Limit curve. Initial open polygon (dashed), initial data (red).
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is the tangent vector of the circle k0 in vk+1
2i+1, for k ∈ N ∪ 0. Thus, the triangle �vk

i v
k
i+1W is

isosceles triangle with the base-line vk
i v

k
i+1. Further, a = b and Apollonius’ circle degenerates

to the axis of the line segment vk
i v

k
i+1 and, moreover, axis of the angle at the vertex W. The

new vertex vk+1
2i+1 is an intersection point of the axis o1 and k, i.e., the new vertex is the incenter

of triangle �vk
i v

k
i+1W. Using the Central angle theorem it follows that vk+1

2i+1 lies on k0 and
that the tangent vector tk+1

2i+1 is the tangent vector of k0 in vk+1
2i+1. Fig. 6 shows an application

of the scheme on data which are sampled from a circle. �.

Finally, we show examples of using the subdivision scheme to open (see Fig. 7) and closed
(see Fig. 8) polygon. Fig. 9 shows a comparison of the subdivision scheme described in Section 2
with incenter subdivison scheme (see [3]).

Figure 8: Left: the first step of subdivision, middle: the second step of subdivision, right: limit
curve. Initial closed polygon (dashed), initial data (red).

Figure 9: Comparison of incenter subdivision scheme (blue) with the subdivision scheme de-
scribed in Section 2 (black).

5 Conclusion

We presented a new Hermite subdivision scheme which fulfils one of the most desirable property
– it preserves circle. The new point associated to an edge is inserted as an intersection of
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suitably chosen Apollonius’ circle and a line determined by one of endpoints of this edge and
its associated tangent vector. We proved that the scheme converges to a continuous curve and
that the limit curve is G1 continuous. The functionality of the scheme was demonstrated on
several examples. In the future work, we want to modify the scheme such that the limit curve
is also G2 continuous.
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tel. ++420 377 632655, e-mail: bastl@kma.zcu.cz

132 volume 5 (2012), number 3



PARALLELOGRAM SPACES AND MEDIAL QUASIGROUPS
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Abstract. The concept of an affine space and affine transformation are well known. Our
aim is to show that a more general class of the so-called parallelogram spaces can be viewed
as a generalization of affine spaces. Natural examples arise from medial quasigroups. The
apparatus of parallelograms also enables us to prove a version of Toyoda’s Theorem that
relates a given medial quasigroup to a particular commutative group.

Key words and phrases. Parallelogram space, affine space, parallelogram, vector, me-
dial quasigroup.
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1 Parallelogram spaces

So-called parallelogram spaces can be introduced in several ways which are more or less equi-
valent. We present here some of these possibilities and show advantages of the particular
view-points.

1.1 The concept of parallelogram space

Let us start with a view-point that reminds the Weyl approach to analytic geometry.

Definition 1.1 A parallelogram space is a pair of non-empty sets P, V endowed with a mapping
∗ : P × V → P, (p, v) �→ p ∗ v such that

(i) for any P,Q ∈ P there exists exactly one v ∈ V such that P ∗ v = Q
(transitivity of the star action);

(ii) (P ∗ v) ∗ w = (P ∗ w) ∗ v for all P ∈ P and v, w ∈ V
(parallelogram behavior of the star action).
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Denote the parallelogram space as a triplet (P,V , ∗) and use geometrical terminology in what
follows: elements of P are called points, elements of V are vectors, though we do not suppose any
linear operations introduced in V . Let us introduce a mapping � : P × P → V, (P,Q) → PQ

−→
if and only if P ∗ PQ

−→
= Q. The mapping is well-defined by (i), satisfies

(iii) for any P,Q ∈ P, P ∗ PQ
−→

= Q,

and can be called a translation on P determined by (P,Q). Hence we may consider a par-
allelogram space as a quadruple (P,V , ∗, � ) consisting of nonempty sets P,V and mappings
∗ : P × V → P, � : P × P → V satisfying (ii) and (iii).

Equivalently, we may view a parallelogram space also as a triplet (P,V , � ) where P, V �= ∅,
� : P × P → V and the following holds

(i’) for any P ∈ P, v ∈ V there is just one Q ∈ P such that PQ
−→

= v.

(ii’) for any P,Q,R, S ∈ P, PQ
−→

= RS
−→ ⇐⇒ PR

−→
= QS

−→
.

To check equivalence of this new definition to the previous one, let us introduce a mapping
∗ : P × V → P, (P, v) �→ Q = P ∗ v if and only if v = PQ

−→
. According to (i’), the mapping

is well-defined, satisfies (iii), and (ii’) turns out into (ii) if we put PQ
−→

= v, PR
−→

= w. On the
other hand, (ii) becomes (ii’) if we take P ∗ v = Q, P ∗ w = R.

1.2 Structural properties

In what follows, we show that the star operation of the parallelogram space induces a binary
operation on V , written additively here, which turns V into a commutative group.

Theorem 1.2 For a parallelogram space (P,V , ∗), there is exactly one map +: V × V → V
such that for any P ∈ P and v, w ∈ V,

P ∗ (v + w) = (P ∗ v) ∗ w. (1)

On the other hand, the operation of a parallelogram space (P,V , ∗) and of a groupoid (V , +)
are related by (1) if and only if there is an identity element 0 in V such that (V , +; 0) is a
commutative group.

Proof. Let P,Q ∈ P and v, w ∈ V. Further let v̄, w̄ ∈ V be such that (P ∗ v) ∗ w = P ∗ v̄,
P ∗ w̄ = Q. Using (ii) we get (Q ∗ v) ∗w = ((P ∗ w̄) ∗ v) ∗w = ((P ∗ v) ∗w) ∗ w̄ = (P ∗ v̄) ∗ w̄ =
(P ∗ w̄)∗ v̄ = Q∗ v̄ which shows that for given v and w, the vector v̄ satisfying (P ∗v)∗w = P ∗ v̄
is independent of the choice of the point P . Hence a binary operation + on V , (v, w) �→ v̄ is
by (1) well-defined. If we apply (i’) and (ii’), the equality (1) reads

PQ
−→

+ QS
−→

= PS
−→

. (2)

Let (P ,V , ∗) be a parallelogram space and + the addition from (1). To deduce commutativity
of + we use (1), (i) and (ii), and for associativity of + we apply (1) repeatedly.

Now let P ∈ P. Denote by 0 the vector uniquely determined by the equality P ∗ 0 = P
according to (i). Let us check that, independently of the choice of P , the vector 0 plays the role
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of the identity element for the operation +. Indeed, by (1), we have P ∗v = (P ∗0)∗v = P ∗(0+v)
for all v ∈ V. From (i) it follows v = 0 + v, so that 0 the identity element for +.

By (i), any v ∈ V uniquely determines v̄ ∈ V that satisfies (P ∗ v) ∗ v̄ = P . But by (1),
P ∗ (v + v̄) = P = P ∗ 0, hence v + v̄ = 0, again by (i). Thus v̄ is the inverse (opposite vector)
of v with respect to +, and (V , +; 0) is a commutative group.

On the other hand, if we start now from a commutative group (V , +; 0), the triple (V ,V , +)
satisfies the conditions of a parallelogram space. Indeed, (i) holds since the equations of the form
v + x = w for v, w ∈ V are uniquely solvable in x ∈ V. From associativity and commutativity
of + we can prove (ii), and (1) is guaranteed by associativity.

According to the second part of the above proof, the following holds:

Corollary 1.3 For all P ∈ P, the relations P ∗ 0 = P and PP
−→

= 0 are satisfied.

1.3 Morphisms

A homomorphism of a parallelogram space (P,V , ∗) to a parallelogram space (P ′,V ′, ∗′) is a
pair of mappings α : P → P ′, β : V → V ′ such that

(iv) α(P ) ∗′ β(v) = α(P ∗ v) for all P ∈ P, v ∈ V.

When α and β are bijections we get an isomorphism.

A parallelogram space (P,V , ∗) with a distinguished point O ∈ P is here called pointed, and
O is said to be its origin, or reference point.

Let us show that parallelogram spaces of the form (V ,V , +) described in the Theorem 1.2
are, up to isomorphism, typical parallelogram spaces.

Theorem 1.4 If a pointed parallelogram space (P,V , ∗) with a reference point O ∈ P is given,

then the pair of mappings P → V, P �→ OP
−→

; idV : V → V, v �→ v is an isomorphism of (P ,V , ∗)
onto (V ,V , +) where + is determined by (1).

We describe the relationship between homomorphisms of parallelogram spaces and homo-
morphisms of commutative groups.

Theorem 1.5 Let (α, β) be a homomorphism of a parallelogram space (P,V , ∗) to a parallel-
ogram space (P ′,V ′, ∗′), and let + and +′ be the corresponding binary operations introduced by
(1) in V and V ′, respectively. Then β is a group homomorphism of the group (V , +) to the
group (V ′, +′) such that

α(P ) = α(O) ∗′ β(OP
−→

) for all O,P ∈ P. (3)

Moreover, the choice of a homomorphism β of (V , +) to (V ′, +′), together with a choice of points

O ∈ P and O′ ∈ P ′, determine a mapping α : P → P ′, P �→ O′ ∗′ β(OP
−→

) such that O′ = α(O),
and (α, β) is a homomorphism of (P,V , ∗) to (P ′,V ′, ∗′).
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Proof. The mapping β from (iv) is uniquely determined by α. Indeed, if Q ∈ P is given then
there is unique v′ ∈ V ′ such that α(Q) ∗′ v′ = α(Q ∗ v); it is sufficient to use (i) for (P ′,V ′, ∗′).
Using (iv) and (1) we get α(Q) ∗′ β(v + w) = (α(Q) ∗′ β(v)) ∗′ β(w) = α(Q) ∗′ (β(v) +′ β(w)).
Finally by (i), β(v + w) = β(v) +′ β(w) for all v, w ∈ V. Hence β is a group homomorphism

of (V , +) to (V ′, +′). Now let us verify the condition (3). O ∗ OQ
−→

= Q holds by (iii), and if we

use (iv) for P = O and v = OQ
−→

we get α(O) ∗′ β(OQ
−→

) = α(Q) for all Q ∈ P.
On the other hand, if a group homomorphism β of the group (V , +) to (V ′, +′) is given and

P,Q ∈ P let us use (1), (2) and (3) to obtain α(P ) ∗′ β(PQ
−→

) = (α(O) ∗′ β(OP
−→

)) ∗′ β(PQ
−→

) =

(α(O) ∗′ (β(OP
−→

) +′ β(PQ
−→

)) = α(Q) = α(P ∗ PQ
−→

). Hence (iv) holds for v = PQ
−→

. Since OO
−→

is the identity element for + and consequently β(OO
−→

) is the identity element for the binary
operation +′, we get α(O) = O′ by Corollary 1.3.

Note that the proof of Theorem 1.5 requires only the conditions (i’), (ii’), and the existence
of the right-identity element with respect to +. As a consequence of the second part of the proof
of Theorem 1.2, (V , +) is then a group. Indeed, consider a quadruple (P,V , ∗, +) such that (i’)
and (1) are satisfied and there is a right-identity element 0 for +. Then (V , +; 0) is a group
which acts sharply transitively on the set P. The condition (ii’) guarantees commutativity of
+, which however was not needed in Theorem 1.5. Hence for any group (V , +), Theorem 1.5
gives a description of homomorphisms (α, β) of (V ,V , +) to (V ,V , +) by means of an action
of the group on itself. The formula (iv), α(P ) ∗′ β(v) = α(P ∗ v), P ∈ P, v ∈ V, reads
α(v) + β(w) = α(v + w) for all v, w ∈ V. Here β becomes an endomorphism of (V , +), and
there exists a vector v0 ∈ V such that α(v) = v0 + β(v) for all v ∈ V. Particularly, α is a left
translation if and only if α = idV , and α is an inner automorphism of (V , +) just in the same
case.

Now let us consider a parallelogram space (V ,V , +) derived from a commutative group
(V , +). Note that by Theorem 1.2, the group under consideration must be commutative when
the operations ∗ and + in (1) coincide.

Theorem 1.6 (V ,V , ∗) is a parallelogram space if and only if there is a commutative group
(V , +′) and a permutation f : V → V such that v ∗ w = v +′ f(w) for all v, w ∈ V.

Proof. A triple (V ,V , ∗), V �= ∅, ∗ : V × V → V gives a parallelogram space if and only if the
following conditions hold:

(i�) to any u, v ∈ V there is just one w ∈ V such that v ∗ w = u,

(ii�) (w ∗ u) ∗ v = (w ∗ v) ∗ u for all u, v, w ∈ V.

Given a, b ∈ V let e, c ∈ V be elements, determined by (i�), such that a ∗ e = a, a ∗ c = b. Using
(ii�) we evaluate b ∗ e = (a ∗ c) ∗ e = (a ∗ e) ∗ c = a ∗ c = b. Hence e is the right-neutral element
for “∗”. By Theorem 1.2, first part, there exists a binary operation + : V × V → V satisfying

v ∗ (a + b) = (v ∗ a) ∗ b for all a, b, v ∈ V. (4)

By Theorem 1.2, second part, (V , +) is a commutative group with neutral element e. ¿From
(i�) it follows that f : V → V, v �→ e ∗ v is a permutation of V . Setting v = e in (4) we get
f(a+ b) = f(a)∗ b. Introducing a binary operation +′ by f(a)+′ f(b) = f(a+ b) for a, b ∈ V we
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obtain an isomorphism of (V , +) onto (V , +′). Hence (V , +′) is a commutative group, too, and
f(a) ∗ b = f(a) +′ f(b), a, b ∈ V. So we have obtained an isotopy of (V , ∗) onto a commutative
group.

Conversely, given a commutative group and a permutation f : V → V, the isotopy mentioned
above guarantees (i�) and (ii�). It can be seen from the following: (c∗a)∗b = (c+′f(a))+′f(b) =
(c +′ f(b)) +′ f(a) = (c ∗ b) ∗ a where a ∗ c = b is valid if and only if a +′ f(c) = b.

1.4 Geometric approach

Finally let us mention another approach to parallelogram spaces, which seems to be more
“geometric” on the first sight, due to the geometric terminology used (but can in fact be
explained in a purely algebraic way, by means of Mal’cev operation, [9]):

Definition 1.7 A parallelogram space is a pair (P,P) such that P is a nonempty set, P is a
quaternary relation on P, and the following axioms hold:

1◦ For any a, b, c ∈ P there is just one d ∈ P such that P(a, b, c, d) is satisfied.

2◦ If (e, f, g, h) is any cyclic permutation of (a, b, c, d) or (d, c, b, a), respectively, a, b, c, d ∈ Q,
then P(a, b, c, d) implies P(e, f, g, h).

3◦ For any a, b, c, d, e, f ∈ Q, if P(a, b, c, d) and P(c, d, e, f) then P(a, b, f, e).

Elements of P are called points of a parallelogram space. Each quadruple (a, b, c, d) ∈ P will
be called a parallelogram, and (a, b, c, d) ∈ P will be also written as P(a, b, c, d).

If a parallelogram space (P,P) in this sense is given let us define a binary relation 
 on
P × P by

(a, b) 
 (d, c) ⇔ P(a, b, c, d). (5)

We can check easily that 
 is an equivalence relation. Elements (classes) of the factor set P×P/


 are referred to as vectors. Denote by (a, b)
−−−→

the vector containing a pair (a, b) ∈ P × P.

If we take V = P × P/ 
, � : P × P → V, (a, b) �→ (a, b)
−−−→

then (P,V , � ) is a parallelogram
space in the sense of the previous (second) definition. Indeed, the condition (i’) follows from the
definition of � and from 1◦, the condition (ii’) is a consequence of 2◦, 3◦ and of the definition
of � . Conversely, given a parallelogram space (P,V , � ) according to the second definition,
introduce a parallelogram (in a new sense) as a quadruple (a, b, c, d), a, b, c, d ∈ P such that

(a, b)
−−−→

= (d, c)
−−−→

. Conditions (i’) and (ii’) allow to verify all the conditions 1◦, 2◦, 3◦ so that P
together with the set of all “new” parallelograms form a parallelogram space in the last sense.

Remark that in the above approach, 1◦ may be substituted by

4◦ For any a, b, c ∈ P, there is just one d ∈ P such that P(a, b, d, c) holds.

This can be verified if we pass from P(a, b, c, d) to P(b, a, d, c) using suitable cyclic permutations
and 2◦: P(a, b, c, d) ⇔ P(c, d, a, b) ⇔ P(b, a, d, c).
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2 Parallelogram space of a medial quasigroup

Let Q = (Q, ·) be a medial quasigroup, i.e. a groupoid such that the equations xa = b and
ay = b are uniquely solvable in Q for any a, b ∈ Q and the identity called mediality is satisfied:

(xy)(uv) = (xu)(yv). (6)

The solutions of the equations are denoted by x = b/a, y = a\b, and additional accompanying
operations / , \ arise on the support Q. Any quasigroup is left and right cancellative.

We show how a medial quasigroup determines a parallelogram space in the “geometric”
sense of Definition 1.7.

2.1 Parallelograms in medial quasigroups

Let Q = (Q, ·) be a medial quasigroup. For a, b ∈ Q, let us introduce a left transfer La,b as the
composition (from the right to the left) L−1

b La, [6]. That is,

La,b(c) = d ⇐⇒ ac = bd for all a, b, c, d ∈ Q. (7)

We say that an ordered quadruple (a, b, c, d) ∈ Q × Q × Q × Q is a parallelogram in Q if
La,b = Ld,c. Denote by PQ the set of all parallelograms in Q; we write (a, b, c, d) ∈ PQ as
above. I can be checked that (Q,PQ) is a parallelogram space.

We can check that (a, b) 
 (d, c) ⇐⇒ PQ(a, b, c, d), determines an equivalence relation 

on Q. The equivalence classes of the relation 
 are vectors in (Q,PQ). Denote by ab

−→
the vector

containing (a, b) ∈ Q × Q.

2.2 Properties of vector addition

Let us introduce a vector addition with respect to a fixed element o ∈ Q, which can be called
the origin, by oa−→ +o ob

−→
:= oc−→ ⇐⇒ PQ(o, a, c, b). It appears that the choice of the origin is

not essential since for two different choices, we obtain isomorphic commutative groups. The
following can be checked:

ab
−→

+ bc
−→

= ac−→ for all a, b, c ∈ Q. (8)

PQ(a, a, b, c) ⇐⇒ b = c for a, b, c ∈ Q, (9)

For any a, b, c, d, e, f ∈ Q,

PQ(a, b, d, e), PQ(b, c, e, f) =⇒ PQ(c, d, f, a). (10)

For any a1, b1, c1, d1, a2, b2, c2, d2 ∈ Q,

PQ(a1, b1, c1, d1), PQ(a2, b2, c2, d2) =⇒ PQ(a1a2, b1b2, c1c2, d1d2). (11)

For any a, b, c, d, q ∈ Q,

PQ(a, b, c, d) ⇐⇒ PQ(qa, qb, qc, qd) ⇐⇒ PQ(aq, bq, cq, dq), (12)

Moreover, for any a, b, c, d ∈ Q, if PQ(a, b, c, d) then PQ(ab, bc, ca, db),

PQ(ac, bd, ca, db), PQ(ad, ba, cb, dc), PQ(ad, bc, cb, da), (13)
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and
PQ(ab, ad, cd, cb) holds for any a, b, c, d ∈ Q. (14)

PQ(q, (q/q)a, ba, bq) and PQ(q, a(q\q), ab, qb) hold for all a, b, q ∈ Q. (15)

We take now vectors as position vectors of elements from Q with respect to the origin o ∈ Q,
and pass from position vectors to their “end points”. That is, for any a, b ∈ Q, define a +o b as
an element of Q determined uniquely by PQ(o, a, a +o b, b). We obtain a commutative group
(Q, +o; o), [6].

Lemma 2.1 Let Q = (Q, ·) be a medial quasigroup and o, a, b, c, d ∈ Q. Then

PQ(a, b, c, d) ⇐⇒ a +o c = b +o d.

Proof. If PQ(o, a, a +o c, c) and PQ(a, b, c, d) then PQ(b, a +o c, d, o), by (10). Consequently
PQ(b, o, d, a +o c). Similarly, from PQ(o, b, b +o d, d) we obtain PQ(b, o, d, b +o d), that is,
a +o c = b +o d. Vice versa, the equality a +o c = b +o d means that PQ(a, o, c, a +o c),
and at the same time PQ(o, b, b +o d, d) holds. Hence PQ(b, c, d, a) by (10), or equivalently,
PQ(a, b, c, d).

Lemma 2.2 Let (Q, o) be a pointed medial quasigroup where Q = (Q, ·). Then the mappings
Lo/o and Ro\o are commuting automorphisms of the group (Q, +o; o), i.e. Lo/o◦Ro\o = Ro\o◦Lo/o.

Proof. Let q ∈ Q. Put lo = o/o and ro = o\o. Step by step, we obtain (lo · (qro)) · (o · o) =
(lo o)((qro) · o) = o((qro) · o) = (oro) · ((qro) · o) = (o · (qro)) · (ro · o) = ((lo o)(qro)) · (roo) =
((loq)(oro)) · (roo) = ((loq) · ro) · (o · o). By right cancellation, lo · (qro) = (loq) · ro, which
means Llo ◦ Rro = Rro ◦ Llo . To prove that the mappings are automorphisms let us use (12)
and lo o = o: PQ(o, a, a +o b, b) is equivalent with PQ(o, loa, lo(a +o b), lob), which reads also
lo(a +o b) = loa +o lob. Hence Llo(a +o b) = Llo(a) +o Llo(b) for all a, b ∈ Q. Similarly,
Rro(a +o b) = Rro(a) +o Rro(b) holds for all a, b ∈ Q.

By means of parallelograms, we can formulate and prove a version of the so-called Toyoda’s
theorem as follows:

Theorem 2.3 (“Toyoda’s theorem”) Let Q = (Q, ·) be a medial quasigroup, and o ∈ Q. Then,
for all a, b ∈ Q, the equality a · b = a(o\o) +o (o/o)b +o (o · o) holds where the binary operation
+o on Q is introduced above (before Lemma 2.1).

Proof. According to (15), we have PQ(o, aro, ab, ob) and PQ(o, lob, ob, o · o) where, again,
ro = o\o, lo = o/o. Hence by the definition of addition +o on Q, a · b = a · ro +o o · b
and o · b = lob +o o · o holds, and consequently a · b = a · ro +o lo · b +o o · o. That is,
a · b = Ro\o(a) +o Lo/o(b) +o o · o holds.
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1 Variational connections

1.1 Intoduction

In some branches of physics it has been discovered, [8], that the solution of many problems
is considerably simplified if the basic equations can be expressed in the form of variational
principle.

We consider second order differential equations, in short SODE’s. For geometric description
of equations under consideration, we use fibred manifolds. Let M be an n-dimenisonal differen-
tiable manifold. Then T r

s (M) denotes tensor fields of type (r, s) on M , p : TM → M is the tan-
gent bundle of M , and p2 : T 2M → M the bundle of two-velocities. Note that the vector bundle
R×TM → R is canonically identified with the first jet prolongation J1π = π1 : J1(R×M) → R
of the fibred manifold π : R × M → R, and R × T 2M → R is canonically identified with the
second jet prolongation π2 : J2(R × M) → R of π.

If (xi) are local coordinates on M and t denote a (global) coordinate on R we use fibre
coordinates (xi, ui) on TM (adapted to the projection pM), (xi, ui, zi) on T 2M (adapted to
the projection p2

M), 1 ≤ i ≤ n, where we denoted ui = ẋi, zi = ẍi. Similarly, we use fibre
coordinates (t, xi, ui) on R × TM → R, and (t, xi, ui, zi) on R × T 2M → R.
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A smooth, or at least C2-differentiable, function L : R×TM → R is called here a (first order)
Lagrangian function or Lagrangian in short. In local fibre coordinates, L = L(t, x, u). Often,
under a first order Lagrangian in R × TM we mean a π1-horizontal 1-form λ on R × TM . In
adapted coordinates on R×TM , its expression reads λ = Ldt where L(t, xi, ui) is a Lagrangian
function. Given a Lagrangian L, under the Euler-Lagrange operators, or expressions of L we
understand the functions Ei(L) : R × T 2M ≈ J2(R × M) → R,

Ei(L) =
∂L

∂xi
− d

dt

∂L

∂ui
, i = 1, . . . , n. (1)

In what follows, d
dt

:= ∂
∂t

+ xj ∂
∂ẋj + ẋj ∂

∂ẍj is the “total derivation operator”. The Euler, or
Euler-Lagrange equations corresponding to (1) read Ei(L) = 0, that is,

∂L

∂xi
− d

dt

∂L

∂ui
= 0. (2)

The expressions Ei(L) are local components of the Euler-Lagrange form Eλ = Eidxi ∧ dt of the
first-order Lagrangian λ = Ldt.

1.2 Variational Problem

Let M be an n-dimensional manifold and let γ : I → M be a regular curve on an open interval
I ⊂ R defined (in local coordinates) by x(t) = (x1(t), . . . , xn(t)), t ∈ I. Let

dγ

dt
= ẋ(t) = dx(t)/dt = (ẋ1(t), . . . , ẋn(t))

be the corresponding tangent vector field along γ, we suppose ẋ(t) �= 0 for t ∈ I. In what follows,
let all indices varry from 1 to n. Let A = γ(a), B = γ(b) be two points on γ corresponding
to parameters a and b ∈ I, respectively. Given a (differentiable) functions ωi : M → R such
that ωi(A) = ωi(B) = 0; in local coordinates, ωi(x1, . . . , xn); and a real parameter ε ∈ R, the
formulas

x̄i(t) = xi(t) + ε · ωi(x1(t), . . . , xn(t))

define a new curve γ̄: x̄(t) = (x̄1(t), . . . , x̄n(t)) which is, for small ε, “close” to the original one
and passes through the given points A and B as well.

Let us consider the integral

I(γ) =

∫ b

a

L(t, x1(t), x2(t), . . . , xn(t), ẋ1(t), ẋ2(t), . . . , ẋn(t)) dt (3)

where L is an analytic function of the given arguments (Lagrangian function).
The variational problem associated with L is to find those curves x(t) which minimize the

fundamental integral (3) subject to the prescribed boundary conditions A = γ(a), B = γ(b),
[15].

If Ī = I(γ̄) is a similar integral for γ̄ then expanding L as a Taylor series in powers of ε we
get

Ī = I + ε ·
∫ b

a

(
∂L

∂xi
ωi +

∂L

∂ẋi

∂ωi

∂xj
ẋj

)
dt + · · ·
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where “dots” stand for the members of order ε2 and higher. Coefficients at ε, ε2 etc. in the
above expansion are denoted by δI, δ2I etc., and are called the first, second etc. variation of
the integral I. Particularly, the first variation

δI =

∫ b

a

(
∂L

∂xi
ωi +

∂L

∂ẋi

∂ωi

∂xj
ẋj

)
dt

is often written in the following form (we integrate in parts in the second summand and use
properties of the functions ωi(x))

δI =

∫ b

a

(
∂L

∂xi
− d

dt

(
∂L

∂ẋi

))
ωidt. (4)

The integral (3) is called stationary if its first variation vanishes, δI = 0, for an arbitrary choice
of functions ωi (the so-called Hamilton’s variational principle, δ

∫
L(t, xi(t), ẋi(t))dt = 0). The

curve for which it holds is called the extremal of the integral under consideration. As it follows
from (4), the integral (3) is stacionary if and only if the Euler-Lagrange equations (2) are
satisfied.

Functions xi(t) for which the integral reaches its minimum or maximum must satisfy the
Euler-Lagrange equations, and any solution x = x(t) of the equations (2) is an extremal curve
of the integral (3). Note that H. Cartan precisely formulated this variational problem for
Lagrangian functions L in the class C2 [2]. In this case, the formula for first variation reads
δI = dI(γ̄ )/dε|ε=0 and its extremals γ ∈ C2 are solutions of the Euler-Lagrange equations (2).
The problem can be considered in a more general setting [16].

1.3 SODEs and the Inverse Problem

The most general form of a system of second-order ordinary differential equations, which may
be time-dependent in general, for functions t 	→ xk(t); k = 1, . . . , n with the definition domain
in Rn or in a coordinate neighborhood U ⊂ M of some differentiable n-manifold M , reads

Ei

(
t, xk, ẋk, ẍk

)
= 0, i = 1, . . . , n, (5)

and is called the “Helmholtz set”, according to H. Helmholtz who did the first investigation
(although actually, Helmholtz did not consider any explicit time dependence). To solve the
system means to find local curves γ : I → M on M where I ⊂ R is an open interval, γ(t) =
(x1(t), . . . , xn(t)), such that

Ei

(
t, γ(t),

dγ

dt
,
d2γ

dt2

)
= 0, i = 1, . . . , n. (6)

If second derivatives are put in evidence, the equations read

aij

(
t, xk, ẋk

) · ẍj + bi = 0, i = 1, . . . , n (7)

where the Einstein summation convention is used. According to [8, p. 367], Ei may contain
second derivatives only linearly, therefore (6) can be written in the form (7) without loss of
generality.
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Given a manifold (M,∇) endowed with linear connection ∇, the equations of canonically
parametrized geodesics in M ,

ẍi + Γi
jk(x)ẋjẋk = 0, (8)

yield a natural example of such a system, which is in a special form, solved to second derivatives,
i.e. in the form

ẍi − f i(t, xk, ẋk) = 0, i, k = 1, . . . , n. (9)

On the other hand, whenever the functions f i in (9) are quadratic forms in first derivatives,
“components of velocities”, with coefficients depending on coordinates xk, “components of
positions” only, (9) represent geodesic paths.

It might be useful to know whether the system (6), or (7), can be expressed in the form
of a variational principle, or at least, some linear combination of the original equations takes
the form of Lagrange equations for some Lagrangian. More precisely [8], the so-called Strong
Inverse Problem of the Calculus of Variations means:

Is there a function L(t, xk, ẋk), sufficiently differentiable, such that Ei = 0 are just Euler-
Lagrange equations of a variational principle δ

∫
L(t, x, ẋ)dt = 0, Ei = Ei(L)? Another speak-

ing, we ask if there are function L such that the following equations hold:

Ei =
d

dt

∂L

∂ẋi
− ∂L

∂xi
. (10)

If the answer is affirmative we want to find all such L.

In dimension n = 2, a complete answer for the inverse problem in the real analytic class
was given by Jesse Douglas in [3].

The range of applicability of Lagrange’s formalism can be extended, [8]. E.g. we try to
substitute linear combinations of the original equations: Helmholtz set (5) is replaced by

∑
j

gij(t, x, u)Ei = 0. (11)

The so-called Weak Inverse Problem of the Calculus of Variations, or the multiplier problem,
means:

Find all pairs ((gij), L) where L(t, xk, ẋk) is a Lagrangian and (gij(t, x
k, ẋk)) is a non-

degenerate functional matrix (all objects sufficiently differentiable) such that

∑
j

gijEj =
d

dt

∂L

∂ẋi
− ∂L

∂xi
. (12)

If the answer is affirmative find all such L and gij.

Recall that gij are usually called (Lagrange) multipliers. Although some necessary and
sufficient conditions have been formulated, a lot of progress have been made recently, and some
partial answers have been given, the problem is difficult and still open in a way. Only particular
cases can be answered easily; e.g. equations for geodesics of a pseudo-Riemannian space are
always variational in this weak sense.
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1.4 Helmholtz conditions

The classical result states that necessary and sufficient conditions are as follows.

Lemma 1.1 A family of functions Ei : J2(R×M) → R (depending on t, xi, ui, zi in general),
i = 1, . . . , n, can be regarded as Euler-Lagrange expressions of some Lagrange function L :
J1(R×M) → R if and only if the so-called Helmholtz conditions hold, [8]: with respect to any
adapted chart, the following relations hold identically for all i, k = 1, . . . , n

∂Ei

∂zk
− ∂Ek

∂zi
= 0, (13)

∂Ei

∂uk
+

∂Ek

∂ui
=

d

dt

(
∂Ei

∂zk
+

∂Ek

∂zi

)
, (14)

∂Ei

∂xk
− ∂Ek

∂xi
=

1

2

d

dt

(
∂Ei

∂uk
− ∂Ek

∂ui

)
. (15)

Of course, if the starting equations take some particular shape the conditions are appropri-
ately modified.

Recall that the first attempt to investigate this question is due to Helmholtz; in [9], necessary
and sufficient conditions were stated, but only necessity was proven. The proof of sufficiency
was given a bit later by Mayer [13].

2 Restrictively variational connnections

The Fundamental Lemma of (pseudo-) Riemannian geometry states that given a (non-degenerate)
metric g on M there is a unique connection ∇ on M that is symmetric and “compatible” with
the metric in the sense that the metric is covariantly constant with respect to the connection,
∇g = 0 (geometrically speaking, the scalar product defined by the quadratic metric tensor on
each tangent space translates paralelly along any curve). Such a connection is called Rieman-
nian, or Levi-Civita.

The metrizability problem is the “reverse” question: given a connection ∇ on M , find
necessary and sufficient conditions (formulated in terms of the given connection) for ∇ to be
just the Levi-Civita connection of some metric, eventually find all such metrics. A system
of integrability conditions has been given by Eisenhart and Veblen, many particular answers
are known, an equivalent formulation in terms of geodesic mappings can be realized, and a
system of differential equations that controls this question was in fact found, [14]. But even
this problem is far from being completely solved.

We say that a linear connection on M is restrictively variational [11], [12], [26] if there exists
a (smooth, or of the class at least two) function L : R × TM → R, in local fibre coordinates
L = L(t, x, u), and a non-singular type (0, 2) tensor field g : M → T 0

2 (M) on M such that with
respect to any local fibre chart, the functions

−Ei = gik(x)(zk + Γk
rs(x)urus), i = 1, . . . , n, (16)

coincide with Euler-Lagrange expressions Ei(L) of some Lagrangian L; here Γi
jk are components

of ∇.
The relationship between restrictive variationality and metrizability for a linear connection

on M can be expressed as follows [26]):
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Theorem 2.1 Given a manifold (M,∇) with linear connection, the following conditions are
equivalent:

(i) ∇ is restrictively variational;
(ii) the symmetric part ∇̃ of ∇ is metrizable;
(iii) there is a non-singular symmetric type (0, 2) tensor field g on M such that

Γ̃i
jk =

1

2
gi�

(
∂gj�

∂xk
+

∂gk�

∂xj
− ∂gjk

∂x�

)
; (17)

Γ̃i
jk are components of the (symmetric) connection ∇̃, and gi� are components of the tensor g∗

dual to g (in a natural pairing, i.e. gi�(x) is the inverse matrix of gi�(x), x ∈ M).
(iv) there is a non-singular symmetric type (0, 2) tensor field g on M such that the equations

gik(x)(zk + Γk
rs(x)urus) = 0 (18)

are variational.

Proof. The equivalence (i) ⇔ (iv) is a matter of definition. The equivalence (ii) ⇔ (iii) is
classical: if a symmetric connection ∇̃ on M is metrizable and g is a suitable metric, then ∇̃ is
exactly the Riemannian (Levi-Civita) connection of the pseudo-Riemannian manifold (M, g);
∇̃g = 0 is equivalent to (17) for any symmetric connection. Now let ∇ be a linear connection
on M , and let Γ̃i

jk = Γ̃i
kj denote components of its symmetric part ∇̃. Assume that ∇̃ is

metrizable, g being a metric tensor compatible with ∇̃. Let us introduce a (global) function
L, L(u) = 1

2
gx(u, u), u ∈ TxM ; in local fibre coordinates, L = 1

2
grs(x)urus. To check that L is

a Lagrangian function we must evaluate the corresponding expressions Ei(L) and verify that
they obey the Helmholtz conditions. We get

∂L

∂xi
=

1

2
∂igrsu

rus,
d

dt

(
∂L

∂ui

)
= uj∂jgisu

s + zjgisδ
s
j , (19)

Ei(L) = 1
2
∂igrsu

rus − gisz
s − ∂rgisu

rus

− [
gisz

s + 1
2
(∂sgir + ∂rgis − ∂igrs)

]
urus.

(20)

In short, Ei(L) = −
(
gisz

s + Γ̃irsu
rus

)
= −

(
gisz

s + gi�Γ̃
�
rsu

rus
)

where 2Γ̃irs = 2gi�Γ̃
�
rs =

∂sgir + ∂rgis − ∂igrs. To check that L is a Lagrangian function, let us verify (13)–(15). In fact,
according to symmetry of g, (13) is satisfied for the expressions (16):

∂Ei

∂zk
− ∂Ek

∂zi
= −gisδ

s
k + gksδ

s
i = −gik + gki = 0. (21)

To verify (14) we use the condition ∇̃g = 0 as well as symmetry of g: ∂Ei

∂uk + ∂Ek

∂ui − d
dt

(
∂Ei

∂zk + ∂Ek

∂zi

)
=

2
(
Γ̃iks + Γ̃kis + ∂gki

∂xs

)
us = 2(∇̃g)

(
∂

∂xi ,
∂

∂xj ; u
s ∂

∂xj

)
= 0. After some calculations, using the for-

mula (20), we get
∂Ei

∂xk
=

∂gis

∂xk
zs +

(
∂2gis

∂xk∂xr
− 1

2

∂2grs

∂xk∂xr

)
urus, (22)

and finally (15) which proves (ii) ⇒ (i). Vice versa, if the connection is restrictively variational,
that is, if the Helmholtz conditions are satisfied then symmetry of g follows according to (13);
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(14) together with (13) give ∇̃g = 0; if g is symmetric and covariantly constant with respect to
∇̃g then (15) gives no new condition. Hence (i) ⇒ (ii), which completes the proof.

Given a system of SODE’s of a particular form in which second derivatives are expressible
as quadratic forms in first derivatives,

ẍk + Γk
rs(x)ẋrẋs = 0, k = 1, . . . , n, (23)

we can use Theorem 2.1 for deciding whether the system is derivable from a Lagrangian.
Namely, we can assume that the functions Γk

rs(x) are components of a symmetric linear connec-
tion ∇ on some neighborhood U ⊂ Rn. If ∇ is (locally) metrizable, gij(x) (with det(gij(x)) �= 0
at any x ∈ U) being components of some non-degenerate metric g compatible with ∇ on U
then the system of equations (23) is equivalent to the system

gik

(
ẍk + Γk

rs(x)ẋrẋs
)

= 0, k = 1, . . . , n, (24)

hence the functions gik(x) are the desired variational multipliers. On the other hand, given a
system of SODE’s (23), if there are Lagrange multipliers independent on time and velocities
then they are just components of a metric with geodesics given exactly by (23).
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[26] VANŽUROVÁ, A.: A note on variational and metrizable connections. Acta Mathematicae
Academiae Nyrengyhziensis, Vol. 20, 2010, www.emis.de/journals.

148 volume 5 (2012), number 3



Aplimat - Journal of Applied Mathematics

Current address
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MULTIDIMENSIONAL   RIEMANNIAN   MANIFOLDS 

 AS  MINKOWSKI   PRODUCTS 
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Abstract. The aim of this paper is to bring ideas on utilisation of the set operation of 
Minkowski product of point sets in the n dimensional Euclidean space En for n  3 in modelling 
Riemannian manifolds. Some examples are introduced on modelling manifolds in E6 and their 
visualisations by means of orthographic views in the three-dimensional coordinate subspaces of 
the basic 6 dimensional space. The comparison of different 3D views of manifolds determined 
as Minkowski sum, difference and product of two curve segments defined by vector 
representations is provided on particular examples.  
 
Key words. Minkowski set operations, modelling Riemannian manifolds, multidimensional 
visualisation, orthographic projections in more dimensional spaces  
 
Mathematics Subject Classification:  Primary 51N25, Secondary 53A056. 

 
 
1 Minkowski product of Riemannian manifolds 

 
Minkowski product of two point sets is a binary geometric operation defined on point sets in the n-
dimensional Euclidean space En, and it can be determined and interpreted in various ways, as e.g. in 
[2], [3]. Most commonly appearing definition is based on the concept of the outer vector product 
well defined in the associated vector space over the En, see in [1], [2].  
Let Vn be the associated vector space to the Euclidean space En with the Cartesian orthogonal 
coordinate system defined by the direction unit vectors of the coordinate axes  
 

     1,0,...0,0,0,...,0,...0,1,0,0,...,0,0,1 21  neee . (1.1) 

 
Let the vectors nVvu,  be given by their coordinates, while 
 

nnnn vvvuuu eeeveeeu  ...,... 22112211 . (1.2) 

Outer (wedge) product of vectors u and v is vector pV vu in the vector space associated to the 
space Λ2(Ep) of dimension p = n(n - 1)/2, which can be determined as follows 



 

Aplimat – Journal of Applied Mathematics

 

152  volume 5 (2012), number 3
 

 
   

     
     
     

        
       nnnnnnnnn

nnn

nnnnnnnn

nn

nn

nnnn

vuvuvuvuvuvu

vuvuvuvuvuvu

vuvuvu

vuvuvu

vuvuvu

vvvuuu

eeeeee

eeeeee

eeeeee

eeeeee

eeeeee

eeeeeevu










 111222322332

111311331211221

2211

2222221212

1121211111

22112211

)(......
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...

......
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 (1.3) 

 
whereas {e1 Λ e2, e1 Λ e3,..., e1 Λ en, e2 Λ e3, ..., e2 Λ en, ..., en-1 Λ en} is the basis of the associated 
vector space  Vp. The following basic properties of the outer vector product were used to determine 
the resulting vector:  

1. 0uu    (1.4) 

2. ))(()()( wuwuwu  lklk  (1.5) 

3. uvvu   (1.6) 

4. Outer product  of two unit vectors is again a unit vector, 

1 ji ee , i, j =1, 2, ..., n, i   j.  (1.7) 

 
Considering the two point sets in the form of Riemannian manifolds A and B determined by vector 
maps defined on the simply connected elementary regions in Rn, the following definition of a 
Minkowski product of A and B can be adopted (see also in [4], [5]). 
 
Definition 1. Let A and B be two Riemannian manifolds of dimensions k and l respectively, k, l  n, 
in the n-dimensional Euclidean space En with the related vector space Vn and Cartesian orthogonal 
coordinate system 0; e1, e2, …, en defined by the origin and direction unit vectors of the coordinate 
axes. Let the vector maps of the respective point sets A and B be in the form 
 

   kiuxauxauxauxauxauxa ni
n

iii
n

ii ,...2,1,)(...)()()(),...,(),( 2
2

1
121  eeea  (1.8) 

 
   ljvxbvxbvxbvxbvxbvxb nj

n
jjj

n
jj ,...2,1,)(...)()()(),...,(),( 2

2
1

121  eeeb  (1.9) 

 
defined on the regions lk RR  , . Minkowski product of point sets A and B in the Euclidean 

space En is the Riemannian manifold AB in the space Ep of dimension p = n(n - 1)/2, which is 
determined as the outer product of vector maps a and b of sets A and B 
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for i = 1, 2, .... k, j = 1, 2, ..., l and defined on the region lkR  . 
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2 Minkowski product of two curve segments in E4 

Let k and h be two curve segments in E4 defined by their vector representations parameterized on 
the unit intervals 
 
            Ruuwruzruyruxru  1,0,,,,r       (2.1) 

 
            Rvvwsvzsvysvxsv  1,0,,,,s .     (2.2) 

 
Minkowski product of curves k and h according to [4] is a surface patch  in the space E6 with the 
Cartesian coordinate system determined by unit vectors e1, e2, ..., e6 defined on the unit square in R 
by the vector function defined in the following form 
 

      

       
       
       
       
       
       

  2
1,0,,, 


































 vu

vzsuwrvwsuzr

vysuwrvwsuyr

vysuzrvzsuyr

vxsuwrvwsuxr

vxsuzrvzsuxr

vxsuyrvysuxr

vuvu

T

srp   (2.3) 

 
Using consecutive orthographic projections to subspaces E5, E4 and E3 we can achieve visualisation 
of the surface view in one from twenty possible three-dimensional coordinate subspaces Oei ej ek, 
for i, j, k = 1, ...6.  

Let two segments of conical helices be determined in E4 by their vector representations 
 
        Rbauubuuauuau  11111 .,1,0,,0,2sin1,2cos1 r    (2.4) 

 
        Rbavvbvvavvav  22222 ,,1,0,,2sin1,2cos1,0 s  (2.5) 

 
Minkowski product of these curve segments – one-dimensional Riemannian manifolds in E4 is 
a surface patch – two-dimensional Riemannian manifold in the 6 dimensional space E6 determined 
by vector representation 
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Orthographic views of this surface patch onto several 3-dimensional coordinate subspaces of E6 are 
illustrated in the Fig. 1, while these views can be regarded as special surfaces in E6 created by 
means of  a special modelling tool, Minkowski product of 2 curve segments. 
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Fig. 1.  Orthographic views of Minkowski product of 2 conical helices in E6 
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Considering two segments of conical and cylindrical helices determined in E4 by their vector 
representations 
 

     1,0,,0,2sin,2cos 111  uubuauaur    (2.7) 

 
        1,0,)1(,2sin1,2cos1,0 222  vvbvvavvavs  (2.8) 

 
Minkowski product of these one dimensional Riemannian manifolds is a surface patch in E6 
determined by vector representation 
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






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
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
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T



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

p    (2.9) 

 

Orthographic views of this surface into several 3-dimensional coordinate subspaces of E6 are 
illustrated in the Fig. 2.  
In the last example illustrated in the Fig. 3 we consider simple Euler orbit (that is a spherical curve 
generated as trajectory of a point revolving simultaneously about 3 intersecting orthogonal axes in 
the space) and line segment determined in E4 by vector representations 

 
     1,0,0),2cos2(sin2sin),2sin1(2cos2sin,2cos 22

1  uuuuuuuuau r   (2.10) 

 
     1,0,)1(,,),1( 2222  vvdvcvbvavs    (2.11) 

 
whose Minkowski product is a surface patch in E6 determined on unit square by vector 
representation 
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2
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2
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2
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2
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p  (2.12) 

 
Orthographic views of generated surfaces into the space E3 present unusually interesting forms and 
structures, which might be considered interesting for design and architectural purposes as new 
forms generated on the idea of an abstract algebra set operation with the additional value of being 
views of object from more dimensional spaces.  
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Fig. 2.  Orthographic views of Minkowski product of conical and cylindrical helices in E6 
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Fig. 3.  Orthographic views of Minkowski product of Euler curve and line segment in E6 
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4 Conclusions 
 

Minkowski set operations are interesting geometric tools suitable for modelling of surfaces in the 
three dimensional Euclidean space, which are characteristic by unusual forms, complex shapes and 
which posses many self-intersections and singularities. These modelling tools provide a large scale 
of possibilities for creative applications in graphical and visual design, in different areas of 
computer graphics and in architectonical design. Intrinsic geometric properties of surfaces 
generated by means of these relatively simple generating principles can be exactly calculated by 
means of well-known methods in differential geometry. Last but not least important and interesting 
feature of this modelling tool is the possibility to visualise partially manifolds from the higher 
dimensional spaces by their orthographic views into 3D subspaces, which gives an opportunity to 
realise and better understand the geometry of manifolds in the higher dimensions. 

 
 
Acknowledgement 
 
The paper was supported by grant VEGA no. 1/0230/11. 
 
 
References 
 
[1.] MacLANE, S.; BIRKHOFF, G.: Algebra. AMS Chelsea, 1999, ISBN 0-8218-1646-2. 
[2.] SMUKLER, M.: Geometry, Topology and aplications of the Minkowski Product and Action. 

Harvey Mudd College. Senior thesis, 2003. 
[3.] TOMIČKOVÁ, S.: Minkowského operace a jejich aplikace. Plzeň, ZČU 2006. 
[4.] VELICHOVÁ, D. Minkowski product in surface modelling. In Proceedings of Symposium 

on Computer Geometry SCG´2009. Vol. 18, 2009, STU Bratislava. pp.107-112. 
[5.] VELICHOVÁ D.: Minkowski product in Surface Modelling. In Aplimat - Journal of Applied 

Mathematics, Vol. 3, No.1/2010, pp. 277-286, 2010. 
 
 
Current address 
 
Daniela Velichová, doc. RNDr. CSc., mim. prof. 
Institute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak University of 
Technology in Bratislava, Nám. slobody 17, 8132 31 Bratislava, Slovakia, tel. +4212 5729 6115,   
e-mail: daniela.velichova@stuba.sk 
 
 



FINSLERIAN CONNECTIONS
AND THE EQUATIONS OF SPINNING

CHARGED PARTICLES IN GENERAL RELATIVITY
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Abstract. In several previous articles, we proposed a unified description of the main
equations of gravity and electromagnetism in terms of a 1-parameter family of Finslerian
connections on the tangent bundle of the (4-dimensional) space-time manifold. In the
present paper, we apply this construction in the description of the worldline equations of
spinning charged particles in General Relativity.

Key words and phrases. tangent bundle, spray, Ehresmann connection, Einstein-
Maxwell equations, Dixon-Souriau equations.
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1 Introduction

In [11], [12], we built a 1-parameter family of affine connections
α

D on the space-time tangent
bundle with the following properties:

1) worldlines of charged particles subject to gravitational and electromagnetic fields are
autoparallel curves;

2) deviation equations of the above worldlines have the simplest form;

3) for a conveniently chosen α, the Ricci tensor of
α

D is dynamically equivalent to the
Lagrangian which provides the usual Einstein-Maxwell equations;

4) Maxwell equations can be expressed directly in terms of tidal tensors attached to these
connections.

This description starts from two ideas. One is the use of tidal tensors, [4], in describing
Einstein and Maxwell equations and the other is the idea proposed by Miron and collaborators,
[7], [9], of encoding information regarding gravity in a Lorentzian metric on the (4-dimensional)
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base manifold and the information regarding the electromagnetic field, in connections on its
tangent bundle. Thus, we included the action FijF

ij for the electromagnetic field in the Ricci
tensor, without adding any supplementary dimensions to the space-time manifold (as in the
case of Kaluza-Klein theory).

In the present work, we present in brief these geometric structures and their use, [11], [12], in
the description of Einstein and Maxwell equations and afterwards, we express the Dixon-Souriau
equations governing the motion of spinning charged particles under the action of gravitational
and electromagnetic fields, in terms of these connections. The spin precession equations achieve
a very simple form.

2 Geometric structures

Consider a 4-dimensional Lorentzian manifold (M, g), with signature (+,−,−,−), regarded as
space-time manifold, with local coordinates x = (xi)i=0,3 and Levi-Civita connection ∇ (having
the coefficients γi

jk and curvature tensor r); on the tangent bundle (TM, π,M), we denote the
local coordinates by (x◦π, y) =: (xi, yi)i=0,3 and by ,i and ·i, partial differentiation with respect
to xi and yi respectively. Throughout the paper, we will assume that light speed in vacuum c
and the gravitational constant G are both equal to 1.

A Finslerian tensor field on TM, [2], is a tensor field on TM, whose local components
transform, with respect to coordinate changes on TM, by the same rule as the components of

a tensor field on M (ex.: X i′
j′(x

′, y′) =
∂xi′

∂xk

∂xl

∂xj′ X
k
l(x, y)).

For an Ehresmann connection N on TM, [7], we denote the adapted basis by

(δi =
∂

∂xi
− N j

i(x, y)
∂

∂yj
, δ̇i =

∂

∂yi
), (1)

and its dual, by (dxi, δyi = dyi + N i
jdxj). Any vector field X = X iδi + X̃ iδ̇i on TM is

decomposed into a horizontal component hX = X iδi and a vertical component vX = X̃ iδ̇i,
which are both Finslerian tensor fields.

We will focus in the following upon a 1-parameter family of Lagrangians depending on α :

α

L =
√

gij(x)ẋiẋj + αAiẋ
i; (2)

where A = Ai(x)dxi is a 1-form on M and α ∈ R is a parameter.
Extremal curves x = x(t) (where t = const ·s is proportional to the arclength) for the action∫ α

Ldt are given by:

dyi

dt
+ γi

jky
jyk − α ‖y‖F i

jy
j = 0, yi = ẋi, (3)

with

F i
j := gih(Aj,h − Ah,j), ‖y‖ =

√
gijyiyj; (4)

The functions:

2
α

Gi(x, y) = γi
jky

jyk + 2
α

Bi, 2
α

Bi = −α ‖y‖F i
jy

j, (5)
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(with α ∈ R) have the property that their y-derivatives

α

Gi
j :=

α

Gi·j = γi
jky

jyk +
α

Bi·j;

are the coefficients of an Ehresmann connection1
α

N ; extremal curves of
α

L, (3), are autoparallel

curves for the connection
α

N, i.e.,

dyi

dt
+

α

N i
j(x, y)yj = 0, y =

dx

dt
.

We denote: F i = F i
jy

j, i.e., 2
α

Bi := −α ‖y‖F i. If there is no risk of confusion, we will omit the

parameter α in the notation of the connections
α

N and of the related quantities, i.e., we will

write simply Gi, Bi, Gi
j, B

i
·j, δi... instead of

α

Gi,
α

Bi
α

Gi
j,

α

Bi
j,

α

δi etc.

Further, we define the affine connections D :=
α

D (the Berwald connections attached to
α

N)

given in the adapted basis to N =
α

N, by:

Dδk
δj = Gi

jkδi, Dδk
δ̇j = Gi

jkδ̇i, Dδ̇k
δj = 0, Dδ̇k

δj = 0, Dδ̇k
δ̇j = 0,

where:
Gi

jk = γi
jk + Bi

·jk.

The functions Bi are the components of a Finslerian vector field B = Biδi on TM. With

li :=
yi

‖y‖ =
gijy

j

‖y‖ , we have:

Bi
j = Bi

·j = −α

2
(F ilj + ‖y‖F i

j),

Bi
jk := Bi

·jk = −α

2
(l·jkF i + ljF

i
k + lkF

i
j). (6)

From the homogeneity of degree 2 of Gi and Bi in y, it follows:

Gi
jy

j = 2Gi, Gi
jky

k = Gi
j, Bi

jy
j = 2Bi, Bi

jky
k = Bi

j.

Connections D are generally non-metrical. They also have generally nonvanishing torsion,
given by:

T = Ri
jkδ̇i ⊗ dxj ⊗ dxk, Ri

jk = δkN
i
j − δjN

i
k. (7)

The curvature of D is:

R = R i
j klδi ⊗ dxj ⊗ dxk ⊗ dxl + R i

j klδ̇i ⊗ δyj ⊗ dxk ⊗ dxl + (8)

+Bi
·jklδi ⊗ dxj ⊗ dxk ⊗ δyl, (9)

where
R i

j kl = Ri
kl·j. (10)

1
α

N is the spray connection , [1], [2], attached to the spray with coefficients
α

Gi.
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Let us fix a curve c : t �→ xi(t) on the base manifold M and denote by c′ : t �→ (xi(t), ẋi(t))
its lift to the tangent bundle. For a Finsler vector field X i = X i(t) along c′, it makes sense the
Berwald covariant derivative, [1], [2]:

DX i := Ddc′
dt

X i =
dX i

dt
+ Gi

jX
j. (11)

In terms of (11), the equations of extremal curves of L =
α

L become:

Dyi = 0, yi = ẋi (12)

and geodesic deviation equations are written, [11], as D2w = E(w), or locally:

D2wi = Ei
j(x, y)wj, y = ẋ, (13)

where w = wi(t)δi is the horizontal lift to TM of the deviation vector field and

Ei
j = Ri

jky
k = R i

l jky
lyk (14)

define the tidal tensor E = Ei
jδi ⊗ dxj attached to the connection N.

3 Basic equations of gravitational and electromagnetic fields

In the following, we will assume that gij describes the gravitational field and A = Aidxi

is physically interpreted as the 4-potential of the electromagnetic field. We will denote the

horizontal lifts to TM of the differential forms A and F := dA =
1

2
Fijdxi ∧ dxj by the same

letters A and F . Unless elsewhere specified, the parameter α 
= 0 is considered arbitrary.
The components of the electromagnetic 2-form F are expressed, [11], as:

α

2
Fij = Dδj

li. (15)

Consider the angular metric, h = hij(x, y)dxi ⊗ dxj, given by:

hij = gij − lilj.

Then:
- Homogeneous Maxwell equations ∇∂i

Fjk + ∇∂k
Fij + ∇∂j

Fki = 0, [8], are written in terms
of tidal tensors, [11], as:

Ẽ[ij] = 0, (16)

where Ẽij = hikE
k
j and square brackets denote antisymmetrization.

- Inhomogeneous Maxwell equations ∇∂i
F ij = 4πJ i, are expressed as:

Ei
i = ei

i − 4παρc ‖y‖2 + Bl
iB

i
l, (17)

where ρc = −J ili and ei
i =

0

Ei
i.
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- The Ricci tensor of D =
α

D is

Rij = −1

2
(El

l)·ij.

We have proved, [12], that for
3α2

2
= 1, the Ricci scalar R = gij

α

Rij is dynamically equivalent

to:
R̃ = r + FijF

ij

that is, to the Lagrangian (on M) which leads to the usual Einstein-Maxwell equations, [8].

Here, R̃ = Rij −
0

Dδk
(Bk

ij) and R̃ = gijR̃ij. Then, Einstein field equations

rij − 1

2
rgij = 8π(

em

T ij +
m

T ij)

(where
em

T ij is the stress-energy tensor of the electromagnetic field and
m

T ij, the stress-energy
tensor of matter) are equivalent to:

Gij = 8π
m

T ij, (18)

where

Gij = R̃ij − 1

2
R̃gij + B·ij

and B :=
3

2

BlBl

‖y‖2 +
1

2
Bi

hB
h
i (the term B·ij comes from the non-metricity of D); thus, the

electromagnetic stress-energy tensor
em

T ij is included in the generalized Einstein tensor Gij.
- Equations of motion of a (non-spinning) charged particle, [8], are (3):

α

Dyi = 0, y = ẋ, (19)

where α =
q

m
. For particles having the same ratio

q

m
, worldline deviation equations are:

α

D2wi = Ei
jw

j, α =
q

m
. (20)

4 Equations of motion of spinning charged particles

In General Relativity, worldlines of particles subjected only to the gravitational field, are
geodesics of the Levi-Civita connection of the space-time manifold (M, g); accordingly, equa-
tions of motion of charged particles under the action of the gravitational and electromagnetic
fields, are (3) (where it is usually considered that t = s, i.e., ‖ẋ‖ = 1). But, if the considered
particles are also spinning, then their equations of motion become more complicated. More in
detail:

1) Worldlines of spinning particles subject to the gravitational field are given by the Mathisson-
Papapetrou equations, [3], [6],[10]:

∇pi

ds
=

1

2
r i
j klẋ

jSkl, (21)

∇Sij

ds
= piẋj − pjẋi, (22)
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where r i
j kl = γi

jk,l − γi
jl,k + γh

jkγ
i
hl − γh

jlγ
i
hk, pi are the components of the 4-momentum of

the particle and Sij is the spin tensor. It is noteworthy that, if the particle is spinning, the
4-momentum and the 4-velocity of the moving object are generally non-collinear. From (22),

it follows that
∇Sij

ds
ẋj = pi − mẋi, where m := pjẋ

j, or, [10]:

pi = mẋi +
∇Sij

ds
ẋj. (23)

In order that the system be closed, some supplementary conditions are needed. Usually,
one assumes either Sijẋj = 0 (the Pirani condition) or Sijpj = 0 (the Tulczyjew, or Dixon
condition).

2) Worldlines of spinning particles subject to both gravitational and electromagnetic fields
are given by the Dixon-Souriau equations, [3]:

∇pi

ds
=

1

2
r i
j klẋ

jSkl + qF i
jẋ

j +
k

2
Skl∇iFkl, (24)

∇Sij

ds
= piẋj − pjẋi − k(SikF j

k − SjkF i
k ), (25)

where k is a constant.

In the following, we will adopt the Pirani condition:

Sijẋj = 0. (26)

Let us assume that the trajectories are parametrized by the arc length t = s; thus, setting
yi := ẋi, we will also have ẋi = li. The horizontal lifts:

p := piδi, S :=
1

2
Sijdxi ∧ dxj

of p and S are Finslerian tensors, for which we can write:

∇pi

ds
=

0

Dpi,
∇Sij

ds
=

0

DSij.

In terms of other connections D =
α

D of the family, we will have:

Dpi =
0

Dpi + Bi
jp

j, DSij =
0

DSij + Bi
hS

hj + Bj
hS

ih.

Choosing
α

2
:= k,

and under the condition (26), the spin precession equations (25) take the form:

DSij = piyj − pjyi, yi =
dxi

ds
; (27)

i.e., they become formally similar to (22).
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Contracting the above relation with Sij, we find that SijDSij = 0, which implies the already
known relation, [3], [5]:

SijS
ij = const.

Also, contracting (27) with yj = ẋj, we find for the momentum p and the velocity ẋ a
relation which is formally similar to (23):

pi = myi + yjDSij, yi = ẋi. (28)

In the following, we will determine the form of equations (24) in terms of D. In terms of

γi
jk =

0

Gi
jk and Bi

j, the torsion Ri
jk, (7), is expressed as:

Ri
jk = ylr i

l jk +
0

DkB
i
j −

0

DjB
i
k + Bl

jB
i
kl − Bl

kB
i
jl, (29)

with
0

Dk =
0

Dδk
. Further, taking into account that, [11],

0

Dkl
i = 0, the Pirani condition and (6),

we get:

SjkRi
jk = Sjk{ylr i

l jk −
α

2
(

0

DkF
i
j −

0

DjF
i
k) + M i

jk}, (30)

where M i
jk =

α2

4
{2F iFkj + F i

[jFk]}.

The derivatives
0

DkF
i
j coincide with their Levi-Civita counterparts on M. Hence, from the

Maxwell equations, we have:
0

DkF
i
j −

0

DjF
i
k = −

0

DiFjk = −∇iFjk. We thus get:

Sjk(r i
l jky

l +
α

2
∇iFjk) = Sjk(Ri

jk − M i
jk).

With
α

2
= k as above, we recognize the terms in the right hand side of (24). We can thus

write:
0

Dpi =
1

2
Sjk(Ri

jk − M i
jk) + qF i

jẋ
j.

Passing to the D-covariant Dpi, equations (24) take the form:

Dpi =
1

2
Sjk(Ri

jk − M i
jk) + qF i

jy
j + Bi

hp
h. (31)
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CRIME   SCENE   INVESTIGATION   THROUGH   DNA   TRACES 

   USING BAYESIAN   NETWORKS 
 

ANDRADE Marina, (PT),   FERREIRA Manuel Alberto M.,  (PT) 
 
 

Abstract. The use of biological information in crime scene identification problems is becoming 
more and more common. In this work, a crime scene is presented and used to exemplify the use 
of Bayesian networks, to analyse the information contained in a mixture DNA trace, referring to 
a crime in which there are two victims’ and two suspect’s involved. It is also made some 
discussion about the hypotheses to be considered in order to make them compatible with the 
possible information extracted from the mixture trace, that constitutes the evidence. 
 
Key words: Mixture traces, forensic identification, Bayesian networks, DNA profiling. 
 
Mathematics Subject Classification:  62C10. 

 
 

1 Introduction 

 
 A crime has been committed and two persons, V1 and V2, were murdered. One mixture trace 
was found and S1 and S2 are potential suspects. Their DNA profiles were measured and considered 
to be compatible with the mixture trace.  
 Possibly a fight occurred during the assault and some material was produced. It is acceptable 
that the individuals who perpetrated the crime could have left some of their genetic material in the 
trace. 

 The crime scene is analysed in section 2. It will be presented the evidence, E, and explained 
the hypotheses to be considered. 

 In section 3 the Bayesian network – example of a probability expert system - built expressly 
to perform the necessary calculations is shown1. Then are discussed the number, quite large, and the 
significance of the results that is possible to obtain. 

 

                                                 
1 To perform the calculations it is mandatory to apply repeatedly the Bayes’ Law. This leads to very complicated 
computations impossible to perform algebraically. So the use of a probabilistic expert system is needed. 
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 In section 4 the numerical results will be seen. In section 5 a brief discussion is outlined. 

 With the geneticist Sewall Wright, in the beginning of the 20th century, began the use of 
networks transporting probabilities. In (Dawid et al., 2002) it is described this new approach to 
problems of the kind of the one described above. The conception and use of Bayesian networks to 
analyse problems in forensic identification inference, was initially done there, followed by (Evett et 
al., 2002), (Mortera, 2003) and (Mortera et al., 2003). The analysis of a crime scene analogous to 
the considered in this work, but with two victims’ and one perpetrator and two mixture traces was 
presented in (Andrade and Ferreira, 2009). About this subject see (Andrade and Ferreira, 2011a). 

 

2 Evidence and Hypotheses 
 

To summarize the evidence it is presented in Table 1 the DNA profiles of the victims’ and the 
suspect’s, V1, V2, S1, S2, and the trace found at the crime scene, E.   
 

 V1 V2 S1 S2 E 
VWA 14,15 16,17 14,14 14,17 14,15,16,17 
D21S11 29,31.2 28,28 30,31.2 28,32.2 28,29,30,31.2,32.2 
SE33  19,30.2 17,30.2 17,18 16,19 16,17,18,19,30.2 

 

Table 1: Two Victims’ and Two Suspect’s DNA Profiles and Evidence. 

 

In Table 2 the allele frequencies, for each marker found in the trace, are presented. 
 

 p14 p15 p16 p17  
VWA 0.1101 0.1197 0.1827 0.2753  
 p28 p29 p30 p31.2 p32.2 
D21S11 0.1674 0.2136 0.2437 0.1138 0.0894 
 p16 p17 p18 p19 p30.2 
SE33 0.0590 0.0660 0.0833 0.0868 0.0140 

 

Table 2: Allele frequencies. 
 

The allele frequencies in Table 2 were collected in the database “The Distribution of Human DNA-
PCR Polymorphisms”. 

The crime trace can contain DNA from up to four unknown contributors, in addition to the victims 
and/or the suspects.  

If the DNA of Si with i = 1, 2 is presented in the trace this will place him/her at the crime scene and 
consequently as one of the possible perpetrators. 

The court has to determine if each suspect is or is not guilty. The hypotheses to be evaluated are: 

H1: S1 is a contributor to the trace but S2 is not, given the  evidence. 

H2: S2 is a contributor to the trace but S1 is not, given the  evidence. 

H3: S1 and S2 are both contributors to the trace, given the  evidence. 

H4: Neither S1 nor S2 are contributors to the trace, given the  evidence. 

 



 

Aplimat – Journal of Applied Mathematics
 

volume 5 (2012), number 3  169
 

The respective events probabilities are called p10, p02, p12, p00, where 0 mentions the absence of the 
respective, in order, individual DNA in the trace. So: 

If p00 > p10 + p02 + p12 the two suspects are acquitted. If not it must be seen if p12 > p10 + p02 case at 
which the two suspects are both placed at the crime scene. If not p10 must be compared with p02. If 
p10 > p02 the evidence favours the presence of S1 at the crime scene and the acquaintance of S2. The 
contrary happens when p02 > p10.      

 

3 Bayesian Network for One Marker  
 

The probabilities referred above will be computed using the Bayesian network of Figure 1. 

 

 
Figure 1: Marker network. 

 

Nodes vi, i = 1, 2, sj, j = 1, 2 and uk, k = 1, 2, 3, 4, in Figure 1 are themselves Bayesian networks that 
represent the genetic structure and inheritance of each individual - the victims, the suspects and the 
unknowns, respectively - and have all the same structure. The vi, i = 1, 2 and sj, j = 1, 2 constitute 
data of the problem. The nodes in white, at the left of the node mix, that represents the mixture and 
it is also comprised by known data (E), represent the relations in which the nodes vi, i = 1, 2 or sj, j 
= 1, 2  may contribute to the mixture. The nodes in white, at the right of the node mix, except the uk, 
k = 1, 2, 3, 4 and n_unk - that is a counter for the number of unknowns in the mixture – represent 
the relations in which the uk, k = 1, 2, 3, 4 may contribute to the mixture. Node target collects the 
states and the respective probabilities.  

As it is mandatory to consider the possible contribution of till four unknown individuals to the 
mixture, the number of admissible states jumps to 80, numbered from 0 - no one in the mixture - to 
79 - the two victims, the two suspects and the four unknowns are all in the mixture. Of course these 
two states are unrealistic and there are other ones also unrealistic because are incompatible with the 
minimum number of contributors to the mixture, according to the evidence inserted. These 
unrealistic states are discarded by the network but have to be considered conceptually in its 
building. 
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Among the realistic states only a few ones are interesting to the problem: the corresponding to the 
hypotheses events defined above. The network was implemented using Hugin2 software3.  

 

4 Results  
 

For marker VWA, alleles 14, 15, 16, 17 are considered, Table 1. And so they are represented in the 
Figure 1 Bayesian network by A, B, C, D, respectively. E is considered with 0 frequency. When 
considering marker D21S11, the alleles are 28, 29, 30, 31.2 and 32.2 corresponding to A, B, C, D, 
E. In marker SE33 the alleles are 16, 17, 18, 19, 30.2 corresponding to A, B, C, D, E. In the whole 
cases x accumulates the remaining frequencies of the non considered alleles for each marker. 

The results obtained are presented in Table 3. The values in line rescale are constituted by the ratios 
of the products of the values in the respective column4 by the total sum of the four products. The 
values in this line are the used ones in the tests described in section 2. 

 

 p00 p12 p10 p02 
VWA 0.2134 0.2699 0.2473 0.2699 
D21S11 0.0752 0.5354 0.1335 0.2554 
SE33 0.0091 0.8868 0.0454 0.0585 
Rescale 0.0011 0.9576 0.0112 0.0301 

 
Table 3: Results. 

Following the procedure recommended in section 2 the conclusion is that both suspects are placed 
at the crime scene – note the great value of p12 = 0.9576. For marker VWA, alone, S2 is placed at 
the crime scene but S1 is not. But note that the probability is not very convincing: p02 is only 
slightly greater that p10. For markers D21S11 and SE33, each of them alone, both suspects are 
placed together at the crime scene, in a much more convincing way for SE33. 

 

5 Discussion  
 

The problems and the difficulties posed in the interpretation and evaluation of DNA evidence are 
very well outlined, for instance, in (Andrade and Ferreira, 2011) and (Lauritzen, 2003). As in 
general they are stated in probabilistic terms leads to some confusion to the judges, when they have 
to issue a decision, because of its difficulty in interpreting the meaning of the measure of 
                                                 
2 www.hugin.com  
3 To compute the interesting probabilities there must be considered the following states probabilities:  

- p00: 1, 2, 3, 16, 17, 18, 19, 32, 33, 34, 35, 48, 49, 50, 51, 64, 65, 66 and 67,  

- p12: 12, 13, 14, 15, 28, 29, 30, 31, 44, 45, 46, 47, 60, 61, 62, 63, 76, 77, 78 and 79, 

- p10: 8, 9, 10, 11, 24, 25, 26, 27, 40, 41, 42, 43, 56, 57, 58, 59, 72, 73, 74 and 75, 

- p02: 4, 5, 6, 7, 20, 21, 22, 23, 36, 37, 38, 39, 52, 53, 54, 55, 68, 69, 70 and 71 

from the output given by Hugin after the inserted evidence. 

 
4 It is possible to multiply the respective probabilities, for each marker, because it is assumed independence between 
and across marker, i.e., linkage and Hardy-Weinberg Equilibrium (Andrade, 2007). 
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probability5. In this situation the Bayesian approach is the most clear to explain the significance of 
the evidence through the comparison of the hypotheses likelihood ratios see (Ferreira and Andrade, 
2009). So the use of Bayesian networks to compute the interesting probabilities is a natural option, 
due to the intractable algebraic manipulation, when attempting to use successively the Bayes’ Law 
in very complicated situations.  

When the inference tool is the hypotheses tests, in these problems, they must be defined for each 
type of problem. This was exemplified with the four hypotheses suggested for this crime scene 
investigation. Only after this definition results clear which probabilities must be computed among a 
huge of possible ones. 

Note finally that this methodology allows to conclude for the absolution of a suspect but not for the 
conviction. Eventually it only places the suspect in the crime scene. In this case further police work 
must be made.  
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Abstract. The use of DNA evidence in problems of civil and criminal identification is becoming 
greater and greater. Being necessary to evaluate the weight of that evidence one of the most powerful 
tools to help in it is the Bayesian networks. This is exemplified with the presentation of a civil 
identification problem and of a criminal identification problem in this work. 
 
Key words: Bayesian networks, DNA database profiles, civil and criminal identification 
problems.  
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1 Introduction 

 
In this work it is intended to exemplify how to apply Bayesian networks in civil and criminal 
identification problems. The first objective is to give a methodology, with the appropriate tools, to 
use in a correct way a DNA profiles database in the problem of civil identification when there is a 
partial match between the genetic characteristic of an individual whose body was found, one 
volunteer who claimed a family member disappearance and one sample belonging to the DNA 
database. 

In section 2 the civil identification case to be studied is presented and discussed. The Bayesian 
network, that allows the efficient probabilities computation, determinant to evaluate the hypothesis 
in comparison, is presented.  In section 3, real examples clarifying the application are exhibited. 
And in section 4 a brief discussion is outlined related with this objective. 

The second objective is to illustrate the use of biological information in crime scene identification 
problems, example of a criminal identification problem. In section 5 a crime scene, the 
correspondent evidence, E, and the hypotheses to be considered are presented. In section 6 the 
Bayesian network built expressly to perform the calculations is shown. And in section 7 the 
numerical results will be seen. Finally in section 8 a brief discussion, related with this second 
objective is presented. 
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General conclusions and references are presented at the end of the paper. 

 
 

2 The Civil Identification Problem 

 
Frequent examples of civil identification problems are the case of a body identification, jointly with 
information of a missing person belonging to a known family, or the identification of more than one 
body resultant of a disaster or an attempt. And even immigration cases in which it is important to 
establish family relations. 

The establishment and use of DNA database files for a great number of European countries was an 
incentive to study the mentioned problems and the use of these database files for identification, 
(Corte-Real, 2004), (Martin, 2004) and (Andrade and Ferreira, 2009a, 2010). In this context it may 
be useful when unidentified corpses appear and may be identified by comparison of their DNA 
profiles with family volunteer's profiles. 

The Portuguese law nº 5/2008 establishes the principles for creating and maintaining a database of 
DNA profiles for identification purposes, and regulates the collection, processing and conservation 
of samples of human cells, their analysis and collection of DNA profiles, the methodology for 
comparison of DNA profiles taken from the samples, and the processing and storage of information 
in a computer file1. 

So the database is, in general terms, composed of a file containing information of samples from 
convicted offenders with 3 years of imprisonment or more - ߙ; a file containing the information of 
samples of volunteers -ߚ; a file containing information on the “problem samples” or “reference 
samples” from corpses, or parts of corpses, or things in places where the authorities collect samples 
  .ߛ -

It matters to study civil identification problems, mainly if there is a partial match between the 
genetic characteristic of an individual whose body was found and one volunteer who claimed a 
family member disappearance and one sample in the database file ߛ. 

2.1   The Case of Partial Match with the Volunteer and one ࢽ െ  ࢋ࢒࢖࢓ࢇ࢙

 
When there is an individual claiming for a disappeared person who gives his/her genetic 
characteristic, ܥ௏௢௟, to be compared with the genetic characteristic of a body found, the first action 
to do is to check if there is a match between the genetic characteristic of the individual whose body 
was found, ܥ஻ி, and any sample of the DNA file, ߛ - sample, which is named “problem samples”. 
 
If there is a partial match between the genetic profile of the individual whose body was found and 
one sample in the file ߛ, the evidence now is  ܧ ൌ ൫ܥ஻ி, –	ߛ ,݈݁݌݉ܽݏ	  .௏௢௟൯ܥ
 
Then it follows the establishment of the hypotheses of interest: the identification hypothesis 
ሺܪூ஽ሻ	versus the non identification hypothesis ሺܪ௡௢௧	ூ஽ሻ: 
 

 .ூ஽: It is possible to reach an identification of the individual whose body was foundܪ
vs 

                                                 
1 The implementation of this process is not going very well. In the moment the number of samples in database is not 
significant. 
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 .ூ஽: It is not possible to reach an identification of the individual whose body was found	௡௢௧ܪ
 

After checking the possibility of a partial match between the profile of the individual whose body 
was found, ܥ஻ி, the sample in the file ߛ ,ߛ - sample, and the volunteer, ܥ௏௢௟, two different 
comparisons are made in order to obtain a measure either of the possible genetic relation between 
the individual whose body was found with the ߛ - sample (bf_match_gs?), or of the possible genetic 
relation between the individual whose body was found and the volunteer (bf_match_vol?). The 
possible answers are: yes or no. 
 
So the resulting states are: 
 

 A (yes, no) - defines the possibility of genetic relationship between the individual whose 
body was found and the ߛ - sample but not the volunteer; 
 

 B (no, yes) - defines the possibility of genetic relationship between the individual whose 
body was found and the volunteer but not the ߛ - sample; 
 

 C (yes, yes) - defines the possibility of genetic relationship between the individual whose 
body was found and both the volunteer and the ߛ - sample; 
 

 D (no, no) -  defines the possibility of genetic relationship between the individual whose 
body was found neither with the volunteer nor with the ߛ - sample; 

 
A, B define the identification hypothesis, ܪூ஽, and C, D define the non identification hypothesis, 
 ூ஽. B is a particular case: the simple problem studied in (Andrade and Ferreira, 2009a). Each of	௡௢௧ܪ
the four possible states probabilities provides a measure for each event, and the four are pairwise 
incompatible. 

Following the probabilities computation it is important to compare state D versus A, B, C; i.e., to 
evaluate the event “the individual whose body was found is not genetically related either with the  ߛ 
- sample or the volunteer”.  This comparison intends to evaluate the situation “the genetic 
information of the individual whose body was found is not compatible with the other genetic 
information available” and “the genetic information of the individual whose body was found is 
compatible with at least one of the remaining genetic information”. 

If D is accepted the process ends. And the body genetic information joins the file ߛ	 in the database. 
If D is discarded then it is necessary to perform a comparison between A, B and C events. If C is 
accepted the process ends and police intelligence investigations must be done. If C is discarded, 
finally A and B must be compared. If A is accepted the individual whose body was found is related 
with the ߛ - sample. If B is accepted the conclusion is that the individual whose body was found is a 
volunteer relative. 

 
 

3 The Bayesian Network for the Civil Identification Problem 

 
The comparisons described above are performed through the respective probabilities events ratios: 
the likelihood ratios, (Ferreira and Andrade, 2009). The hypothesis with the greatest probability is 
the accepted one. Thus the probabilities associated to the states A, B, C and D must be computed. In 
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order to do so a lot of intermediary conditional probabilities computation, that are impossible to do 
with algebraic manipulations, must be done. 
 
To overcome this situation those probabilities will be computed using the Bayesian network, see  
(Andrade and Ferreira, 2009) and (Andrade et al., 2010), in the Figure 12. 

 

 

Figure 1: Network for civil identification with one volunteer and one ࢽ െ  ࢋ࢒࢖࢓ࢇ࢙

 
The nodes ancpg, ancmg, ancgampg and ancgammg are of class founder: a network with only one 
node which states are the alleles in the problem where the respective frequencies in the population 
are specified, and represent the volunteer's ancient paternal and maternal inheritance.  

The nodes volgt, gamsgt and bfgt are of class genotype: the volunteer, the ߛ		- sample and the body 
found genotypes. 

Nodes tancmg, tancpg, tancgamspg and tancgamsmg specify whether the correspondent allele is 
or is not the same as the volunteer and the same as the ߛ	- sample.  

If bf_match_vol? is true then the volunteer's allele will be identical with the body found allele, 
otherwise the allele is randomly chosen in the population and if bf_match_gs? is true then the  ߛ		- 
sample's allele will be identical with the body found allele, otherwise the allele is randomly chosen 
in the population.  

The nodes bfancg and bfgamsg define the Mendel inheritance in which the allele of the individual 
whose body was found is chosen at random from the ancient's paternal and maternal gene.  

Node counter counts the number of true states of the preceding nodes, accounting the results for the 
A, B, C, D possible events. 

 

3.1 Examples 

 
To exemplify the described methodology, in Table 1 the allele frequencies, real ones, for some 
genetic markers  and, for each marker, possible evidence profiles for the body found ܥ஻ி, the ߛ - 
sample and the volunteer ܥ௏௢௟ are presented. 

                                                 
2The networks mentioned in this work were implemented using Hugin software: www.hugin.com  
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Marker  Allele Frequencies  ሼࡲ࡮࡯, ࢽ – ,ࢋ࢒࢖࢓ࢇ࢙  ሽ࢒࢕ࢂ࡯
D21S11   ૛ૡ࢖  ૛ૢ࢖ ૜૙࢖ ૜૚.૛࢖ ሼሺ29,30ሻ, ሺ28,30ሻ, ሺ29,31.2ሻሽ 

0.1647  0.2136  0.2437  0.1138 
F13A1   ૞࢖  ૟࢖ ૠ࢖ ૡ࢖ ሼሺ6,7ሻ, ሺ7,8ሻ, ሺ5,6ሻሽ 

0.1985  0.2890  0.3377  0.0112 
TH01   ૟࢖  ૠ࢖ ૢ࢖ ૜.ૢ࢖ ሼሺ7,9ሻ, ሺ9,9.3ሻ, ሺ6,7ሻሽ 

0.2044  0.1696  0.1984  0.2748 
TPOX   ૡ࢖  ૢ࢖ ૚૙࢖ ૚૚࢖ ሼሺ8,11ሻ, ሺ8,10ሻ, ሺ9,11ሻሽ 

0.5053  0.0974  0.0647  0.2893 
VWA31   ૚૞࢖  ૚૟࢖ ૚ૠ࢖ ૚ૡ࢖ ሼሺ16,17ሻ, ሺ15,17ሻ, ሺ16,18ሻሽ 

0.1216  0.2300  0.2649  0.1859 
 

Table 1: Allele frequencies and genetic profiles. 
 
In Table 2 the state probabilities, the node counter states, see Figure 1, are presented. 
 

States D21S11 F13A1 TH01 TPOX VWA31 
A 0.5322 0.3296 0.4987 0.2661 0.4548 
B 0.1296 0.2226 0.1978 0.2688 0.2251 
C 
D  

0.2274 
0.1108 

0.1904 
0.2574 

0.1692 
0.1343 

0.1539 
0.3112 

0.2092 
0.1109 

 
Table 2: State probabilities. 

 
And in Table 3 the decisions, consequence of the procedures proposed in section 2.1, are presented 
for each example evidence profile. 
 

Evidence Profiles  Decision 

ሼሺ29,30ሻ, ሺ28,30ሻ, ሺ29,31.2ሻሽ  Police intelligence investigations must be done 

ሼሺ6,7ሻ, ሺ7,8ሻ, ሺ5,6ሻሽ  The individual whose body was found is a volunteer 
relative 

ሼሺ7,9ሻ, ሺ9,9.3ሻ, ሺ6,7ሻሽ  Police intelligence investigations must be done 

ሼሺ8,11ሻ, ሺ8,10ሻ, ሺ9,11ሻሽ  The individual whose body was found is a volunteer 
relative 

ሼሺ16,17ሻ, ሺ15,17ሻ, ሺ16,18ሻሽ  Police intelligence investigations must be done 

 
Table 3: Decisions for each evidence profile. 

 

4 First Discussion 

 
Using the Bayesian network built expressly for civil identification problem, in which there is a 
partial match between an individual whose body was found, a volunteer who claimed a relative 
disappearance supplying his/her own genetic information and a DNA database file sample existent, 
it is possible to perform the sequence of three hypothesis tests described above. Thus it is possible 
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to decide first if an identification is possible or not; second if an effective identification is possible 
or not; third to make the identification. So with a procedure technically simple, it is possible to 
make an adequate and correct use of a DNA database. 

As the examples illustrate, the procedure leads almost surely to a decision: whether it is to close the 
case identifying the individual, or concluding that it is not possible any identification, or to go on 
with the police investigations. 

 
 

5 Crime Scene Investigation 

 
A crime has been committed. Two persons, V1 and V2, were murdered. One mixture trace was 
found. S1 and S2 are potential suspects. S1 and S2 DNA profiles were measured and considered to be 
compatible with the mixture trace.  

Being possible that a fight occurred during the assault, producing some material, it is acceptable 
that the individuals who perpetrated the crime could have left some of their material in the trace. 

To analyse the crime scene, in this section, it will be presented the evidence, E, and the hypotheses 
to be considered. 

To summarize the evidence it is presented in Table 4 the DNA profiles of the victims’ and the 
suspect’s, V1, V2, S1, S2, and the trace found at the crime scene, E.   
 

 V1 V2 S1 S2 E 

TH01 9,9.3 9,9.3 7,8 6,9 6,7,8,9,9.3 

F13A1 5,7 5,6 3.2,5 6,7 3.2,5,6,7 

FGA  22,26 22,23 24,24 19,24 19,22,23, 24,26 
Table 4: Two victim’s and two suspect’s DNA profiles and evidence. 

In Table 5 the allele frequencies, for each marker found in the trace, are presented. 
 

 p6 p7 p8 p9 p9.3 

TH01 0.2044 0.1696 0.1386 0.1984 0.2748 

 p3.2 p5 p6 p7  

F13A1 0.0806 0.1985 0.2890 0.3377  

 p19 p22 p23 p24 p26 

FGA 0.0684 0.1740 0.1606 0.1325 0.0321 
Table 5: Allele frequencies. 

The allele frequencies in Table 5 are the Portuguese population frequencies collected in the 
database “The Distribution of Human DNA-PCR Polymorphisms”, since the mentioned case is 
supposed to have occurred in Portugal. 

The crime trace can contain DNA from up to four unknown contributors, in addition to the victims 
and/or the suspects.  



 

Aplimat – Journal of Applied Mathematics
 

volume 5 (2012), number 3  179
 

If the DNA of Si with i = 1, 2 is presented in the trace this will place him/her at the crime scene and 
consequently as one of the possible perpetrators. 

The court has to determine if each suspect is or is not guilty. The hypotheses to be evaluated are: 

H1: S1 is a contributor to the trace but S2 is not, given the  evidence. 

H2: S2 is a contributor to the trace but S1 is not, given the  evidence. 

H3: S1 and S2 are both contributors to the trace, given the  evidence. 

H4: Neither S1 nor S2 are contributors to the trace, given the  evidence. 

The respective events probabilities are called p10, p02, p12, p00, where 0 mentions the absence of the 
respective, in order, individual DNA in the trace. So: 

If p00 > p10 + p02 + p12 the two suspects are acquitted. If not it must be seen if p12 > p10 + p02 case at 
which the two suspects are both placed at the crime scene. If not p10 must be compared with p02. If 
p10 > p02 the evidence favours the presence of S1 at the crime scene and the acquaintance of S2. The 
contrary happens when p02 > p10.      

 

 

6 Marker Bayesian Network 

 
The probabilities referred above are very hard to compute algebraically, demanding a great use of 
Bayes’ Law because of the number of the dependencies to be considered. So they will be computed 
using the Bayesian network of Figure 2. 

 

 
Figure 2: Marker network 

Nodes vi, i = 1, 2, sj, j = 1, 2 and uk, k = 1, 2, 3, 4, in Figure 2 are themselves Bayesian networks that 
represent the genetic structure and inheritance of each individual - the victims, the suspects and the 
unknowns, respectively - and have all the same structure. The vi, i = 1, 2 and sj, j = 1, 2 are 
represented in red colour meaning that the respective profiles are known and constitute data of the 
problem. The nodes in white, below the node mix, that represents the mixture and is also in red 
colour because it is comprised by known data (E), represent the relations in which the nodes in red 
may contribute to the mixture. The nodes in white, above the node mix, except the uk, k = 1, 2, 3, 4 
and n_unk - that is a counter for the number of unknowns in the mixture – represent the relations in 
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which the uk, k = 1, 2, 3, 4 may contribute to the mixture. Node target, in green colour, collects the 
states and the respective probabilities.  

As it is mandatory to consider the possible contribution of till four unknown individuals to the 
mixture, the number of admissible states jumps to 80, numbered from 0 - no one in the mixture - to 
79 - the two victims, the two suspects and the four unknowns are all in the mixture. Of course these 
two states are unrealistic and there are other ones also unrealistic because are incompatible with the 
minimum number of contributors to the mixture, according to the evidence inserted. These 
unrealistic states are discarded by the network but have to be considered conceptually in its 
building. 

Among the realistic states only a few ones are interesting to the problem: the corresponding to the 
hypotheses events defined above. 

 
 

7 Numerical Results 
 

For marker TH01, alleles 6, 7, 8, 9, 9.3 are considered, Table 4, and so they are represented in the 
Figure 1 Bayesian network by A, B, C, D, E, respectively. When considering marker F13A1, the 
alleles are 3.2, 5, 6, 7, corresponding to A, B, C, D. E is considered with 0 frequency. In marker 
FGA the alleles are 19, 22, 23, 24, 26 corresponding to A, B, C, D, E. In any case x accumulates the 
remaining frequencies of the non considered alleles for each marker. 

The results obtained using Table 4 data together with Table 5 frequencies are in Table 6, where the 
values in line rescale are constituted by the ratios of the products of the values in the respective 
column3 by the total sum of the four products. The values in this line are the used ones in the tests 
described in section 5. 

 

 p00 p12 p10 p02 
TH01 0.0830 0.5029 0.2773 0.1367
F13A1 0.0986 0.4544 0.3279 0.1187
FGA 0.0378 0.4398 0.0820 0.4398
Rescale 0.0027 0.8709 0.0646 0.0618

 

Table 6: Results. 

 

Following the procedure outlined in section 5 the conclusion is that both suspects are placed at the 
crime scene – note the great value of p12 = 0.8709. For TH01 and F13A1, alone, the conclusion is 
the same. But for FGA this does not happens. Note that, p12 = p02. This is justified by the fact that in 
marker FGA there are two rare alleles, p19 = 0.0684 and p26 = 0.0321, that are in consequence “good 
identifiers”. Each one is present in V1 and S2. Besides S1 is homozygote for this marker and this 
genotype may be hidden by S2’s  genotype. In consequence it is natural that p12 and p02 are of the 
same magnitude. 

 

To compute the interesting probabilities there must be considered the following states probabilities:  

                                                 
3 It is possible to multiply the respective probabilities, for each marker, because it is assumed independence between 
and across marker, i.e., linkage and Hardy-Weinberg Equilibrium [8]. 
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- p00: 1, 2, 3, 16, 17, 18, 19, 32, 33, 34, 35, 48, 49, 50, 51, 64, 65, 66 and 67,  

- p12: 12, 13, 14, 15, 28, 29, 30, 31, 44, 45, 46, 47, 60, 61, 62, 63, 76, 77, 78 and 79, 

- p10: 8, 9, 10, 11, 24, 25, 26, 27, 40, 41, 42, 43, 56, 57, 58, 59, 72, 73, 74 and 75, 

- p02: 4, 5, 6, 7, 20, 21, 22, 23, 36, 37, 38, 39, 52, 53, 54, 55, 68, 69, 70 and 71 

from the output given by Hugin after the inserted evidence. 

 
 

8 Second Discussion 
 

Criminal identification problems are examples of situations, in which forensic approach, the DNA 
profiles study is usual. But the interpretation and evaluation of DNA evidences is not an easy task, 
see for instance, (Andrade and Ferreira, 2011) and (Lauritzen, 2003). Also the fact that in general 
they are posed in probabilistic terms leads to some confusion to the judges when they have to issue 
a decision. In this situation the Bayesian approach is maybe the most clear to explain the 
significance of the evidence, see (Ferreira and Andrade, 2009). And for it the use of Bayesian 
networks to compute the interesting probabilities is a natural option, as it was exemplified in this 
paper. 

It is important to define which probabilities, among the possible ones to compute, interest to the 
problem. And in consequence to define, for each case, which hypotheses tests to implement. Of 
course they are Bayesian tests. 

Note finally, as this example shows, that this methodology may conclude for the absolution of a 
suspect but not for the conviction. It only can place the suspect in the crime scene. Further work of 
the police must be made to conclude by the conviction or absolution. 

 
 

9 General Conclusions 
 

The use of networks transporting probabilities began with the geneticist Sewall Wright in the 
beginning of the 20th  century (1921). (Dawid et al., 2002) describes this new approach to problems 
of the kind of the one described above. The construction and use of Bayesian networks to analyse 
problems in forensic identification inference, was initially done there, followed by (Evett et al., 
2002), (Mortera, 2003) and (Mortera et al., 2003).  

The civil identification problem presented obviously may occur in situations of catastrophes or 
accidents at which it is possible to have unidentified victims. The use of DNA evidence is quite 
recent in helping to solve this situations. It was shown in this work how the use of Bayesian 
networks is useful to evaluate that kind of evidence. 

The analysis of a crime scene analogous to the considered in this work, but with two victims’ and 
one perpetrator and two mixture traces was presented in (Andrade and Ferreira, 2009, 2011b, 
2011c). A problem dealing with a crime scene analogous to the one considered in this work may be 
seen at (Andrade and Ferreira, 2011a). Also was shown in this work how useful are the Bayesian 
networks in the evaluation of DNA evidence in problems of criminal identification. 
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RISK   MANAGEMENT   OF  EQUITY   PORTFOLIO    CONSTRUCTION 

 ON  THE  BASIS 
   OF  DATA   ENVELOPMENT   ANALYSIS APPROACH 

 
ARSHINOVA Tatyana, (LV) 

 
 

Abstract. The research focus of the scientific paper is on the problem of equity portfolio 
construction. The author recommends applying frontier analysis technique such as Data 
Envelopment Analysis to the performance measurement of emitters. Using modern computer 
technologies, the author has calculated efficiency score of twenty Baltic companies which are 
quoted at NASDAQ OMX Riga and NASDAQ OMX Tallinn stock exchanges on the basis of 
DEA CCR approach and elaborated proposals for effective asset allocation.  
 
Keywords: Data Envelopment Analysis, Decision Making Units (DMUs) portfolio 
construction, DEA, performance measurement 

 
 
Introduction 
 
 Actual macroeconomic events are indicative of Eurozone crisis threats. In late October 2011 
European leaders obtained an agreement from banks to take 50% loss on the face value of their 
Greek debt, decreasing its value by 100 billion euro. They also neared agreement on boosting the 
firepower of the Continent's bailout fund to around €1 trillion to help it protect larger economies 
like Italy and Spain from the sort of market pressures that pushed Greece to need a rescue. In 
September 2011 debt rating agency Standard & Poor’s downgraded Italy one level, from A +/A+1 
to A/A-1, assessing the prospects for economic growth in Italy in the category of “negative.” The 
remaining uncertainty in Europe’s recovery and the future of euro impacts activities of all 
economical subjects. Thus, European companies and potential investors become especially 
vulnerable. 
 The construction of profitable and effective equity portfolio is among the most important 
investment problems. Traditionally the portfolio construction process includes four steps: creation 
of risk profile, asset allocation, correction of the portfolio structure corresponding to the investor’s 
requirements and regular control over the portfolio structure to avoid the overweight risk in a 
particular asset class. Currently risk measurement and asset allocation stages are completed using 
methods of technical and fundamental analysis, Modern Portfolio Theory by H.Markovitz, Sharpe 
ratio analysis etc. The main principle of technical analysis is an assumption that the market price of 
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an asset includes information on all influencing factors; the development strategy of the company, 
balance data and perspectives of development are not estimated.  However, fundamental analysis is 
based on the estimation of financial statements and competitive advantages. The Modern Portfolio 
Theory is the theory of investment which attempts to maximize portfolio expected return for a given 
amount of portfolio risk, or equivalently minimize risk for a given level of expected return, by 
carefully choosing the proportions of various assets. Nevertheless, efforts to translate the theoretical 
foundation into a viable portfolio construction algorithm have been plagued by technical difficulties 
stemming from the instability of the original optimization problem with respect to the available 
data. The results which are obtained on the basis of the mentioned approaches often provide 
inconsistent conclusions concerning potential investment opportunities and do not provide the 
possibility to evaluate the enterprise activity of emitters as a process. 
 Methods of frontier analysis ensure a principally different approach to the problem of equity 
performance measurement, estimating the performance of production process of each company. 
They provide an opportunity of complex analysis of company’s efficiency level for a certain period 
of time and comparison of it among investigated objects. The objective of the author’s research is to 
improve and supplement the methodology of risk measurement before the equity portfolio 
construction on the basis of the Data Envelopment Analysis approach. 
 In the circumstances of unstable macroeconomic environment and competition, profitability 
and market capitalization are among the most important indicators of stability and development of 
companies for the potential investor. Total operating revenue is a measure of the market value of 
company’s production and the demand for it. Market capitalization is a parameter that reflects 
market value of all of a company’s outstanding shares. It is a basic determinant of asset allocation 
and risk-return parameters. In this connection, the author analyzed the performance of a set of 
Baltic companies, assuming total operating revenue and market capitalization value as outputs. The 
objects of the research are Baltic companies which are quoted at NASDAQ OMX Riga and 
NASDAQ OMX Tallinn stock exchanges; their efficiency level is analyzed using data for the 
second quarter 2011. Evaluating the performance on the basis of the Data Envelopment Analysis 
approach, the author included into the set of investigated objects companies that are considered to 
be liquid at the Baltic stock markets (according to the amount of operations): JSC “Latvijas 
Balzāms”, JSC “Grindeks”, JSC “Latvijas gāze”, JSC “Liepājas metalurgs”, JSC “Latvijas 
Kuģniecība”, JSC “Olainfarm”, JSC “Rīgas kuģu būvētava”, JSC “SAF Tehnika”, JSC “Ventspils 
nafta”, JSC “Valmieras stikla šķiedra”, JSC “Arco Vara”, JSC “Baltika”, JSC “Ekspress Grupp”, 
JSC “Harju Elekter”, JSC “Olympic Entertainment Group”, JSC “Silvano Fashion Group”, JSC 
“Tallink Grupp”, JSC “Tallina Kaubamaja”, JSC “Tallina Vesi”, JSC “Viisnurk”. 
 
 
1 Methods of frontier data analysis 
 
The progress of production technology and increase of production volumes have stimulated the 
development of performance measurement methodology. In the second part of the 20th century 
there were introduced methods of frontier data analysis that provided a qualitatively different 
approach to the problem. According to the methodology of methods of frontier data analysis, the 
efficiency score of investigated DMUs is calculated as a distance from the point that defines the 
production process of a Decision Making Unit (DMU) to the certain efficiency frontier. Entities that 
are functioning on the efficiency frontier are considered to be absolutely technically efficient; 
inefficiency of other DMUs is increasing together with extension of the distance to the efficiency 
frontier. The value of efficiency score is fluctuating from zero to one.  
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Methods of frontier analysis may be divided into two groups: parametric (Stochastic Frontier 
Approach (SFA), Distribution-Free Approach (DFA), Thick Frontier Approach (TFA)) and non-
parametric (Data Envelopment Analysis (DEA), Free Disposal Hull (FDH)) methods.  
In accordance with parametric approaches, the efficiency frontier is constructed on the basis of 
econometric modelling, usually in form of Cobb-Douglas (log-linear) production function. 
Econometric analyses include two error components: an error term that captures inefficiency (ui) 
and a random error (vi). Parametric methods have significant advantages – they provide the 
possibilities to use panel data, to distinguish the random noise from inefficiency and to calculate the 
standard error of efficiency measurement results. Nevertheless, the stochastic approaches of 
performance measurement presume the comparison of investigated DMUs efficiency to the 
theoretically developed benchmark frontier; therefore the optimal combinations of inputs and 
outputs sometimes are not achievable practically. The application of parametric methods also 
requires observance of the restrictions imposed on the distributional assumptions on the 
inefficiencies and random error.[6] 
In contrast to the econometric approaches, non-parametric methods are based on the hypothesis that 
the efficiency frontier is generated from the empirical results of the most efficient DMUs i.e. 
benchmarks that „float” on the piecewise linear frontier. The level of technical efficiency of these 
DMUs is 100%. However, the level of scale efficiency that defines the optimality of output and 
input proportions may have different values even among absolutely technically efficient DMUs. 
While mathematical, non-parametric methods require few assumptions when specifying the best-
practice frontier, they generally do not account for random errors [7]. 
 
 
2 The CCR DEA Model 
 
 The CCR DEA model was developed by Charnes, Cooper and Rhodes in 1978 to evaluate 
the performance of Decision Making Units (DMUs). To allow for applications to a wide variety of 
activities, the term DMU might be used to refer to any entity that is to be evaluated in terms of its 
abilities to convert inputs into outputs. These evaluations can involve governmental agencies and 
non-profit organizations as well as business firms, hospitals and educational institutions.  
 The production process might be aimed either at minimization of resources or maximization 
of production volumes. The orientation of the model should be aimed at controllable variables. 
Volumes of resources are usually over control of management; therefore only input-oriented model 
will be examined in the paper. 
 The measurement of comparative efficiency is based on the assumption that the performance 
of each DMU is calculated in comparison to n investigated DMUs. Each DMU consumes varying 
amounts of m different inputs to produce s different outputs. Specifically, DMUj consumes amount 
xij of input i and produces amount yrj of output r. It is necessary to assume that xij ≥ 0 and yrj  ≥ 0 
and further to assume that each DMU has at least one positive input and one positive output value. 
Primarily the DEA model was expressed in fractional, i.e. ratio-form. In this form the ratio of 
outputs to inputs is used to measure the relative efficiency of the DMUj = DMU0 to be evaluated 
relative to the ratios of all of the j = 1,2, ..., n DMUj. The CCR construction can be interpreted as 
the reduction of the multiple-output/multiple-input situation (for each DMU) to that of a single 
'virtual' output and 'virtual' input. For a particular DMU the ratio of this single virtual output to 
single virtual input provides a measure of efficiency that is a function of the multipliers. In 
mathematical programming parlance, this ratio, which is to be maximized, forms the objective 
function for the particular DMU being evaluated. A set of normalizing constraints (one for each 
DMU) reflects the condition that the virtual output to virtual input ratio of every DMU, including 
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DMUj = DMU0, must be less than or equal to unity. [4] The mathematical programming problem 
may thus be stated as (1): 
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where  
h0 – the function of virtual output and virtual input ratio of DMU0; 
ur – the output multiplier of DMU0; 
vi – the input multiplier of DMU0; 
yr0 – the output of DMU0; 
xi0 – the input of DMU0; 
yrj – outputs of 1,2…n DMUs; 
xij – inputs of 1,2…n DMUs. 

 
The above ratio form yields an infinite number of solutions; if (u*, v*) is optimal, then (αu*, αv*) is 
also optimal for α > 0. However, the transformation developed by Charnes and Cooper (1962) for 
linear fractional programming selects a representative solution (u, v) for which and yields the 
equivalent linear programming problem in which the change of variables from (u, v) to (μ, ν) is a 
result of the Charnes-Cooper transformation (2): 
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where 
z – the CCR input-oriented function of DMU0 (multiplier form); 
μr – the output multiplier of DMU0; 
νi – the input multiplier of DMU0; 
yr0 – the output of DMU0; 
xi0 – the input of DMU0; 
yrj – outputs of 1,2…n DMUs; 
xij – inputs of 1,2…n DMUs; 
s – number of outputs; 
m – number of inputs. 

 
Model that is expressed by (2) can be solved by its dual problem (3): 
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where 
θ* – the optimal value of dual variable θ of  
DMU0; 
θ, λj – dual variables of DMU0; 
yr0 – the output of DMU0; 
xi0 – the input of DMU0; 
yrj – outputs of 1,2…n DMUs; 
xij – inputs of 1,2…n DMUs; 
s – number of outputs; 
m – number of inputs. 
 

This last model is sometimes referred to as the "Farrell model" because it is the one used in Farrell 
(1957). By virtue of the dual theorem of linear programming we have z* = θ. Hence either problem 
may be used. One can solve the dual linear program, to obtain an efficiency score. Setting θ = 1 and 
λk* = 1 with λk = λo* and all other λk* = 0, a solution of dual problem (see Formula 3) always exists. 
Moreover this solution implies θ* ≤ 1. The optimal solution, θ*, yields an efficiency score for a 
particular DMU. [3] 
 
The process is repeated for each DMU. i.e., solving the model, expressed by Formula 3, with (Xo, 
Yo) = (Xk, Yk), where (Xk, Yk) represent vectors with components xik , yrk and, similarly (Xo, Yo) has 
components xok , yok. DMUs for which θ* < 1 are inefficient, while DMUs for which θ* = 1 are 
boundary points. Some boundary points may be "weakly efficient" because we have non-zero 
slacks. This may appear because alternate optima may have non-zero slacks in some solutions, but 
not in others. However, we can avoid this effect by invoking the following linear program in which 
the slacks are taken to their maximal values (4). 
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where 
si

– – input slacks; 
sr

+ – output slacks; 
θ* – the optimal value of dual variable θ of DMU0; 
λj – the dual variable of DMU0; 
yr0 – the output of DMU0; 
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xi0 – the input of DMU0; 
yrj – outputs of 1,2…n DMUs; 
xij – inputs of 1,2…n DMUs; 
s – number of outputs; 
m – number of inputs. 

 
It shall be noted that the choices of si

– and sr
+ do not affect the optimal θ* which is determined from 

model expressed by (3). These developments lead to the following definitions of DEA efficiency: 
 
DEA Efficiency: The performance of DMU0 is fully (100%) efficient if and only if both 
 (i) θ* = 1 and (ii) all slacks si

–*  = sr
+*  = 0.  

 
Weakly DEA Efficiency: The performance of DMU0 is weakly efficient if and only if both 
 (i) θ* = 1 and (ii) si

–*≠ 0 and/or sr
+*≠ 0 for some i and r in some alternate optima [1]. 

 
The CCR efficiency score is indicative of the overall efficiency level of investigated DMUs. [5] 
 
 
3 The application of data envelopment analysis approach to the equity portfolio 
construction 
 
3.1 Methodology of the research 
 
Due to the methodology, the Data Envelopment Analysis approach of comparative performance 
measurement does not require the specific functional form of the model. Therefore choice of 
outputs and inputs that are corresponding to the objectives of the research is among significant 
conditions for the achievement of plausible results. 
The problem of keeping profitability is especially topical and important in the circumstances of 
unstable macroeconomic environment. The market capitalization value reflects the risk-return 
parameters that are indicative of company’s stability and development opportunities. In this 
connection, there is developed a concept of efficiency measurement of companies which are quoted 
at the NASDAQ OMX Riga and NASDAQ OMX Tallinn in the research, assuming total 
operational revenue to be outputs, while equity, operating expenses and finance (interest) expenses 
are defined as inputs.  
The performance evaluation will be completed on the basis of DEA CCR approach that allows 
calculating overall efficiency score of investigated companies.  
 
3.2 Efficiency measurement results of Baltic companies on the basis of CCR DEA approach 
 
The application of the DEA approach requires the determination of assumptions, concerning 
orientation measures of the model and the concept of returns to scale (RTS). The production process 
may be aimed either at minimization of resources (input-oriented) or maximization of production 
volumes (output-oriented). It is emphasized in the international researches that the orientation of the 
model should be aimed at controllable variables. Usually volumes of resources are considered to be 
over control of management, therefore there is applied the assumption of input orientation in the 
research. Since the constant returns to scale CRS approach represents the total (overall) efficiency 
level, CCR DEA model is considered to be the basic concept of the research.[2] 
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The results of companies’ performance evaluation on the basis of CCR input-oriented model, 
assuming total operating revenue and market capitalization values as outputs, are represented in 
Figure 1. 
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Fig. 1. DEA CCR efficiency score of Baltic stock exchange quoted companies, (%)  
 

 According to the obtained results, investigated companies might be separated into three 
groups. The first group includes 100% DEA CCR efficient companies: JSC “Latvijas Balzāms”, 
JSC “Grindeks”, JSC “Latvijas gāze”, JSC “Liepājas metalurgs”, JSC “Ventspils nafta”, JSC 
“Valmieras stikla šķiedra”, JSC “Baltika”, JSC “Olympic Entertainment Group”, JSC “Silvano 
Fashion Group”, JSC “Tallina Kaubamaja”, JSC “Tallina Vesi”. The above-mentioned companies 
have demonstrated the best result, operating on the efficiency frontier at the observation period. 
High efficiency level of these emitters is indicative of their ability to maximize the volume of 
outputs using minimal volumes of inputs and to ensure optimal proportions of output and inputs in 
the process of production, thus of both 100% technical and scale efficiency in comparison to the set 
of investigated objects. For example, the state-owned company JSC “Latvijas gāze” ensuring 375.9 
million euro market capitalization value and 278.9 million euro total revenue, is operating using 
only equity capital and having no interest expenses. Despite of high volatility of the share price, 
JSC “Liepājas metalurgs” has the total revenue value 183 million euro at the second quarter 2011. 
According to the latest company’s announcement, JSC “Liepājas metalurgs” is investing into the 
equipment modernization project; the commercial pledge of 72.19 million lats is guaranteed by the 
Ministry of Finance of the Republic of Latvia. Due to this fact, potential investors might expect the 
reduction of company’s operational costs. JSC “Olympic Entertainment Group” and JSC “Tallina 
Kaubamaja” are among the leading companies on the Tallinn stock exchange according to their 
output values. The enterprise activity of JSC “Olympic Entertainment Group” is oriented at casino 
and hotel business segments, ensuring the total revenue of 60.8 million euro by the end of the 
second quarter 2011. JSC “Tallina Kaubamaja” is the largest department store in Estonia that is 
listed since 1996 on the Tallinn stock exchange. This fact makes securities of the emitter attractive 
for potential investors.  
 The second group consists of companies that are having the performance above the 80% 
level: JSC “Latvijas Kuģniecība”, JSC “Olainfarm”, JSC “Arco Vara”, JSC “Ekspress Grupp”, JSC 
“Tallink Grupp”, JSC “Viisnurk”. JSC “Olainfarm” is one of the most rapidly growing Baltic 
companies. According to the latest company’s announcement, preliminary sales results of JSC 
“Olainfarm” for September 2011 show that sales have increased by 102% compared to the same 
period last year and have reached 3.71 million lats (5.28 million euro). The most rapid sales 
increase has been experienced in Canada, where sales have increased 442 times, in Ukraine they 
increased nearly 4 times, in Belarus, a country heavily hit by its currency crisis, the sales have 
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grown by 71%, in Russia by 63%. Main sale markets of AS “Olainfarm” during September 2011 
were Ukraine, Russia, Belarus and Latvia. Nevertheless, the company has lower production 
volumes, higher finance expenses (228 thousand euro) than its nearest competitor JSC “Grindeks”, 
having the 88.89% performance level. Having the highest market capitalization value 467.6 million 
euro and total revenue of 400.8 million euro, JSC “Tallink Grupp” is only 92.31% DEA CCR 
efficient. Among possible reasons are high finance (26.7 million euro) and operational expenses 
(391.5 million euro). This fact is indicative of inefficient organization of company’s operational 
activity. 
 The third group includes companies that are having the efficiency below the 80% level: JSC 
“Rīgas kuģu būvētava”, JSC “SAF Tehnika”, JSC “Harju Elekter”.  
 
 According to the JSC “SAF Tehnika” interim report data in August 2011, the company’s non-
audited net sales for 12 months of the financial year 2010/11 were 10.9 million LVL (15.5 million 
EUR) representing a year-on-year increase of 7%. Sales in the Asia Pacific, Middle East and Africa 
region formed the largest sales proportion (37%) comprising 4.05 million LVL (5.76 million EUR) 
although it was by 32% less than in previous financial year 2009/10. The net profit of JSC “SAF 
Tehnika” for the 12 months of financial year 2010/11 was 780 thousand  LVL (1.1 million EUR) 
representing 52% of the net profit of previous financial year 2009/10. JSC “SAF Tehnika’s” non-
audited net sales for the fourth quarter of financial year 2010/11 were 1.99 million LVL (2.84  
million EUR), representing 53% of the fourth quarter of the previous financial year. [8] Reporting 
quarter was the weakest in this financial year unlike from last financial year 2009/10 when the 
fourth quarter was the best. This information had negative impact on the share price of JSC “SAF 
Tehnika” that decreased by 27.27% since January 2011. 
Operating with loss in both 2010 and 2011 financial years (572.6 thousand euro in the second 
quarter 2011), JSC “Rīgas kuģu būvētava” has the lowest performance level among all investigated 
companies. Nevertheless, on October 19th 2011 JSC „Rīgas kuģu būvētava” received an official 
announcement from SJSC «Черноморнефтегаз» tenders trade commission about the approval of 
the proposed price by JSC „Rīgas kuģu būvētava. The proposal of JSC „Rīgas kuģu būvētava „to 
delivery gas platform 35.11.4. for USD 399 800 000  was considered the most economically 
beneficial  and was accepted as a result of evaluation. [8] This corporative event caused the increase 
of equity price by 77.6%, demonstrating that shares of JSC „Rīgas kuģu būvētava” are a good 
investment opportunity for a risk-tolerant investor. 
 
Conclusions 
 
 The scientific paper is devoted to the equity portfolio construction problem. The most 
important stages of this process are choice of potential assets, risk evaluation and asset allocation. 
Traditionally potential investors are using methods of technical and fundamental analysis, Modern 
Portfolio Theory for this purpose. However, the results which are obtained on the basis of the 
mentioned approaches often provide inconsistent conclusions concerning investment opportunities 
and do not provide the possibility to evaluate the enterprise activity of emitters as a process. 
The methodology of Data Envelopment Analysis is considered to be a sophisticated tool for 
performance measurement that allows the investigation of complex production processes among a 
set of Decision Making Units (DMUs).  
 The author has implemented the DEA CCR approach, analyzing efficiency scores of a set of 
companies which are quoted at NASDAQ OMX Riga and Tallinn. According to the results, emitters 
might be divided into three groups:  100% DEA CCR efficient, having the performance above the 
80% level and having the performance below the 80% level. Equities of fully CCR DEA efficient 
companies could be included into the portfolio with conservative investment strategy. Companies 
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which are included into the second and the third group, have lower level of performance. However, 
securities of these emitters might be attractive for investors with higher level of risk tolerance. 
 To sum up, the author recommends using the Data Envelopment Analysis approach 
methodology as an additional tool for analysis of investment opportunities and equity portfolio 
creation. 
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Abstract. The paper presents a quantitative study of at-risk-of-poverty Czech households 
depending on the age and sex of the householder. We focus mainly on two age categories: 
juniors and seniors. At-risk-of-poverty rates of age categories are calculated as the proportion of 
households with an equivalised income below the poverty threshold, which is set at 60% of the 
national median equivalised income. We use Generalized Linear Mixed Models (GLMM) to 
model at-risk-of-poverty rates between 2005 and 2009. GLMM have become a very powerful 
and widely used statistical tool. The R environment (R Development Core Team, 2010)  is used 
for GLMM analysis. 
 
Keywords. Survey on income and living conditions, equivalised household income, generalized 
linear mixed models, poverty rate. 
 
Mathematics Subject Classification:  Primary 62H30, Secondary 30C40. 

 
 
1 Introduction 
 
The current economic crisis is having an important impact on social surveys. There is a pressure on 
statistics to provide updated information to monitor the extent of the crisis in the social field. It is 
the case of EU-SILC, the main source of comparable information on income and living conditions 
across Europe. As a consequence of the crisis, there has be increase in unemployment and hence of 
poverty in the Czech Republic and elsewhere. The crisis has mostly worsen financial situation of 
juniors and seniors. In these two categories, we can observe increase in unemployment the most and 
therefore we can also expect the highest at-risk-of-poverty rates. 
 
The European Union Statistics on Income and Living Conditions (EU-SILC) collects information 
about income, age and social structure, level of living and other characteristics of households and 
individuals yearly in all countries of EU. In the present paper, we use data EU-SILC 2005 – 2009. 
The equivalised household income is used to allow comparisons between households of different 
sizes and composition.  
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1.1 Poverty rate 
 
The poverty definition adopted in this paper is the relative country-specific poverty measure: this 
views poverty in a nationally defined social and economic context. It is commonly measured as the 
percentage of population with cash income less than some fixed proportion (say, 60%) of national 
median income. Such relative poverty measures are now commonly used as the official poverty risk 
rate in EU-countries. The measurements are usually based on a household’s yearly cash income and 
frequently take no account of household wealth, or inequality of resource distribution that may exist 
within a household. Household income includes earnings, transfers and income from capital, as well 
as the imputed rent for owner-occupied households, and is measured here net of direct taxes, social 
security contributions and interest on mortgages paid by households.  
 
The data reported here are collected in the EU-SILC surveys that apply common conventions and 
definitions to collect unit record data. EUROSTAT supply detailed cross-tabulations of these results 
in their statistical database. 
 
The poverty rates discussed here are defined as the percentage of those having less than 60% of the 
median income. At-risk-of-poverty rates are calculated as the proportion of households with an 
equivalised income below the poverty threshold, which is set at 60% of the national median 
equivalised income. 
 
 
2 Model Specification 
 
2.1 Generalized Linear Mixed Model 
 
The Generalized Linear Mixed Models (GLMM) extends the Generalized Linear Model (GLM) by 
incorporating random effects into the linear predictor to accommodate random variations and 
correlations from different sources (McCulloch & Searle 2001). 
 
Generalized linear models (GLMs) represent a class of fixed effects regression models for several 
types of dependent variables (i.e., continuous, dichotomous, counts). Common Generalized linear 
models (GLMs) include linear regression, logistic regression, and Poisson regression. 
 
There are three specifications in a GLM. First, the linear predictor, denoted as ηi, of a GLM is  
of the form ηi = xiβ, where xi is the vector of regressors for unit i with fixed effects β. Then,  
a link function g is specified which converts the expected value μi of the outcome variable Yi  
(i.e., μi = EYi) to the linear predictor ηi, i.e., g(μi ) = ηi.. Finally, a specification for the form of the 
variance in terms of the mean μi is made. The latter two specifications usually depend on the 
distribution of the outcome Yi, which is assumed to fall within the exponential family of 
distributions. 
 
Fixed effects models, which assume that all observations are independent of each other, are not 
appropriate for analysis of several types of correlated data structures, in particular, for clustered 
data. In clustered designs, subjects are observed nested within larger units. For analysis of such 
data, random cluster effects can be added into the regression model to account for the correlation of 
the data. The resulting model is a mixed model including the usual fixed effects for the regressors 
plus the random effects. 
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Let i denote the number of clusters and let j denote the nested observation. Assume there are  
i = 1, … ,N clusters and j = 1, … , ni repeated observations nested within each cluster.  
A random - intercept model, which is the simplest mixed model, augments the linear predictor with 
a single random effect for subject i, ηij = xijβ + νi, where νi is the random effect (one for each 
cluster). These random effects represent the influence of cluster I, on its repeated observations that 
is not captured by the observed covariates. These are treated as random effects because the sampled 
clusters are thought to represent a population of clusters, and they are usually assumed to be 
distributed as N(0, σ2

ν ).The parameter σ2
ν indicates the variance in the population distribution, and 

therefore the degree of heterogeneity of clusters. Including the random effects, the expected value 
of the outcome variable, which is related to the linear predictor via the link function, is given as  
μij = E(Yij | νi , xij). This is the expectation of the conditional distribution of the outcome given the 
random effects. As a result, GLMMs are often referred to as conditional models in contrast to the 
marginal generalized estimating equations (GEE) models.  
 
The model can be easily extended to include multiple random effects. The model is now written as 
 

ηij = xijβ + zij vi .                                                              (1) 
 
The vector of random effects vi is assumed to follow a multivariate normal distribution with mean 
vector 0 and variance–covariance matrix Σv. Note that the conditional mean μij is now specified as 
E(Yij | vi , xij), namely, in terms of the vector of random effects. 
 
With N independent sampling units and conditionally on the random effects, assume that  
the responses are independent with density function that is a member of the exponential family 
f(Yij | vi) = exp[{Yij θij  – b(θij)} / a(τ) + c(Yij , τ)] for some functions a, b, and c. 
 
Parameter estimation in GLMMs typically involves maximum likelihood (ML) or variants of ML. 
Additionally, the solutions are usually iterative ones that can be numerically quite intensive. 
 
Several methods have been proposed for inference and estimation in the GLMM. Existing 
estimation methods for the GLMM include: (a) analytically simplifying the problem, for example, 
by the use of Laplace approximation to the integrated likelihood, including the penalized quasi-
likelihood (PQL) estimation (Breslow and Clayton, 1993) and the hierarchical generalized linear 
models (HGLM) procedure (Lee and Nelder, 2001); (b) using computation-intensive techniques 
such as the MCEM algorithm (Booth and Hobert, 1999), Markov Chain Monte Carlo (MCMC) 
(Zeger and Karim, 1991) and Gauss–Hermite quadrature (GHQ) approaches (Pan and Thompson, 
2003). The applications of these methods to date the EU-SILC, see for example in Bartošová, 
Forbelská, 2010 and 2011, Forbelská, 2010, Forbelská, Bartošová, 2010). 
 
 
2.2 Mixed-Effects Logistic Regression Model 
 
The mixed-effects logistic regression model is a common choice for analysis of multilevel 
dichotomous data and is arguably the most popular GLMM. In the GLMM context, this model 
utilizes the logit link, namely 

g(μij ) = logit(μij ) = log(μij /(1- μij)) = ηij.                                            (2) 
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Here, the conditional expectation μij = E(Yij |vi , xij ) equals P(Yij = 1|vi , xij ), namely, the conditional 
probability of a response given the random effects (and covariate values). This model can also be 
written as 
 

P(Yij = 1|vi , xij , zij ) = g−1(ηij ) = Flogist(ηij ),                                         (3) 
 
where the inverse link function Flogist(ηij ) is the logistic cumulative distribution function (cdf), 
namely 
 

Flogist(ηij ) = [1 + exp(−ηij )]
−1.                                                 (4) 

 
A nicety of the logistic distribution, that simplifies parameter estimation, is that the probability 
density function (pdf) is related to the cdf in a simple way, as 
 

 flogist(ηij ) = Flogist (ηij )[1 − Flogist (ηij )].                                           (5) 
 
 
3 Fitting GLMM model 
 
A binary mixed logit model was used to analyse the risk monetary poverty for different age groups. 
 
We consider a two factorial ANOVA model with a factor year measured at 5 levels (years 2005 – 
2009) and a factor sex (M male, F female), i.e. 
 

ηij = (αyear+ui) yearij + (βsex + vi) sexij,                                            (6) 
 
where ui , vi  are random parameters and αyear, βsex are fixed parameters, i = 1, ..., 5 (age groups). 
 
 
3.1 Results of construction of GLMM model 
 
Results for the mentioned model are presented in Table 1. The fitted parameters of the GLMM 
model are given in Tables 1 and 2.  
 
Estimates of fixed effects αyear and βsex, their variability and tests of importance of both factor, i.e. 
years and sex of the householder are shown in Table 1. The group considered in the model consists 
of households with a male householder in 2005. It is obvious that the chances that the household 
drops below the poverty line in this period have increased with the lowest value in 2006 and the 
highest in 2008. At the same time, we can see that standard errors of estimates of effects in 
individual years are high, which shows that these coefficients are statistically insignificant. This is 
also confirmed by tests of significance. On the contrary, the effect of sex of the householder is 
statistically significant. When the householder is female, the chances that the household drops 
below the poverty line significantly increases. 
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Table 1. Final estimation of the fixed effects 
 

  Estimate Std. Error z value Pr(>|z|) 

(Intercept) -2.62148 0.335183 -7.82104 5.24E-15

year2006 -0.03157 0.056689 -0.55698 0.577539

year2007 0,.12352 0.081366 0.51806 0.87934

year2008 0.05993 0.146056 0.410319 0.681572

year2009 0.014536 0.193081 0.075283 0.93999

SEX F 1.537917 0.184257 8.346599 7.03E-17
 
 
Table 2 containing prediction of random effects shows that the impact of age in 2005-2009 
gradually changed. In the whole reported period, the chances of drop below the poverty line was the 
highest when the householder was younger than 25. At the other edge of the spectrum, at-risk-of-
poverty rate decreased the most for households with householders over 60 years old. Random 
effects for houholds in the middle of the age spectrum (i.e. age categories (25,30], (30,55] and 
(55,60]) oscillated around zero. 
 
 
Table 2. Prediction of the random effects 
 

  (0,25] (25,30] (30,55] (55,60] (60,100]

(Intercept) 0.981 0.232 0.409 -0.416 -1.205

year2006 -0.032 -0.179 -0.076 0.140 0.147

year2007 0.163 -0.236 -0.187 0.215 0.045

year2008 0.132 -0.481 -0.285 0.349 0.285

year2009 0.095 -0.594 -0.403 0.457 0.446

SEX F -0.530 0.301 -0.326 -0.052 0.607
 

AIC BIC logLik deviance

737433.1 737556 -368690 737379.1
 

 
Table 3. Correlation components of the random-effects terms 

 
  (Intercept) year2006 year2007 year2008 year2009 SEX F 
(Intercept) 1.000 -0.718 -0.169 -0.480 -0.580 -0.838 
year2006 -0.718 1.000 0.762 0.940 0.964 0.270 
year2007 -0.169 0.762 1.000 0.929 0.889 -0.214 
year2008 -0.480 0.940 0.929 1.000 0.993 0.050 
year2009 -0.580 0.964 0.889 0.993 1.000 0.168 
SEX F -0.838 0.270 -0.214 0.050 0.168 1.000 

 
Correlation matrix (see Table 3) shows high correlation between years which is solved using 
GLMM. 
 

 



 

Aplimat – Journal of Applied Mathematics

 

200  volume 5 (2012), number 3
 

Table 4. Poverty rates estimates (in %) by means of GLMM model 
 

SEX  AGE 2005 2006 2007 2008 2009

Male 

  

  

  

  

(0,25] 16.23 15.38 18.76 19.02 17.77

(25,30] 8.40 6.91 6.83 5.68 4.88

(30,55] 9.86 8.95 8.42 8.03 6.91

(55,60] 4.57 5.07 5.68 6.73 7.13

(60,100] 2.13 2.39 2.25 2.98 3.34
 

Female 

  

  

  

  

(0,25] 34.69 33.25 38.75 39.16 37.20

(25,30] 36.57 31.84 31.56 27.46 24.41

(30,55] 26.89 24.82 23.60 22.69 19.97

(55,60] 17.49 19.11 21.01 24.19 25.34

(60,100] 15.69 17.28 16.46 20.80 22.77
 
 
In Table 4, there are poverty rates estimates (in %) by means of GLMM model. It is obvious that 
between 2005 and 2009 the households of seniors were the least endangered with relative poverty. 
The proportion of households below the poverty line with a male householder was 2.13%, 2.39%, 
2.25%, 2.98% and 3.34%. In case of female householder, the proportion was about eight times 
higher - 15.69%, 17.28%, 16.46%, 20.80% and 22.77%.  
 
On the contrary, households of juniors were the most endangered with relative poverty. When the 
householder was male, the proportion of households below the poverty line was 16.23%, 15.38%, 
18.76%, 19.02%, 17.77%. In case of a female householder, the proportion was about twice as large 
- 34.69%, 33.25%, 38.75%, 39.16% and 37.20%. 
 
 
3.2 Graphing the results 
 
Figure 1 highlights the variations observed across 5 age-household groups. 
 
Figure 1 shows, that the values of at-risk-of-poverty-rate modelled with GLMM with fixed and random 
effects was relatively stable over the monitored period and with respect to individual age categories with 
both male and female householders. Trend in at-risk-of-poverty rate in the junior category (0,25] was 
close to being constant. The following two age categories, (25,30] and (30,55] show decreasing trend, as 
opposed to the last two age categories (55,60] and (60,100]. We can see that the situation of seniors 
deteriorates. 
 
The usual diagnostic plots are shown in Figures 2, 3 and indicate no particular problems (except 
M:(30,55]). 
 
Calculations were performed in an R. Software environment R is a free, cooperatively developed, 
open-source implementation of the S statistical programming language and computing environment, 
a language that has become a de-facto standard among statisticians for the development of statistical 
software. In R one of the most popular functions for fitting GLMMs is called glmer and is found 
within the package lme4 which is written and maintained by Douglas Bates. Methodology can be 
found at [1]. 
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Figure 1.Trends in at-risk-of-poverty rates (black lines: poverty rates using fixed and random 

parameters, gray lines: poverty rates by means of fixed parameters) 
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Figure 2: Residuals vs. Fitted plots. 
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Figure 3: QQ plots. 

 
 
4 Conclusions 

 
Generalized Linear Mixed Model (GLMM) was used to model at-risk-of-poverty rates between 
2005 and 2009. Our results show that households with householders at both ends of age spectrum 
(juniors up to 25 and seniors over 60) had extremely (i.e. minimal and maximal) at-risk-of-poverty 
rates between 2005 and 2009, regardless of sex. The proportion of junior households below the 
poverty line was about seven times higher than the proportion of senior households. Sex of the 
householder has significant impact on the proportion of households below the poverty line in all age 
categories and over the whole monitored period. A female householder doubles the risk at the junior 
category and raises the risk eight times at the senior category in comparison to a male householder.  
 
Trend of at-risk-of-poverty-rate over the monitored period was quite stable in all age categories 
regardless of sex of the householder. The trend in the junior category is almost constant, the two 
following age categories show decrease and the two oldest categories increase. The situation of 
junior households is still unfavourable, the situation of the two middle-age categories (25-55] 
improves, while the situation of the oldest (55-100] gradually deteriorates. 
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LATVIAN   GDP:   TIME   SERIES   FORECASTING 

   USING   VECTOR AUTO   REGRESSION 
 

BEZRUCKO   Aleksandrs, (LV) 
  

 
Abstract: The target goal of this work is to develop a methodology of forecasting 

Latvian GDP using ARMA (AutoRegressive-Moving-Average) and VAR methods. The paper 
follows up with the papers published in the proceedings of the APLIMAT journal in 2011 – see 
[1]. The algorithm is developed for finding optimal time series model for GDP forecasting. 
Latvian GDP data with quarterly observation frequency is taken as time series. ARMA and 
VAR Analysis of Latvian GDP, M2X and inflation indicators time series is performed. The set 
of models has been constructed. In order to check the accuracy of models, different residual 
tests are performed: autocorrelation, Portmaneteau, heteroscedasticity and normality of residual 
distribution. Models are compared in their forecast quality.  

 
Keywords and phrases: time series, Gross Domestic Product, Inflation, VAR (Vector 

Auto Regression), Residual tests, Serial Correlation 
 
 

1 Introduction 
 

The urgency of use of VAR models for an estimation of macroeconomic indicators doesn't 
cause today any doubts. It has been proved by And Sims (one of the main promoters of the use of 
vector autoregression in empirical macroeconomics, and contributed to the development of Bayes 
estimators for vector autoregression) in the works on use of VAR-models, which have received the 
The Nobel Prize in Economic Sciences in 2011 “for their empirical research on cause and effect in 
the macroeconomy". 

The analysis and forecast of GDP for any time and any country is important task for 
economists, policy makers and entrepreneurs. These researches are consisting of many objective 
and subjective factors.  

The base of this work is taken from previous paper [1] and a research has continued taken into 
account Vector Auto Regression. Different methods of econometrical modelling have been 
analyzed. For example, analysis methods for German GDP forecast that are described by Lutkepohl 
in “Applied Time Series Analysis” [2]. Lutkepohl described different ways of ARMA and Residual 
analysis of time series. In this paper author uses familiar methods of statistical analysis of time 
series for forecasting Latvian GDP. Computer software enabled the author to perform the search for 
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the best models for certain time series. Based on the analysis of these models, a search algorithm of 
optimal model is created. A lot of attention is given to use VAR-models. 

In order to find an optimal model of forecasting Latvian Gross Domestic Product, three 
different cases of Latvian GDP series with quarterly observation frequency are taken. The first case 
is quarterly Latvian GDP series in levels (Latvian lats), the second case is same data in percentage 
growth and in the third case different VAR models are build using Latvian GDP, Inflation and M2X 
cash mass data. The GDP series are given in Figure 1, Comparison with M2X and inflation data are 
given in Figure 2. The time series length is T = 57. The time series is taken from the first quarter of 
year 1995 till the first quarter of year 2009.  All searches and forecasts are made using 
econometrical software EViews 6.0. 

 

 

 
Figure 1 Latvian GDP (Lats) 1995Q1-2009Q1 

 
Figure 2 Inflation (%) / GDP (Lats) / M2X (Lats) 1995Q1-

2009Q1 
 

 
2 Analysis description 

 
2.1. The analysis of criteria 

 
ARMA case: At the first stage of choosing the best model, 3 criteria are analyzed: Akaike 

info, Schwarz and Hannan-Quinn.  
VAR case: 2 criteria are analyzed: Akaike info and Schwarz  
Constructing of ARMA and VAR models occurs in parallel, but separately from each other. 

The best model has minimal values. At this stage models with best criteria are taken. ARMA and 
VAR Analysis are performed in EViews program language and statistical criteria represent the result 
of the program (Fig.3). 

 

 
 

Figure 3 ARMA Analysis in EViews 6.0 
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The R-squared (R2) statistic measures the success of the regression in predicting the values of 
the dependent variable within the sample. In standard settings, R2 may be interpreted as the fraction 
of the variance of the dependent variable explained by the independent variables. The statistic will 
equal one if the regression fits perfectly, and zero if it fits no better than the simple mean of the 
dependent variable. It can be negative for a number of reasons. For example, if the regression does 
not have an intercept or constant, if the regression contains coefficient restrictions, or if the 
estimation method is two-stage least squares or ARCH. 

The Akaike Information Criterion (AIC) is computed as: TkTlAIC /2/2   where l is the 
log likelihood. The AIC is often used in model selection for non-nested alternatives-smaller values 
of the AIC are preferred. For example, you can choose the length of a lag distribution by choosing 
the specification with the lowest value of the AIC.  

The Schwarz Criterion (SC) is an alternative to the AIC that imposes a larger penalty for 
additional coefficients: TTkTlSC /)log(/2   

 
2.2. Residual tests 

 
The second stage is represented by Residual tests:  

 
ARMA case: Serial Correlation LM test, Histogram – Normality test, Hetereskedasticity 

ARCH test and Correlogram Square Residual test.  Models have passed the test if P Value is higher 
than 0,1. 

VAR case: VAR Residual Serial correlation LM test (Fig. 4.) and VAR Residual Portmateau 
Tests for Autocorrelation. 

Serial Correlation LM test is an alternative to the Q-statistics for testing serial correlation. The 
test belongs to the class of asymptotic (large sample) tests known as Lagrange multiplier (LM) tests  
Serial Correlation LM test has the higher importance because on this step we are concerning with 
the possibility that our errors exhibit autocorrelation. LM test check for higher order ARMA errors 
and is applicable whether or not there are lagged dependent variables.  

The null hypothesis of the LM test is that there is no serial correlation up to lag order p, where 
p is a pre-specified integer. The local alternative is ARMA(r,q) errors, where the number of lag 
terms p =max(r,q). Note that this alternative includes both AR(p) and MA(p) error processes, so 
that the test may have power against a variety of alternative autocorrelation structures.  

The test tatistic is computed by an auxiliary regression as follows. First, suppose you have 
estimated the regression:  

tt ey   

where β are the estimated coefficients and e are the errors. The test statistic for lag order p is based 

on the auxiliary regression for the residuals Xye
^

  : 

t
S

Ststt eXe 










 




1

 

Histogram and normality tests are displays a histogram and descriptive statistics of the 
residuals, including the Jarque-Bera statistic for testing normality. If the residuals are normally 
distributed, the histogram should be bell-shaped and the Jarque-Bera statistic should not be 
significant. The Jarque-Bera statistic has a 2  distribution with two degrees of freedom under the 
null hypothesis of normally distributed errors. [2] 

The ARCH test is a Lagrange multiplier (LM) test for autoregressive conditional 
heteroskedasticity (ARCH) in the residuals. This particular heteroskedasticity specification was 
motivated by the observation that in many financial time series, the magnitude of residuals appeared 
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to be related to the magnitude of recent residuals. ARCH in itself does not invalidate standard LS 
inference. However, ignoring ARCH effects may result in loss of efficiency. 

The ARCH LM test statistic is computed from an auxiliary test regression. To test the null 
hypothesis that there is no ARCH up to order q in the residuals, we run the regression:  

t

q

S
Stst ee  







 




1

2
0

2 , 

where  is the residual. This is a regression of the squared residuals on a constant and lagged 
squared residuals up to order q. The F-statistic is an omitted variable test for the joint significance 
of all lagged squared residuals. The Obs*R-squared statistic is Engle's LM test statistic, computed 
as the number of observations times the R2 from the test regression. The exact finite sample 
distribution of the F-statistic under H0 is not known, but the LM test statistic is asymptotically 
distributed as a )(2 q  under quite general conditions.  

Correlogram of squared residuals test displays the autocorrelations and partial 
autocorrelations of the squared residuals up to any specified number of lags and computes the 
Ljung-Box Q-statistics for the corresponding lags. The correlograms of the squared residuals can be 
used to check autoregressive conditional heteroskedasticity (ARCH) in the residuals.  

If there is no ARCH in the residuals, the autocorrelations and partial autocorrelations should 
be zero at all lags and the Q-statistics should not be significant inclusion of ARMA terms. [2] 

 

 
 

Figure 4 VAR Residual Serial Correlation  in EViews 6.0 
 
 
Autocorrelation LM Test (Fig.4.) 

 
Reports the multivariate LM test statistics for residual serial correlation up to the specified order. 
The test statistic for lag order h is computed by running an auxiliary regression of the residuals tu  

on the original right-hand regressors and the lagged residual htu  , where the missing first h values 

of htu   are filled with zeros. See Johansen (1995, p. 22) for the formula of the LM statistic. Under 

the null hypothesis of no serial correlation of order h, the LM statistic is asymptotically distributed 
2  with 2k  degrees of freedom.  
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Figure 5 Portmanteau Tests  in EViews 6.0 
 

Portmanteau Autocorrelation Test (Fig.5.) 
 
Computes the multivariate Box-Pierce/Ljung-Box Q-statistics for residual serial correlation up to 
the specified order (see Lütkepohl, 1991, 4.4.21 & 4.4.23 for details). We report both the Q-
statistics and the adjusted Q-statistics (with a small sample correction). Under the null hypothesis of 
no serial correlation up to lag h, both statistics are approximately distributed 2  with degrees of 

freedom )(2 phk   where p is the VAR lag order. The asymptotic distribution is approximate in the 
sense that it requires the MA coefficients to be zero for lags phi  . Therefore, this 
approximation will be poor if the roots of the AR polynomial are close to one and is small. In fact, 
the degrees of freedom becomes negative for ph  .  
 
 
2.3. Out-Of-Samle Forecasting 
 
The final evaluation test is “Out-Of-Sample Forecasting”. At this stage forecasts are compared to 
real data that we have for the period of the last 3 quarters of 2009.  
 
 
3 The search alorithm 
 
The search algorithm is shown in Figure 7. Step-by-step description looks as follows: 
Input data: GDP Time series 
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1. Construction of ARMA models in levels and in differences and VAR models separately. 
Starting from this point the model is divided in two branches and the subsequent steps are carried 
out in parallel for levels and for differences. 

2. Model ARMA Analysis. 
3. Performing Residual tests. 
4. If during residual tests probability value is less than 10%, the model is excluded from 

further evaluation. This is not a reliable model. 
5. If P Value is higher than 10%, the forecast for specified periods of time is performed. 
6. Out of Sample forecasting test. Comparing forecast data with real data. 
7. The analysis of the results. Output data: Best model for the GDP Forecasts. 
 

 
Figure 6 The search algorithm 
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4  Latvian GDP in levels 
 

The analyzed series consist of seasonally unadjusted Latvian quarterly GDP in levels for the 
period of 1995Q1 – 2009Q1. It is represented in Figure 1. Constructing a model for the logs is more 
advantageous because the changes in the log series display a more stable variance than the changes 
in the original series. Time series in logs are shown in Figure 7. 

 

 
Figure 7 Latvian GDP in logs 

 
Table 1 

The analysis of criteria (Levels) 

 
 
Best models: Nr. 5,7,8,12,13,14. Other models are excluded from further evaluation process. 

The residual test results are given in Table 2. Models Nr.13 and Nr.14 have undergone all tests. 
Residuals graph of Model Nr. 13 is given in Figure 4.  
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Table 2 
Residual Test (Levels) 

 
 

 
Figure 8 Residuals graph for Model Nr.13 

 
The worst model residuals are given in Figure 5 for comparison. 

 

 
Figure 9 Residuals graph for Model Nr.9 

 
“Out-Of-Sample Forecasting” test (Table 3) shows that the most real forecasts are gained 

from models Nr.12: AR(1) SAR(4) MA(4). Absolute difference (0.037) is minimal in this case. The 
best model has passed all Residual tests except Normality. The second and the third results are 
shown by models Nr. 7 and Nr.13., which have passed almost all residual tests except Nr.7., which 
also did not pass the Normality test. 
Table 3 
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Out-Of-Sample Forecasting (Levels) 

 
 
 

5  Latvian GDP in percentage growth 
 

All evaluations are made with Latvian GDP. The differences and the log difference of time series 
are shown in Figure 6. The log difference displays a more stable variance than the changes in the 
original series. 

 

 
Figure 1  Residuals of time series in differences and in log differences 

 
Table 4 

The analysis of criteria (Difference) 

 
 

Models with the best criteria: Nr. 7, 8, 11, 12, 13, 14. Other models are excluded from further 
evaluation process. 
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Table 5 
Residual Test (Difference) 

 
 

Models Nr. 8, 13, 14 have completed all tests. Model Nr. 12 also has good statistic.  “Out-Of-
Sample” forecasting test (Table 6) shows that the most real forecasts are gained from models Nr.11: 
AR(2) SAR(4). Absolute difference (0.037) is minimal in this case. This model did not complete 
the histogram test, but passed all other residual tests. The second result belongs to model Nr.7, 
which has the same problem with Normality test. Third result is shown by model Nr.14 – this model 
passed all residual tests. 

 
Table 6 

Out-Of-Sample Forecasting (Difference) 

 
 
 

6  Vector auto regression 
 

The analyzed series consist of seasonally unadjusted Latvian GDP, Inflation and M2X cash 
mass data indicators in for the period of 1995Q1 – 2009Q1 with quarterly observation. It is 
represented in Figure 2. M2X and GDP data are constructed in logs. Constructing a model for the 
logs is more advantageous because the changes in the log series display a more stable variance than 
the changes in the original series. Inflation time series is taken as is, because in some points it has 
negative values. Time series are shown in Figure 2. 
 
Table 7 

The analysis of criteria and residual tests for VAR models 
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Model analysis and the residual test results are given in Table 7. After carrying out of the analysis 
of model it is appreciable that best models are Nr. 4,5,10. In the residual tests case best model are 
Nr. 4,7,8. In Figure 7 we can see residual analysis for model Nr.1 that are performed in EViews 
software. 

 

 
Figure 7 Residuals of time series in VAR model (Nr.1.) 

 
Table 8 

Out-Of-Sample Forecasting (VAR) 
 

 
 
“Out-Of-Sample Forecasting” test (Table 8) shows that the most real forecasts are gained 

from models Nr. 10. The absolute difference is equal to 9,476 percents. The second and the third 
results are shown by models Nr. 3 and Nr.1. The model Nr.1 has high results in the analysis of 
models (Akaike and Schwarz Criterion) and in Serial Correlation but did not pass the Portmanteau 
test. 

 
 

Conclusion 
 
In the given paper the search algorithm of optimal time series is described. With a help of 

statistical modelling the econometric analysis of Latvian GDP is done. Different cases of 
constructing model are made in levels, in percentage growth and constructing a Vector Auto 
Regression model. 

Comparison of 1 and 2 cases shows that case in levels and in differences gave approximately 
the same result – 3.7% deviation from real data in absolute value for forecasts for 3 steps in future.  
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Comparison of ARMA and VAR models shows that ARMA models win the competition. If 
we analyse tables of results of models in all three cases we will see that VAR models have the best 
dispersion of results. 

The conclusion is that very important to analyze all the results and understand how they are 
calculated and evaluated. Data received as a result of this work will be used for the further 
researches in a scope of Vector Auto Regress for forecasting of macroeconomic variables. 
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A METHOD   TO  APPROXIMATE   FIRST   PASSAGE   TIMES 

DISTRIBUTIONS   IN  DIRECT   TIME   MARKOV   PROCESSES 
 

FERREIRA Manuel Alberto M., (PT),    ANDRADE Marina, (PT)  
 
 
Abstract. A numerical method to approximate first passage times distributions in direct Markov 
processes will be presented. It is useful to compute sojourn times in queue systems, namely in 
Jackson queuing networks. Using this method (Kiessler et al., 1988) achieved to clear a problem 
that arises in the Jackson three node acyclic networks sojourn times. 
 
Key words. randomisation procedure, sojourn time, Jackson three node acyclic networks 

 
 
1 Introduction 
 
In this work it will be described a general method, which key is the proceeding called, in the 
English language literature, “randomisation procedure” to approximate “first passage times” 
distributions in direct time Markov Processes, being the sojourn times in queue systems a particular 
case. 
 
Call Յ ൌ ሼܺሺݐሻ: ݐ ൒ 0ሽ a regular Markov Process, in continuous time with a countable states space 
E and a bounded matrix infinitesimal generator Q. 
The elements of Q are designated by  

ܳሺݔ, ,ሻݕ ,ݔ ݕ ∈ ሻݔܳሺ	and	ܧ ൌ ෍ ܳሺݔ, .ሻݕ
௬∈ாିሼ௫ሽ

 

߰ሺݐሻ designates the ܺሺݐሻ state probability vector: 
 

߰௧ሺݔሻ ൌ ܲሼܺሺݐሻ ൌ ,ሽݔ ݔ ∈  .ሺ1ሻ																										ܧ
 
X models, for instance, the evolution of a queue system during the sojourn of a given, “marked”, 
customer in it. 
 
The states of E have two main components: 
 

i)  The queue system state, 
ii) The “marked” customer position. 
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Call 
- A the states subset that describes the system till the departure of the “marked” customer, and 
- B the state subset that describes the system after the departure of that customer. 

 
Evidently 

- ሼܣ,   ,ሽ is a partition of Eܤ
- If T is the time that the process Յ spends in A till attaining B, for the first time, T is precisely 

the sojourn time of the “marked” customer in the queue system. 
 
It is supposed that Յ will remain in B, with probability 1 after having attained it for the first time. In 
fact, as the evolution of the system after the departure of the “marked” customer is irrelevant, it may 
be supposed that B is a closed set. That is, the process Յ cannot come back to A after reaching B. 
The quantity of interest is the T distribution function, ߬ሺݐሻ. Note that 

 
߬ሺݐሻ ൌ ܲሼܶ ൑ ሽݐ ൌ ܲሼܺሺݐሻ ∈ ሽܤ ൌ 1 െ ܲሼܺሺݐሻ ∈ ,ሽܣ ݐ ൒ 0															ሺ2ሻ 

 
since the presented hypotheses guarantee that ሼܶ ൑ ሽݐ ൌ ሼܺሺݐሻ ∈  .ሽܤ
 
After (2) it is concluded that 
 

- The problem of computing ߬ሺݐሻ is equivalent to the one of the computation of the transient 
distribution of ܺሺݐሻ in A. 

 
 
2 The Randomisation Procedure 
 
From section 1 it follows that it is necessary to compute the vector  ߰௧, ݐ ൒ 0. Being ௧ܲ , ݐ ൒ 0, the Յ 
n transition matrix,  
 

߰௧ ൌ ߰଴ ௧ܲ, ݐ ൒ 0																																												ሺ3ሻ 
 
and 

௧ܲ ൌ ሻݐሺܳ݌ݔ݁ ൌ ෍
௡ݐ

݊!
ܳ௡

ஶ

௡ୀ଴

, ݐ ൒ 0										ሺ4ሻ. 

 
The “randomisation procedure” consists in using in (4) an equivalent representation, see (Çinlar, 
1975): 

௧ܲ ൌ ݌ݔሻ݁ݐߙሺെ݌ݔ݁ ቆݐߙ ൬ܫ ൅
1
ߙ
ܳ൰ቇ ൌ ሻ෍ݐߙሺെ݌ݔ݁

௡ݐ௡ߙ

݊!
ܴ௡																ሺ5ሻ

ஶ

௡ୀ଴

 

where  
 

ܴ ൌ ܫ ൅
1
ߙ
ܳ																																																								ሺ6ሻ 

 
is called the “randomised matrix” in English language literature,  

- I is the identity matrix, and  
,ሻݔis a positive majorant of the whole ܳሺ ߙ - ݔ ∈  .ܧ
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Note that, see (Melamed and Yadin, 1984, 1984a),  
 

- Although the equation (5) seems more complex than (4), fulfils in fact more favourable 
computational properties. The most important is that R is a stochastic matrix while Q is not. 
Consequently, the computation using (5) is stable and using (4) is not, 

- The “randomisation procedure” has an interesting probabilistic meaning, useful to determine 
bounds for ߬ሺݐሻ. In fact, being R a stochastic matrix, it defines a discrete time Markov 
Process 
 

Ա ൌ ሼ ௡ܻ: ݊ ൌ 0, 1, … ሽ																																			ሺ7ሻ 
 
if it is assumed ଴ܻ ൌ ܺሺ0ሻ. With this procedure, the relation between the processes Յ and Ա 
is quite simple as it will be seen next. 

 
Extending the discrete time process Ա to a continuous time Markov Process such that 
 

i) The time intervals between jumps are exponential random variables i.i.d. with             
mean  

ii) The jumps are commanded by R.   
 
In (Melamed and Yadin, 1984) it is shown that the resulting process is precisely the original process 
Յ; but when there is a sequence of jumps in Ա  from the state ݔ ∈  this will be noticed in Յ as a ,ܧ
long sojourn in state x.  
 
So, the “randomisation procedure” may be interpreted as a sowing in the process Յ with “fake” 
random jumps between the true jumps. The resulting process, designated by Յഥ, at which the “fake” 
jumps are visible, has the same probabilistic structure than Յ but with an advantage: 
 

- The sequence of the jump instants in Յഥ, “fake” and “true”, is now a Poisson Process. This is 
not, in general, the case of Յ. 

 
Note that ௡ܻ is the state of Յഥ in the instant of the nth jump, “fake” or “true”.  
 
Suppose that Յഥ reaches the set B in its nth jump. Consequently the Յഥ  sojourn time, and so also the Յ, 
in A is the sum of n exponential independent random variables with mean . That is the sojourn time 
has a n order Erlang distribution with parameter ߙ. Its distribution function will be designated 
  .ሻݐ௡,ఈሺܧ
 
Be ݄ሺ݊ሻ the probability that Յഥ reaches B in its nth jump. Call ߶௡ the state probability vector of ௡ܻ:  
 

߶௡ ൌ ߰଴ܴ௡																																													ሺ8ሻ. 
 
The quantities ݄ሺ݊ሻ are given by the equivalent formulae: 
 

݄ሺ݊ሻ ൌ

ە
ۖ
۔

ۖ
,ሻݔ෍߶଴ሺۓ ݊ ൌ 0
௫∈஻

																																																					

෍෍߶௡ିଵሺݔሻܴሺݔ, ,ሻݕ ݊ ൐ 0																				ሺ9ሻ
௬∈஻௫∈஺
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or 

݄ሺ݊ሻ ൌ

ە
ۖ
۔

ۖ
1ۓ െ෍߶଴ሺݔሻ, ݊ ൌ 0

௫∈஺

																																																										

෍߶௡ିଵሺݔሻ െ෍߶௡ሺݔሻ, ݊ ൐ 0																									ሺ10ሻ.
௫∈஺௫∈஺

 

 
Given the probabilities ݄ሺ݊ሻ and, noting that ∑ ݄ሺ݊ሻஶ

௡ୀ଴ ൌ 1, it is obtained 
 

߬ሺݐሻ ൌ ෍݄ሺ݊ሻܧ௡,ఈሺݐሻ, ݐ ൒ 0																																ሺ11ሻ,

ஶ

௡ୀ଴

 

 

ሾܶ௠ሿܧ ൌ
1
௠ߙ

෍݊ሺ݊ ൅ 1ሻ… ሺ݊ ൅ ݉ െ 1ሻ݄ሺ݊ሻ,݉ ൌ 1, 2, …						ሺ12ሻ.

ஶ

௡ୀ଴

 

 
The formula (12) for m = 1 is 
 

ሾܶሿܧ ൌ
1
ߙ
 ሺ13ሻ																																																						ሿܪሾܧ

 
being H the number of Յ jumps till reaching B. Expression (13) is the Little’s Formula in this 
context. 
 
Equation (11) allows obtaining simple bounds for ߬ሺݐሻ that may, in principle, to become arbitrarily 
close. Equation (12) allows to obtain ܧሾܶ௞ሿ, in principle, so close of ܧሾܶ௞ሿ as wished. So, given 
any integer ݇ ൒ 0 
 

ሻݐ௞ሺܮ ൑ ߬ሺݐሻ ൑ ܷ௞ሺݐሻ																																																						ሺ14ሻ 
 
where  
 

ሻݐ௞ሺܮ ൌ ෍݄ሺ݊ሻܧ௡,ఈሺݐሻ, ݐ ൒ 0																																	ሺ15ሻ

௞

௡ୀ଴

, 

 

ܷ௞ሺݐሻ ൌ 1 െ෍݄ሺ݊ሻܧത௡,ఈሺݐሻ, ݐ ൒ 0																									ሺ16ሻ

௞

௡ୀ଴

 

 
and  
 

ሾܶ௠ሿ௅,௞ܧ ൑ ݉			,ሾܶ௠ሿܧ ൌ 1, 2, ….																										ሺ17ሻ 
where  

	

ሾܶ௠ሿ௅,௞ܧ ൌ
1
௠ߙ

෍݊ሺ݊ ൅ 1ሻ… ሺ݊ ൅ ݉ െ 1ሻ݄ሺ݊ሻ,݉ ൌ 1, 2, …						ሺ18ሻ.

௞

௡ୀ଴
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It is easy to prove that  
 
 

Proposition 
 

If, for any ߝ ൐ 0, k is chosen in accordance with the rule 
 

݇ ൌ ݉݅݊ ൝݊ ൒ 0:෍݄ሺ݅ሻ ൒ 1 െ ߝ

௡

௜ୀ଴

ൡ ൌ ݇ሺߝሻ,																			ሺ19ሻ 

 
or equivalently  
 

ܬ ൌ ݉݅݊ ൝݊ ൒ 0:෍߶௡ሺݔሻ ൑ ߝ
௫∈஺

ൡ ൌ  ሺ20ሻ																			ሻ,ߝሺܬ

 
ห߬ሺݐሻ െ ௃ሺఌሻหܮ ൑ ሻݐห߬ሺ		and		ߝ െ ௃ܷሺఌሻห ൑ ,ߝ uniformely	in		ݐ ൒ 0.∎ 

 
 
3 Concluding Remarks 
 
The main problem in the application of the method presented, that in principle would solve any 
computation problems related to the distribution of sojourn times, stays in the difficulty of the ݄ሺ݊ሻ 
computation. In fact, for it, it is necessary to compute the vectors ߶௡ but only in the subset A of the 
states space. When states space E is finite, has it happens, for instance in the case of closed queue 
networks, both ݄ሺ݊ሻ and ߶௡ can, at first glance, be computed exactly, apart the mistakes brought by 
the approximations.  
 
In practice the states space is often infinite or, although finite prohibitively great. In this situations it 
is mandatory to truncate E. So, it must be considered a new level of approximation since the ݄ሺ݊ሻ, 
߶௡, etc. must also be approximated now. 
 
In fact, what is viable to obtain is ݄ሺ݊ሻ minorants because the E truncation is translated in 
probability loss (Melamed and Yadin, 1984a). So, with these ݄ሺ݊ሻ  approximate values, (14) and 
(17) go on being valid but 
 

- The uniform convergence property seen above is lost, 
- The rules analogous to (19) and (20) are not equivalent. The one generated by (19) may be 

even unviable and in practice it is used only the one generated by (20) (Melamed and Yadin, 
1984a). 
 

Using this method (Kiessler et al., 1988) achieved to show that, in a Jackson three node acyclic 
network, see Figure 1, the total sojourn time distribution function for a customer that follows 
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Figure 1: Jackson Three Node Acyclic Network 

 
 
 the path integrated by the nodes 1, 2, and 3 is not the same obtained considering that 
ଵܵ, ܵଶ	and	ܵଷ	ሺthe	sojourn	times	at	nodes	1, 2	and	3	respectivelyሻ are independent although this 

one, designated by ܨሺݐሻ, is a “good” approximation of that one. They show that in some particular 
cases it was not true that 
 

ሻݐ௅ሺܨ ൑ ሻݐሺܨ ൑ ,ሻݐ௎ሺܨ ݐ ൒ 0													ሺ21ሻ 
 
being ܨ௅ሺݐሻ	and	ܨ௎ሺݐሻ the minorant and the majorant, respectively, of that customer sojourn time 
distribution function, obtained through the described method. 
 
This conclusion is important because, in spite of the dependence between ଵܵ	and	ܵଷ, see for 
instance (Ferreira, 2010), ܨሺݐሻ could be the ܵ ൌ ଵܵ ൅ ܵଶ ൅ ܵଷ distribution function. In fact, (Feller, 
1966) presents an example of dependent random variables which sum has the same distribution as if 
the random variables were independent.  
 
Finally note that the formula (12), apparently new, seems to be of great efficiency, although only 
allows to obtain moments minorants, because its field of application is a broad one.  
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SOJOURN   TIMES   IN   JACKSON   NETWORKS 
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Abstract.  Jackson queuing networks have a lot of practical applications, mainly in the 
modelling of computation and telecommunications networks. Evidently the time that one 
customer - a person, a job, a message … – spends in this kind of systems, its sojourn time, is an 
important measure of its performance. In this work the practical known results about the sojourn 
time distribution are collected and presented. 
 
Key words: Jackson networks, sojourn time, randomisation procedure. 
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1 Introduction 
 
In this work it is intended to present some problems and results that arise in the study of the sojourn 
time in Jackson networks of queues. These networks have many applications, namely in the 
modelling of computation and telecommunications networks. And a customer sojourn time, in this 
kind of system, is evidently an important element to be considered in its performance evaluation.  
 
The model of network to be considered in this paper is briefly described in section 2. The main 
objective of section 3 is the presentation of formula (10) that, in some situations allows the sojourn 
times moments exact computation. In section 4 it is given a numerical method for the sojourn times 
distribution function and any order moments computation, adequate to any Jackson network.  
 
 
2 General Results and Examples 
 
Along this work the sojourn times in a class of Markovian networks of queues, introduced initially 
by Jackson, see (Jackson, 1957-1963), will be studied. They are called Jackson networks and have 
only one class of customers. They are composed of J  nodes numbered J,...,2,1 . It is usual to put

 JU ,...,2,1 . 
 
In each node there is 
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- Only one server, 
- A queue discipline “first-come-first-served” (FCFS), 
- An infinite waiting capacity. 
 

They are open networks: any customer may enter and leave. 
 
The exogenous arrivals process at node j  is a Poisson Process at rate Ujj , , independent of the 

exogenous arrivals processes to the other nodes:
 





J

j
j

1

.  

The service times at node j  are independent and identically distributed, having exponential 

distribution with parameter Ujj , , and independent from the other nodes service times. 

 
After the completion of a service at node j , a customer is immediately directed to node l  with 

probability jlp , or abandons the network with probability 



J

l
jlj Ujpq

1

,1 .   

 
These probabilities are not influenced by the movements of the other customers in the network. The 

jlp  matrix is called P . 

 
The total arrivals rate, exogenous and endogenous, at node j , j  satisfies the network traffic 

equations: 
 

Jjp
J

l
ljljj ,...,2,1,

1

 


                                    (1). 

 

The state of the network at instant t  is given by       tNtNtN J,...,1 , where  tN j  is the number 

of customers at node j  in instant Jjt ,...,2,1,  . 
 

If Jj
j

j
j ,...,2,1,1 




  the process   tNN   has stationary, or equilibrium, distribution, see 

for instance (Disney and König, 1985), 
 

    Jjnnnn
J

j
j

n
jjJ

j ,...,2,1,0, 1,...,,
1

21 


          (2). 

 

Calling jj WS ,  and jX  the sojourn, waiting and service, respectively, times of a customer at node 

j  
 

jjj XWS                                                                       (3). 
 

The Jackson networks sojourn times considered in this paper are those of typical customers that, 
arriving at the network, find the process in an equilibrium state. Call S  the sojourn time in the 
network, that is: the time that goes between the arrival at the network and the departure of one of 
those customers. If in its path it traverses the nodes l,...,2,1 lSSSS  ..., 21 . 
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To study the sojourn time, the following is important: 
 

- A network has “feedback” if a customer may come back to the same node after the 
completion of its service, immediately or in a future instant, 

- A network without “feedback” is an “acyclic” one. 
 

Then some examples of typical Jackson networks usually considered in the study of sojourn times 
are presented. 

 
 

Simple Queues Series 

For this Jackson network 
 







 


otherwise   0

1,...,2,1,1 if   ,1 Jjjl

p jl  

JjJjj ,...,2,1, and  ,..,2,0   , j1   . Figure 1 is a graphical representation of a simple 

queues series. 
 
                                                                            …  
                                                                                    
 

Figure 1: Simple Queues Series 
 
Some important results are: 

 
- All customers’ flows, in this network, at stationary state, are Poisson Processes. It is a 

consequence of it, in stationary state, that the departure process from an M/M/1 queue is a 
Poisson Process, see for instance (Kelly, 1979), 

- The sojourn times in the various nodes are independent random variables. In (Kelly, 1979) it 
is presented a demonstration of this statement based on the reversibility concept, 

- The sojourn time at node j  is an exponential random variable with parameter 

Jjj ,...,2,1,  , 

- The waiting times are dependent random variables. See also (Kelly, 1979). 
 

So the sojourn time study in these networks has no difficulty. The same is not true for the waiting 
time. 

 
  

1 2 J 
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M/M/1 Queue with Instantaneous Bernoulli Feedback 

It is a network with a single node. 1J , pp 11  pq  1, 1  and






1

, where 1   and

1  , see Figure 2. 

 
                                                                       p1  

 
                                                      
 
                                                                    p                                         

Figure 2: M/M/1 Queue with Instantaneous Bernoulli Feedback 
 
Call mS  the thm  customer sojourn time in the network. So, if it is served k  times 

 
       i

mk
d
mk

i
mkmk

i
mm

a
mmm ttttttttS   1

0
12

0
21

0
1 ...       (4) 

 
where 

 
-    i

mlml tt 0  is the time that the customer spends passing by the service system in the thl  time, 

given by the difference between the thl  output (0) instant from the server and the one of the 
thl  junction (i) to the queue, 

-     a
mm tt 1

0
1   is the time that the customer spends passing by the service system for the first time, 

given by the difference between the first output (0) instant from the server and the one of the 
arrival (a) to the queue, 

-    i
mk

d
mk tt   is the time that the customer spends passing by the service system for the last time, 

given by the difference between the departure (d) instant from the network and the one of 
the thk  junction (i) to the queue. 

 
Note that K , the number of times that the customer passes by the server, is a random variable and
    11  kppkKP ,...2,1, k . 

 
  ,...2,2:0  ltt i

mlml  is not a sequence of independent random variables, see (Disney and König, 

1985). So it is not possible to make use of the usual statement to sum independent random 
variables. But it is possible to get an expression to  tSP m   that requires the k  steps transition 

probabilities for the delayed Markovian renewal process      ,...2,01,,0  ltttN i
l

o
l

i  

conditioning to the number of times that the customer returns to the queue. 
 
Calling that transition probabilities matrix  tQ k

i , see still (Disney and König, 1985), 
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      VpptQtSP
k

k
im  





1
1

                           (5) 

 
where   is the iN  (embedded version of N  in the input instants) stationary distribution, k  is the 
number of times the customer passes by the server and V  is a vector which entries are all 1. 
 
So, now, the situation is much more complicated than in the former case owing to the feedback. 
 

 
The Jackson Three Node Acyclic Network 

It is a network with three nodes where pp 12 , pp  113 , 123 p , 0jlp  in the other cases, 

 1 , 3,2,0  jj ,  1 ,  p2  and  3 . 

 
In equilibrium, all customers’ flows are Poisson Process in this network. 

 
 
                                                    p  

                                                                             
 
                                                                      p1  

 
Figure 3: Jackson Three Node Acyclic Network 

 
Consequently, 

 
- The sojourn time at node j  is a random variable exponentially distributed with parameter

3,2,1,  jjj  . 1S  and 2S  are independent random variables as well as 2S  and 3S . 

 
This result is valid for any Jackson acyclic network: 

 
- Suppose that a customer follows a path r  in a Jackson acyclic network with only one server 

at each node. If node j  belongs to path r , jS  is such that  
 

     
0,1   terispathfollowedthetSP t

j
jj                                                (6) 

 

and, if node j  is the next to the server after node l , jS  and lS  are independent random variables. 

 
But, 

- 1S  and 3S  are dependent random variables: (Foley and Kiessler, 1989) showed that, in fact,  1S  

and 3S  are positively correlated. (Ferreira, 1998) showed that if  
 

1 

2 
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                   (8) 

 
verify both simultaneously it is possible to guarantee that 1S  and 3S  are positively correlated in 

equilibrium. 
 
There are two alternative paths for a customer to go from node 1 to node 3. And a customer that 
follows by node 2 may be overtaken by another one that goes directly from node 1 to node 3. So, a 
customer, when arriving at node 3, may meet there another one that was behind it at node 1 or even 
that had not arrived when it was there. 
 
These overtaking customers can delay a certain customer, when it arrives at node 3, for a longer 
time than that if they were not present. The number of these customers depends, partly, on the 
number of the customers that arrive while the customer that is being followed is in node 1, partly 
owing to the supposition of a FCFS discipline. Consequently, the time that a customer waits at node 
3 depends on how much time it has waited at node 1. 
 
 
3       Network Flow Equations 
 
The objective of this section is to present the so called “network flow equations” for the Jackson 
networks, that allow the deduction of formulae to the computation of sojourn times moments of any 
order, efficient in some situations. 
Following the work of (Lemoine, 1987) call ௝߬ an arrival instant, endogenous or exogenous, at node 
j and ௝߬ ൅ ௝ܶ the departure instant from the network of the customer that arrived in	 ௝߬ , ݆ ൌ 1, 2, … ,   ,ܬ
so 
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-  ௝ܶ is the remaining sojourn time, in the network, for the arrival at node j in the instant 

௝߬ , ݆ ൌ 1, 2, … ,  .ܬ
 
Call ௝݄ the Laplace Transform of the ௝ܶ , ݆ ൌ 1, 2, … ,  ,distribution. As N is a strong Markov Process ܬ
and the network state process “seen by the arrivals” is in equilibrium, the ௝ܶ , ݆ ൌ 1, 2, … ,  and its ܬ
Laplace Transforms are uniquely determined.  
 
Dealing with the sojourn time as the life time of a Markov Process ߴ – as it will be seen in section 4 
– it is possible to show that the Laplace Transforms ௝݄ , ݆ ൌ 1, 2, … ,  satisfy an equations system ܬ
called the “network flow equations”. That is, according with (Lemoine, 1987)  
 

- Being ܪ௝ the probability distribution with Laplace Transform ௝݄, there is a distribution 
probability with Laplace Transform ݍ௝ such as  
 

௝݄ሺݏሻ ൅
௦௚ೕሺ௦ሻ

ఓೕିఏೕ
ൌ ሻݏ௝ሺݍ ൅ ∑ ,ሻݏ௝௟݄௟ሺ݌ ݏ ൒ 0	and	݆ ൌ 1, 2, … , ሺ9ሻ௃											ܬ

௟ୀଵ . 

 
 

In Jackson networks without “overtaking” the Transforms ௝݄ and ݃௝ are identical for each j. 
Given ௝݄ , ݆ ൌ 1, 2, … , ,the Transforms ݃௝ ܬ ݆ ൌ 1, 2, … ,  are uniquely determined by (9). The ܬ
converse is also true since I – P, being I the identity matrix, is invertible. 
 
 
After (9), by successive derivations, (Lemoine, 1987) showed that  
 
 

- Network Flow Equations  
 
For ݆ ൌ 1, 2, … , ݎ and ܬ ൌ 1, 2, …   

 

ൣܧ ௝ܶ
௥൧ ൌ !ݎ ൫ߤ௝ െ ௝൯ߠ

ି௥
൅෍݌௝௟ܧሾ ௟ܶ

௥ሿ

௃

௟ୀଵ

൅෍݌௝௟

௃

௟ୀଵ

෍
!ݎ

݊! ሺݎ െ ݊ሻ!
௝ߤ
ି௡ܧ ൥ ௟ܶ

௥ି௡ෑ൫ ௝ܰሺ ௟ܶ
ିሻ ൅ ݉൯

௡

௠ୀଵ

൩							ሺ10ሻ.

௥ିଵ

௡ୀଵ

 

 
For r = 1, (10) assumes the matrix form 
 

ቂൣܧ ௝ܶ൧ቃ ൌ ሺܫ െ ܲሻିଵ ቂ൫ߤ௝ െ ௝൯ߠ
ିଵ
ቃ																					ሺ11ሻ. 

 
For r = 2 (10) assumes the form 

ൣܧ ௝ܶ
ଶ൧ ൌ 2൫ߤ௝ െ ௝൯ߠ

ିଶ
൅෍݌௝௟ܧሾ ௟ܶ

ଶሿ ൅ ௝ߤ2
ିଵ෍݌௝௟ൣܧ ௟ܶ൫ ௝ܰሺ ௟ܶ

ିሻ ൅ 1൯൧, ݆ ൌ 1, 2, … , ܬ

௃

௟ୀଵ

௃

௟ୀଵ

					ሺ12ሻ. 
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Equality (12) defines a system of J equations and ܬଶ ൅ ݎ unknowns. In general, when ܬ ൒ 2, the 
product terms involving the variables ௟ܶ and ௝ܰሺ߬௟

ିሻ prevent the exact computation of the sojourn 
times r order moments; there are too many unknowns and too few equations. In these cases other 
independent equations are needed to complement (12) in order to be possible to obtain exact 
solutions.  
 
When any pair of nodes in the network is connected by, in the maximum, one oriented path and 
௝௝݌ ൌ 0, ݆ ൌ 1, 2, … , ௟ܶ ,ܬ 	and	 ௝ܰሺ߬௟

ିሻ are independent for ݆ ് ݈. The computation of 

ൣܧ ௝ܶ൫	 ௝ܰ൫ ௝߬
ି൯ ൅ 1൯൧ is irrelevant since ݌௝௝ ൌ 0, ݆ ൌ 1, 2, … ,  In this case (10) becomes a compact .ܬ

recursive formula that allows the computation of any order moments of the sojourn times, ௝ܶ , ݆ ൌ
1, 2, … ,   ,For instance, as, in these conditions .ܬ
 

ൣܧ ௝ܰሺ߬௟
ିሻ൧ ൌ

௝ߠ
௝ߤ െ ௝ߠ

, ݆ ൌ 1, 2, … ,  ,ሺ13ሻ																																			ܬ

 
(12) assumes the form 
 

ൣܧ ௝ܶ
ଶ൧ ൌ 2൫ߤ௝ െ ௝൯ߠ

ିଶ
൅෍݌௝௟ܧሾ ௟ܶ

ଶሿ ൅ 2൫ߤ௝ െ ௝൯ߠ
ିଵ
෍݌௝௟ܧሾ ௟ܶሿ, ݆ ൌ 1, 2, … , ܬ

௃

௟ୀଵ

௃

௟ୀଵ

					ሺ14ሻ. 

 
Applying (14) to the simple queues series  
 

ൣܧ ௝ܶ
ଶ൧ ൌ 2൫ߤ௝ െ ൯ߥ

ିଶ
൅ ሾܧ ௟ܶାଵ

ଶ ሿ ൅ 2൫ߤ௝ െ ൯ߥ
ିଵ
ሾܧ ௟ܶାଵሿ, ݆ ൌ 1, 2, … , ܬ െ 1

ൣܧ ௃ܶ
ଶ൧ ൌ 2൫ߤ௃ െ ൯ߥ

ିଶ
					 																								 											

 
 
 
 
(15) 

 
Putting together (15) and (11) it may be concluded that  
 

ൣܴܣܸ ௝ܶ൧ ൌ෍ሺߤ௟ െ .ሺ16ሻ																																																								ሻିଶߥ

௃

௟ୀ௝

 

 
For Jackson networks that do not fulfil those conditions, in (Lemoine, 1987) it is suggested to 
identify adequate Martingale families in N as a process to determine independent equations to 
complement (10). Applying this proceeding to the M/M/1 queue with instantaneous Bernoulli 
feedback it was obtained 
 

ሾܶሿܴܣܸ ൌ
1

൫ሺ1 െ ߤሻ݌ െ ൯ߥ
ଶ

ሺ1 െ ߤଶሻ݌ ൅ ݌ߥ
ሺ1 െ ߤଶሻ݌ െ ݌ߥ

																	ሺ17ሻ 

   
and  
 

,ሾܰሺ߬ିሻܸܱܥ ܶሿ ൌ
ሺ1ߥ െ ߤሻ݌

ሺ1 െ ߤଶሻ݌ െ ݌ߥ
																																		ሺ18ሻ. 
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4      Sojourn Times Distributions and Moments Numerical Computation  
 
Now it will be described a general method, which key is the proceeding called, in the English 
language literature “randomisation procedure”, to approximate “first passage times” distributions in 
direct time Markov Processes, being the sojourn times in queue systems a particular case. 
 
Call Յ ൌ ሼܺሺݐሻ: ݐ ൒ 0ሽ a regular Markov Process, in continuous time with a countable states space 
E and a bounded matrix infinitesimal generator Q. 
 
The elements of Q are designated by ܳሺݔ, ,ሻݕ ,ݔ ݕ ∈ ሻݔܳሺ	and	ܧ ൌ ∑ ܳሺݔ, ሻ.௬∈ாିሼ௫ሽݕ  ߰ሺݐሻ 
designates the ܺሺݐሻ state probability vector: 

 

߰௧ሺݔሻ ൌ ܲሼܺሺݐሻ ൌ ,ሽݔ ݔ ∈  .ሺ19ሻ																										ܧ
 

X models the evolution of a queue system during the sojourn of a given, “marked”, customer in it. 
 
The states of E have two main components: 

 

i)  The queue system state, 
ii) The “marked” customer position. 

 
Be 

 

- A the states subset that describes the system till the departure of the “marked” customer, and 
 

- B the states subset that describes the system after the departure of that customer. 
 
Evidently 

 

- ሼܣ,   ,ሽ is a partition of Eܤ
 

- If T is the time that the process Յ spends in A till attaining B, for the first time, T is precisely 
the sojourn time of the “marked” customer in the network. 

 
It is supposed that Յ will remain in B, with probability 1 after having attained it for the first time. In 
fact, as the evolution of the system after the departure of the “marked” customer is irrelevant, it may 
be supposed that B is a closed set. That is, the process Յ cannot come back to A after reaching B. 
The quantity of interest is the T distribution function, ߬ሺݐሻ. Note that 

 

߬ሺݐሻ ൌ ܲሼܶ ൑ ሽݐ ൌ ܲሼܺሺݐሻ ∈ ሽܤ ൌ 1 െ ܲሼܺሺݐሻ ∈ ,ሽܣ ݐ ൒ 0															ሺ20ሻ 
 

since the presented hypotheses guarantee that ሼܶ ൑ ሽݐ ൌ ሼܺሺݐሻ ∈  .ሽܤ
 
After (20) it is concluded that 

- The problem of computing ߬ሺݐሻ is equivalent to the one of the computation of the transient 
distribution of ܺሺݐሻ in A. 

 
So it is necessary to compute the vector  ߰௧, ݐ ൒ 0. Being ௧ܲ , ݐ ൒ 0, the Յ n transition matrix,  

 

߰௧ ൌ ߰଴ ௧ܲ, ݐ ൒ 0																																												ሺ21ሻ 
 

and 
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௧ܲ ൌ ሻݐሺܳ݌ݔ݁ ൌ෍
௜ݐ

݅!
ܳ௜

ஶ

௜ୀ଴

, ݐ ൒ 0										ሺ22ሻ. 

 

The “randomisation procedure” consists in using in (22) an equivalent representation; see (Çinlar, 
1975): 

 

௧ܲ ൌ ݌ݔሻ݁ݐߙሺെ݌ݔ݁ ቆݐߙ ൬ܫ ൅
1
ߙ
ܳ൰ቇ ൌ ሻ෍ݐߙሺെ݌ݔ݁

௜ݐ௜ߙ

݅!
ܴ௜																ሺ23ሻ

ஶ

௜ୀ଴

 

 

where  
 

ܴ ൌ ܫ ൅
1
ߙ
ܳ																																																								ሺ24ሻ 

 

is called the “randomised matrix” in English language literature,  
 

- I is the identity matrix, and  
,ሻݔܳሺ	is a positive upper bound for the whole ߙ - ݔ ∈  .ܧ

 
Note that, see (Melamed and Yadin, 1984, 1984a),  
 

- Although the equation (23) seems more complex than (22), it fulfils in fact more favourable 
computational properties. The most important is that R is a stochastic matrix while Q is not. 
Consequently, the computation using (23) is stable and using (22) is not, 

- The “randomisation procedure” has an interesting probabilistic meaning, useful to determine 
bounds for ߬ሺݐሻ. In fact, being R a stochastic matrix, it defines a discrete time Markov 
Process 
 

Ա ൌ ሼ ௡ܻ: ݊ ൌ 0, 1, … ሽ																																			ሺ25ሻ 
 
if it is assumed ଴ܻ ൌ ܺሺ0ሻ. With this procedure, the relation between the processes Յ and Ա 
is quite simple as it will be seen next. 

 
Extend the discrete time process Ա to a continuous time Markov Process such that 
 

i) The time intervals between jumps are exponential random variables i.i.d. with             
mean 1 ⁄ߙ  

ii) The jumps are commanded by R.   
 
In (Melamed and Yadin, 1984) it is shown that the resulting process is precisely the original 
process	Յ; but when there is a sequence of jumps in Ա  from the state ݔ ∈  to itself, this will be ܧ
noticed in Յ as a long sojourn in state x.  
 
So, the “randomisation procedure” may be interpreted as a sowing in the process Յ with “fake” 
random jumps between the true jumps. The resulting process, designated by Յഥ, at which the “fake” 
jumps are visible, has the same probabilistic structure than Յ but with an advantage: 
 

- The sequence of the jump instants inՅഥ, “fake” and “true”, is now a Poisson Process. This is 
not, in general, the case of Յ. 
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Note that ௡ܻ is the state of Յഥ in the instant of the nth jump, “fake” or “true”.  
 
Suppose that Յഥ reaches the set B in its nth jump. Consequently the Յഥ  sojourn time, and so also the Յ, 
in A is the sum of n exponential independent random variables with mean 1 ⁄ߙ . That is, the sojourn 
time has a n order Erlang distribution with parameter ߙ. Its distribution function will be designated 
  .ሻݐ௡,ఈሺܧ
 
Be ݄ሺ݊ሻ the probability that Յഥ reaches B in its nth jump. Call ߶௡ the state probability vector of ௡ܻ:  

 

߶௡ ൌ ߰଴ܴ௡																																													ሺ26ሻ. 
 

The quantities ݄ሺ݊ሻ are given by the equivalent formulae: 
 

݄ሺ݊ሻ ൌ

ە
ۖ
۔

ۖ
,ሻݔ෍߶଴ሺۓ ݊ ൌ 0
௫∈஻

																																																					

෍෍߶௡ିଵሺݔሻܴሺݔ, ,ሻݕ ݊ ൐ 0																				ሺ27ሻ
௬∈஻௫∈஺

 

or 
 

݄ሺ݊ሻ ൌ

ە
ۖ
۔

ۖ
1ۓ െ෍߶଴ሺݔሻ, ݊ ൌ 0

௫∈஺

																																																										

෍߶௡ିଵሺݔሻ െ෍߶௡ሺݔሻ, ݊ ൐ 0																									ሺ28ሻ.
௫∈஺௫∈஺

 

 

Given the probabilities ݄ሺ݊ሻ and, noting that ∑ ݄ሺ݊ሻஶ
௡ୀ଴ ൌ 1, it is obtained 

 

߬ሺݐሻ ൌ ෍݄ሺ݊ሻܧ௡,ఈሺݐሻ, ݐ ൒ 0																																ሺ29ሻ,

ஶ

௡ୀ଴

 

 

ሾܶ௠ሿܧ ൌ
1
௠ߙ

෍݊ሺ݊ ൅ 1ሻ… ሺ݊ ൅ ݉ െ 1ሻ݄ሺ݊ሻ,݉ ൌ 1, 2, …						ሺ30ሻ.

ஶ

௡ୀ଴

 

 

The formula (30) for m = 1 is 
 

ሾܶሿܧ ൌ
1
ߙ
 ሺ31ሻ																																																						ሿܪሾܧ

being H the number of Յ jumps till reaching B. Expression (31) is the Little’s Formula in this 
queues context. 
Equation (29) allows obtaining simple bounds for ߬ሺݐሻ that may, in principle, to become arbitrarily 
close. Equation (30) allows obtaining	ܧሾܶ௞ሿ, in principle, so close of ܧሾܶ௞ሿ as wished. So, given 
any integer ݇ ൒ 0 

 

ሻݐ௞ሺܮ ൑ ߬ሺݐሻ ൑ ܷ௞ሺݐሻ																																																						ሺ32ሻ 
 

where  
 

ሻݐ௞ሺܮ ൌ ෍݄ሺ݊ሻܧ௡,ఈሺݐሻ, ݐ ൒ 0																																	ሺ33ሻ

௞

௡ୀ଴

, 
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ܷ௞ሺݐሻ ൌ 1 െ෍݄ሺ݊ሻܧത௡,ఈሺݐሻ, ݐ ൒ 0																									ሺ34ሻ

௞

௡ୀ଴

 

 

and  
 

ሾܶ௠ሿ௅,௞ܧ ൑ ݉			,ሾܶ௠ሿܧ ൌ 1, 2, ….																										ሺ35ሻ 
 

where  
 

ሾܶ௠ሿ௅,௞ܧ ൌ
1
௠ߙ

෍݊ሺ݊ ൅ 1ሻ… ሺ݊ ൅ ݉ െ 1ሻ݄ሺ݊ሻ,݉ ൌ 1, 2, …						ሺ36ሻ.

௞

௡ୀ଴

 

 

It is easy to prove that  
 
 

Proposition 
 

If, for any ߝ ൐ 0, k is chosen in accordance with the rule 
 

݇ ൌ ݉݅݊ ൝݊ ൒ 0:෍݄ሺ݅ሻ ൒ 1 െ ߝ

௡

௜ୀ଴

ൡ ൌ ݇ሺߝሻ,																			ሺ37ሻ 

 

or equivalently  
 

ܬ ൌ ݉݅݊ ൝݊ ൒ 0:෍߶௡ሺݔሻ ൑ ߝ
௫∈஺

ൡ ൌ  ሺ38ሻ																			ሻ,ߝሺܬ

 

ห߬ሺݐሻ െ ௃ሺఌሻหܮ ൑ ሻݐห߬ሺ		and		ߝ െ ௃ܷሺఌሻห ൑ ,ߝ uniformely	in		ݐ ൒ 0.∎ 
 

The main problem in the application of the method presented, that in principle would solve any 
computation problems related to the distribution of sojourn times, stays in the difficulty of the ݄ሺ݊ሻ 
computation. In fact, for it, it is necessary to compute the vectors ߶௡ but only in the subset A of the 
states space. When states space E is finite, as it happens in the case of closed networks, both ݄ሺ݊ሻ 
and ߶௡ can, at first glance, be computed exactly, apart the mistakes brought by the approximations.  
 
In practice the states space is often infinite or, although finite, prohibitively great. In this situations 
it is mandatory to truncate E. So, it must be considered a new level of approximation since the 
݄ሺ݊ሻ, ߶௡, etc. must also be approximated now. 
In fact, what are viable to obtain is ݄ሺ݊ሻ lower bounds because the E truncation is translated in 
probability loss (Melamed and Yadin, 1984a). So, with these ݄ሺ݊ሻ  approximate values, (32) and 
(35) go on being valid but 
 

- The uniform convergence property seen above is lost, 
 

- The rules analogous to (37) and (38) are not equivalent. The one generated by (37) may be 
even unviable and in practice it is used only the one generated by (38) (Melamed and Yadin, 
1984a). 
 

Using this method (Kiessler et al., 1988) achieved to show that, in a Jackson three node acyclic 
network, the total sojourn time distribution function for a customer that follows the path integrated 
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by the nodes 1, 2, and 3 is not the same obtained considering that ଵܵ, ܵଶ	and	ܵଷ are independent 
although this one, designated by ܨሺݐሻ, is a “good” approximation of that one. They show that in 
some particular cases it was not true that 

 

ሻݐ௅ሺܨ ൑ ሻݐሺܨ ൑ ,ሻݐ௎ሺܨ ݐ ൒ 0													ሺ39ሻ 
 

being ܨ௅ሺݐሻ	and	ܨ௎ሺݐሻ the lower bound and the upper bound, respectively, of that customer sojourn 
time distribution function, obtained through the described method. 
 
This conclusion is important because, in spite of the dependence between ଵܵ	and	ܵଷ, ܨሺݐሻ could be 
the S distribution function. In fact, (Feller, 1966) presents an example of dependent random 
variables which sum has the same distribution as if the random variables were independent.  
 
Finally note that the formula (30), apparently new, seems to be more efficient than (10), although 
only allows to obtain moments lower bounds, because its field of application is much greater.  
 
 
5       Conclusions 
 
The sojourn time has an evident practice interest. And is and has been intensively studied. Evidently 
the problem of the computation of the sojourn times in networks of queues is one of the most 
difficult in these networks study. In fact, analytic solutions are the exception and not the rule. And, 
when existing, are quite rough.  

The most of the known works only present results on sojourn time distributions for only one 
customer in paths without overtaking with FCFS disciplines in the nodes. It seems that still there are 
not results for simultaneous distributions of various customers sojourn times. 

It follows, from the examples seen in section 2, that the sojourn times, at Jackson networks 
computations, difficulties occur when there are feedback and overtaking. In the first case the input 
server process is not a Poisson Process, becoming everything more complex. In the second case 
dependencies exist among a customer sojourn times in the various nodes, simultaneously 
complicated and subtle, that make the total sojourn time computation difficult even if the sojourn 
times in each node are easy to compute. 

From all this it results the interest of the methods presented in sections 3 and 4 to compute exactly 
and approximately the quantities related with the Jackson networks sojourn times. 
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COPULA BASED SEMIPARAMETRIC REGRESSIVE MODELS 

 
FJODOROVS  Jegors, (LV),    MATVEJEVS  Andrejs,  (LV) 

 
 
Abstract. This paper studies the estimation of copula-based semi parametric stationary Markov 
models. Described models allow us evaluate the parameters of copula, which has the best fit to 
previously selected model (simple estimators of the marginal distribution and the copula 
parameter are provided). These copula-based models are characterized by nonparametric 
marginal distributions and parametric copula functions, while the copulas capture all the scale-
free temporal dependence of the processes. In our copula dependence study we used MatLab, 
which help to evaluate copula parameters and choose the best copula class, based on log 
likelihood estimation, for the selected financial market data. Also, using this MatLab we made 
VIX option index simulation - found the best copula fit under our condition and show the 
evaluation steps for copula based semi parametric autoregression. 
 
Key words: copula, diffusion processes, time series, semi parametric regressions, VIX index.  
 
Mathematics Subject Classification: 60J70, 62M10, 47D07 

 
 
1. Introduction 
 
The possibility of identifying nonlinear time series using nonparametric estimates of the conditional 
mean and conditional variance were studied in many papers (see, for example, [1], and references 
there). As a rule analyzing the dependence structure of stationary time series { } regressive 
models defined by invariant marginal distributions and copula functions that capture the temporal 
dependence of the processes. As it indicated in [1] this permits to separate out the temporal 
dependence (such as tail dependence) from the marginal behavior (such as fat tails) of a time series. 
One more advantage of this type regressive approach is a possibility to apply probabilistic limit 
theorems for transition from deference equations to continuous time stochastic differential 
equations ([2], [3]). In our paper we also study a class of copula-based semi parametric stationary 
Markov models in a form of scalar difference equation  
 

ttttt XgXfXXZt  ),(),(: 111          (1) 

where },{ Ztt   is i.i.d., N(0; 1), and   is a small positive parameter, which will be used for 

diffusion approximation of (1). Regressions (1) are high-usage equations for simulation and 
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parameter estimation of stochastic volatility models ([2]). But unfortunately defined by (1) Markov 
chain has incompact phase space that complicates an application of probabilistic limit theorem. 
Copula approach helps to simplify asymptotic analysis of (1). Let us remember that to construct a 
copula C(u; v) for pair }{ ,1 tt XX   from (1) one should find a marginal invariant distribution F(x) for 

tX  and to substitute this in joint distribution function ),(),( 1 yXxXPyxH tt   , that is, 

))(),((),( 11 vFuFHvuC   and ))(),((),( yFxFCyxH  . Due to persistence of small parameter 

   after a substitution )( tt XFU   in equation (1) for a further diffusion approximation one can 

write a difference equation in a same form like (1): 
 

 ttttt UgUfUUZt  ),(),(: 111                                                                                    (2) 

 
But now this equation defines Markov chain on the compact [0, 1]. This makes easier formulate 
construction for transition probability and further estimators of functions )(ˆ uf and )(ˆ uf . After 
diffusion approximation of (2) one can make inverse substitution and derive stochastic differential 
equation as diffusion approximation for (1). 
 
In the copula approach to univariate time series modeling, the finite dimensional distributions of the 
time series are generated by copulas. By coupling different marginal distributions with different 
copula functions, copula-based time series models are able to model a wide variety of marginal 
behaviors (such as skewness and fat tails) and dependence properties (such as clusters, positive or 
negative tail dependence). (see Darsow et al. (1992) [4] and Joe (1997)[5]).  
 
Described algorithm allow us evaluate the parameters of copula, which has the best fit to previously 
selected model. In our copula dependence study we used MatLab, which help to evaluate copula 
parameters and choose the best copula class, based on log likelihood estimation, for the selected 
financial market data. These copula based models are easy to simulate, and can be expressed as 
semi parametric regression transformation models. Also, using this MatLab we made VIX option 
index simulation - found the best copula fit under our condition and built semi parametric 
autoregression.  
 
The paper is structured as follows. Section 2 gives a brief review of the copula functions definition. 
Section 3 describes our approach. In Section 4 we report our results for the VIX index data Section 
5 concludes and discusses several possible avenues of future research. 
 
 

2. Copula functions 
 
Copulas became popular in the finance and insurance community in the past years, where modeling 
and estimating the dependence structure between several univariate time series are of great interest; 
see Frees and Valdez (1998) [6] and Embrechts et al. (2002) [7] for reviews.  
 
A copula function is a multivariate distribution function with standard uniform marginals. By 
Sklar’s (1959) [8] theorem, one can always model any multivariate distribution by modeling its 
marginal distributions and its copula function separately, where the copula captures all the scale-
free dependence in the multivariate distribution. 
The central result of this theorem, which states that any continuous N-dimensional cumulative 
distribution function F, evaluated at point ),,( 1 nxxx  can be represented as  
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)),(,),(()( 11 nn xFxFCxF   
 

where C is called a copula function and )( ii xF , ni ,,1   are the marginal distributions. The use 

of copulas therefore splits a complicated problem (finding a multivariate distribution) into two 
simpler tasks. The first task is to model the univariate marginal distributions and the second task is 
finding a copula that summarises the dependence structure between them. 
It is also useful to represent of copulas as joint distribution functions of standard uniform 
random variables: 

)( 1XFU     and      )( 2XFV   

),(),( vVuUPvuC   

The outcome of uniform random variables falls into the interval [0, 1], therefore the domain of a 
copula must be the N-dimensional unit cube. Similarly, because the mapping represents a 
probability, the range of the copula must also be the unit interval. Also, it is easy to determine the 
value of a copula on the border of its domain. When one argument equals zero, the probability of 
any joint event must also be zero. Similarly, when all but one of the inputs are equal to one the joint 
probability must be equal to the (marginal) probability of the argument that does not equal one. 
Finally, the function must be increasing in all its arguments. 
Besides the standard distribution functions, copulas have associated densities: 
 

vu

vuC
vuc





),(

),(
2

 

 

which permit the bivariate density f(u; v) as the product of the copula density and the density 
functions of the margins  
 

)()())(),((),( 2121 vfufvFuFcvuf   
 

This expression indicates how the simple product of two marginal distributions will fail to properly 
measure the joint distribution of two asset prices unless they are in fact independent and the 
dependence information captured by the copula density, ))(),(( 21 vFuFc ; is normalized to unity. 
 
 

3.  Evaluation of parameters for the semi parametric regression model 
 
Copula based semi parametric models are characterized by conditional heteroscedasticity and have 
been often used in modeling the variability of statistical data. In paper [1] the basic idea was to 
apply a local linear regression to the squared residuals for finding the unknown functions f and g. 
 
Our methodology builds on the finding conditional expectation of the first and second order.  
 
Let }{ tY  be a stationary Markov process of order 1 with continuous state space. Then its 

probabilistic properties are completely determined by the joint distribution function of }{ 1tY  and 

}{ tY . For the determination of the copula based model we should use Markov model in the scalar 

difference equation form: 
 

1 1 1: ( , ) ( , )t t t t tt Z X X f X g X           

Where 
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0, 1,t tE DE   { , } is i.i.d. (0,1)t t Z N   

 
And our goal reduced to the estimation of conditional moments, which will be our base regression 
model parameters: 
 

?),( 1  tXg  and ?),( 1  tXf  

 
As was mentioned above it is not easy task, especially this representation complicates an 
application of probabilistic limit theorem. That is why; if we have stationary distribution our 
suggestion is to find parameters through Markov chain using copula approach. 
Firstly, let’s show that copula distribution density equals Markov chain transition density: 

     


 
y

t dzzpyFyXP )()()( 1  


A

tt dyyxpAXPXAXP ),(),()/( 1  

   
A AB

tt xdFAxPdzdyzpyzpdzAzpBXAXP )(),()(),(),(),( 1  


BA

dyxdFzpyxp )()(),(  

  dzduzpuzpxXyXPxFyFC tt )(),(),()(),(( 1  

 
 
 
As the result we see that Markov transition density is copula density. 
Secondly, we should expand our semi parametric regression into Taylor series: 
 

ttttttt XgXFXfXFXFXF  ),()(),()()()( 1
'

1
'

1    
 

And due to persistence of the small parameter , we can rewrite our expression is: 
 

ttttt UgUfUUZt  ),(),(: 111    

              ?)|(),( 11   uUUEUf ttt 
                                                                      

(3) 

?)|)),(((),( 1
2

111   uUUfUEUg tttt 
                                        (4)

 

 

After conditional expectations of (3) and (4) evaluation one can make inverse substitution and 
derive stochastic differential equation as diffusion approximation for the base semi parametric 
model (1). Of course, our algorithm works only if inverse function exists. For example, Gamble 
copula, which don’t have standard inverse function. 
Now we derived a tool for model (1) parameters evaluation. For describing our idea briefly, let’s 
take a look in the next section how works our algorithm with the true market data.  
 
 
4. Practical approach of the proposed algorithm 
 
We’ll analyze the VIX - Market Volatility Index – daily data from 31.03.2007. to 10.12.2011. The 
VIX is a market mechanism that measures the 30-day forward implied volatility of the underlying 

)(
))(),((

),(
2

yp
yx

xFyFC
yxp





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index, the S&P 500. Being able to meaningfully interpret movements in the VIX and its reaction to 
market events can give investors an edge in managing the risk and profitability of their trading book 
and in designing portfolio strategies using VIX derivatives to capitalize on the dynamic and time-
varying correlation of the VIX with its underlying S&P 500 Index. Let’s built for this option index 
semi parametric copula based model, using AIC and BIC criteria. 
An easiest way of parameters estimating of the semi regressive model for the VIX index would be 
to hold the algorithm:  

- Simulate tU points which is R[0,1] (uniform) or transform the existing sample into R[0,1]; 

- Build scatter plot for ),( 1 tt UU  ; 

- Make several statistical tests to find the suited distribution of data; 

- Taking into account scatter plot and distribution of data try to choose copula from existing 
class or build your own copula, if you know marginal distributions; 

- Test copula consistency to data (for example AIB and BIC); 

- Find regression parameters. 

Using Matlab program we have built scatter plots for VIX index transformed into uniform 
distribution (R[0,1]) and non transformed data.  

 
Graph1. Scatter plot for non transformed into R[0,1] VIX index data 
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Graph 2. Scatter plot for transformed into R[0,1] VIX index data 

 
An important issue faced by an applied researcher interested in using the class of semi parametric 
copula-based time series models is the choice of an appropriate parametric copula. In different 
papers Chen et al. (2003) [9] propose two simple tests for the correct specification of a parametric 
copula in the context of modeling the contemporaneous dependence between several univariate time 
series and of the innovations of univariate GARCH models used to filter each univariate time series; 
(2) Chen and Fan (2004b) [10] establish pseudo-likelihood ratio tests for selection of parametric 
copula models for multivariate i.i.d. observations under copula misspecification [1]. But our 
suggestion is simpler – we can choose the best copula fit using AIC and BIC criteria or using 

2 test for data distribution. We take for different copula comparisons     
AIC and BIC (see Table 1). 
 

Most common types of copula in finance 

 

 
 

Graph 3. Scatter plot for transformed into R[0,1] VIX index data 
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For the first copula choosing step it is reasonable to compare graphical parametric copulas with 
VIX data scatter plot (Graph 2). As we can see the most suitable copulas for our data are Gumbel, 
Frank and Normal. For this sample of copulas is useful to calculate AIC and BIC criteria.   
 

Copula AIC BIC 
 Gumbel copula -124,1 -119,3 

Frank copula -267,4 -261,5 
Normal copula -230,3 -227,9 

Table 1.  AIC and BIC criteria for VIX index data.   

 
Taking into account AIC and BIC criteria we should choose Frank copula for further model 
estimation. Let see how to derive semi parametric regression parameters using Frank copula 
representation: 

      11
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And insert expression (5) into conditional expectation, we get our parameters: 
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It is impossible to solve analytically (5) and (6) expressions. But numerically it is doable for 
example in the Matlab. For the Frank copula we can use inverse function with the aim to return to 
our base equation (1). Of course, if we want use this model in practice, it is crucial to compare 
different class models which could be suitable for this data. This can give applied added value for 
this method.    
But if we deal with copulas we should not skip some facts. For example, it is not easy to say which 
parametric copula best fits a given dataset, since some copulas may fit better near the center and 
other near the tails and many copulas do not have moments that are directly related to the Pearson 
correlation, it is difficult to compare financial models based on correlation. 
 
 
Conclusions and further work 
 
The algorithm for copula simulation and semi parametric regression coefficients finding through 
Markov chain have been presented. For Option VIX index data was found via MatLab the best 
fitted copula model, which is Frank copula. According to this copula, were shown principals of the 
semi parametric regression model coefficients evaluation. The next step in this research can be 
evaluating of the applied characteristic of the copula based semi parametric model as well as 
studying efficient estimation of conditional variance function in stochastic regression and to build 
continuous stochastic model using limit theorems.  
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NONSMOOTH FUNCTION APPROXIMATION
IN PRACTICAL CHANGE POINT PROBLEM
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Abstract. Indirect method for evaluation of critical micelle concentration, owning to
their wide application potential, are in the great interest of the chemist community. In
this article we propose regression models based on explicitly defined nonsmooth functions
for approximation dependence of micelle concentration and voltage potential. The main
goal is to find the change point of approximation function and determine the value of
critical micelle concentration including its uncertainty.

Key words and phrases. Critical micelle concentration, Nonlinear regression model,
Linearization, BLUE, Least Squares Method.

Mathematics Subject Classification. Primary 62J02, 62J05; Secondary 62B15

1 Introduction

Paper presents the solution of actual problem solved within chemistry community. They are
currently looking for general algorithm that determinates the change point of micelle concen-
tration known as critical micelle concentration (CMC).

The critical micelle concentration is defined as relatively small range of concentration of
surfactant above which micelles are spontaneously formed. The value of the CMC is important
parameter for characterization of each micelle-forming compound/surface active compound.
Electrochemical techniques are not least important group used to observation of micelle aggre-
gation. Conductivity measurement is the most widely used electrochemical method for CMC
determination. Formation of micelle can be indirectly measured by a cyclic voltametric method
on a hanging memory drop electrode without electrochemical active probe [1].

Previously, values of CMC were evaluated from concentration dependence as the intersection
of two straight lines. The approximation lines were intuitively interlaid through concentration
data, therefore CMC value was not accompanied with its precision or its uncertainty.
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In this paper, we suggest to use statistical regression models to solve CMC evaluation
problem. In statistical point of view, CMC can be defined as a change point in the behavior
of the micelle. For estimation of CMC value augmented with its variance, it is required to
find/design suitable regression models either with or without additional constraints [2], [3].

First CMC algorithm, introduced in this paper, is based on two straight lines approxima-
tion, same as standard CMC evaluation methods. Next proposed approximations is using two
quadratic functions with one intersection. Last but definitely not least CMC algorithm is com-
bining advantages of previous algorithms and it is based on assumption of concavity of both
quadratic approximation functions. The presumption of concavity comes from data character
and surprising failure of previous algorithm.

All designed algorithms are tested on real data-sets and compared by the variance of change
point, coefficient of determination and residual variance. Employment of these brand-new
algorithms to chemical research will benefit whole chemistry community dealing with CMC
evaluation problem. After all, they will gain simple and general tool for determination of
critical micelle concentration value including its uncertainty.

This paper consists 4 sections. Section 2 describes statistical theory in background of CMC
algorithms, especially the model of incomplete measurement without constrains and lineariza-
tion of nonlinear models. Three designed CMC algorithms are summarized and evaluated in
following Section 3. Last section contains major conclusions and directions of future work.

2 Statistical background

In the first section, parts of the theory of nonlinear regression models are presented. See [2], [3]
or [4]. Major accent is given to the model of incomplete measurement without constrains and
to the properties of unknown parameter estimator. Best Linear Unbiased Estimator (BLUE) is
derivated with the help of Least Squares Method and its variance follows from matrix theory. In
the following part, description of linearization process is presented. It shows us the procedure
how to transform the nonlinear regression model to the linear one. The linearization process is
mainly based on the Taylor series expansion and neglecting of the elements with second order
and higher.

2.1 Model of incomplete measurement without constrains

Definition 2.1
The model of incomplete measurement without constrains is given in the form of

Y ∼ (Fβ, σ2V), (1)

where Y is n-dimensional random vector of measurements, σ2V is known symmetric covariance
matrix of type (n × n), F is (n × k)-matrix and β ∈ Rk is vector of unknown parameters.
If F is full-ranked in columns so r(F) = k < n and V is a positively definite matrix then the
model (1) is regular.

Theorem 2.2
Let

Y ∼ Nn(Fβ, σ2V) (2)
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be regular regression model of incomplete measurement without constrains, then BLUE (Best
Linear Unbiased Estimator) of unknown first order parameter β in the model (2) is given by

β̂ = (F′V−1F)−1F′V−1Y. (3)

The covariance matrix Var(β̂) is in the form of

Var(β̂) = σ2
(
F′V−1F

)−1
. (4)

and

β̂ ∼ Nk

(
β, Var(β̂)

)
. (5)

Proof. The derivation of the relations for the estimators is based on the least-squares method.
For details see [2] or [3].

2.2 Linearization of nonlinear model

Let us assume that measurements are forming together the random vector Y satisfying the
nonlinear regression model

Y = Φ(β) + ε, ε ∼ Nn(0, σ2V), (6)

where Φ : Rk → Rn is known nonlinear function, β ∈ Rk is the unknown parameter, Rk is the
parametric space and V is the known positive definite matrix. Further, we consider the point
β0 ∈ Rk and its neighbourhood O(β0) in the parametric space Rk such that the true value of
the parameter β is lying inside the O(β0).
Additional assumptions about the model (6) are:

1. model is regular at the point β0, so r(F) = k where F =
∂Φ(β)

∂β′ |β0 ;

2. for arbitrary β ∈ O(β0) and ∀i, j, l ∈ 1, ..., k :
∂3Φ(β)

∂βiβjβl
= 0.

Above-mentioned assumptions about the model (6) imply that the parameter space Rk

can be restricted to the set O(β0), and furthermore the model can be approximated by the
quadratic model, i.e.

Y − Φ0 ∼ Nn

(
Fδβ + 1

2
κ(δβ), σ2V

)
, β ∈ O(β0) (7)

where

Φ0 = Φ(β0), κ(δβ) =

⎛
⎜⎝ κ1(δβ),

...
κn(δβ),

⎞
⎟⎠ ,

κi(δβ) = (β − β0)′hi(β − β0)′, hi =
∂2Φi(β

0
)

∂β′∂β′ , i = 1, . . . , n.
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Linearization of the quadratic model (7) is made by neglecting the elements of the Taylor
series expansion with second order and higher. So resulting linearized model is in form

Y ∼ Nn

(
Φ0 + Fδβ, σ2V

)
, (8)

where Φ0 = Φ(β0), F =
∂Φ(β)

∂β′ |β0 and δβ = β − β0. Under special circumstances such as

β0 = 0 and Φ(β0) = 0, the linear model can be written as

Y ∼ Nn

(
Fβ, σ2V

)
. (9)

It is important to mention that selection of initial parameter β0 play the significant role
in whole linearization process. Inappropriate estimation of parameter β can be caused by the
low-quality initial solutions. For such cases, it is necessary to evaluate the linearization domain
of differences δβ that are acceptable for linearization of the model. Problem of linearization
domains is described and solved in full detail in [3].

3 Example and Algorithms

Example

Formation of sodium dodecyl sulfate (SDS) micelle in phosphate buffer system was observed by
a cyclic voltametric method on a hanging mercury drop electrode without electrochemical active
probe. All measurements of potential for different micelle concentrations were arranged to the
column vector. Critical micelle concentration (CMC) of SDS have to be determined as the SDS
micelle concentration in the change point of desorption peak potentials.

Figure 1: Dependence of potential and SDS micelle concentration - measurements
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Figure 1 illustrates a few examples of source data catching the measurements of potential for
different concentrations. One can recognize, that critical micelle concentration can be intuitively
determined by the data change point in all pictured examples. However, it is also easy to see
that the relation between concentration and potential is nonlinear and moreover nonsmooth.
The aim of following section is to describe general algorithms for CMC determination. Main
target of these algorithms is to find or design advisable mathematical model for evaluation
of CMC including its uncertainty. Proposed relationships of potential and concentration are
nonsmooth functions widely recognized as the most appropriate ones used for the approximation
of the measured CMC.

3.1 Algorithm A:

First presented algorithm is based on standard way of critical micelle concentration evaluation.
Let us assume, that dependence between potential and concentration is given by two straight
lines and CMC is given by their intersection, resp. by their change point. So the measured
potentials can be approximated by just one nonsmooth curve of absolute value function which
follows,

fA(β, x) = β1x + β2 + β3|x − β4|, (10)

where variable x represents micelle concentrations and β1, β2, β3, β4 are the unknown parame-
ters. Parameter β4 has a special meaning, it determinates the CMC value. It is important to
mention, that values of micelle concentration are assumed to be deterministic.

Let all measurements of potential be forming n-dimensional random vector Y, then we can
design the nonlinear regression model

Y = Φ(β) + ε, ε ∼ Nn(0, σ2V), (11)

where Φi(β) = fA(β, xi) ∀i = 1, ..., n, xi is micelle concentration corresponding to the mea-
surement Yi and uncertainty of source data is described by standard deviation 0.5 [mV], so
covariance matrix of measurements σ2V = 0.25 · In.

In the next step, linearization of the model (11), we will follow the procedure described in
Section 2.2. Let us assume that the initial solution β0 = 0 and Φ(β0) = 0, then linearized
model for CMC Algorithm A is in form

Y ∼ Nn

(
Fβ, σ2V

)
,

where

Fi· =
∂fA(xi,β

0)

∂β′ =

(
∂fA(xi,β

0)

∂β1

,
∂fA(xi,β

0)

∂β2

,
∂fA(xi,β

0)

∂β3

,
∂fA(xi,β

0)

∂β4

)
=

=
(
xi, 1, | xi − β0

4 |, |xi − β0
4 |(−β0

3)
)
, i = 1, . . . , n. (12)

Evaluation of unknown parameter estimator β̂ is based on formulas form Section 2.1, es-
pecially on (3) and (4). Source data from two different measurements together with their
approximation functions are illustrated in the Figure 2, it is supplemented with numerical re-
sults as well. In the first case, CMC is evaluated as 6.7492 with variance equal to 0.0406832,
in the other case the CMC corresponds to 4.8555 with standard deviation of 0.05959. Index of
determination and residual variance are determined for each example to see proprietress and
quality of chosen approximation.
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Figure 2: Resulting potential approximation and CMC evaluation with Algorithm A

3.2 Algorithm B:

In the following algorithm, we have decided to extend piecewise linear function (10) from
previous Algorithm A to the quadratic one. Curve approximating the measurements of potential
is then defined by

fB(β, x) = β1x
2 + β2x + β3 + β4|x − β5|, (13)

where βi, i = 1, ..., 5, are the unknown parameters and variable x represents micelle concen-
trations. Value of parameter β5 corresponds to change point of concentration and therefore
defines CMC value.

When we build the regression model for random vector of potential measurements, we have
to consider the nonlinearity and nonsmoothness of approximating function (13). Resulting
nonlinear model is in form

Y = Φ(β) + ε, ε ∼ Nn(0, σ2V), (14)

where Φi(β) = fB(β, xi) ∀i = 1, ..., n, xi is corresponding concentration and covariance matrix
σ2V = 0.25 · In.

Linearization process of the model (14) is again based on the procedure described in Section
2.2. Let us use the estimator from previous CMC Algorithm A as initial parameter β0 of
linearization, then

Y ∼ Nn

(
Φ0 + Fδβ, σ2V

)
,

where Φ0 = Φ(β0), δβ = β − β0 and

Fi· =
∂fB(xi,β

0)

∂β′ =

(
∂fB(xi,β

0)

∂β1

,
∂fB(xi,β

0)

∂β2

,
∂fB(xi,β

0)

∂β3

,
∂fB(xi,β

0)

∂β4

,
∂fB(xi,β

0)

∂β5

)
=

=
(
x2

i , xi, 1, | xi − β0
5 |, |xi − β0

5 |(−β0
4)

)
, i = 1, . . . , n (15)

is linearized form of the model (14).
Last but not least, it is necessary to estimate the values of unknown parameter β. As the

linearized model (15) is regular model of incomplete measurement without constrains, we can
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use formulas (3) and (4) from Section 2.1. That leads us to

δβ̂ = (F′V−1F)−1F′V−1(Y − Φ0),

β̂ = β0 + δβ̂ and

Var(β̂) = σ2
(
F′V−1F

)−1
. (16)

Figure 3: Resulting potential approximation and CMC evaluation with Algorithm B

Figure 3 shows the resulting approximation functions augmented with numerical results for
two different datasets. For the first sample, the result looks very promising; CMC is 6.7584
with standard deviation of 0.0065 and index of determination resp. residual variance shows
proprietress of the chosen model. However, everything is negated in the second sample, where
the quadratic model (15) completely failed in CMC value determination. Inappropriate esti-
mation arises due to the low-quality initial solutions. Dealing with this issue by linearization
domain determination will be part of our future work.

3.3 Algorithm C:

After the failure of Algorithm B, we investigated all test samples to find out what happened.
Inappropriate estimation of CMC has been observed in 1% of experimental data, where resulting
approximation curve became convex. For all other 99% test samples, Algorithm B worked
correctly; moreover, indexes of determination were close to unit and approximation functions
were concave. Results of this study leads us to the next Algorithm C, where concavity of
approximation curve is presumed.

Let us assume, that concave piecewise quadratic function approximating voltage potential
is given by relationship

fC(β, x) = −β2
1x

2 + β2x + β3 + β4|x − β5|, (17)

where β1, β2, β3, β4, β5 are the unknown parameters and x represents the micelle concentrations.
Value of −β2

1 is always non-positive, therefore fC(β, x) is concave function regardless of β1.
Parameter β5 indicates the critical micelle concentration, same as in previous algorithm.

The nonlinear, nonsmooth and concave regression model corresponding to chosen approxi-
mation is given by

Y = Φ(β) + ε, ε ∼ Nn(0, σ2V), (18)
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where Y is random vector of potential measurements, Φi(β) = fC(β, xi) ∀i = 1, ..., n, xi is
corresponding concentration and covariance matrix σ2V = 0.25 · In.

After the linearization process (see Section 2.2), we are getting to

Y ∼ Nn

(
Φ0 + Fδβ, σ2V

)
,

where initial parameter β0 is evaluated from resulting function of Algorithm A, Φ0 = Φ(β0),
δβ = β − β0 and

Fi· =
∂fC(xi,β

0)

∂β′ =

(
∂fC(xi,β

0)

∂β1

,
∂fC(xi,β

0)

∂β2

,
∂fC(xi,β

0)

∂β3

,
∂fC(xi,β

0)

∂β4

,
∂fC(xi,β

0)

∂β5

)
=

=
(−2β0

1x
2
i , xi, 1, | xi − β0

5 |, |xi − β0
5 |(−β0

4)
)
, i = 1, . . . , n. (19)

Evaluation of estimator β̂ and CMC value follows from equations in (16) and results for
two chosen samples are illustrated in the Figure 4. This time Algorithm C worked correctly
for problematic samples as well as for the normal ones; CMC is 4.8615 with standard deviation
0.011 for the second sample.

Figure 4: Resulting potential approximation and CMC evaluation with Algorithm C

There is another way how to deal with convexity-concavity approximation problem in this
example. We can add the constrain to the regression model such as f ′′(x) = −K2, K ∈ R+ that
guarantees the concavity of approximation function f(x). Regression model is then in form of
the model of incomplete measurement with the condition type II. Unfortunately, description
of following algorithm is beyond the range of this paper. Details about constrained regression
model can be found in [2] and [3].

3.4 Numerical results

To conclude this main section of our paper, all numerical results are summarized in Table 1.
Residual sum of squares (Se) and residual variance (s2) are defined commonly as

Se =
n∑

i=1

(Y
i
− Ŷi)

2, s2 = Se

n−p
, (20)

where Yi and Ŷi are observed values and estimated values of dependent variable Yi, n is the
number of measurements and p is the number of regression parameters. As an additional
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Algorithm Sample No. Figure Estimator of Uncertainty of Se s2 R
change point estimator

A 1 2 left 6.7492 0.04072 12.0590 1.73632 0.99975
B 1 3 left 6.7584 0.00652 7.2036 1.20032 0.99988
C 1 4 left 6.7584 0.00652 7.4322 1.21922 0.99988
A 2 2 right 4.8555 0.05962 17.2773 2.07832 0.99700
B 2 3 right 7.5765 0.01452 116.1957 4.82072 0.98373
C 2 4 right 4.8615 0.01112 21.5302 2.07512 0.99701

Table 1: Estimator of change point and the criteria of the quality of regression model applied to the
measured data

criterion for comparison of the models index of determination is used, which is defined in (21)
and ranges from 0 to 1;

R =

√
1 −

∑n
i=1(Yi − Ŷi)2∑n
i=1(Yi − Y i)2

. (21)

It is easy to see from Table 1, that critical micelle concentration of two selected samples is
6.75 resp. 4.86. Algorithm A gives us results with highest uncertainty and residual variance.
Statistical characteristics looks much better for Algorithm B and the first sample; however,
fifth line of the Table 1 shows the failure of Algorithm B with incorrect estimator of CMC
value, high sum of residual squares and low index of determination. Algorithm C combines
advantages of Algorithms A and B together, it does not failed in the critical sample and gives
us reasonably good results in statistical point of view.

4 Conclusions

In this paper, the problem of critical micelle concentration determination is solved. Although
generally the solution of CMC problem is based on the intersection of two straight lines or
two quadratic functions, we designed three different regression models grounded in explicitly
defined approximation function of voltage potentials. Utilization of regression model into the
CMC evaluation provides us CMC estimator augmented with uncertainty. Employment of these
brand-new algorithms to chemical research will benefit whole chemistry community dealing with
CMC evaluation problem.

The aim of future research is deeper investigation of Algorithm B failure. It is necessary
to determine linearization domain for initial parameters and deal with convex-concave problem
by using regression model with additional constraints for unknown parameters.
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Abstract. Properties of two Bayesian control charts are examined. The m-chart is represented 
by the credibility interval derived from the posterior distribution of the process mean with the 
normal prior, the second approach consists in posterior odds determination based on two models 
involving a change point with a geometric prior. Performance of both types of charts is 
measured by means of the cumulative probability of false alarm and the median run length. 
Characteristics are estimated via the simulation study and compared with those of the classical 
Shewhart chart.  
 
Key words. Current mean estimation, change point detection, cumulative probability of false 
alarm, median run length, posterior odds. 
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1 Introduction 
 
In last twenty years many manufacturing organizations adopted new production strategies that are 
characterized by short runs during which only relatively small quantities of parts are made, or by 
discontinuous production due to frequent product changeover. Conventional Shewhart control 
charts cannot be applied anymore because in these short-run processes a sufficient amount of data 
needed to construct control limits is not available. Various frequentist methods have been 
introduced for analyzing data from these processes, see e.g. [2]. A Bayesian approach seems to be a 
good solution in situations when only few data are available and yet some decision must be made. 
Our uncertainty about a quantity, for example the process mean, before observations of the process 
are obtained, is expressed in form of a prior distribution of this quantity. The posterior distribution 
is derived making use of both observed data and the prior information. Decisions are then based on 
the posterior distribution.  
In this work we confine to normal distribution of observations and to detection of a shift in the 
process mean. Sustained special causes are assumed that continue until they are identified and 
removed, what means that the shift is permanent. Two simple methods based on different 
approaches mentioned above are presented: the Bayes’ estimation of the current mean (m-chart) and 
the Bayesian change point detection (posterior odds chart). For their use in statistical process 
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control (SPC), the performance in terms of the risk of false alarm or the speed of detection of a 
change in the process mean is of the main interest.  
 
 
2 Bayesian m-chart 
 
Suppose we have a random sample of r observations 1 2( , ,..., )T

rx x xx  from a normal distribution 

with mean   and known variance 2 , where   is regarded as a variable with the prior distribution 
( )p  . Using the Bayes’ rule, the posterior density of   is given by  
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x
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where the likelihood ( | )p x  has the form 
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Using the identity 2 2 2
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   and ignoring the 

constant of proportionality in the resultant formula, the posterior density (1) can be expressed in the 
form 
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When the conjugate normal prior  
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with hyperparameters  0m  and 2

0w  is chosen, we get  
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It follows that the posterior mean is  
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and the posterior variance is 



 

Aplimat – Journal of Applied Mathematics
 

volume 5 (2012), number 3  261
 

 
2 2

2 0
2 2

0

w
w

rw







. (7) 

 
Suppose samples of fixed size and 1 2, ,..., rx x x  instead of individual observations are available. Then 

the posterior mean and variance are expressed by 
 

 
22
0

02 2 2 2
0 0

rnw
m m x

rnw rnw


 

 
 

 (8) 

 

 
2 2

2 0
2 2

0

w
w

rnw







. (9) 

where 
1

/
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i
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x x r
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 . It is convenient to use recursive formulas  
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The hypothesis 0 0:H    against the two-sided hypothesis 1 0:H    is tested by means of the 

credibility interval  
 1 / 2,i i i ilcl ucl m u w  , (12) 

 
where 1 /2u   is the upper / 2  percentage point of the (0,1)N  distribution. Control limits ilcl  and 

iucl  are computed sequentially for 1,2,...i  . As soon as for some i 0  lies outside the interval, 

0 0:H    is rejected and a signal is given that the process mean has changed.  

The prior distribution 2
0 0( , )N m w  expresses our prior belief regarding the mean of the process. 

Naturally we expect that the mean of the process does not differ from the target value 0  at the 

beginning of SPC and we put 0 0m  . Small 2
0w  corresponds to strong belief about   and it will 

require more samples than the posterior im  moves so far from 0  that a shift could be detected. The 

magnitude of the prior parameter 2
0w , which is the initial value of (11), affects the relative size of 

weights in (10) and thus the quickness of the reaction to a shift in the mean of the process. Based on 
the results of simulations, the choice 2 2

0 /w n seems reasonable with regard to the chart’s 

performance; estimated cumulative probability of false alarm (see further) is sufficiently low and 
the median run length is the same as for the higher value of 2

0w . 
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3 Performance of Bayesian m-chart 
 
In the classical Shewhart control chart (under the assumptions of normal distribution and 
independence), a type I error probability, called a risk of false alarm in SPC, equals to 0.0027. This 
small level of the risk is a key property in SPC because false alarms can have serious consequences. 
To enable comparison with other control charts where the probability of false alarm is varying, the 
cumulative probability that a false alarm will occur within a given number of plotted points can be 
used. The cumulative probability of false alarm (CPFA ) of the Shewhart chart can serve as a 
benchmark when different control charts are examined. When r sequential samples are considered, 
the probability that at least one false signal will occur within r points is given by 

( ) 1 0.9973rCPFA r   .  
The other important property is run length, i.e. a number of samples taken from a process till a 
signal occurs. Traditionally, the expected value of run lengths called the average run length (ARL) is 
used to measure sensitivity of control charts. Large in-control values of ARL and conversely small 
ARL when a shift in process parameter has occurred are desirable. The run length on the Shewhart 
chart follows a geometric distribution with the mean1/ p , where p is the probability of the signal at 
any sampling time. Owing to the fact that the geometric distribution is quite skewed and its standard 
deviation is very large, using ARL has been criticized in recent years and the median or other 
percentiles or the run length distribution are recommended by some analysts. The median run length 
(MRL) of the Shewhart chart is log(2) / log(1 )p    , where .   denotes the greatest integer 

function. 
Properties of the m-chart were examined by means of simulations. The simulation study was 
realized according to the following scheme: The in-control state of the process was represented by 
the (10,1)N  distribution. When a shift   at the sampling point c was considered, first 1c   samples 
were generated from N(10,1) and next samples were from (10 ,1)N  . As soon as the stopping 
condition was valid, the particular run was interrupted and the position of the break point recorded 
to provide the information about when a signal occurred. Under chosen conditions, each run of 
length 100 at maximum was repeated 10 000 times. CPFA () was estimated through the cumulative 
proportion of runs (out of 10 000) in which the first signal occurred within the interval < 1, i >. The 
run length was determined according to 1i c  , where i corresponds to the breakpoint and c is the 
shift point. Consequently, the minimum run length is equal to 1. Because of false signal 
occurrences, the sample size was varying and less than 10 000 when the median was calculated. 
Values 0 10m   and 2 2

0 / 1/w n n   of hyperparameters were chosen. The posterior 

characteristics and the 99% credibility limits ilcl  and iucl  were computed sequentially. The size of 

samples ranged from 1n   to 5n  , the position of the shift point varied from 1c   to 50c  .   
The cumulative proportions of false signals are displayed in Figure 1 together with the 
corresponding cumulative probabilities of the Shewhart chart given by ( ) 1 0.9973iCPFA i   . The 
curves represent smoothed bar charts of the cumulative proportions over intervals of width equal to 
5 and so they do not start at the origin. It is apparent that the cumulative proportion of false alarms 
increases slower than the cumulative probability of the Shewhart chart and so the risk of false alarm 
is sufficiently low for any 1,2,...i  .  
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Figure 1.  m-chart, estimated CPFA (in-control process) 

 
The effect of sample size n on the distribution of run length is illustrated in Figure 2, where the 
estimated probability mass function of run lengths, i.e. the proportion of cases when given run 
length was observed, is displayed. Here the shift 1.5   at the sampling point 10c   was 
considered. As n increases, the run lengths tend to be shorter and exhibit smaller spread.  
 

 
Figure 2.  m-chart, run length distribution ( 1.5  , c = 10) 

 
 
The run length distribution depends on the interval to the shift point c. Run lengths tend to increase 
when a shift occurs later. The increase is most apparent for small shifts and small sample sizes. 
Table 1 introduces median run lengths for some chosen values of  n,  , and c. The median run 
length of the Shewhart chart is given in the rightmost column. 
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 Table 1. Bayesian m-chart, median run length  
  c = 1 c = 10 c = 20 c = 30 c = 40 c = 50 Sh 

1.5   n = 1 4 7 10 11 13 14 11 

 n = 5 2 3 4 5 6 6 1 

3   n = 1 2 4 5 6 6 7 1 

 n = 5 1 2 2 3 3 3 1 
 
 
4 Bayesian detection of the change point 
 
Consider that sequential observations from the in-control process follow the distribution 0 ( )if x . 

Then a persistent shift in the mean occurs and another distribution 1( )if x is valid. Suppose that r 

independent sequential observations 1,..., rx x  are available. Let ( | )p x denote the joint density 

function of  1( ,..., )T
rx xx  conditioned by the value of . Then 
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where r   corresponds to the case when the change point has not occurred until sampling time r. 
Using Bayes’ rule, the posterior distribution of   given 1( ,..., )T

rx xx is  
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With the prior distribution of the change point 1( ) (1 )p p p    , 1, 2,...  , the posterior 
probability that the change point has occurred by the rth sampling time is 
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Cancelling out 0
1

(1 ) ( )
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r
i

i

p f x
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   and putting  1
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 , we have 
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Suppose that n observations are available at each sampling time and sample means ix  are obtained. 

They are assumed to have a normal distribution with mean 0  and variance 2 / n  when the 

process is in control. Denoting 0 ( )if x and 1( )if x densities of normal distributions 2
0( , / )N n   and 

2
1( , / )N n  , respectively, and assuming *

1 0    , we have 
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Equation (7.9) can be rewritten in the form 
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Decision is based on the posterior odds  
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where 1Pr( ) Pr( | )H r x x  and 0 1Pr( ) 1 Pr( )r rH H x x . The posterior odds are calculated 

sequentially and as soon as 
*

, *1p rpZ






, where  *  is close to 1 ( *0 1  ), the hypothesis 0H  

is rejected and the out-of-control signal is given. This condition is in agreement with the Shiryaev’s 
stopping rule (see e.g. [4]).  
The statistic ,p rZ  which is a part of the posterior odds involves the prior parameter p.  Larger values 

of p imply a relatively high weight given to low values of   and represent our belief that the 
process may move to the out-of-control state very soon. If there is no reason to expect a change 
soon after we started the process control, smaller value of p seems to be reasonable. On the other 
hand, it can be shown that a larger value of p contributes to a higher speed of detection. It is 

interesting that ,p rpZ  for various p close to 0 and 
1

rr

r i
i

Z R
  

   for 0p   proposed by Roberts [6] 
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are similar. Consequently, the Shiryaev-Roberts stopping rule can be formulated by means of the 

condition 
*

*1rZ






 [4].  

So far the single value 1  representing the out-of-control state of a process has been considered. 

Usually both positive and negative larger shifts off a target are undesirable. Two statistics R  and 
consequently pZ  (or Z) for two values of *  must be calculated, similarly as in the two-sided 

CUSUM chart. Under assumption that both directions are of equal importance following formulas 
can be used: 
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and 

 ,
1 (1 )

rr
i

p r
i

R
Z

p 




 


 ,     ,

1 (1 )

rr
i

p r
i

R
Z

p 




 


 . (22) 

 
In case of the Shiryaev-Roberts statistic similarly rZ   and rZ   are get for 0p  . Value 

, , ,max{ , }p r p r p rZ Z Z   is crucial to possible triggering a signal.  

The stopping threshold is derived from some conventional high value of the probability * . Kenett 
and Zacks (1998) suggest the value * 0.95   but it appears that the risk of false signal is too high. 
The value * 0.99   and consequently the stopping threshold * */(1 ) 99    perform well when 

the posterior odds statistic and known process variance are considered, but *  has to be higher for 
the S-R statistic (e.g. * 0.9973  ). 
As was already noted, * represents the minimum (positive or negative) shift of the process mean 
such that the process with the mean *

1 0     is considered to be out of control. Since changes of 

the mean up to 1.5  are acceptable in Six Sigma methodology, the value * 1.5   seems to be 

appropriate. It can be expected that true shifts   for which *   tend to be detected earlier.  

The prior parameter p affects both the run length and the risk of false alarm. The median run length 
decreases with the increase of p and it is shortest for the S-R statistic. The simulations indicated the 
similar run-length performance of the posterior odds with 0.1p   and that of the S-R statistic. 
 
 
5 Performance of the posterior odds chart 
 
Both ppZ  and S-R statistics were studied together to make some comparisons possible, although 

the latter statistic is not the posterior odds. The basic scheme of the simulation study was the same 
as before but now the posterior odds ppZ  or the S-R statistic were calculated sequentially and the 

corresponding stopping criteria were applied. The in-control distribution was represented by 
(10,1)N . The shift * 1.5   has been chosen to define the out-of-control state. 

Curves of cumulative proportions of false signals for the posterior odds statistic in Figure 3 exhibit 
linear increase and indicate that the probability of false alarm at any sample time is constant 
similarly as in the Shewhart chart. But unlike the Shewhart chart the risk of false alarm decreases 
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with the sample size. The curves of cumulative proportions for the S-R statistic were similar and are 
not displayed. A character of false signal occurrences differs from the m-chart (cf. Figure 1).  
  

 
Figure 3. Posterior odds chart, estimated CPFA (threshold 99) 

  
The run length distribution is not influenced by the position of the shift point. The curves for 
different values of c overlap and so they are not displayed. Run lengths of course depend on the 
sample size n, see Figure 4 where 1.5   was considered.  

 
 

Figure 4. Posterior odds chart, run length distribution,  
 
The median run lengths for both the posterior odds and the S-R statistics were mostly identical (see  
Table 2, where also MRL of the Shewhart chart is displayed).  
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Table 2. Posterior odds chart and  median run length 
  Post. odds S-R Sh 

1.5   n = 1 5 5 11 

 n = 5 2 2 1 

3   n = 1 2 2 1 

 n = 5 1 1 1 
 
 
6 Conclusion 
 
It is apparent that under the assumption of know process variance the run-length performance of 
both charts is worse than the performance of the Shewhart chart, with the exception of individual 
observations and small shifts about 1.5. Moreover, the m-chart can be usable only soon after the 
startup. The charts are intended to be used in situations when the classical Shewhart chart cannot be 
constructed because the lack of data and then the assumption of known variance is spurious. Some 
possibilities of the process variance estimation were explored by means of simulations. The 
variance was estimated sequentially similarly as in the self-starting CUSUM chart [3] but results are 
not shown here. Obviously, some prior information about the variance is required otherwise the 
performance of these charts is quite poor.     
 
 
References 
 
[1] BOLSTAD, W.M.: Introduction to Bayesian Statistics. John Wiley & Sons, Hoboken, 2007.  
[2] DEL Castillo, E.; GRAYSON, J.M.; MONTGOMERY, D.C.; and RUNGER, G.C.: A Review 

of Statistical Process Control Techniques for Short Run Manufacturing Systems. In 
Communications in Statistics – Theory and methods, Vol. 25, No. 11, pp. 2723-2737, 1996. 

[3] HAWKINS, D.M.: Self-Starting Cusums for Location and Scale. The Statistician 36, pp. 299-
315, 1987. 

[4] KENETT, R.S. and  ZACKS, S.: Modern Industrial Statistics: Design and Control of Quality 
and Reliability. Duxbury Press, Belmont CA, 1998. 

[5] MONTGOMERY, D.C.:  Statistical Quality Control: A Modern Introduction, 6th ed. John 
Wiley & Sons, Inc., Hoboken, 2009. 

[6] ROBERTS, S.W.: A comparison of some control chart procedures. In Technometrics, Vol. 8, 
pp. 411-430, 1966. 

 
 
Current address 
 
doc. Ing. Eva Jarošová, CSc.  
Skoda Auto University  
Tř. Václava Klementa 864  
293 60 Mladá Boleslav  
Czech Republic 
Phone Number 732469892  
e-mail: jarosova@is.savs.cz 
 
 



 

 

 
QUANTILE   CHARACTERISTICS    OF  CONDITIONAL    

DISTRIBUTIONS   OF  FINITE   MIXTURES 
  

MALÁ  Ivana (CZ ) 
 
 

Abstract. In the text conditional distributions of positive value continuous random variable are 
studied in the case of given information that a value of this variable is less or greater than a 
given quantity. The variable is supposed to have probability distribution with a density function 
given as a finite mixture of probability densities. The formulas for the conditional probability 
density and cumulative distribution function are derived in the text. Moreover, conditional 
quantile characteristics of location and variability are evaluated as a function of conditions. Per 
capita income of the households in the Czech Republic in 2008 is modelled with the mixture of 
three lognormal components and conditional distributions are studied. Conditional densities and 
conditional characteristics are shown in figures.  
 
Key words finite mixture, conditional probability distribution, conditional characteristics, R  
 
Mathematics Subject Classification:  C13;  C51 

 
 
1 Introduction 

 
In the text conditional distributions of a positive value random variable with continuous distribution 
given as a finite mixture are analysed. Conditions of interest are described by an additional 
information that the analysed random variable is less than a given value or it is greater than a given 
value. It requires only straightforward computations to derive conditional density and conditional 
distribution function of the variable under the condition that the variable is greater or less than the 
given quantity. Quantile characteristics of conditional distributions can be evaluated only with the 
use of numeric procedures. The results are used for the modelling of net annual income per capita 
(in Czech Crowns, CZK) for the Czech households in 2008. In the case of an analysis of incomes, 
information that the income is less or greater (the condition that the value is in a given finite interval 
is not treated in this text) that the given quantity is frequently known. The intervals in this text are 
of the form (0;z) and (z;∞).  
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2 Methods 
 

2.1 Finite mixture of probability distributions  
 

Suppose that a probability distribution of a positive random variable Y is a mixture of K probability 
densities fj(x;θj). These component densities depend on the unknown (p dimensional) vector 
parameter θj, j=1,.,K. Mixing probabilities (weights in the mixture) j should fulfil obvious 
constraints 
 

 1

1  0 1  1,.,
K

j j
j

, , j K . 


   
 

(1) 

 

Under these assumptions the density of  Y is given as a weighted average of densities fj   with 
weights πj  (mixing proportions) in the form 
 

  1

( ; ) ( ; ).
K

j j j
j

f y f y


 ψ θ
 

(2) 

 

The mixture density (2) depends on the vector parameter ψ 
 

 1 1( ,  1,., ),K j,., , j K   ψ θ   (3) 
 

with (K−1) parameters πj and Kp parameters theta. It follows from (2) that a cumulative distribution 
function of a mixture is defined as 
 

  1

( ; ) ( ; ),
K

j j j
j

F y F y


 ψ θ
 
      (4) 

 

where ( ; )j jF x θ is a distribution function of the j-th distribution. Generally, there is not a close 

formula for quantiles of a mixture and the 100P% quantile yP can be found from the definition as a 
(numeric) solution of equality 
 

 1

( ; ) ( ; ) , 0 1.
K

P j j P j
j

F y F y P P


   ψ θ
 

(5) 

 

For a numeric procedure we have a good first approximation, we can take weighted average of 
quantiles of components with weights equal to mixing proportions.   
 
2.2 Conditional distributions 

 
In this text we will analyse two possible conditions. For a given positive value of z the conditional 
distributions of Y given that Y z and Y z  are of interest. The dependence of quantile 
characteristics on the value of z is analysed. 
Suppose that Y has probability density (2) and we have additional information that Y z.  

Straightforward computation gives for the cumulative distribution function  F y Y z the form 

(for given z) 
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(6) 

 

Derivating (6)  we obtain conditional density of Y given that Y z by the formula 
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The conditional density (7) cannot be written as a mixture of component probability conditional 

densities fj/Fj of mixture components or as a mixture of densities fj with new weights.   
For the 100P % quantile we obtain (from (6)) equation 
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The formula can be rearranged to the equality 
 

                                                  1 1
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(8) 

 

or 
 

                                                                      ( ) ( ).zPPF z F y

                                            
(9) 

 

It means, that 100P-per cent quantile of the conditional distribution is equal to the quantile of the 
original distribution, the percentage is given by the left part of the equality in (9). This formula  
corresponds with [3]. In the text the first and the ninth deciles (P=0.1 and 0.9), lower and upper 
quartiles (P=0.25 and 0.75) and median (P=0.5) were evaluated according to (9) as the functions of 
the condition z. From these values, characteristics of variability quartile range and deviation in the 
form 0.75 0.25z zy y  and 0.75 0.250.5( ),z zy y  as well as these values for decile, can be evaluated. 

For high values of z we obtain distribution similar to unconditional distribution of Y.   
Suppose that Y has probability density (2) and we have additional information that Y z.  In this 
case formulas (6) and (7) turn to formulas  
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and 
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Evaluation of quantile characteristics of this distribution is the same as above if we take conditional 
density and conditional distribution function form (10) and (11) instead of (6) and (7). Formulas (8) 
and (9) can be rewritten as  
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It means, that 100P-per cent quantile of the conditional distribution is equal to the quantile of the 
original distribution, the percentage is given by the right part of the equality in (12). For small 
values of z the conditional distribution should be similar to the (unconditional) distribution of Y. For 
high values of z we obtain distribution of large values, in the case of incomes the distribution of 
high incomes.   
All computations in this text were performed in R 2.13.1. Functions from the stats-package were 
used for searching for a root of a function and for a maximum of a function. Moreover, the 
graphics-package was used for three dimensional graphs (Figures 5-8). For the estimation of 
parameters in the mixture a package flexmix was used.  
 
 
3 Data and Results 
 
In the paper, data about Czech households from the Living Conditions Survey (a national module of 
the European Union Statistics on Income and Living Conditions (EU-SILC)) from 2009 are used, 
[6]. This dataset (includes 9,911 households) covers incomes of Czech households from 2008. From 
these data an annual net per capita income (in CZK) was evaluated as a ratio of total net income of a 
household and a number of members. In the problem of modelling of incomes we have frequently 
information that the income is less (or grater) than a given amount. The distribution of per capita 
income was modelled with the use of a mixture of three two-parametric lognormal distributions. In 
this model we have to estimate two parameters 1 and 2   3 1 21 ( )      and six unknown 

parameters of the component densities 2, , 1, 2,3.j j i    Maximum likelihood estimates of these 

parameters were constructed by maximization of logarithm of likelihood function L  
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For this maximization usually EM algorithm is used ([5], [4]). As mentioned above, 8 unknown 
parameters were estimated with the use of a package flexmix [1]. According to the Akaike´s 
criterion this model is comparable with more complicated mixture models with more components 
and it is capable to describe well distribution of per capita incomes.  
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In the Table 1 estimates of parameters and maximum likelihood estimates of characteristics of 
component lognormal distributions are given. Estimated components are ordered according to the 
expected values, the first component includes 27.5 per cent of households with low incomes, the 
second 61.3 per cent of households with medium income and the last one contains 11.2 per cent 
households with high income. The artificial subgroups are constructed and the procedure doesn’t 
give group membership for households in the sample. The interpretation of components according 
to the location of incomes mentioned above is clear from the normal components of the mixture 
model for logarithms of incomes and is valid for lognormal mixture for estimated expected values 
and medians. If the mode is analysed, for lognormal distribution 2( ; )LN    this value is given by 

formula 
2

.e   This formula gives the smallest value of the mode for the third component with the 
highest values of both estimated parameters 2and .   This fact can be seen also in the Figure 1.   
        
Table 1: Maximum likelihood estimates of parameters and estimated characteristics of the level and 
variability (in CZK) 

component j=1 j=2 j=3 
̂  0.275 0.613 0.112 
̂  11.681 11.822 11.850 
̂  0.144 0.382 0.830 

expected value 119,535 146,527 197,689 
median 118,302 136,216 140,084 
mode 115,875 117,721 70,340 

standard deviation 17,303 58,079 196,849 
coefficient of variation 0.14 0.4 1 

 
These values for components are completed in the Table 2 with the values of characteristics of the 
mixture. Only estimates of expected value of components can be weighted with component weights  
 

Table 2: Sample values and estimates of characteristics of the level and variation for estimated 
mixture models 

characteristics E(Y) y0.5 mode  quartile deviation 
sample values 145,277 126,596 - 93,397 28,379 

model 144,834 126,806 115,947 83,550 28,604 
 
to the mixture expected value, remaining values were evaluated from the definition: close form was 
used for evaluating of standard error and numeric procedures for the evaluating of the mode and 
quartiles. In this case we can compare sample and estimated values. As expected, for income 
distribution medians (both sample and estimated) are less than the mean and estimated expected 
value. 
In the Figure 1, component densities are shown together with the density of the mixture. In the 
figure the smallest value of the mode in the third component is visible as it was discussed above.   
 

( )D Y
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Figure 1: Estimated densities of components (dotted lines) and the mixture density (solid line), 

income in thousands of CZK is on the horizontal axis  
 
In the Figure 2 maximum likelihood estimates of quantiles of conditional distributions are shown as 
a function of z for condition .Y z For given z (on horizontal axis) the quartile range and the range 
between the ninth and the first decile are visible. The gap between these values increases with 
increasing z and it stabilizes for large values of the condition, when these values correspond with 
characteristics of unconditional model distribution.  
 

 
 

Figure 2: Estimated conditional quantiles (in 1,000CZK): the first and the ninth deciles, median, 
quartiles for the condition ,Y z  z in 1,000CZK (horizontal axis) 

 
In the Figure 3 estimated quantiles for the conditional distribution of Y given Y z  are presented. 
For small values of z the conditional distribution is similar to the unconditional distribution, with 
increasing value of z all characteristics increase with z. In correspondance, differences between 
quartiles (and deciles) begin from values for unconditional distribution (Y > 0) and increase with 
increasing value of condition z.  
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Figure 3: Estimated conditional quantiles (in 1,000CZK): the first and the ninth deciles, median, 

quartiles for the condition ,Y z  z in 1,000CZK 
 
In the Figure 4 values of conditional densities in modes are shown as function of conditions z for 
both types of conditions. The value of the unconditional mode is shown by the grey line. This value 
is important for the value of mode as will be shown later.  
 

 
Figure 4: Maximum values of conditional densities (multiplied by 510 ) as a function of z 

(horizontal axis in 1,000CZK) for both conditional distributions (condition Y z left vertical axis, 
condition Y z right vertical axis) 

 
The mixture density in the Figure 1 is unimodal. For such a distribution it is easy to find modes of 
conditional distributions, as these values depend on the mode of unconditional distribution 
(according to the Table 1 115,947 CZK for the analysed model). In the case of condition ,Y z  the 
mode of conditional distribution is equal to the value of the mode of unconditional distribution for z 
less than mode (the unconditional mode is included in the interval (z;∞)) and to z if the mode is not 
included in the (z;∞), it means for z greater than unconditional mode. For z less then unconditional 
mode the conditional densities are unimodal, for z greater than unconditional mode these densities 
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are decreasing functions of y z (and is equal to 0 for ).y z  These densities are shown in Figures 
5 (z   100,000 CZK) and 6 (z > 100,000 CZK). 

 
Figure 5: Estimated conditional densities for the condition Y z , z , 100,000 CZK (values of y and 

z are given in 1,000CZK) 

 
Figure 6: Estimated conditional densities for the condition Y z ,  

z > 100,000 CZK (values of y and z are given in 1,000CZK)  
 
Suppose now the condition .Y z  If z is less than unconditional mode, the mode of conditional 
distribution is equal to z (as the value of the unconditional mode is not included in the interval 
(0;z)). For z grater then unconditional mode, the value of the mode of conditional distribution is 
equal to the unconditional mode. Conditional densities are increasing functions of y for modez 
(Figure 7) and unimodal for modez   (Figure 8), and these densities are according to (7) equal to 0 
for .y z  
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Figure 7: Estimated conditional densities for the condition Y z , 

z   100,000 CZK (values of y and z are given in 1,000CZK) 
 

 
Figure 8: Estimated conditional densities for the condition Y z , 

z > 100,000 CZK (values of y and z are given in 1000CZK) 
 
Conclusions 
 
In the text conditional distributions of a positive random variable with finite mixture probability 
distribution were constructed with the use of straightforward probability computations. For 
evaluation of conditional density or probability distribution close formulas are given based on 
component densities and distribution functions. For evaluation of quantile (or moment) 
characteristics numeric methods (solving nonlinear equations a numeric integration) are necessary 
to be used. If unknown parameters are estimated from a sample with the use of maximum likelihood 
method, numeric optimization is used for complete data problem and EM two-step numeric 
algorithm for incomplete data problem (as it is in this text).  
The conditional modes depend strongly on the mode of original (unconditional) distribution. The 
analysed mixture distribution is unimodal and in this case, for both conditions Y z and ,Y z  the 
conditional mode can be evaluated only with the use of the value of unconditional mode. It means 
that conditional mode is linear function of z for both conditions. For the condition Y z this relation  
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is linear (with the slope 1) for z less than the unconditional mode and constant for z greater than 
unconditional mode. For the condition Y z it is constant for z less and linear for z greater than the 
unconditional mode.  
Additionally, the shape of the conditional density (unimodal, increasing, decreasing function) 
depends also on relation between the unconditional mode and the condition z.   
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MULTISTATE   LIFE   TABLES:  APPLICATION   OF  THE  METHOD  

 ON  THE  MARRIAGE   CAREER 
 

MISKOLCZI Martina,  (CZ),  LANGHAMROVÁ Jitka,  (CZ) 
 

Abstract. The article introduced application of multistate demographic methods onto the 
‘marriage career’ based on real data. The analysis presented alternative approach to the analysis 
of marriages, divorces and behaviour of women toward this issue, and additional utilization of 
life tables’ methodology. 
Objective of the article is to verify changes in the behaviour of women in the Czech Republic 
related to their marriage decision over last ten years: women more often decide not to marry and 
stay unmarried. 
Calculation of multistate life table and modelling ‘marriage career’ of women in the Czech 
Republic 2001–2010 showed that women change their decision toward marriages. Younger 
women in the age 15–30 years in the Czech Republic changed substantially their behaviour 
related to their marriage over last 10 / 20 years. Tendency not to marry is stronger among young 
women, they stay unmarried and probably live in partnerships without official marriage. 
Women over 30 years changed their behaviour only little. 
 
Key words. multistate life tables, mathematical demography, marital status, marriage, single, 
married, divorced, widowed 
 
Mathematics Subject Classification: Primary 91D20; Secondary 91C99, 91D15 

 
 
Introduction 
 
Multistate demography is a part of demography that analyses states of demographic subjects and 
events that causes these states. For simplicity and mathematical modelling, usually only one type of 
demographic event is studied and the sequence of events is called ‘career’. For example, fertility of 
a woman can be analyzed – in such a case birth of woman, birth of first child, birth of second child, 
birth of third child etc., abortions and death of a woman would be in center of the interest. Another 
example is analysis of ‘educational career’, where each beginning of the study, successful 
completion (graduation) or unsuccessful end is observed according to the education stage. 

Here, ‘marriage career’ or ‘marital status career’ of women is studied in the period of 2001–
2010 in order to analyze changes in the trend in nuptiality (marriages) and divorcity in the Czech 
Republic after 2000. Method of multistate life tables enables to study “… occurrences of events and 
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transfers and on their association with the populations that are exposed to the risk of experiencing 
them.” (Rogers, 1980, p.497) 
 
 
1.1 Definition of Terms 
 
In the multistate demography, that had originated from multiregional demography (Rogers, 1975), 
following terms are used: 
 Events Ui: birth (U0), marriage (U1), divorce (U2), death of the partner (become a widow) (U3), 

death (U).  is used in demography to denote first age that no one reaches in the population. 
 States (Zi): single (Z0), married (Z1), divorced (Z2), widowed (Z3) and dead (Z). States could be 

absorbent or transient. Absorbent states cannot be left, subject, once he came here, cannot leave 
and remains in the state. Usually, it is represented by the state ‘dead’. 

 Randomness: Occurrence of events is considered to be random. It is assumed that an individual 
with certain realization of his life cycle can be found in the population with some probability. 

 Probability distribution: random event is characterized by probability distribution. 
 Multistate life tables are the extension of standard (one state) life tables. They present additional 

dimension(s), in this case represented by the original marital status and studied marital status. 
Instead of one number in a column for each age there is a square matrix. 

 
 
1.2 Scheme of Marital Status Life Cycle 
 

 
Figure 1: Scheme of marital status life cycle 

 
 
1.3 Objective of the Research 
Objective of this article is to verify changes in the behaviour of women in the Czech Republic 
related to their marriage decision over last ten years. In surveys it is usually concluded that people 
live together in cohabitation, in partnership without official marriage and increasing proportion of 
children is born outside of marriage. This hypothesis will be accepted or rejected based on real data 
from the Czech Republic 2001–2010. 
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2  Multistate Life Tables Calculation 
 
2.1 Data 
 
For the calculation, it is necessary to estimate unknown probability distribution P(U, x, t | Z) or 
P(U, x | Z) for each event U and state Z, where xi is time between U0 and Ui, t is time from the last 
transition into state. (Koschin, 1992) 
Probability distribution can be characterized by probability density function, intensity probability 
(also called hazard rate or risk function) or distribution function. Briefly, using absolute frequencies 
(number of events, number of subjects exposed to a risk of event and length of the exposure) the 
intensity probability can be estimated. (Koschin, 1992) It was proved that such an estimate is the 
best unbiased estimate of the intensity probability, which is constant in given interval. (Rogers, 
1975). 
In demography, data are available in annual frequency, less often by month. One year is the most 
detailed distribution of data if official statistics should be used for entire population. 
 
For intensity of mortality in the age x it can be used following estimate: 
 
  number of deaths in the age x during calendar year 
  ---------------------------------------------------------------------------------- , 
  mid-period size for the group in the age x in given calendar year * 1 
 
where multiplication by 1 in the denominator means length of exposure. Each individual who is in 
the population during the whole year adds one year to the final sum. Each individual who came into 
the population during the year or left the population during the year represents weight of one half. 
This corresponds with the assumption of uniform distribution of demographic event during the year. 

From demographic point of view, this estimate is usual indicator: specific mortality rate 
x

x
x S

M
m  , 

x = 0, 1, …, –1. 

Analogously, intensity of fertility can be estimated by 
xx

x
x NS

N

2
1

 , where correction in the 

denominator eliminates from the exposure for one half of the year those women who gave birth in 
the same calendar year. (Koschin, 1992) 
Analogously, specific nuptiality and divorce rates will be used to estimate intensity of nuptiality and 
intensity of divorce. 
 
 
2.2 Calculation 
 
For each age x = 15, 16, …59 for women in the Czech Republic intensity of transition-probability 
matrix is prepared for states single, married, divorced and widowed: 
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Where  denotes nuptiality (marriage rate) with the index according to marital status (S-single, D-
divorced, W-widowed),  is divorce rate,  denotes mortality of females (F) or males-husbands 
(M). 
Then, transition-probability matrices px are calculated and, subsequently, other life tables indicators 
in the form of matrices: table number of survivors (matrices lx), table number of person-years 
(matrices Lx), number of remaining years of life to be lived by the table generation (for entire group 
of individuals) in the age of x (matrices Tx) and matrices of expected length of stay (ex; this term is 
used rather than life expectancy). (Koschin, 1992; Land & Rogers, 1982; Rogers, 1975; Raymer & 
Willekens, 2008) 
 
 
2.3 Results 
 
Example of results for 2010, women, the Czech Republic is published here: 
 

e15 

25,78 0,00 0,00 0,00

14,24 32,66 18,54 15,27

4,04 11,05 25,42 4,91

0,34 0,68 0,43 24,21
… 

e25 

18,30 0,00 0,00 0,00

12,53 25,78 14,05 7,30

3,35 8,15 20,09 1,80
0,31 0,56 0,35 25,39

… 

e59 

1,00 0,00 0,00 0,00

0,00 0,99 0,00 0,00

0,00 0,00 0,99 0,00

0,00 0,01 0,00 1,00
 
This can be interpreted as following: 
 Single woman in the age of 25 years may expect that she spends till the age of 59 years another 

18.3 years as single, 12.5 years as married, 3.4 years as divorced and 0.3 years as widowed. 
 Married woman in the age of 25 years may expect that she spends till the age of 59 years 

another 25.8 years as married, 8.2 years as divorced and 0.6 years as widowed. 
 Divorced woman in the age of 25 years may expect that she spends till the age of 59 years 

another 14.1 years as married, 20.1 years as divorced and 0.4 years as widowed. 
 Widowed woman in the age of 25 years may expect that she spends till the age of 59 years 

another 7.3 years as married, 1.8 years as divorced and 25.4 years as widowed. 
 Once a woman is married and later divorced or widowed, she cannot return to the state ‘single’. 
 State ‘dead’ is not part of matrices. 
 
It table number of survivors (matrices lx) it can be watched how many women survive and how do 
they change their status (see Figure 2). Following Figure 3 shows length of their stay in each state 
(calculated till the age of 59). Such a calculation was prepared for years 2002–2010 for ages x = 15, 
16, …, 59 years. Further, abridged calculation of the year 2001 and 1990 is available for women in 
the Czech Republic (for 5-years long age intervals). 
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Figure 2: Table number of survivors, women, 2002 and 2010, Czech Republic 

 
Majority of woman in young ages are single, their transition into the state ‘married’ is visible 
between the age 25 and 30 years. It can be seen that years 2002 and 2010 differs in the number and 
proportion of women that remain in the state ‘single’ after 35 years of age. In 2002 the proportion 
of those women formed approximately 30 % and slowly decreased, whereas in 2010 the proportion 
is 40 % of all women from the studied group (it is theoretical group of 100,000 women set up as the 
root of multistate life table for the age of 15 years). 
Another trend can be seen here: proportion of woman single + married increased between years 
2002 and 2010 by 5 percentage points. In the age of 40 years there were 82.9 % of single or married 
women, whereas in 2010 this proportion increased to 87.3 %. It shows that the state ‘single’ is in 
some cases preferred also by women who were divorced or widowed in 2002. 
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Figure 3: Expected length of stay in states for originally single women, women, 2002 and 2010, 

Czech Republic 
 

It is interesting that young single women tend to marry and escape from the state ‘single’, but for 
women in ages 25 to 33 years number of expected years when they remain in the state ‘single’ even 
grows. For example in 2010, single woman in the age of 33 years has very low probability 0.044 to 
leave state ‘single’ and high probability 0.956 to remain in the state ‘single’. For older single 
women the probability of transition into other states (first state ‘married’, then possibly ‘divorced’ 
or ‘widowed’) is very low, expected length of stay in the state ‘single’ decreases proportionally with 
the age. 
Expected number of years in the state ‘married’ is quite high for single women till 25–28 years of 
age, for higher ages it declines very rapidly. Comparison of years 2002 and 2010 shows that young 
single women in 2010 have to expect more years to live as a single individual, second choice 
‘married’ is lower by almost 10 years. In 2002 both choices were comparable for young single 
woman in the age of 15–30 yeas and the difference became evident later. 
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2.4 Trends and Changes in Women’s Behaviour 
 
Comparing the same indicator form the matrices of expected length of stay over longer period of 
time, the trend can be commented and hypotheses assessed. Two cases were chosen as most 
interested: originally single women and their chance to remain single or transition to the state 
‘married’. 
Note that expected length of stay is calculated till the age of 59 years. 
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Figure 4: Expected length of stay single-single, women, 1990, 2001–2010, Czech Republic 

 
Trend in the period of 2001–2010 shows that in the age of 15 to 28 years single women tend to 
postpone marriage and stay single. The expected length of stay in the state ‘single’ prolongs and 
difference between 2001 and 2010 is almost five years for the age of 25 years. The common 
characteristic is that all lines have the same shape, i.e. decrease of expected length of stay between 
15 and 25 years and then approximately between 25 and 35 years increasing chance (measured both 
in probability and number of expected years) that woman remains single. The largest difference is 
visible in first 15 years of studied part of women’s lives with one exception – year 2003 differs 
from others in the ages of 30–45 years. This could be explained by legislative impact (Joint taxation 
of married couples motivated many spouses to marry officially. This was massive economic benefit 
for families with children.) 
 
Year 1990 (Koschin, 1992) shows the remarkable change that happened over last 20 years in the 
Czech Republic. Young single women till their 25 years could expect to remain single for less then 
10 years whereas in 2010 women till 25 years might expect to remain single another 18 to 25 years 
of their lives. This represents more than double number of years. On the other hand, comparable 
results belong to ages 32 years and more. If a woman remains single till her 32 years than there is 
almost no difference over last 20 years in the indicator how long she might expect to remain such. 
 
In this sense changes in behaviour of women in the Czech Republic related to their marriage 
decision over last 10 / 20 years are confirmed. Young single women more often stay legally 
unmarried and the expected number of years of living further in the state ‘single’ increases year-
over-year. The change in behaviour happens mainly before the age 30 years. (This does not say 
anything about their real status and way of their partnership.) 
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Figure 5: Expected length of stay for transition single-married, women, 1990, 2001–2010, Czech 

Republic 
 
Transition of single woman to the state ‘married’ has evident trend. The expected length of stay in 
the state ‘married’ for originally single women declines since 1990 till 2010 each year. It correlates 
with the decreasing transition probability ‘single–married’. Single women may expect shorter and 
shorter length of period when is married, currently it is – for example – 12.5 years for a woman in 
the age of 25 years till her 59 years in comparison of 19.1 years in 1990. 
For second half of studied part of women’s lives, after 30 years, the shape and level of the indicator 
is very similar. Thus, change has occurred and continues in the first half of women’s lives. 
This again verifies fact that behaviour of women in the Czech Republic changes in respect to their 
decision regarding marriage. Women tend not to marry. 
 
 
Conclusion 
 
The article introduced application of multistate demographic methods onto the ‘marriage career’ 
based on real data. The analysis presented alternative approach to the analysis of marriages and 
divorces and additional utilization of life tables’ methodology. 
Calculation of multistate life table and modelling ‘marriage career’ of women in the Czech 
Republic 2001–2010 showed that women change their decision toward marriages. The article 
concentrated on single women and their decision stay single or become married. 
Objective of this article was verified for younger women: women 15–30 years old in the Czech 
Republic changed their behaviour related to their marriage over last 10 / 20 years. Tendency not to 
marry is stronger among young women, they stay unmarried and probably live in partnerships 
without official marriage. Women over 30 years changed their behaviour only little. 
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TWO APPLICATIONS OF PROBABILITY IN THE THEORY
OF RELIABILITY AND MAINTENANCE

MOŠNA Frantǐsek, (CZ)

Abstract. Contribution considers using of probability in the theory of reliability and
maintenance. The first application deals with the characteristic OEE (Overall Equipment
Effectiveness) of some production facility composed of two or more machines. In the
second part, a formula for expected value of reliability of machine composed of regularly
replacing components is derived.

Key words and phrases. probability, reliability, maintenance.

Mathematics Subject Classification. 60K10.

1 Introduction

Theory of probability is often used in considerations about the reliability and maintenance of
machines. In this contribution, an illustration of two such very simple applications is presented.
We met with these problems during my collaboration with the Department for Quality and
Dependability of Machines at the Czech University of Life Sciences (see [1] or [2]).

2 Characteristic OEE of production facilities

The first illustration considers so called characteristic OEE Overall Equipment Effectiveness.
This characteristic is very often used in theory of reliability of machines or production

facilities and it describes (roughly spoken) quantitative ratio between the actual and the ideal
production of machines or production units.

Here are some basic concepts:

• a availability, i.e. use of working hours of the given machine in percentage,
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1 − a percentage of downtime (maintenance, repairs and so on),

• w actual current performance of machine, this performance is reduced compared to the
declared rated performance due to wear-out etc.

• q percentage of quality products manufactured on the given machine,

1 − q percentage of rejects,

• p number of products produced on the given machine during the time unit (for instance
during the work shift) at full performance.

The characteristic OEE is defined as a ratio of actual products manufactured on the given
machine and the number of products produced in ideal case, it means

OEE =
awqp

p
= awq .

For instance, a machine produces at full performance 400 products during working hours (8
hours), i.e. 50 pieces per hour.

Suppose it uses only 90% of working hours (due to maintenance or repairs etc.), a = 0, 9, it
works only 7.2 hours and it produces only 360 products at full performance during this period.

The machine operates only at 75% of its full performance (due to wear), w = 0.75, so it
produces only 270 pieces.

Of this 20% are rejects and only 80% correspond to the required quality, q = 0, 8, so only
216 products.

Compared to the ideal case (when the machine produces 400 quality pieces), in real case it
produces only 216 products per shift. Thus Characteristic OEE can be calculated as a quotient

OEE =
216

400
= 0.54

or product
OEE = 0.9 · 0.75 · 0.8 = 0.54 .

In the theory of reliability and maintenance of machines we are often interested in getting
characteristic OEE of all production facility composed of two or more machines.

2.1 Connected in parallel side by side

Let us consider at first production facility composed of two machines (with characteristics a1,
w1, q1, p1 and OEE1 or a2, w2, q2, p2 and OEE2, respectively) connected in parallel side by
side.

The number of productions in ideal case is

p1 + p2 .

But the number of really produced pieces is equal to

a1 · w1 · q1 · p1 + a2 · w2 · q2 · p2 = OEE1 · p1 + OEE2 · p2 .

So we can very simply work out OEE for all product unit

OEE =
OEE1 · p1 + OEE2 · p2

p1 + p2

.

This formula can be simply generalized for more machines connected in parallel.
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2.2 Connected in series in a row

Now let us focus our attention on the case when production process goes on the line consisting
of two machines connected in series in a row. Suppose any product passes through both the
machines and effective production takes place only if both machines are working simultaneously.

To calculate the overall characteristics OEE we need to know not only the individual data
on availability, performance and product quality in both machines but also the information
about synchronization of these two machines. For instance, we need to have the percentage of
both machine downtime, let us denote it by a12.

The number of products of the line in ideal case is min(p1, p2).
In order to derive percentage of using working hours we shall use formula for probability of

union of two random events A and B and complementary event to A

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) , P (notA) = 1 − P (A) .

Downtime of the first machine is 1− a1, downtime of the second machine 1− a2, downtime
of both machines at the same time is a12. Hence percentage of working hours when at least one
machine is not working (and the line does not work) is equal to the number

(1 − a1) + (1 − a2) − a12 .

Part of working hours when both machines are working (and line works) presents a complement
of the previous, hence its probability is

a = 1 − [(1 − a1) + (1 − a2) − a12] = a1 + a2 + a12 − 1 ,

more accurately the positive part of this number.
During this time a·w1 ·p1 products can pass through the first machine and a·w2 ·p2 products

through the second machine. As production process can be successful only when both machines
are working together, number of produced pieces is equal to the lesser number of both,

min(a · w1 · p1, a · w2 · p2) .

The whole quality of the line production can be got as a product q1 · q2.
Number of products actually produced by this line is

(a1 + a2 + a12 − 1)+ · min(w1 · p1, w2 · p2) · q1 · q2

and we can conclude that the characteristic OEE of line is

OEE =
(a1 + a2 + a12 − 1)+ · min(w1 · p1, w2 · p2) · q1 · q2

min(p1, p2)
.

The formula can be simply generalized for three (or more) machines by using the formula
of probability of unit of three (or more) random events.

These calculations can serve in designing or planning of production lines and to synchronize
its elements, too.
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3 Mean life of age-related preventive maintained components

Let us monitor some production facility. Any failure of it can cause large damages, so the
reliability of it is very important. This facility contains a certain so-called key component (for
instance a bulb). In the case of its failure all the facility stops working (and causes damages
mentioned above). So we desire to prolong its reliability. This can be achieved by regular
replacing of the key component.

Now let us try to deduce formula for mean reliability provided by regular replacing such
component after the period tp using a new component with the same reliability properties.

Let us suppose that durability of any of k-th component is characterized by a random
variable X with a continuous density function f and distribution function F . We suppose that
random variables X1, X2, . . . are independent.

Let us denote by T a random variable which describes the life of age-related, preventively
replaced components. Further, we derive the formula of the density function fT and the distri-
bution function FT for the random variable T and we are particularly interested in the mean
value ET .

Let us denote p = P [Xk < tp], q = P [X ≥ tp] = 1− p and I =
∫ tp

0
xf(x) dx. We express the

random variable T using Xk in the following way:

T =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X1 for X1 < tp

tp + X2 for X1 ≥ tp, X2 < tp

2tp + X3 for X1 ≥ tp, X2 ≥ tp, X3 < tp

. . . . . . . . . .

ktp + Xk+1 for X1 ≥ tp, X2 ≥ tp, . . . , Xk ≥ tp, Xk+1 < tp .

With respect to independence X1, X2, . . . , from the total probability theorem

P (A) =
∑

P (A/Bk)P (Bk) for B1, B2, . . . mutually disjoint, ∪ Bk = Ω, P (Bk) �= 0

it holds for arbitrary x ∈ 〈0;∞):

FT (x) = P [T < x] =

= P [T < x/X1 < tp] · P [X1 < tp]+

+ P [T < x/X1 ≥ tp, X2 < tp] · P [X1 ≥ tp, X2 < tp] + · · ·+
+ P [T < x/X1 ≥ tp, . . . , Xk ≥ tp, Xk+1 < tp]·
· P [X1 ≥ tp, . . . , Xk ≥ tp, Xk+1 < tp] + · · · =

= P [T < x/X1 < tp] · p + P [T < x/X1 ≥ tp, X2 < tp] · pq + · · ·+
+ P [T < x/X1 ≥ tp, . . . , Xk ≥ tp, Xk+1 < tp] · pqk + . . . .

(1)

Further, we calculate according to the definition of conditional probability

P (A/B) =
P (A ∪ B)

P (B)
for P (B) �= 0
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with respect to the independence of X1, X2, . . .

P [T < x/X1 ≥ tp, . . . , Xk ≥ tp, Xk+1 < tp] =

P [ktp + Xk+1 < x/X1 ≥ tp, . . . , Xk ≥ tp, Xk+1 < tp] =

=
P [Xk+1 < x − ktp, X1 ≥ tp, . . . , Xk ≥ tp, Xk+1 < tp]

P [X1 ≥ tp, . . . , Xk ≥ tp, Xk+1 < tp]
=

=
P [Xk+1 < min(x − ktp, tp)] · qk

qk · p .

(2)

After substitution of (2) into equation (1) we obtain

FT (x) = P [T < x] =
∞∑

k=0

P [Xk+1 < min(x − ktp, tp)] · qk

=
∞∑

k=0

F (min(x − ktp, tp)) · qk .

It is possible to itemize the distribution function FT around following intervals:

FT (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F (x) on (0; tp)

F (tp) + qF (x − tp) on (tp; 2tp)

F (tp) + qF (tp) + q2F (x − 2tp) on (2tp; 3tp)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We obtain density function fT by differentiation of FT

fT (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(x) on (0; tp)

qf(x − tp) on (tp; 2tp)

q2f(x − 2tp) on (2tp; 3tp)

. . . . . . . . . . .

Finally, we calculate the mean value of life (sum of particular operating time) for components
that underwent age-related preventive replacement

ET =

∫ ∞

0

xfT (x) dx =
∞∑

k=0

∫ (k+1)tp

ktp

qkxf(x − ktp) dx =

=
∞∑

k=0

qk

∫ tp

0

(x + ktp)f(x) dx =

=

(∫ tp

0

xf(x) dx

) ∞∑
k=0

qk + qtp

(∫ tp

0

f(x) dx

) ∞∑
k=0

kqk−1

= I
1

1 − q
+ pqtp

1

(1 − q)2
=

I + qtp
p

,

we used the formula for the sum of the geometrical series 1 + q + q2 + · · ·+ qk + · · · = 1
1−q

and

from this formula through differentiation we obtained the derived formula 1 + 2q + 3q2 + · · ·+
kqk−1 + · · · = 1

(1−q)2
.
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Integral I can be modified using integration by parts

I =

∫ tp

0

xf(x) dx = tpF (tp) −
∫ tp

0

F (x) dx

= tpp − tp +

∫ tp

0

R(x) dx = −qtp +

∫ tp

0

R(x) dx ,

where R(x) = 1 − F (x) is so called survival function. For expected value ET of the life of the
age-related preventively replaced components at time tp we obtain the following formula

ET =
1

p

∫ tp

0

R(x) dx =

∫ tp
0

R(x) dx

1 − R(tp)
.

For instance for random variable Xk governed by the Weibull distribution with parameters m

and x0 (distribution function is F (x) = 1 − e
−xm

x0 ) we can write

ET =

∫ tp
0

e
−xm

x0 dx

1 − e
− tmp

x0

.

4 Conclusion

It is possible to complete both examples by simple calculation spreadsheets in MS Excel (using
for instance [3]). The first example can be generalized also for various combinations of parallel
and serial connection of machines. Examples illustrate the importance and significance of
probability calculus for technical computing.
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INFLATION MODELING AND COINTEGRATION

NEUBAUER Jiří, (CZ)

Abstract. The article deals with the question of modeling multidimensional non-
stationary cointegrated processes. It is a modern method especially used for description
of economic time series. Multidimensional non-stationary process is called cointegrated
if there is a linear combination of its one-dimensional components, which is stationary
or trend-stationary. For instance this property can be found in some series of economic
indices which are predominantly non-stationary. Nevertheless, there are linear links which
keep that whole system in so-called long-term equilibrium. The article is focused on a coin-
tegration analysis of selected time series of the Czech Republic macro-economic indices.

Key words and phrases. cointegration, tests of cointegration, inflation

Mathematics Subject Classification. Primary 60A05, 08A72; Secondary 28E10.

1 Introduction

Empirical research in macroeconomics as well as in financial economics is largely based on time
series. Non-stationarity, a property common to many macroeconomic and financial time series,
means that a variable has no clear tendency to return to a constant value or a linear trend.
Multidimensional non-stationary process is called cointegrated if there is a linear combination
of its one-dimensional components, which is stationary or trend-stationary. For instance, this
property can be found in some series of economic indices. The article deals with a question
of modeling multidimensional non-stationary cointegrated processes. A detailed description of
this method can be found for example in Hamilton (1994), Juselius (2006), Johansen (1995) or
Lütkepohl (2007). One can find a range of useful applications of mentioned method, for example
in the article Neubauer (2006) is presented the application of cointegration analysis on time
series of selected exchange rates.
The model of inflation described in Kim (2001) is applied to the macroeconomic time series

of the Czech Republic (quarterly data from 2002 to 2012). This model is tested using methods
of a cointegration analysis.
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1.1 Basic definitions

Definition 1.1 Let {εt} be independent identically distributed random variable with zero mean
and variance matrix Ω. A stochastic process Yt which satisfies that Yt − EYt =

∑∞
i=1Ciεt−i is

called I(0) process if C =
∑∞

i=0Ci �= 0.
Definition 1.2 A stochastic process {Yt} is called integrated of order d, I(d), d = 1, 2, . . . , if
Δd(Yt − EYt) is I(0) process.

Let in the following εt be a sequence of independent normally distributed n-dimensional
random variables εt ∼ Nn(0,Ω) .

Definition 1.3 A stochastic process {Yt} is called n-dimensional autoregressive process VAR(p),
if

Yt = Φ1Yt−1 + Φ2Yt−2 + · · ·+ ΦpYt−p + ΛDt + εt, t = 1, 2, . . . , T (1)

for fixed values of Y−p+1, . . . , Y0,where Φ1, . . . ,Φp are matrices of coefficients (n × n), Λ is an
(n × s) matrix of coefficient of deterministic term Dt (s × 1), which can contain a constant,
a linear term, seasonal dummies, intervention dummies or other regressors that we consider
non-stochastic.

The process defined by the equation (1) can be written in error correction form

ΔYt = ΠYt−1 +
p−1∑
i=1

ΓiΔYt−i + ΛDt + εt, t = 1, . . . , T, (2)

where Π =
∑p

i=1Φi − I, Γi = −∑p
j=i+1Φj. This error correction form of VAR process is used

in the analysis of cointegration.
The basic idea of cointegration can be shown on 2 one-dimensional processes of order I(1).

We say that the processes Xt a Yt are cointegrated if there exists any linear combination
aXt + bYt which is stationary.

Definition 1.4 Let Yt be n-dimensional process integrated of order 1. We call this process
cointegrated with a cointegrating vector β (β ∈ Rn, β �= 0) if β′Yt can be made stationary by
a suitable choice of its initial distribution.

If n > 2 then there may be two nonzero n × 1 vectors β1, β2 such that β′
1Yt i β′

2Yt are
both stationary, where β1, β2 are linearly independent. Indeed, there may be r < n linearly
independent cointegrating vectors. The cointegrating rank is the number of linearly independent
cointegrating vectors and space spanned by these vectors is cointegrating space.

1.2 Maximum likelihood estimation of the cointegrating vector

We will deal in brief with the maximum the likelihood analysis of the cointegrated system in
this part of the article.
Granger’s theorem (see Johansen (1995)) gives necessary and sufficient conditions for VAR(p)

process to be I(1) and cointegrated. According to the rank of the matrix Π in the error correction
form we define H(r) model of the process I(1).
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Definition 1.5 H(r) model of the process I(1) is defined as a model VAR(p) such that

Π = αβ′,

where α and β are n × r matrices. The reduced form error correction model is

ΔYt = αβ′Yt−1 +
p−1∑
i=1

ΓiΔYt−i + ΛDt + εt, t = 1, . . . , T, (3)

where the parameters α, β,Γ1, . . . ,Γp−1,Λ,Ω vary freely.

Under hypothesis
H(r) : Π = αβ′

the maximum likelihood estimator of β is found by the following procedure (see Johansen
(1995), Hamilton (1994)). First of all we solve the equation

|λS11 − S10S
−1
00 S01| = 0

for the eigenvalues 1 > λ1 > . . . λn > 0 and eigenvectors V = (V1, . . . , Vn) which we normalize by
V ′S11V = I (S00, S10, S01 and S11 are matrices described in Johansen (1995)). The cointegrating
relations are estimated by

β̂ = (V1, . . . , Vr),

the maximalized likelihood function is

L−2/T
max = |S00|

r∏
i=1

(1− λi). (4)

The likelihood ratio test Q(H(r)|H(n)) for testing H(r) in H(n) we obtain by comparing two
expressions (4) for r and n, then

Q(H(r)|H(n))− 2
T =

|S00|
r∏

i=1
(1− λi)

|S00|
n∏

i=1
(1− λi)

.

The logarithm of this expression is called TRACE statistic

−2 lnQ(H(r)|H(n)) = −T

n∑
i=r+1

ln(1− λi). (5)

The test statistic for testing H(r) in H(r + 1) – MAX statistic – is given by

−2 lnQ(H(r)|H(r + 1)) = −T ln(1− λr+1). (6)

The asymptotic distribution of the statistics (5) and (6) depends on the deterministic terms
present in the model (see Johansen (1995)).
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Figure 1: Natural logarithm of time series

2 Analysis of the inflation model of the Czech Republic

The article Kim (2001) analyses relative impacts of the monetary, labour and foreign sector on
Polish inflation using cointegration and error-correction models. They use a structural system
approach in which cointegration relationships are used to derive deviations from steady state
levels. We apply the described model to the macroeconomic times series of the Czech Republic
and try to verify validity of the model for given datasets. We use these time series in the model
of inflation (quarterly data):

• yR
t – natural logarithm of the real Czech gross domestic product (GDP)

• mt – natural logarithm of the nominal money stock (M2) in domestic currency

• pF
t – natural logarithm of the consumer price index of the European Union

• wt – natural logarithm of nominal wages in the Czech republic

• pD
t – natural logarithm of the Czech consumer price index

• et – natural logarithm of exchange rates between Czech crown and Euro

Data soures: EUROSTAT (epp.eurostat.ec.europa.eu) and the Czech national bank (www.cnb.cz).

296 volume 5 (2012), number 3



Aplimat - Journal of Applied Mathematics

r Eigenvalue TRACE p-value MAX p-value
0 0.97542 258.99 0.0000 122.29 0.0000
1 0.85852 136.69 0.0000 64.535 0.0000
2 0.67917 72.160 0.0000 37.516 0.0000
3 0.59454 34.644 0.0000 29.790 0.0000
4 0.13677 4.8534 0.0276 4.8534 0.0276

Table 1: The test of cointegration in the model of inflation – TRACE statistic

We assume (according to Kim (2001)) that there are three sources of inflation in an open
economy: wage inflation, monetary inflation and imported inflation. We can write

pD
t = f(pF

t ,mt − pD
t , wt − pD

t , et, y
R
t ),

where mt − pD
t is real money supply, wt − pD

t are real wages and yR
t is the real output.

The first equation is based on the claim that the expansion of money supply in excess of
real productive potential of economy leads to inflation. Assuming the homogeneity between real
money balance and real output is possible to write

mt − pD
t = b+ yR

t . (7)

If increases in real wages are greater than the levels warranted by productivity, inflation will
occur. We can establish the following equation

wt − pD
t = a+ (yt − pD

t ). (8)

An inequality between price levels of particular national economies results in imported inflation

pD
t = et + pF

t . (9)

A detailed derivation of these equations is possible to find in Kim (2001).
We define multidimensional time series

Yt =

⎛
⎜⎜⎜⎜⎝

pD
t

et + pF
t

wt − pD
t

mt − pD
t

yR
t

⎞
⎟⎟⎟⎟⎠ .

We used several unit root tests to analyze non-stationarity. It turned out that all components
of Yt are non-stationary I(1) processes. The time series Yt can be described as VAR(5) process
with a constant. It should be noted that the choice of the parameter p in the VAR (p) is not
quite unambiguous. It was chosen on the basis of several criterions (Akaike, Schwartz Bayesian
and Hannan-Quinn criterion), values of cross-correlation functions and portmanteau tests.
In view of the theory developed in the previous part (Kim (2001)), we could expect 3

cointegrating vectors which are columns of the matrix
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Figure 2: Multidimensional time series Yt

β =

⎛
⎜⎜⎜⎜⎝

0 0 1
0 0 −1
0 1 0
1 0 0

−1 −1 0

⎞
⎟⎟⎟⎟⎠ .

Table 1 summarizes the results of the cointegration analysis. According to the TRACE and
MAX test statistics, we can decide that there are 4 cointegrating relations in the time series Yt.
(with the risk 0.01) but our model should contain only 3 cointegrating vectors. The estimate
of the matrix of cointegrating vectors is

β̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.00000 0.00000 0.00000
(0.00000) (0.00000) (0.00000) (0.00000)
0.00000 1.0000 0.00000 0.00000
(0.00000) (0.00000) (0.00000) (0.00000)
0.00000 0.00000 1.0000 0.00000
(0.00000) (0.00000) (0.00000) (0.00000)
0.00000 0.00000 0.00000 1.0000
(0.00000) (0.00000) (0.00000) (0.00000)
−0.74918 0.80640 −0.85806 −2.6412
(0.049725) (0.11633) (0.019387) (0.19438)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The numbers in parenthesis are standard errors. All calculations were done in software Gretl
and Matlab.
We denote β1 = (0, 0, 0, 1,−1)′, β2 = (0, 0, 1, 0,−1)′ and β3 = (1,−1, 0, 0, 0)′. We are able

to test these linear restriction imposed on the estimated cointegrating vector. For the first
restriction β1 we get the test statistic 8.09638 (unrestricted loglikelihood = 745.49441, restricted
loglikelihood = 741.44622) and p-value = 0.00444, for the second restriction β2 we get the
test statistic 1.25606 (restricted loglikelihood = 744.86638) and p-value 0.26240 and for the
third restriction β3 the test statistic 4.61338 (restricted loglikelihood = 743.18772) and p-value
0.03172. According to the results, we reject validity of the first equation describing monetary
inflation (7). The second relation – wage inflation (8) – seems to be valid. The last restriction
(imported inflation 9) can be rejected with the risk 0.05, but not with the risk 0.01. If we test
two restrictions at once, all three combinations are rejected. The restriction consisting of all
three vectors β1, β2 and β3 is rejected as well.

3 Conclusion

We described multidimensional time series as the model VAR(5) with a constant. We have found
out that it is possible to identify four cointegrating vectors, nevertheless, the theoretical model
(see Kim (2001)) should contain only three cointegrating vectors. Using some statistical tests
we tried to verify that the given theoretical expectations of the inflation model are consistent
with data sets describing trends in the Czech economy from 2002 to 2012. The assumptions
that wage inflation can be described by the equation (7) and imported inflation is given by
the equation (9) seem to be correct, but the remaining relation (monetary inflation) gave us
different findings. These results are based on testing each restriction separately. If we want to
verify more relations at once, such models are rejected.
Based on the previous cointegration analysis it is possible to say that the model of inflation

described in the article Kim (2001) when applied to data of the Czech Republic is not fully
applicable. The first indication of discrepancies can be seen in the description of the system
at the beginning when it was difficult to unambiguously determine the parameter p in VAR
process. This parameter affects the behavior of the majority of the tests as well as the behavior
of the tests which were used. An inadequate model specification may result in other problems.
This can be solved by adding new variables into the model. Another potential problem may
be connected with the recent economic crisis and its impact on economic time series behavior.
These questions require extensive consultation with experts in economic theory and will be
done in future research.
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Abstract. The Relevance Vector Machine (RVM) is a probabilistic method which is very 
powerful for prediction problems. This paper introduces an application the RVM to predictions 
linear GARCH and nonlinear GJR-GARCH models. First, daily returns from Czech financial 
market were modeled by volatility models. Second, the results of estimating these models were 
used as input to the RVM. The best models obtained from training were used for forecasting. 
Final part was focused on comparison the predictive power of classical volatility models and 
models based on the RVM. 
 
Keywords. Relevance vector machine, financial time series, volatility models 
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1. Introduction 
 
Forecasting volatility of financial time series is very important activity in the financial markets. 
Typically, parametric models of volatility are used for these predictions. This paper introduces an 
alternative probabilistic method called the Relevance Vector Machine (RVM) for obtain more 
accurate predictions. The main goal is to investigate the predictive power of the classical GARCH 
and the RVM models. This paper is divided into two parts; theoretical overview and experimental 
section. 

The input data to the experimental section are close daily values of the PX index (Prague Market 
Index). The reference period is during 5.1.2000 – 29.6.2007. Logarithmic returns expressed as 
percentages will be used. 

First part is focused on estimating the best volatility models during 5.1.2000-29.12.2006. 
Specifically, linear GARCH and nonlinear GJR-GARCH models are used for the in-sample 
estimation. Subsequently, these results are used as input to train the RVM. This training set is used 
to learn a model of the dependency of the targets on the inputs with the objective of making 
accurate predictions. 
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Final part is focused on comparing the predictive ability of the RVM with parametric volatility 
models. For this purpose is used out-of-sample time period during 2.1.2007-29.6.2007, i.e. it covers 
126 daily values. 
 
 
2.  Overview of Methods 
 
Forecasts of Volatility Models 
 
GARCH model 
 
GARCH means Generalized Autoregressive Conditional Heteroscedasticity model. Bollerslev 
(1986) proposes a useful extension of ARCH model known as the generalized ARCH model. 
Bollerslev extended ARCH model of delayed conditional variance. Detailed description of this 
model can be found in [1]. 
 
One step ahead forecast of GARCH (1,1) 

2
1

2
1

2
1 ttt   . (2.1) 

GJR GARCH model 
 
GJR GARCH model by Glosten, Jagannathan and Runkle (1993) is similar to Threshold GARCH 
model by Zakoian [8]. Though the GJR model is designed to capture the leverage effect between 
asset return and volatility, the way is not the same as Exponential GARCH model (EGARCH). The 
leverage coefficients of the EGARCH model are directly applied to the actual innovations while the 
leverage coefficients of the GJR model can connect to the model through an indicator variable. For 
this case if the asymmetric effect occurs the leverage coefficients should be negative for the 
EGARCH model and positive for the GJR model. Detailed description of this model can be found 
in [2]. 
 
One step ahead forecast of GJR (1,1) 

2
1

2
1

2
1 ttt    for 0t  and 

2
1

2
1

2
1

2
1 tttt    for 0t . 

(2.2) 

 
Relevance Vector Machine 
 
The Relevance Vector Machine (RVM) introduced by Tipping (2000) [6] has become a powerful 
tool for prediction problems as it uses a Bayesian approach with a functional form identical to the 
Support Vector Machine (SVM) introduced by Vapnik (1995) [7]. It enjoys the benefit of the SVM 
based techniques, including generalization and sparsity. Noticeably, the RVM does not have the 
limitations of SVM. Hence it has more advantages over SVM in the sense that the RVM generates 
probability based prediction. This approach relaxes Mercer’s condition on Kernel basis functions 
used for training and the RVM does not need to estimate the trade-off parameter C.  

Tipping (2001) [5] illustrated the RVM’s predictive ability on some popular benchmarks by 
comparing it with the SVM. The empirical analysis also proved that the RVM outperformed the 
SVM. Hence are investigated the volatility models based on the RVM. 
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In supervised learning we are given a set of examples of input vectors  N

nnx 1  along with 

corresponding targets  N

nnt 1 . From this learning set we wish to learn a model of the dependency of 

the targets on the inputs with the objective of making accurate predictions of t for previously unseen 
values of x. 
The predictions are based on some function y(x) defined over the input space and learning is the 
process of inferring this function. A flexible and popular formula for y(x) is: 
 

     xwxwxy T
M

j
jj  

1

; , (2.3) 

where basic function         Tm xxxx  ,...,, 21  is nonlinear,  Tmw  ,...,, 21  is weight 

vector and x is input vector. 

 
 
3. Experimental Results 
 
The Prague Market Index (PX) is investigated in this section. The reference period is during 
5.1.2000 – 29.6.2007 (it contains 1882 values). This period is divided into two parts: 5.1.2000-
29.12.2006 (1756 values) and 2.1.2007-29.6.2007 (126 values). First part is used for in-sample 
estimating the volatility models and training the RVM. Second part is taken for out-of-sample 
forecasting. Logarithmic returns expressed as percentages are used for this analysis. 

Subsequently, Maximum likelihood estimates of parametric models are computed in GiveWin 
software. Further, these models are trained in R 2.13.2 with Kernlab package by Karatzoglou 
(2004). Detailed description of this package can be found in [3]. 
 
Volatility Models 
 
Estimations of parameters are statistically significant for all models (see Tables 1-2). The 
Portmanteau test does not confirm an autocorrelation for all models. Further, the asymptotic test 
does not confirm a normal distribution and the ARCH test does not confirm a conditional 
heteroscedasticity for all models. 

The GJR GARCH (1,1) is more adequate than the GARCH (1,1) model in accordance with 
AIC.T and log-likelihood (LL) criteria. 
 

Table 1. GARCH (1,1) Model Parameters 

GARCH Coefficient Std.Error  t-value  
ω 0.0480 0.0133 3.36* 
α1 0.0959 0.0152 5.22* 
β1 0.8755 0.0192 41.1* 
Note: Significant at the: 1% level *, 5% level ** 
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Table 2. GJR GARCH (1,1) Model Parameters 

GJR Coefficient Std.Error  t-value  
ω 0.0703 0.0189 3.44* 
α1 0.0399 0.0159 2.78* 
β1 0.8588 0.0218 41.4* 
Threshold 0.1220 0.0371 2.89* 
Note: Significant at the: 1% level *, 5% level ** 

 
 
Relevance Vector Machine for PX 
 
The training set (2000-2006) is used to learn the RVM model. Results are in Table 3 and Fig.1-4. In 
this training has GARCH-RVM model the lowest values of relevance vectors, variance and training 
error. On the other hand, it is important to note that these values are strongly affected by the choice 
of sigma parameter (estimated or chosen). 

Table 3. Training Results for the RVM 

 GARCH GJR-GARCH 
Hyperparameter sigma 102 162 
No. of Relevance Vectors 80 97 
Variance 1.3196 1.6397 
Training Error 1.2707 1.5658 

 

Fig. 1. GARCH RVM: Relevance Vector Index 
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Fig. 2. GARCH RVM: Alpha values 
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Fig. 3. GJR RVM: Relevance Vector Index 
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Fig. 4. GJR RVM: Alpha values 
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Predictive Power of Forecasts 
 
The predictive power of models is measured by Mean Square Error (MSE), Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE): 

 
2

1

22

2

2

ˆ
1 




n

t
tty

n
MSE  , 

 
2

1

22

2

2

ˆ
1 




n

t
tty

n
RMSE  , 





2

1

22

2

ˆ
1 n

t
tty

n
MAE  , 

(2.4) 

where 2
ty  = actual values, 2ˆ t = forecasted volatility and 2n  = predicted sample size. 

 
Table 4 includes complete results. The best predictive power of parametric models is achieved in 
the case of the GARCH model but values of the GJR are very close. The best predictive power of 
hybrid models is achieved in the case of the GJR-RVM model. The RVM models have better 
forecasts than classical volatility models for this case. 



 

Aplimat – Journal of Applied Mathematics

 

306  volume 5 (2012), number 3
 

Table 4. Goodness of Fit Measures 

 MSE RMSE MAE 
GARCH 3.3308 1.8250 0.9384 
GARCH RVM 3.2236 1.7954 0.8752 
GJR GARCH 3.3521 1.8309 0.9395 
GJR GARCH RVM 3.1575 1.7769 0.6844 

 
 
4. Conclusion 
 
First, the best linear and nonlinear models of volatility were fitted for returns of the PX index. The 
different effects of positive and negative returns on the conditional variance were confirmed. The 
GJR GARCH model was more adequate than the GARCH model based on chosen criteria.  

Subsequently, these results were used as input to train the RVM. The GARCH-RVM model had 
lower values of relevance vectors, variance and training error.  

Second, the predictive power was measured by MSE, RMSE and MAE. The best predictive 
power of parametric models was achieved in the case of the GARCH model. The best predictive 
power of hybrid models was achieved in the case of the GJR-RVM model. Generally, the RVM 
models had better forecasts than classical volatility models, at least for the PX index. In future, it is 
planned to apply time series of exchange rates as well. 
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