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CONTROLLABILITY FOR A CERTAIN CLASS OF LINEAR
MATRIX SYSTEMS WITH DELAY

BASTINEC Jaromir, (CZ), PIDDUBNA Ganna, (CZ)

Abstract. In this paper existence of solutions of a certain class of differential linear
matrix equations with delay was investigated. The solutions were found in general form.
Necessary and sufficient condition for controllability of differential linear matrix equation
with delay was defined and control was built. Paper contains calculated examples.

Key words and phrases. matrix equation with delay, matrix exponential.

Mathematics Subject Classification. Primary 34K20, 34K25; Secondary 34K12.
1 Introduction

This paper is devoted to computing of the solution of differential linear matrix equation with
delay X (t) = AX(t)+ AX (t—7), with help of the special matrix function - matrix exponential.
Matrix exponential was used for solving differential equations by Krasovsky [10], [11] and for
solving systems with aftereffects by many authors, e.g. Boichuk, Diblik, Khusainov, Ruzickova,

Shuklin [3] - [9].

Definition 1.1 Let A be a square matrixz. Matrixz exponential is defined by

At_[ At A2t2 A3t3 _ OOA'LtZ
e = + ﬂ—f‘ i—i_ g‘i‘zo a,

where I s the identity matrix.

Lemma 1.2 Let A be a square matriz, then holds Ae = eAtA,  eAleAT = AU+,
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2 Linear matrix equation with delay

Let we have the equation _

X(t)=AX(t)+ AX(t — 1), (1)
with initial condition

Xt)=1, —-1<t<0, (2)

where A is square matrix, [ is identity matrix, 7 > 0,7 € R is a constant delay.

Theorem 2.1 Let A is reqular. Then the solution of equation (1) with identity initial condi-
tionhas the recurrence form:

t

Xpp1(t) = A X (n7) + / AV AX, (s — 7)ds, (3)

nTt

where X, (t) is defined on the interval (n — 1)7 <t < nr.
Proof: Theorem 3.1 is a special case of the more general Theorem 3.1, [2].

Theorem 2.2 Let A is reqular. Then the solution of equation (1) with identity initial condition

has the form:
!

A IT)P
_ ZQQA(t i) Z pHApi + (—1)kI, (4)
l=o0

p=0
where Xy(t) is defined on the interval (k — 1)1 <t < k.

Proof: To prove Theorem 2.2, we find the form of the solution for k7 <t < (k + 1)7.
Let k7 <t < (k+ 1)7 holds. Then the equation (1) has the form

Xk—}—l(t) = AXk+1(t) + AXk+1(t — T) = AX]C_H(t) + AXk<t — 7').

Then from (3) follows, that for the solution of equation (1) on this interval for n = k

t

X (t) = eAEFD X (k) +/ A AX (s — 7)ds.
k

T

After substitution Xj(¢) from (4) we have

k—1 l
—kT T—IT) - lT)p
Xk+1(t) — Alt=k7) [E A(kT—1 § pHApT + (_1)k[]
=0 p=0

l

- T —1T)P
226 s—7—IT) Z p+lAp—+(_1)k;]] ds

p=0 P!

k—1
_ [Z pAt—kT) 9 AT~ zT)Z p-HAp kT —1IT)P i (_1)k6A(t—k7-)]

p!

l=o0

14 volume 5 (2012), number 2
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- [t A(t—s (s—7—I1) +1 T_lT)p k ! A(t—s)
+ Z/kTe ) A2eA Z 1z ApTds—i—(—l)/ke Ads

l=o0 T

k—1 1
= [Z 9eAt=I7) Z(_l)p—HAPM + (_1)k€A(t—kT)]

|
l=o0 p=0 p:
[ G- S Ly (8= (L4 1)7)? e [
+ Z/ 2eA(=HHID N *(pyptl grHd ' ds + (—1) / eA=%) Ads
l—o VKT p=0 p: kT
k—1 !
kT — 1)
_ ZzeA(tflT) Z(_1>p+lAp( ( 1) 9 A(t—kT)
=0 p=0 p'
k—1 !
£ 37 2eA-rm Sy ot (t =+ 17!
— o (p+1)!
kz_i —(4+1)7) Z p+lAp+1 k - (l + 1)7—)p+1 + (_1)k+11)
— (p+1)!
o IT)P
:Z A(t— lT)Z p+lAp : +( 1) %2¢ (t kT)+< 1)k+11
1=0 P
k ! k—1 !
—IlT)? (kT —IT)P
A(t—lT) +1 . A(t—IT) +1
+ Y0t Y il T 22Ny Cyrare—
=1 p=1 =1 p=1
oAt = At— zT) At—Ir) +l p IT)? ko A(t—kr) E+1
+) 2 +22 Z AT+(—1) 2e + (1)
=1
At = A(t—17) : p+l p IT)P A(t—kr) : p+k p k)P k41
= [2eM+) 2 > (-1 AT (-1 AT (=1
=1 p=0 p=0
k—1 ! l
IT)P kT)P
— A(t—IT) +1 A(t—kT) +k k+1
=SS caprar ol g S capra gl o
=0 p=0 p: p=0 p:

k !
i —lr —lT)P
Finally we get Xi1(t) = IZZO 9 A(t-1 )pZ:O(_l)erlAp (t L LA (—1)*+1T.

And we got the expression (4) for k7 <t < (k+ 1)7.
If we have initial condition in the form

X(t) = (t), ~ 7 <t <0, ®
where ¢(t) € C'[—7,0], then we could write the following result.

volume 5 (2012), number 2 15
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Theorem 2.3 [1] Let A is regular. Then the solution of equation (1) with initial condition (5)
have the form: X(t) = X, (t)o(—7) + f X (t —7 = s)¢'(s)ds, where X,,(t) is the solution of

the same equation with identity initial condztzon defined in Theorem 2.2.

Let we have the linear heterogeneous equation with delay
X(t) = AX(t) + AX(t — 1) + F(t). (6)

Theorem 2.4 [1] Let A is reqular. Then the solution X(t) of the heterogeneous equation (6)
with zero initial condition, has the form X (t) fX (t—71—s)F(s)ds, t >0, where X,(t)
1s defined in Thheorem 2.2.

Theorem 2.5 [1] Let A is reqular. The solutz’on of heterogeneous equation (6) with the initial
condition (5) has the form X (t) = X, (t)e(— —I—f Xp(t—7—s)¢ ds+fX (t—7—s)F(s)ds,
where X,,(t) is defined in Theorem 2.2.

3 Controllability of the linear matrix system with delay

3.1 General terms

Let X is the space of states of dynamic system; U is the set of the controlled effects (controls).
Let x = x(xo,u,t) is the vector that characterizes state of the dynamic system in moment of
time ¢, by the initial condition xo, ¥o € X, (2o = 7|,_, ) and by the control function u, u € U.

Definition 3.1 The state xq is called controllable state in the class U (controlled state), if
there are exist such control u(xg) € U and the number T, to < T that x(xg,u(zo),T) = 0.

Definition 3.2 If every state xog € X of the dynamic system is controllable, then we say that
the system is controllable (controlled system).

Consider the following Cauchy’s problem:

#(t) = Ax(t) + Ax(t — 7) + Bu(t), t€[0,7], T < o0, 7
2(0) = 2o, 2(t) = (), —7 <t <0, (7)

where z = (x1,...,2,)" is the vector of phase coordinates, z € X u(t) = (uy(t), ..., u,(t))7 is
the control function, u € U, U is the set of piecewise-continuous functions; A, B are constant
matrices of dimensions (n x n), (n x r) respectively, 7 is the constant delay.

Space of states Z of this system is the set of n-dimensional functions.

{z(0), t—7 <6<t} (8)

16 volume 5 (2012), number 2
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The space of the n-dimensional vectors x (phase space X) is subspace for Z. The initial state
2o of the system (7) is determined by conditions

20 = {x0(0), xo(0) = ¢(0), —7 <0 <0, 2(0) = zo}. (9)

The state z = z(zg,u,t) of the system (7) in the space Z in moment of time ¢ is defined by
trajectory segment (8) of phase space X.

Next considered, that the movement system (7) goes (t > 0) in the space of continuous function.
We determined initial state (9) of the function () as piecewise-continuous.

In accordance with specified definitions, state (9) of the system (7) is controllable if there exist
such control u € U that z(¢) =0, T — 7 <t <T when T < oc.

3.2 The construction of control for system with delay

Let we have the control system of differential matrix equation
t(t) = Ax (t) + Ax(t — 7) + Bu(t), z(t)e R", t>0, 7 >0. (10)
where z(t) = p(t), —7 <t <0, A, B are square constant matrices.

Remark 3.3 For convenience purpose, here and further, we say that x(t) is a vector of length
n. All next statements are proved in the same way for the case when x(t) = X (t) is a matrix
of dimension (n x n).

Theorem 3.4 For controllability of linear system with delay (10) is necessary and sufficient to
next condition to hold: t > (k — 1)7 and rank(S) = n, where S = {B AB A?B ... A*"'B ..},
hence S is a matriz which was achieved by recording matrices B, AB, ..., A¥"1B, ... side by
side.

Proof: Let system (10) is controllable. Then for any ¢(t), 21 and ¢; there exist a control u*(¢)
such that for a system (10) exist solution x*(¢) which satisfies initial condition z(t) = ¢(?),
—7 < t < 0. The representation of the solution of the Cauchy problem for heterogeneous
equation is:

0 ¢
z(t) = Xo(t)p(—7) + /Xo(t — 7 —8)¢'(s)ds + /Xo(t — 7 — s)Bu(s)ds.
Zr 0
When the control is u*(t), then in time moment t = ¢; we get
0 t1
= Xo(t1)p(—7) + /Xo(t1 — 7 —8)¢'(s)ds + /Xo(t1 — 7 — s)Bu*(s)ds. (11)
—T 0
Denoted 0
— Xo(t)p /xo b= 7 — 8)(s)ds = . (12)

volume 5 (2012), number 2 17
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And using the representation of Xq(¢) from (4) we get

t1

/Xg(tl — 17— s)Bu*(s)ds

0
2 A(ti—1—s—I1) p+lAp T_S_h—)p -1 kI Bu* d
Z e Z p +(—1) u*(s)ds
0

= l (b — s — (1 + 1)r) i
_ /ZQGA(tI_S_(l+1)T)Z(_l)p+lAp p' Bu*(s)ds—i— (—l)kB/u*(s)ds

0 l=o0 p=0 ’ 0

k-1 1 ! ; [+ 1)) !
— ( )p+12Ap/€A t1—s—(1+1) )( _p(' +1)7) Bu*(s)ds+(—1)k3/u*(s)ds

l=0 p=0 0 ’ 0

1 P& (= s — (I 4 1))t /
= Z(—l)p+l2Ap/ZAm ! ] Bu*(s)ds—i—(—l)kB/u*(s)ds
=0 p=0 0 m=0 e 0

k—1 1 [e'S) (t e (l n 1) )m+p t1
_ S (-1 A / S W (s)ds + (—1)* B / W (s)ds = (h).

l=0 p=0 m=0 0 e ]

Denoted
(t1 —s— (14 1)r)mt?
+1 1 *
Yipm(t1) = (=172 0/ o u(s)ds,
then

=B
1=0 ;
k1 k-1 k1
+ADB Z%o,l(tl) + Z%l,o(tl) + A*B Z%oz t) + 21/1111 t1) + Zl/]mo t1)
=0 -1 -1 -

+A'B Z¢l0k 1(t1) +Z¢11k o(t1) + ... + Z Uig—21(t1) + Yrg—1,0

I=k—2
= Bfi(t1) + ABfo(t1) + A’Bfs(t1) + ... + A" ' Bfi(t1) +
And using (12), correlation (11) get the form

18 volume 5 (2012), number 2
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So we got a system with an infinite number of unknown functions f; and the vector of constant
terms p is length n. The system will have only one solution if and only if the rank of the matrix
S ={B AB A’B ... A*¥"'B ...} equals n. In this case the solution of the system will be the
vector f, that is uniquely determined by the vector of constant terms x;. Since the vector of
constant terms is defined from any finite state of the system (10), we conclude that system (10)
can be moved in any point if the conditions of the theorem is true. It means, that the system
(10) is controllable if and only if the rank of matrix S is n.

Theorem 3.5 Let t; > (k — 1)1 and the necessary and sufficient condition for controllability
is implemented: rank(S) = rank ({B AB A?B ... A¥"'B ...}) = n. Then the control function
can be taken as

t1 -1

u(s) = [Xo(t — 7 — 5)B]" /Xo(t1 S BBU[Xo(ty — 7 — s)Tds|

where p = 1 — Xo(t1)p(—7) — fo Xo(ty — 7 — 8)¢'(s)ds.

-7

Proof: Using the result of the Theorem 2.5, we have that the solution of the system (10) with
initial conditions z((t) = ¢(t), —7 < ¢ < 0 has the form

x(t) = Xo(t)p(—7) + /Xo(t —7—35)¢'(s)ds + /Xg(t — 7 — s)Bu(s)ds (13)

Using the notations (12), we obtain: for the system (13) to have a solution z(¢) that satisfies
the initial conditions x(t) = p(t), —7 <t <0, x(t1) = x1, is necessary and sufficient that the
integrated equation

l

/ (Z 9eAt1—s—(I+1)7 Z pHAp - S _p(!l + 1)7_)13 + (_1)k[> Bu(s)ds = (14)

p=0

has solution u(s), 0 < s < t;. We will search a solution as a linear combination

k—1 ! T
s—(+1)r —s— (I + D7)
u(s) = [(Zz (s Y (1 ”AP o + (—1)’“1) B| C  (15)
l=0 p=0
where C' = (cy, 3, ....., ¢,) T~ is unknown vector. After substitution (15) in system (14), we get
! !
/ de st S it g ST URDTT ) g
p=0 p!

k—1 ! _ » T
><BT (Z %¢ A(t1—s—(+1)T Z p+lAp -8 ('l + 1)7—) + (_1)kI> ds| C = L. (16)

=0 p=0
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We will show that system (16) has the only one solution. From prove of previous theorem
we know, that Xy(t — 7 — s)B can be represented as a linear combination with coefficients
B; AB; ...; A*B; ... Since rank(S) = n, then, when 0 < s < ¢;, will be done X¢(t —7 —s)B # 0.
Therefore for any vector [ = (I1, 1z, .....,I,)" in 0 < s < ¢; will be done ([Xo(t —7—s)B]*1)? # 0,
0<s<t. And for any [ > 0

t1

1

0

2
I T

22 A(t1—s—(+1)7 Z pHAp —s—({+ D7)’ + (_1)k[ 1l ds

p=0

/ Xo(ts — 7 — $) BB [Xo(ty — 7 — 5)|7ds | 12
0

t1
Because the matrix [ Xo(t; — 7 — s)BBT[Xo(t1 — 7 — s)]"ds is positive definite. Therefore its
0

determinant is nonzero. Solving system (16), we obtain

t1 -1
C= /Xo(t1 —7—38)BBT[Xo(t; — 7 — 8)|"ds| p.

0

4 Examples

Let us consider few examples of controllability researches of the linear matrix systems with
delay.

Example 4.1

Let us have the differential equation of 3-th degree with a constant delay:

1 1 1 1 1 0
(t) = Ax(t) + Ax(t — 1) + Bu(t), where A= 0 1 1 | ,B=|1 1 0
0 0 1 0 0 O

As we see 7 = 1,n = 3 and A is regular. We want to know if this system is controllable so let
us check the necessary and suffisient condition. We will find the matrix S

110 220 330 k k0
S={BABA*B.A"'B .} ={1 10 110 1 10..110
000 00O O0O0O 00 0

We have, rank(S) = 2, so the system is not controllable.

Example 4.2
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Let us have the differential equation of 3-th degree with a constant delay:

1 1 1 1 1 0
t(t) = Az(t) + Az(t — 1) + Bu(t), where A= | 0 1 1 | ,B=[1 1 0
0 0 1 0 0 1

As we see 7 = 1,n = 3 and A is regular. It is easy to see that the necessary and sufficient
condition for controllability is implemented (becase of full rank of the matrix B, matrix S have
full rank too), so the system is controllable.

Let us construct such control function, that move system in time moment ¢; = 2 in point
r1 = (1,1,1)7, using initial condition zy(t) = ¢(t) = (0,0,0)", =1 < ¢ < 0. Using the result of
the theorem (3.5) we write:

u(t) = [Xo(ty —7 —t)B]" | | Xo(ty — 7 — 8)BBT[Xo(t; — 7 — s)|ds| p,

0

pu=x1 — Xo(t1)p(—7) — /Xo(t1 — 7 —5)¢ (s)ds.

—T

While o(t) = (0,0,0)T, =1 <t <0 then = (1,1,1)T. So, we have

2 -1 1
u(t) = [Xo(1 —t)B]" /x0(1 — $)BBT [Xo(1 — )" ds 1

While t; = 2, then k = 2 and, using (4) we can calculate

2t + Det +2(#%2 —t — et~ +1 2t +2(t — 2)et ! 0 0.05 —0.13 0.09 1
u(t) = | 20+ 1Det +2(2 —t—1)et L +1 2t +2(t — 2)et ! 0 —0.13 0.38 —0.25 1,

(t2 + 2t)et + (¢3 — 3t +2)et 1 2tet +2(t — 1)2et1  2et +2(t — 2)et ! 0.09 —0.25 0.18

20t + et +2(t2 —t — et~ +1
u(t) = 0.01 ( 2t + 1)et +2(t2 —t — 1)et=1 + 1 )
(t2 + 2t + 4)et + (13 +t — 6)et !

5 Conclusion

In this paper a solution of the system in general form was built. The necessary and sufficient
condition for controllability of this system was defined and control was built. Two examples
were given to illustrate the proposed theory. Getting results analogous to the ones in sections
3 and 4 for equation X (t) = AX(t) + BX(t — 7), where A, B are different matrices, remains
an open problem.
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EQUILIBRIUM STOCHASTIC STABILITYS
OF MARKOV DYNAMICAL SYSTEMS

CARKOVS Jevgenijs, (LV), SADURSKIS Karlis, (LV)

Abstract. In first section of paper we will prove that for linear Markov dynamical sys-
tems an equilibrium asymptotic stochastic stability is equivalent to exponential p-stability
for sufficiently small positive values p. Then we will prove that exponential p-stability
of linearized in vicinity of equilibrium Markov dynamical system guarantees equilibrium
asymptotic (local) stochastic stability.This result permits to construct such Lyapunov
quadratic functional, which one may use for local equilibrium stochastic stability of suffi-
ciently smooth nonlinear Markov dynamical systems.

Key words and phrases. Markov dynamical systems; stochastic stability; Lyapunov
stability.
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1 Stochastic stability of linear differential equations with Markov coefficients

Let y(t) be Feller type Markov process on phase space Y and with weak infinitesimal operator
[Doob] L,f(z,y) be a continuous mapping R" x Y — R" and f(0,y) = 0. The solution of
equation

dx(t)
o = fa(t),y(t) (1)
with initial condition z(s) = z,y(s) = y we will denote z(t, s, z,y). We will say [3] that trivial
solution of differential equation (1)

e locally stable almost sure, if for any s € R, n > 0 and 3 > 0 there exists such § > 0 that
the inequality

sup P(sup|z(t, s, z,y)| >n) < 5, (2)
yERé” t>s
e

follows the condition x € Bs(0), where Bs(0) := {x € R" : |z| < d};
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e [ocally asymptotically stochastically stable, if it is locally almost sure stable and there exists
such v > 0 that the trajectories which do not leave the ball B, tend to 0 ast — 00;

e asymptotically stochastically stable, if it is locally almost sure stable and for any x € R™,
s € R, and ¢ > 0 the equality

lim sup P(sup |z(t,s,z,y)] >¢c) =0 (3)
T—o0 yeR((;" t>T
£e

18 fulfilled;

e cxponentially p-stable, if there exist such positive numbers M and v that for any x €
R" yeR™ &G, s€R andt > s the inequality

E|x(t,s,z,y)[" < M|z[Pe7 ) (4)
15 fulfilled.
In this section we will deal with linear differential equations in R"

dx

= = AW )

where A(y) is continuous bounded matrix-valued function and y(¢) is stochastically contin-
uous Feller Markov process with weak infinitesimal operator (). The pair {z(t), y(t)} forms
[Skorokhod] homogeneous stochastically continuous Markov process with the weak infinitesimal
operator Lo defined by equality

Lov(z, y) = (Aly) 2, Vo) v(z, y) + Qu(z, y). (6)

It is clearly that there exists family of the matrix-valued functions {X(t,s,y),t > s > 0},
defined by equality X (¢, s,y)x = z(t, s, x,y), where z(t, s, z, y) is the solution of Cauchy problem
x(s,s,x,y) = x under condition y(s) = y. The matrices X (¢, s,y) also satisfy the equation (5)
for all t > s and initial condition X (s,s,y) = I, where I is matrix unit. This matrix family
has the evolution property:

X(t,s,y) =X, 7y(m)X(,5,y) (7)
for any y € Y, > 7 > s > 0. Let us define the Lyapunov p-index of (5) as
AP — S;JEE; InE|X(t,s,y)z|P. (8)

Not so difficult to prove that exponential p-stability of trivial solution of the equation (5) is
equivalent to inequality A®) < 0. Because

(BIX (t, s, y)z|P) /P < (B[X(t, s, y)x|P?) "/ (9)
for any positive p; < po, the inequality

AP < )\(p2) (10)
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follows the inequality p; < p2 and A?) is monotone decreasing function as p decreases to 0. It
is intuitively clearly, that asymptotic stochastic stability of (5) is equivalent to the condition

Ipo > 0, Vp € (0,p0) : AP <.

We will assentially use further this assertion and hence it should be proven.

Lemma 1.  If the equation (5) is asymptotically stochastically stable then it is exponentially
p-stable for all sufficiently small positive p.

Proof. Let us put in definition of almost sure stability n = 1,4 = 1 and choose so small

2
positive a that the inequality

sup P(sup|X(¢,0,9)z| > 1) < 3.
el<2—a  t20
yeY

is fulfilled. Due to a linearity of the equation (5) from the above inequality one may write the
inequality
sup  P(sup|X(¢,0,y)z| > 2%) <
mggfa(l*l) t>0
yeY

1
2

for any [ € N. Let us denote

g == sup P(sup | X (¢,0,y)z| > 2'*).
jz|<1 20
yeY

The pair {z(t), y(t)} is stochastically continuous Markov process and it has the Markov prop-
erty in the moment 7 (x) of exit of the trajectory z(¢,0, z,y) from the ball B1(0) if x € B;(0).
Hence

9y = sup Psup| X (¢, 0,y)x] > 20407
lz]<1 >0
yeY

= sup 7 / P, (1i(x) € ds,z(s) € du,y(s) € dv)x

|z|<1

y€Y 5=0 |y| =2l
veEY
xP(sup | X (t,0,v)u| > 20D
>0
< sup P(sup |X(¢,0,y)z| > 207D sup x
jol<2le 20 lel<1
yeY yeyY

x]o / P, (1i(x) € ds,z(s) € du,y(s) € dv)

s=0 |’LL‘ :2la
veY

1
< 5 sup P(sup| X (£,0,y)z] > 2) = 3g1.
lz|<1 t>0
yeY
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Hence g, < % for any [ € N. Let us denote

¢ = sup |e(t, 0,2, )P
t>0

It is clearly to see that for all p > 0, x € R", y € Y it may be written

EC< [al” sup EC < ) 2" Plsupla(t, 0,7,y)] = 2070

|z|<1 =1

o]
<> 2lralalP = Ky faf
=1

Therefore random variable ¢ has expectation for all z € R", y € Y,p € (0, a™!). According
to Lemma’s conditions the solution of (5) z(¢,0,x,y) tends to 0 almost sure as ¢ tends to co
uniformly on y € Y and by the Lebesque Theorem one can write

lim supE|x(t + s, s,2,9)|P = 0

t—=00 yey

for all z € R™, p € (0, a!). Besides, not complicatedly to verify that this convergence is
uniform on z in the ball B;(0) and s > 0, i.e.

lim sup El|z(t+s,s,z,y)|? = 0.
£=20 1€ By (0)
yeY

Now we can choose a number T so large then the inequality

supE|z(t +s,5,2,9) < |z[Pe”!
yeY

is fulfilled and further, by using the inequality

mam@awwzf/P@%u—nnmﬂwmu@@www
R Y

< e 'Elz((l - 1)T,0,z,y)",

where P(x,y,t,du, ,dv) is transition probability of homogeneous Markov process {x(t),y(t)},
one can write

Lir
Ela(t,0,z,y)]" < Kie TT|ap?,
where [a] is integer of number a. This inequality completes the proof.
To analyze the behaviour of solutions of (5) one may use well known the Dynkin formula [2]

7r(t)

EC)v(z(r (1)), y(7:(1)) = v(z,y) + EG) /(Lov)(fc(S),y(S))ds : (11)

u

where the indexes of expectation denote the condition z(u) = x, y(u) = y and 7.(t) =
min{7,, t}, 7. = inf{t > v : z(t,u,z,y) ¢ B.(0)}. If u =0, then upper index will be absent.
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If for all ¢ > w > 0 there exist the expectations E, ,v(z(t),y(t)) and E, ,(Lov)(z(t),y(t)) one
can use the Dynkin formula (11) in the more simple form

t

]E(;gv(a:(t),y(t)) = v(z,y) + /E%L(LOU)@(S):?J(S»dS' (12)

u

Sometimes it is necessary to use the Lyapunov functions depending also on argument ¢. If the
function v(t, z,y) belongs (as the function of arguments = and y) to the region of definition
of infinitesimal operator Ly and has continuous t-derivative, one may use the Dynkin formula
(11) in the form

ECo(r (1), (7 (1)), y(7:(1) =

=v(u,z,y) + ]E(;f) /(%—I—L())v(s,x(s),y(s))ds ,

or formula (12) in the form
EGu(t,2(t), y(t) =

- v(u,x,y)+/tE<;g { (% + Lg>v(s,az(3), y(s))} ds. (13)

u

Besides Dynkin formula and the Second Lyapunov method one can use also well known the
supermartingale inequality [1] for positive supermartingale {£(t), §'} with filtration §* in the
form

P(sup€(t) > o) < 1EE(u). (14)

t>u o

Lemma 2. The trivial solution of equation (5) is exponentially p-stable if and only if there
exists the Lyapunov function v(x,y), which satisfies the conditions

crlzlP <o(z,y) < elxl?, ¢ >0 (15)

LOU(Iay) S _C3|x|p7 C3 > 0 (16)
for all x € R™, y € Y with some positive p.

Proof. Let there exists above mentioned the Lyapunov function. It is clearly to verify that

(% + L0> (v(x, y)ez_;t> <0,

and then one can write

€3

E. o(zt),y(t))e=" < v(z,y) < colaf?
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forallt > 0, z € R" and y € Y. Hence

_ 3y €3¢ — %3¢
Eoylz()]f < e 2 By yu(a(t),y(t))e=" < 2e o |aff

and the equation (5) is exponentially p-stable. By using the solutions x(t + s, s, z,y) of the
equation (5) one can construct for any 7" > 0 function

T
v@w:/ﬂw+wmeL (17)

0

which do not dependent on s owing to homogeneity of Markov process y(t). It is easily to verify
that under conditions that the matrix A(y) is uniformly bounded, that is, sup,cy |[A(y)|| =
a < oo this function satisfies the conditions (15). Let Ly be the weak infinitesimal operator of
the pair {z(t), y(¢)}. If the trivial solution of equation (5) is exponentially p-stable, one can
write the inequality

T T
LO U([E, y) = hm6—>0 %UﬂEm,y{Ex(d),y(6)|x(t)|p} dt — f Ez,y|x(t)|p dt]

= lims_ } fExy\xt+5 P dt — fExy’$ t)|P dt)

= E:c,y|f6( P =zl < (Me_'yT — D/,

where M and ~ are constants from from definition of exponential p-stability stability. Now we
can put 7' = (In2 + InM)/~v and proof is complete.

Corollary 1. In the conditions of Lemma 2 the trivial solution of equation (5) is asymptotically
stochastically stable.

Proof. Due to formula (16) for v(¢, z,y) = v(x,y)e =t one may conclude that random process

3y

§(t) == v(z(t), y(t))ec
is positive supermartingale. Hence

supP(sup [2(t, 0,2,y > €) = supP(supla(t, 0, z,yl" > )

yeY >0 yeY >0
< SUpry(SUP{ Lo(z(t),y(t)} > )
yeY
3
= SUPPry(Sup{ §(t)e C2t} > eP)
yeY
S Suppx,y(sup§< ) Epcl) — Ep01 7y€( ) — gpc ‘x|p
yeY >0
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and trivial solution of (5) is stochastically stable almost sure. Now to prove asymptotic stochas-
tic stability one can apply the supermartingale inequality (14) and write the inequalities

sup P(sup [2(t,u, z,y| > ¢) = sup P(sup [z (¢, u, z,y[P > )
yeY t>u yeY t>u

< sup Py (sup{ Lo(a(t), y(t)} > )
yeyY t>u

< supPY) (sup{L)e(t)e ="} > @)
yeY t>u

< sup Uy (sup{)E()e™ 2"} > &) < GLBE(w) < g fape "
ye >u

2 Stochastic stability by linear approximation

In this section we will consider the quasilinear equation

W= AW + o y(1), (18)

under conditions that the matrix A(y) and Markov process y(t) satisfy the conditions of the
Section 1, the function g(x,y) has bounded continuous z-derivative with conditions ¢(0,y) = 0,
and for any r > 0 its z-derivative is uniformly bounded at any ball B,(0) , i.e.

sup ||D.g(z,y)|| = g» < o0 (19)
yeY
z€B(0)
Theorem 1.If the equation (5) is asymptotically stochastically stable and lin% gr = 0, then the

trivial solution of equation (18) is asymptotically stochastically stable.

Proof. Side by side with the equation (18) we will consider the equation (5) as an equation
of its linear approximation. Due to Lemma 1 and Lemma 2 we can construct the Lyapunov
function (17) with some small positive p. Because the matrix-valued function D, x(t,0,z,y) is
the Cauchy matrix of the equation (5) it permits the estimation

sup E[| Dy (t + 5,5, 2,y) | < hae ™"

yeY

with some positive constants h, v for all ¢ > 0. Therefore the above Lyapunov function
satisfies the conditions (15)-(16) and by construction for all z # 0 has x-derivative satisfying
the inequalities

T
Vavle, ) = | [E(Vlalt+ 55,20
0
T
< b [ B{Jalt+ 5,502 {Daalt + 5,5..0) alt + 5.5, 9)] )
0
T
< plel? ) [supBDaa(t+ 55| dt < cofal* )
yE
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with some positive c3. Because the above estimations do not dependent on initial time moment
s we will put for simplicity s = 0. Now one can estimate the function Lv(z,y) where L is weak
infinitesimal operator of the pair {Z(t), y(¢)}:

L’U([E, y) = (A(y)x + 9(37, y), Vx)v(x, y) + QU(ZE, y)
= Lov(x,y) + (g(z,y), Vo) v(z,y)
< =Lz + cslalPlg(z, y)| < (gocs — 3|zl

forall y € Y, z € B,(0),r > 0. Hence, due to Dynkin formula, we may use inequality

7r(t)

ES (@ (n (), y(m: (1) = v(z,y) + EY) {/ y(s)) ds}

o) + (gres — E{ / 13(s) P ds) (20)

for all y € Y,z € B.(0),r > 0,t > u > 0. If r is sufficiently small number the second
summand in the right hand part of inequality (16) is nonpositive. Hence the stochastic process
v(Z(7(t)), y(7-(t))) is supermartingale and we can write the inequalities

Px,y(jgg!i(t)! > €) ZPx,y(jglg!i(t)!” > gP)
= Pwy(i‘ig |i’(7—r(t>)|p > 5p) < Pw,y@uPU(i’(Tr(t))a y(Tr(t>>>

t>0
U(.]Z,y) < C2§p)
ci1EP T P

> cief) < (21)

for all y € Y, z € Bs(0),0 € (0,¢),e € (0,7) and sufficiently small » > 0. The local stability
almost sure immediately follows from these inequalities. Let us define function

1, for z € [0, R)
hr(r) = 2=, for z € [R,2R)
0, for x > 2R.
The differential equation
de .
S8 = Aly)en + haller(t) (e, (1) (22)

has unique solution of the Cauchy problem zr(0) = x because function hg(|z|)g(z,y) satisfies
the Lipschitz condition with constant cog. Hence the pair {xg(t), y(f)} is Markov process with
weak infinitesimal operator Lr defined by equality

LRU<,T7 y) = (A(y)x, VI)U(QT, y) + (hR(‘ﬂ)g(ma y)> VI)U(.CE, y) + QU(w? y)
= Lov(z,y) + (hr([z])g(z,y), Va)v(z, y)

and choosing R such small that (corcs — %) := —c4 < 0 one can write the inequality

Lrv(z,y) < —eqlzlP.
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Therefore

< olw) = & B o(en(s)u(s) ds (23)

for all ¢ > u > 0. Hence the stochastic process v(zg(t),y(t)) is positive supermartingale and
one can write

Py (sup2a(t)] > <) = Py (sup zp(d) > <)
t>s t>s

<Py (supv(en(t) o) > o) < B uen(s). () (24)

for all y € Y, x € Bg(0),e € (0, R) and sufficiently small R > 0. It is not complete to get the
inequality

E.yu(en(t).y(0) < o(z,y)e 3" < olafe 5"
from the inequality(19), and then f it can be written

ColxP _cay
]P)m(igﬂx]{(tﬂ > ) < ;L—Cje o
Hence all solutions of the equation (22) which have start at ¢ = 0 in the ball B.(0) with
e € (0, R) and sufficiently small R tend to 0 with probability one. But up to time of the ball
B.(0) leaving the solutions of the equations (18) and (22) with the same initial conditions in
the ball B.(0) are coincident. So all solutions of (18) which do not leave the ball B.(0) with
sufficiently small € tend to zero with probability one and the proof is complete.
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ON STABILITY ANALYSIS OF QUASILINEAR DIFFERENCE
EQUATIONS IN BANACH SPACE
(SPECTRAL THEORY APPROACH)

CARKOVS Jevgenijs, (LV), SLYUSARCHUK Vasyl, (UA)

Abstract. The paper deals with the mappings of Banach space £ given in a form of
quasilinear difference equation

Tyl = Azp + Fp(zy), n>0 (1)

where A is linear continuous operator, {F,, : £ — £} are nonlinear bounded operators
satisfying identity F,,(0) = 0. Side by side with the above equation we consider an equation
of the first approximation, that is, the linear difference equation

Yn+1 = Ayn7 n = 0 (2)

We will discuss the assertions which guarantee local stability or instability for the trivial
solution of (1) if (2) to be of this specificity. The proposal paper not only generalizes well
known finite dimensional stability analysis results for quasilinear difference equations.
Using spectral properties of operator A as a basis, our research shows that the infinite
dimension of the space £ not only strongle complicates computations and proofs of relevant
theorems on stability analysis by the first approximation but also can have significant
influence to statement of these results.

Key words and phrases. Quasilinear difference equations; Lyapunov stability; Insta-
bility..

Mathematics Subject Classification. Primary 65P35; Secondary 39A11.

1 Notations, main definitions, and auxiliary assertions

We will follow the giving below classical notations of linear opertor theory [12]:

L(&) — Banach algebra of linear continuous operators with unit I;
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K(&) — subset of compact operators in L(E);
Ker(A) — kernel of operator A € L(&);
Im(A) — image of operator A € L(E);
o(A) — spectrum of operator A € (), that is,
A€o(A) e Im(A — ) #€&;
r(A) := max{|\| : A € 0(A)} — spectral radius of operator A € L(E).
The trivial solution z,, = 0 is fixed point of mpping Ax+F(x) and we will discuss a behavior

of iterations (1) in some neighbourhood of it. The trivial solution of (1) is referred to as

e stable if for any positive number ¢ and number ng € N U {0} there exists such a number
d = 0(g,ng) > 0, that for any solution x,, of this equation the inequality sup ||z,|| < €

n>ng

follows inequality ||z, || < d;

e instable if for some e > 0, ng € NU{0}, and any § > 0 there exists such a solution x, of
this equation that ||z,,| < ¢ and sup ||z,|| > ¢;

n>ng
e asymptotically stable if this solution is stable and for any ng € NU{0} there exists such a
number v = y(ng) > 0 that from inequality ||z,,| < v it follows the equality lim ||z, || = 0;

e cxponential stable if for any ng € N U{0} there exist such numbers M = M(ng) > 1 and
q=q(no) € (0,1) that
Vi 2>mno: [zl < Mg |a, || (3)

for any solution of this equation;

e local exponential stable if for any ng € NU{0} there exist such numbers M = M(ng) > 1,
q = q(no) € (0,1), and r = r(ng) that for any solution of this equation from inequality
|z, || < 7 follows an inequality (3).

In the subsequent text of this paper we will need some of our previous results citing below.
Theorem 1.1 The following assertions are implications:
(i) the trivial solution of (2) is exponential stable;
(i) r(A) < 1;
(iii) the series Z HAkH converges.

k=0

Theorem 1.2 Let £ be a complex Banach space, and p is a boundary point of the set o(A)\{0}.
For any 6 > 0 and m € N there exists such a vector & that
(1= 0)[ul" < [JA™E]] < (L +6)[ul"[¢]

for alln =0,m.
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Theorem 1.3 Let € be a real Banach space, and w is a boundary point of the set o(A)\ {0}.
For any 6 > 0 and m € N there exist such an integer number mg > m and vector u € £ with
norm |u| =1 that

| A"l < (V24 6) " for any n =0,

and
A ul| > (1 = §)[p[™

The proofs of these results one can find in the papers [1] and [7].

2 Stability by the first approximation.

This Section is devoted to stability analysis of equation (1) by the first approximation. It seems
naturally that the linear approximation equation (1) has to be subjected to condition r(A) < 1.
But it is wrong to believe that even the aasertion r(A) < 1 is necessary in a case dim € = oo.
Corresponding examples we will give in Section 3. But the proposal in this Section resalts
only generalize the well known similar theorems for finite dimensional space £ and therefore an
assertion r(A) < 1 is present there.

Theorem 2.1 Assume that
(i) the trivial solution of linear equation (2) is exponential stable;

(i) the operators ¥,,n > 0 satisfy condition of uniform sufficiently small sublinear growth at
zero, that is, for some positive number R there exists such a positive number v that

sup [|[Fpz| < vlz|, for|z| <R
n>0

and

VX]MW<1 (4)
k=0

Then the trivial solution of (1) is local exponential stable.

Proof. On the basis of the Theorem 3.1 and the first condition of the present theorem one

may be certain of convergence of series Z HAk H := M. This permits to introduce in the space
k=0

o
€ new norm |z[4 = Y |[A*z| which satisfies inequality ||z| < |lz|la < M|lz||. Assuming
k=0

|zn]] < R one can estimate the value of difference Al|z,||a = ||Zn+1lla — ||zn]|la for solution of
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equation (1) in a following form:

[ee] o0
Allzalla = D [[AFza] = ARz =
k=0 k=0

= Y [|AR e, + AR - D AR <

k=0 k=0
DA [+ 3 A F | = D (At =
k=0 k=0 k=0

= —llnll + > A Fozn|| < —llzall + M| Fpzn|| <
k=0

< =]l + Myl = (=1 + My)||lz.[| <

IN

My —1 My —1
”f’UTL”AS

[0 ] 4
Therefore under condition ||z, || < R one can apply inequality

Hxn-H”A < quanA

where ¢ = 1 + % < 1 because by assuption of theorem Mv < 1 and M > 1 by definition.

Taking into account the above inequality and ineqality ||z|| < ||z]|la < M]||z|| one can may be
sure that

[znll < Mg""[lzn[], 7 = no

R .
for any [|z,,] < U where ng — any integer number.

Corollary 2.2 If the trivial solution of linear equation (2) is exponential stable and

sup || Fnx||
n>0

m ——— =90
lzl—0 |||

then the trivial solution of (1) is local exponential stable.

Remark 2.3 If (4) is not to hold then the trivial solution f equation (1) may not be local
exponential stable.

Example 2.4 Let us consider scalar difference equation

Tpi1 = ax, + v|x,|, n >0, (5)

where a,v € (0,1). The formula (4) for this equation has a form uZak < 1 which equivalent

k=0
to inequality a + v < 1. If a+v > 1 then x, = (a + v)"xq¢ for each n > 0 and trivial solution

of (5) is not local exponential stable.
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The proof technique of the above theorem may be used for more interesting assertion. Let
Firl. e — &, n>m > 0, be mappings defined by equalities

F = Fm YA +F,_ ), n>m>0, FU=F,
where A and F,,, n > 0 from equation (1).
Theorem 2.5 Assume that:
(i) the trivial solution of equation (2) is exponential stable;
(i) operators F,, n > 0 satisfy inequalities
sup [Fuzl] < e(flel), for lle] < &,

where R > 0 and ¢ : [0,R] — [0,400) — is positive continuous definitely increasing
function, and p(0) = 0;

(#i) sup HFWxH <vlz||, for |zl < R, and /v Y ||A¥|| < 1 for some integer m and positive
n>m k=0
number v.

Then the trivial solution of equation (1) is local exponential stable.

Proof. Further we will apply the same notations as in the proof of 2.1. It is easily seen that
the solutions of (1) satisfies inequalities

Tpy1 = Axn + F[ric]xn—lm n = ka

for any k = 0,m. Under assumption ||z,—,||4 < R one can write the inequalities

Allzalla = DA 20| =D [[AF, || =
k=0 k=0

= DA, + ARF | = Y [ A <
k=0 k=0

o0 o0 o0
< DA a4 Y A R = Y (AR =
k=0 k=0 k=0
=~z + Z HAanan < —lag|| + M| Fyz, || <
k=0
1 1
< —qpllealla+ M| Fua] = —MH%HAJFMHFW%%H <
1 1
< —qpllEalla + Myllza-nll < = llzalla + Mylza—mnlla

and therefore .
fowella < (1= 57 ) aulla + Mol )

volume 5 (2012), number 2 39



Aplimat - Journal of Applied Mathematics

Let ng be an arbitrary integer and p € (0, R) is such a number, that for any |z,,| < p the
solution of (1) with this initial condition satisfies inequality

23X [|Zng+lla < R

It may be done because continuous function ¢ : [0, R] — [0,400) definitely increases and
©(0) = 0. Then based on (6) and inequalities

(1—%)+My<1 (7)

one can write ||z,|[4 < R for each n > ng. Now from (6) it is easily conclude that

1
fowella < (1= 7+ M0 ) max (.o o )

n—mno

for ||z,—m|la < R. Then under condition Jmax | Znotklla < R, where [ } is ineger part
SRSM

n—"Nyo o "
of number one can write inequalities

m
[nfno

(02X | Zngi]l4

1— M?*v
|lznlla < | 1— VA

for any n > ng. From this and (7) follows that the trivial solution of equation (1) is local
exponential stable.

The special case of the above theorem is following assertion.
Corollary 2.6 Assume that:
(i) the first and the second assumptions of Theorem 2.4 are fulfilled;

(ii) there exists such a number v > 0 that

sup [[Fn(Az + Fyz)|| < vz, for |lz| < R,

n>1

and

oy [lat <1
k=0
Then the trivial solution of equation (1) is local exponential stable.

Remark 2.7 In Theorem 2.4 and Corollary 2.5 function o(t) may be also of this a type as

o £t

Jim = = +00. (8)
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The next example illustrates possibility of application of Theorem 2.4 or Corollary 2.5 when
the Theorem 2.1 is unusable.

Example 2.8 Let H be a nilpotent operator satisfying equalities H? # 0 and H?> = 0, and
F : & — & is operator defined by equality

Py = { O if 2 =0,
T 2|7V + ||2||He, if 2 #0.

Let us consider equation
i1 = Hr,, + F(z,), n >0, (9)
It 1s easily seen that
IF ()| < [H?|V/ ]l + [H]|[|«]
for each x € £, and
[l =42 |22 || — ||| | Ha||] < [[F(2)]] (10)

for x € £\ {0}, (that is the condition of Corollary 2.5 for function o(t) = |H?|| v/t + ||[H||¢).
This function satisfies equality (8). This and (10) make it clear that the Theorem 4 may not
be in use for stability analysis of (1). It is obviously that the first assumption of Theorem 5 is
also fulfilled. Besides

[F(Hz + F(z))[| = o(||l]) if [|z[] — 0 (11)

because Hx + F(x) # 0 and therefore
F(Hz +F(z)) = |[Hz+F(2)|/"H*(Hz + F(2)) + |[Hz + F(2) [H(Hz + F(2)) =
= |[Ho +F(2)|"*H? (Hz + || "Bz + ||| He) +
+ [ Ha + [l 7R + o] Hel|H (Ha + ||~ H?2 + || He) =
= |[Hz + ||z 7B + o] Ha|| (H?2 + ||2||H?2)
Then
IF(Hz + F(z))]| < (||HH||SU|| + {[H2|| Vlle ]l + HH||||I||2> [[F2[] (1 [l fl]

for any x € £ and local exponential stability of the trivial solution of equation (9) follows
formula (11). It should be mentioned that this assertion is trivial corollary of operator H
nilpotency because x,, = 0 for any n > 3.

3 Conditions of instability by the first approximation.

In this section we will analyze equation (2) under assumption that r(A) > 1. As in previous
Section the proof in many respects uses Banach space renormalization technique. This permits
not only sufficiently easily to prove results, which are similar to corresponding results for finite
dimentional space &£, but also to derive theorems which are specific in a case dim & = oco.

Theorem 3.1 Assume that:
(i) r(A) > 1;
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(i) Ir € [1,r(A)) :o(A)N{z € C:|z|=r}=0;
(7ii) there exist such positive numbers q and p that

sup [[Fuz| < gllll for z € {y € £+ ly[| < p}-

Then for sufficiently small q the trivial solution of equation (1) instable.

Proof. From the beginning let us assume that r = 1 and o(A)N{z € C: |z| < 1} # 0. Let
P, and P_ be spectral projectors corresponding to spectral sets

0+ (A)=0(A)N{ze€ C:|z| > 1}

and

o_(A)=c(A)N{zeC:|z| <1}

These operators define spectral decomposition of space £ £, = P, £, £ = P_& and restrictions
A|p, and A|g_ of operator A on these subspaces. By definition the spectrum of the above
restrictions coincide with sets o (A) and o_(A), besides 0 ¢ o4(A). Therefore operator

Alg, : &4 — & is reversible and spectral radiuses of operators A|g_ and (A| B +)71 less than
1. By the Theorem 1.1 the serieses

> el ¥ and Y Al

are convergent and this permits to define in the space £ a new norm
folla =3 (Al ) Pra] + 3 [|(Ale)*Pa
k=1 k=0

Owing inequality m||z|| < ||z||a < M||z| for all z € £, where m = min {1, m} > 0 and
+

M = i | (Alg) 7 ]| + i |(Alg_)¥|| < oo one makes sure that the norms || - || and || - || 4 are
k=1 k=0
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equivalent. It follows the inequalities

1
min § 1, o ¢ [l <
{ HA|E+||—1}

. 1
S min {1’ ||A‘E+|| . 1} ||P+x|| + ||P_I|| S
1
< TRl P =
)
= Yl Als | 1Pl + 1 Poall =
k=1
= 7 Al 7] (Ale) " (Alk) ™ P + 1P <
k=1
< D[l AL | (Alk) " P + 1Pl =
k=1
= > [Als) Pz - 1Pal <
1
<

3| [CUSREEES o PUSRATE
= |lz|la < <i||(A|E+)—kH +§:H(A|E)’“||> 1]

Now one can apply the above constructed projective operators to solution z,, of equation (1)
|Pixy||la = Z |(Alg) ¥ Pray ||, |Poznlla = Z |(Alg_ )k P_z,]|| and write a decomposition
|znl|a = |]P+anA + || P_z,||a Let us estimate each item taken separately:
AlPyznlla = [[Prapsalla = [Prznlla =
= |[[P+Azn + PyFozy|la — [[Prznla >
> |[PrAzn|la = [|Peznlla = |1 Py Foznlla =

1
= NPraall = 1P+ Fuzalla 2 171 Prtalla = ([P Fozalla

and A||P_zy|la < —55/|P-2p|la + || P-Fpap| 4. Therefore

IPyneila = 1Pyl 2 3 (SPeasla = 1P Buril).
k=0

- 1
(RIS (-3 Peella+ 1P-Fual
and one may write an inequality

[zniilla = [Pranialla = [1P-znialla =

“~ /1
> IPsaolla = [Paula + 3 ( glenla = [Pl )

k=0

volume 5 (2012), number 2 43



Aplimat - Journal of Applied Mathematics

Suppose that ||zy|| < p for k = 0,n. Then ||F,z,|la < M||Foz,| < Mg|lz,|| < 2g||z,||a and
for initial vector o = P,xy we can use an inequality

~ /1 M
el 2 3 (57 =0 el + ol (12)
1 M
Note that for 0 < g < % value U Eq is positive and therefore
1 M\"
lwnlla = {1+ 57— —a) llwolla (13)

An instability of trivial solution of (1) follows the above inequality because for ¢ < p and for
any ||zo|| = || Psxo|| there exists such anumber n € N that ||x,| > . Note that if (A) N {z €

C : |z| < 1} = 0 the theorem can be proved with the help of norm ||z 4 = Y ||[A7*z| in the
k=1

same way as for o(A)N{z € C: |z| < 1} # (). First we shall show that for solution of (1)
under assumption nax |zk|| < p the formula (12) is true. Secondly as it has been done before

one can establish the inequality (13) which convinces of instability of trivial solution of (1).
Thus we have proved Theorem 3.1 for a case r = 1.
Let us assume now that r € (1,7(A)). Side by side with (1) we consider equation

Tpi1 = Az, + F,zn, n >0 (14)
where
y ¥z, for [|z]| < p,
Foz = MFan, for ||z|| > p.
p ozl

Owing inequality ||F,z|| < g||z|| for each 2 € € one can easy be certain that the trivial solutions
of equtions (1) and (2) are stable or instable concurrently. Substituting in (14)

T =1"Yn (15)
we will have for y,, equation
Ynt1 = T_lAyn + T_n_l]?nrnyna n =0 (16)

where 7(r(A))"! > 1,o(r*A)N{z € C:|z| = 1} = 0, and ||r " 'Frz| < rYq||z|| < ¢l
for any x € £. As it follows from our previous results, this inequality quarantees instabiliuty
of the trivial solution of equation (16). With regard to equation (15) and inequality r > 1 one
may assert that the trivial solution of equation (14) is instable.

Let us remark that for a case dim€ < oo it follows that spectrum set o(A) consists of
finite number of points and therefore one may resign the third assertion of Theorem 3.1. This
convins of the following assertion. But if dim & = oo the below example makes it clear that un
the above this assertion may not be rejected.
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Example 3.2 (/2]). Let B € L(£),0(B) = {z € C: |z| < 1}, and (B,,)m>0 be a sequnce of

nilpotent operators acting in Banach space £ satisfying following assumptions:
lim |B, —B|| =0 (17)

Applying the results of [10] one can construct the above mentiontioned operators for example
in the spaces ly or Lo([0,1]). Assume that in (1) A = e=**B with ¢ € (0,1), and FI"g =
(e7lTBm — =1t B) ¢ 2 € £ By definition r(A) > 1, and

[Fa)| < [lemt+Bn — =B |, 2 € £

Therefore it follows from (17) that lim ||[F™z| =0 and for any ¢ > 0 due to assumption (17)

one can choose such an integer m that ||F™zx|| < q||z|| for any x € €. Besides equation (1) of
our example may be rewritten in a following form

—cI+B
Tpypr =€ S T0mg. n >0,

and r (e_EHB’") =e ¢ <1, m > 1. Therefore the trivial solution of defined in our example
difference equation (1) is asymptotically stable for whatever positive number q.

It should be mentioned that if dim& = oo even under assumptions lim 22— = 0 and

feli—o 11
r(A) > 1 the trivial solution of (1) may be asymptotically stable. Corresponding example one
can find in [5]. To resign the second assertion permits more rigid condition on behaviour of
function F,,(z) as ||z|| — 0. In our previous paper [1] we have prove a following result.

Theorem 3.3 Assume that:
(i) r(A) > 1;
(i) there exist such positive number a,p, and p that
Sup [Fz|| < allz]|"P for any x € {y € € : [|y|| < p}.
Then the trivial solution of (1) is instable.
In this paper we prove more stronger result, weakening the second assertion of the above therem.
Theorem 3.4 . Assume that:
(i) r(A) > 1;
(i) there exists such a continuous monotone function {q(y),0 <y < p} that ¢(0) =0 and p
that sup IFnz]| < q(llzIDll]l;
(i11) there exist such a numberv € (0, p] and a sequence { f(n),n € N} that [|A"|| < f(n)(r(A))"

for any n € N and series Z f(k)q (v(r(A)™") converges.

k=1
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Then the trivial solution of (1) is instable.

Proof.. At first we assume that £ is a complex Banach space. Let §, P and v are such positive
numbers that 1 4+ 0 < P < 2, and

(P=1-0)r

gf(k)q (yr*) < s < g (18)

Taking into account (18), a monotony of function ¢(y), and choosing such a number ¢ €
(0,7P~'r~1), and an integer n(c) > 0 that

T <P < 5 (19)

,
one can be certain of the inequality

-1

X P—1-90
f(n—1—k)q(ePr*) < %, (20)
k=0
for any n = 1,n(e). Based on Theorem 1.2 one can find such a vector £ € {z € £ : ||z]| = 1}
that
(I=6)r" <||A™[| < (1 +0)r", n=1,n(e) (21)

Let us split the solution z,, of equation (1) with initial condition zq = £ € {z € £ : ||z|| = 1}
in a following form
Tp = Tin + L2 n, (22)

n—1
where z1,, = A"z, and x5, = >, A" PRy, n>1
k=0
In compliance with (21) and the second asseretion of theorem there exists such an integer
m € [0,n(e)], that
Jzall < Py (23)

for any n = 0, m. Therefore

n—1

ZAnflkokmk
k=0

lz2nl =

n—1
<) AT | Frg|| <
k=0

n—1

IA

fln—1—k)y"'"Fq (ePr*) ePrt =
k=0

= 87’"§ "z_: f(n—1—k)q (sPr¥)
k=0

and ||z1,| < (1+ d)er™ for any n € [1,m]. Then

Pnfl
Vn=1,m: ||z, < (1 +0+ . Zf(n —1—k)q (gPrk)) er™,
k=0
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and, because from (20) follows inequality
J2 n—1

1+6+— —1—k)q(ePr*) <P

++Tkz:%f(n )q (ePr") < P,

for n = 1,n(e), we may apply (23) for any n € [1,n(e)]. Applying (19)—(21), we can find lower
bound for ||z,

[zne)l = lz1ne@ll = [22n@ )l =
( ( p n(e)—1
> _ n(e) _ .n(e)” 1 ky
> (1—0)er er"e)— > fn(e) = 1 - k)q(=Pr*)
k=0
p n(e)—1
= " [1-6-— f(n(e) =1 —k)q (ePr*) | >
i
P (P—1-0)r v(2 = P)
> g (15— = > = 0
= o ( r P -  Pr “=

Therefore ||z, || > a for any arbitrarily small € = ||x¢|| and the proof of theorem for a complex
Banach space is completed. Now let £ be a real Banach space. Like before we can find such
positive numbers §, P and + that v/2+6 < P < 2 and

S i () < L2 21

k=0

For any € € (0,yP~'r~') there exists such an integer n(e) > 0, that 2 < ePr™e) < ~. Applying
Theorem 1.3 one can choose a number mqy > n(e) and a vector u € E, ||u|| = 1, which permits
write inequalities

v =0,mg ¢ A"l < (V24 9) |l (25)

and
A ull > (1 = &)[p[™ (26)

Besides owing monotony of sequaence f(n) from (24) follows inequality

(P—\/ﬁ—d)r

3
—

fn—1—k)q(ePr*) < 2 (27)
k=0
for all n = 1,mg. Let us choose such a number ¢; € (0,¢) that
v mo
— < g Prm <~y (28)

r

and estimate the solution x, of (1) with initial condition xy = eju, splitting this in a form
(22). Fomula (25) and the second assertion of theorem guarantee existence such an integer
m € [0, mg] that

|xn] < e Pr" (29)
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for any n = 0, m. Then

n—1

n—1
ool = ||S° A Fa| < STIAH] B <
k=0 k=0

n—1
< Zﬂn 1 k,),r,n—l—kq (51Prk) e Pr¥ =
k=0

n—1
= glr”E Z fln—1-k)q (51Prk)
r k=0
|zl < (\/§+ 5) ey

and one can apply inequality
P n—1
”an < (\/5 +0+ — Z f(n —1-— k)q (é‘lprk)> eqr”
" =0
for each n = 1, m. Because from (27) follows formula
P n—1
\/§+(5+—Zf(n—1—k)q(€1prk) <P
T
k=0

for any n = 1, mg, we have proved inedquality (29) for any integer n € [1,mo).
To find lower bound of ||z, || one can use the formulae (25)-(27) and derive inequalities

[Zmoll = Nlz1moll = lZ2,moll =
Pmo—l
> (1=0)err™ —er™ — —1-k Pr¥) =
> err e’ g f(mg )q (51 r)

mo—1
= g™ (1 -0 — ; Z flmo—1—k)q (slPrk)> >
k=0

P (P—v2-90)r 1+v2-P
> eqr™o 1—(5——-( V2 ) 27( V2 ):a>0
r P Pr
Therefore the value of chosen solution ||z,,, || with satisfying equality €1 = ||zo|| initial condition

remains not less then a > 0 for any arbitrary small number ;. The proof is completed.

Example 3.5 Let us consider difference equation

(1 —In||z,||) "2 "Bz, if x, #0,

0, if x, =0, (30)

Tp1 = Axn + {

where p > 0, operator A € L(E) satisfies inequality

Vn e N:||A™] < M(1+n)2",
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o(A) ={t:0<t <2}, BelL(€) - nontrivial operator, and € — a complex Banach space.
Now we choose sequence f(n) = M(1+n) and function

IBJ[|1 —Iny|~>*, fory >0,
q(y) = .
0, if y=0,

and substitute these in series Z f(k)q (v(r(A)™") from the third assertion of Theorem 3.4
k=0

i": M| BJ|(1+ k)
pr (1 —Inv+ kln2)%+r

Not so difficult to proof that this series converges for any v € (0,1). From the above we can be
sure that for equation (30) all assertions of theorem 3.4 are satisfied and therefore the trivial
solution of (30) is instable.

Remark 3.6 Theorem 3.3 is a sequence of Theorem 3.4.

Proof. Let us define sequence f(n) = [ r]n%%( o ||A%||(r(A))~* and function
se[0,n]N(NU{0

o 1 1 -1 L
q(y) = <f <m n 5)) (1=Iny)~7, forye(0,1],
v ify =0,

where p > 0 and f (t) is such a continuous monotony function that restriction f |Nu{0} onto
N U {0} coinside with above defined f(n). By definition

Hwm™) 2/ (™)

for each y € (0,v] and v € (0, 1]. Therefore

ggf (B ()7 < gﬂmq ((r(4) ™) =
- g; ) (F) (1 knr(4)) 7 =
= iu b kInr(A) 7 < o
To prove that kzo
Y=+ q?(Jy) =0 for any &> 0 (31)

one may apply a substitution y = (r(A4))~" and rewrite (31) in following form

' 7(T(A))_Et =0 for any ¢
gy =2 .
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Taking into accountan Gelfand formula r(A) = 1_15{1 {/||A"|| and equalities
v fO+tinr(A) _ [t +1)A +tnr(A)H
q(y) (r(A))** B (r(A))
f(E+1]) (A +tnr(A))ttr

(AT AR
(et
N
- (1+tlnr(A))H+e

A

we can get formula (32), which is equivalent to (31). Therefore if one may apply Theorem 3.4
then, based on (31), one also may apply Theorem 3.3.

)

)

It is well known [12] that the spectrum o(A) may be presented as a sum of disjoint sets
o(A)=0,(A)No.(A)No.(A)
where
A€o,(A) e {3z #0: (A - M)z =0};
A€o (A) & {Im(A —MI)=&,3z ¢ Im(A — \I)};
A€oy (A) & {Im(A = M) # £}

Here and further an overline over a metric set denotes a closure of it. Stability analysis of (1)
becomes simpler if there exists such a number 6 < 1 that the set {z € C : |z| > 0 contains only
eigenvalues of operator A (for example, dim & < oo, A is compact opertor). But sometimes, as
it has been shown by our research, one can succesfully use bound points of o(A), eleminating
a part of spectrum oess,(A) C 0(A) called essentially approximative spectrum.

Definition 3.7 ([6]) Complex number X is an essentially approximative spectrum point iff there
exists such an essentially divergent sequence {x,,n € N} C € that lim |[(A — AI)z,|| = 0.

In [6] has been proved follofing results.
Lemma 3.8 For any A € L(E)
cA)N{zeC:|z|=r}#0soA)N{zeC:|z|=r}#0 (33)
Theorem 3.9 Let us assume that:
(i) Oessa(A)N{z € C:|z| > 1} #0;

(ii) there exist such a continuous function ¢ : R, — R and operator sequnce K,, € K(E),n >0
that ©(0) =0 and |F,z|| < o(||K,x||) for all (n,z) € N x E.
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Then the trivial solution of (1) is instable.

Applying the above results, we can reasonably simply generelize Theorem 3.1.

Theorem 3.10 Let us assume that:
(i) r(A) > 1;

(ii) there exists a sequence of compact opoerators {K,,n € N} C K(E), and g := sup ||K,| <
n>0

00;
(iii) [|[Fpzl| < [|[Kpz|| for all (n,z) e Nx &.
Then for sufficiently small qq the trivial solution of (1) is instable.

Proof. If o(A)N{z € C: |z| =r} =0 for some r € [1,7(A)) the proof of theorem follows from
Theorem 3.1. If o(A)N{z € C: |z] > 1} # 0 then by (33) 0essa(A)N{z € C:|z] > 1} #0
and one can apply Theorem 3.4. The proof is completed.

References

[1]  V.Yu. SLYUSARCHUK and Ye.F. TSARKOV (J.Carkovs), Difference equations in Banach
space, Latv. Math. Yearbook, 17 (1976), pp. 214-229.(Rus.)

[2] V.Yu. SLYUSARCHUK, On instability by the first approzimation, Math. Notes, 23(1978).
Nr. 5, pp.721-723.

B8] V.Yu. SLYUSARCHUK, On stability theory by the first approximation, Dopovidi AN
Ukraine, Ser. A, 9(1981), pp. 27-30.

[4] V.Yu. SLYUSARCHUK, New theorems on instability of difference systems by the first
apptoximation, Differential Eqations, 19(1983), Nr. 5, pp. 906-908.

[5] V.Yu. SLYUSARCHUK, On instability by the first approzimation, Differential Eqations,
22(1986), Nr. 4, pp. 722-723.

6] V.Yu. SLYUSARCHUK, Essentially instable solutions of difference equations, Ukr. Math.
Journ. 51(1999), Nr. 12, pp. 1659-1672.

(7] V.Yu. SLYUSARCHUK, Instsbility of Solutions of Evolution Equations, National Univer-
sity of Water Management and Nature Resources Use, Rivne, Ukraine, 2004. — 416 p.
(Ukr.)

[8] V.Yu. SLYUSARCHUK, Equations with Essentially Instable Solutions, National University
of Water Management and Nature Resources Use, Rivne, Ukraine, 2005. — 217 p. (Ukr.)

9] V.Yu. SLYUSARCHUK, New theorem on instability of difference equations in linear ap-
proximation, Scientific bulletin of Chelm, Section of mathematics and computer science,
No. 1, 2007, pp. 145-147.

[10] P.Halmos, A Hilbert Space Problem Book Springer Verlag, NY, 1982 — 387 p.

[11] Dan HENRY, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag,
Berlin-Heldelberg-New York, 1981.

[12] Tosio KATO, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-
Heldelberg-New York, 1995.

volume 5 (2012), number 2 51



Aplimat - Journal of Applied Mathematics

Current address

Jevgenijs Carkovs, professor

Probability and Statistics Chair, Riga Technical University,
Kalku iela 1, Riga, LV-1658, Latvia, tel. +371 26549111
e-mail: carkovs@latnet.lv

Vasyl Slyusarchuk, professor
National University of Water Management and Nature Resources Use,
Soborna Str., 11, 33000, Rivne.

52 volume 5 (2012), number 2



pli l
Journal of Applied Mathematics A mx

volume V (2012), number IT

GEOMETRICALLY NONLINEAR PLATES SUBJECTED
TO A MOVING MASS

ENSHAEIAN Alireza, (IR), ROFOOEI Fayaz R., (IR)

Abstract. The dynamic displacement of a geometrically nonlinear rectangular plate under a
moving concentrated mass is evaluated utilizing both perturbation techniques and numerical
methods. The governing differential equation of motion for an un-damped large deformable
rectangular plate is derived using Lagrange method. While the main differential equation is
obtained for a moving mass travelling on an arbitrary trajectory, the multiple scales method is
used to find the solution for a moving mass passing over the plate on a straight line parallel to
any of the plate’s edges. The inertial effect of the moving mass is considered by inclusion of all
out-of-plane translational acceleration components. A numerical example is used to evaluate the
dynamic response of the nonlinear plate obtained using perturbation method. The numerical
results obtained show good agreement with the closed form solution for the case of relatively
slow moving mass velocity, for the moving mass weight being less than 20% of the plate’s
weight.

Key Words: Moving Mass, Geometric Nonlinearity, Multiple Scales Method, Dynamic
Amplification Factor, Lagrange Method

Mathematics Subject Classification: Dynamic equations on time scales

1 Introduction

The dynamic behavior of the structures subjected to moving loads has been addressed by many
researchers over time. The problem is of central importance in the structural design of bridges as an
example, where the nature of loading influences the optimum design substantially. There exist
numerous investigations in this regard. The earlier studies were generally based on an integral
transformation approach, and the inertial effects of the moving mass were limited only to
considering a moving load (vertical component of the mass inertia) ([1, 2]). On the other hand, the
inertial effects of the moving mass cannot be ignored especially when the weight of the moving
mass is comparable to the weight of the supporting structure. Recent investigations have proved that
neglecting the convective acceleration components may lead to significant errors in determining the
dynamic response of the system([5].
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The moving mass problem has been mostly focused on beam models, while the effect of traveling
masses on plates has received less attention. Various researches performed on the influence of a
moving mass traversing a Kirchhoff plate, have recognized the importance of load inertia [4, 6]. A
comprehensive investigation on the dynamic response of plates subjected to moving masses has
been performed by Fryba [3]. Surprisingly, not much attention has been paid to study the effect of
geometric nonlinearities on the dynamic response of plates under a moving mass with the inclusion
of all vertical and convective acceleration components.

In the present work, the geometrical nonlinearities of a simply supported plate under a moving mass
are included in the form of dynamic analog of von Karman equations. In this regard, the membrane
and bending energies of a Hookean linear plate is evaluated using a vibrational mode shape of a
simply supported rectangular plate. Also, the potential energy associated with the moving mass is
obtained by considering all inertial components. Having calculated the potential energy terms of the
coupled mass-plate system and also the kinetic energy of the excited plate, the governing
differential equation of motion is derived through application of the well-known Lagrange method.
Observing the significance of the moving mass inertial effects, all out-of-plane translational
acceleration components are considered in the formulation of the problem.

The resulting governing ordinary differential equation describes the vibration of Duffing’s oscillator
with cubic nonlinearity and time varying coefficients. Since derivation of this equation incorporates
all inertial component, apart from time-varying mass coefficient, damping term and time-varying
stiffness coefficient are also present. The solution to the complete form of the derived differential
equation is obtained employing multiple scales method. Besides, the resulting non-linear ODE is
numerically solved using the MATLAB program, to investigate the accuracy of the developed
closed-form solution to the problem. Since the perturbation solution provides an insight into the
dynamic behavior of the system, it is of more scientific value in comparison to the numerical
solution. It is shown that the geometric nonlinearity is well captured by the provided solution,
especially for low-velocity, low weight moving masses.

2 Problem formulation

As it was mentioned before, the dynamic behavior of a plate is considered using the von Karman
plate theory. The discrete governing equations are derived by application of Hamilton’s principle. A
uniform un-damped rectangular plate of length a and width b, shown in Fig. 1, with arbitrary
boundary condition is considered.

y
F
F 3
- O
b M
v
¥ > X

F 3
w

i

Fig.1. Moving mass traversing the plate on a arbitrary trajectory
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Eh®
12(1-v2)
in which E, h and v are plate’s modulus of elasticity, thickness and Poisson’s ratio, respectively.
Also, u(x,y,t), v(x,y,t) and w(x, y,t) denote the deflection of the mid-plane of the plate at any
point and at any time t, in directions parallel to x, y and z axes. The kinetic energy of the plate is
equal to:

The mass density of the plate is assumed to be p, with its bending stiffness defined as D =

1 .
Kpiate = EIA phw? dA (D

On the other hand, assuming Green-Lagrange strains, the strain energy of plate becomes equal to

[8]:

62 62 62 2

Upiate = 21 {0Pw)? + 2e? 20— ) [Be, + 2220 (Z2) g

where,

2 2
e; = du/ox +%(Z—Z) +6v/0y+§(2—‘;/) 3)
and,

= (ou/a +l("”—W)2 v/ +1("’—W)2 —2(ou/ay +0v/0 +"’—W"”—W)2 4
€2 = usox 2 \0x vyzay 4 usoy v/ox dx dy ()

Using the Dirac-delta function, the external excitation force due to a moving mass, M, traveling on
an arbitrary trajectory on the plate surface can be described as,

f@y,0) = M (g —220) 5(x - x0())5(y — o (1)) 5)

where g is the acceleration of gravity. The vertical displacement of the moving mass is shown by
wo (t), while x(t) and y,(t) describe its trajectory on the plate. Considering all the out-of-plane
translational acceleration components, and observing the full contact condition between the moving
mass and the plate, Eq. (5) can be expanded as:

d?w(t)

flx,y,t) =M (g -— 8(x —x0(£))8(y — yo()) = M {g - [ZZT‘Z” +
02w

. . 02w . . 02w . 92w . 02w . ow
x5 (t) ez T y§(t) 7 + 2% ()Y, (t) 9%y + %o (t) Py Yo(t) 2yt + X0 (t) P

Vo(t) ol }5(9‘ - xo(t))S(y - YO(t)) (6)

0¥ dx=x0(£),y=y0(t)

)x=x0 (®),y=yo(t)

Therefore the virtual work done by external force becomes:
szAf(x'y’t)WdA (7)

where f(x,y,t)is evaluated using Eq. (6). The unknown parameters of the plate are u(x,y,t),
v(x,y,t) and w(x, y, t) that can be discretized using appropriate spatial functions as the following:

ulx,y,t) =r®n(x,y) ,v(xyt) =s@®Opy) ,wkxyt) =q)¢(x,y) (8)

Where the selected spatial functions n(x,y), ¥(x,y) and ¢(x,y) should satisfy the required
boundary conditions. The function associated with the vertical displacement ¢ (x,y) is selected as
the linear mode shape of the plate in the vertical direction. Using Eq. (8) and applying Lagrange
method leads to,
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a(Kplate_Uplate) _a (aKplate) - _ w (9)
or dt or ar

a(Kplate_Uplate) _ i(aK}ﬂate) — _aw (10)
ds dt ds as

a(Kplate_Uplate) _ i (aKplafe) — OW (l l)
aq dt\ aq oq

Performing the mathematical manipulations, equations (9) and (10) can be used to calculate the
parameters r(t) and s(t) as functions of q(t). Therefore, both potential and kinetic energy of the
system in Eq. (11) are expressed as functions of q(t) only. Thus, Eq. (11) reduces to an ordinary
differential equation with cubic nonlinearity as the following:

(! phev2da + M (xo(£), 70 () (o (£), %o(1))| 4(6) +
M (x6(8), ¥o(0)) [0 () bx (20 (8, Yo () + Fo ()b, (0 (1), ¥ ()] (1) + {wo? (J' php?dA) +
M (x0(£), o (£))[%0° () x (%0 (£, 70 (£)) + 30 () (20.(£), yo (1)) +
%0 (), (X0 (8), Y0(1)) + Fo(O) by (%0 (£), Y0 (8)) + 256 ()0 (E) b 2y (6 (1), Yo ()]} (1) +
2rq(6)* = Mg (xo(6), yo(£)) (12)

Selecting ¢(x,y) as the natural mode shape of the linear system, w, denotes the related natural
frequency of the plate. Assuming a simply supported plate, the general mode shape is, ¢p(x,y) =

X o, . . . .
sm( " )sm( by) where m and n are positive integers. The associative natural frequency is as

the following: ,
2 _pr(m  n»
wo? =D (% +15) (13)

Parameter I in Eq. (12) is a constant that depends on the geometric shape of the plate, Poisson’s
ratio and the vertical spatial function parameters respectively. This parameter originates from the
nonlinear strain terms in equations (3) and (4) leading to a nonlinear equation of motion. Eq. (12)
includes all the vertical and convective acceleration components.

2.1  Equation Solution

Consider a simply supported plate with the general mode shape, ¢(x,y) = sm( )sm (n%) A

moving mass is traversing the plate with constant velocity ¢ on a path parallel to x axis that is
coincided on one of the plate’s edge. In that case, Eq. (12) becomes:

Ephab + M sin?(mot) sin? (m)] G(e) +
M sin(mwt) sin? ( byo) cos(mwt) x,(t) ( ) q(t) +

{D mtab (7:_22 + Z—i)z — M sin?(mwt) sin® (myo) x5 (t) (?)2} q(t) + ger(t)g =

4 b
Mg sin(mwt) sin (m:,yo) (14)
where,
mnxo(t) _ mmct _ mot w = e (15)
a T a ! T a
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Introducing the perturbation parameter as,
M

€= hab (16)

and substituting in Eq. (14) leads to:

[1 + 4€ sin®(mwt) sin? (?)] G(t) + 4e sin(mwt) sin? (%) cos(mwt) ¢ (%) q(t) +

2
{a)oz — 4e sin?(mwt) sin? (?) c? (?) }q(t) + % € q(t)? = 4 eg sin(mowt) sin (mzyo) (17)

Introducing the following non- dimensional parameters:

®) ) — 2Dra?
T=tw,X0(‘L')=x0a ,Y0=%,Q(T)=?, o=%.9= ng ;G=9n—iz (18)
Equation (17) can be re-written in a non- dimensional form as the following:

[1 + 4€ sin?(m7) sin?(nnYy)]0 (1) + 4 me sin(m1) sin?(nnY,) cos(mt) Q(7) + {@,* —
4 m2e sin?(mr) sin?(nn¥y)}Q (7) + e Q(7)% = 4 €G sin(mr) sin(nrY,) (19)

Equation (19) now is in the right from for application of perturbation techniques such as multiple
scales method. Defining:

To=t , Ty=e€t (20)
and:
B B
Do=75+ " Di=75p (21
The unknown function Q(t) can be assumed as:
Q1) = Qo(To, Ty) + €Q1(To, T1) (22)

Substituting equations (20) to (22) in Eq. (19) and separating different orders of €, the following
two linear ordinary differential equations are obtained:

for zero order of €: Dy*Qq + @y*Qp =0 (23)
and :

for 1st order of e:
Dy*Qy + @y°Qy =
—2DyD;Q, — 4 sin?(m7) sin?(nm¥,) Dy?Q, — 4 m sin(mt) sin?(nm¥,) cos(mt) DyQ, +
4m? sin?(mt) sin?(nn¥,) Qy, — QQ,° + 4G sin(mt) sin(nn¥,) (24)

The solution to Eq. (23) is as follows:
Qo = A(Te'®To + ¢ (25)

Where the cc denote the complex conjugate of the other present terms on the right hand side. To
avoid secular terms in solution of Q,, the coefficients on the right side of Eq. (24) should be set to
Zero:

2 sin?(nnYy) (@o% + m2)A — 3 Q A%A — 266—21'50 =0 (26)

Thus from equation (24), Q, is calculated as:
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: @ +m?+m &) Ty+2imT, | (@Bo’+m2-m o) iz 1o —2imT, 3 (e31@oTo
= Asin?(nnY, [(— twoTo 0 40 T TR0 iweTo ol + 04 —
Q1 ( 0) (@g+2m)? 2 (Bo—2m)2—&g> 8>

emlo 4 cc (27)

240 sin(nmYy)G

@ol-m2

Assuming A = - a(Tl)eiﬁ (T1) and using Eq. (26) to evaluate A(T;), one gets:
_ _ _ 30 2 — .2 m 2
a=ay, ,L=nTi+p,= 55, %0 ~ @osin (nYy) (1 + (6—0) T, + Lo (28)

Where a, and B, can be obtained using initial conditions. Having calculated A(T;) from Eq. (28),
Q(7) is found to be:

((7)02+m2+m (T)o)
(@g +2m)2 @02

Q(t) =Qy+€Q; =apcos(wet+net+ Py +¢€ [sin2 (nmYy) cos(Wot+net+

w
0—2m)2—mg>

€T+ 38) t— sm(nnYO) sm(mr)] (29)

2mt + fB,) + sin? (nnYO) cos(wWoT+n et —2mt+ By) + > Qo 3cos(BwyT + 37

In Eq. (29), the constants a, and B, can be calculated using the initial conditions of the problem.
Eq. (29) is valid as long as the moving mass has not left the plate. After the mass traverses the plate
completely, the plate vibrates in its free vibration phase described by ([8]),

Q(1) = eacos(@'t + By) + 0(€3) (30)
where:
W' = o, [1 + 3;6 (ea) ] + 0(e?) 31)

The parameters ea and [, are calculated using the initial conditions for the free oscillation phase.
Equations (29) and (31) present the closed form solution of the moving mass problem described
earlier. The ODE solver of the MATLAB program which is based on the Runge-Kutta method, is
utilized to numerically verify the accuracy of the presented closed-form solutions.

3 Nnumerical Example

A simply supported square plate shown in Fig. 2, with a modulus of elasticity, E = 7.1 x 101°Pq,
mass density: p = 2700 kg/m3 , length: 2 m, thickness: 1 cm, and the Poisson’s ratio: v = 0.33, is
considered. A straight trajectory is assumed for the moving mass, passing through the center line of
the plate as shown in Fig.2. The problem is solved for three moving mass velocities as well as three
mass weights. Representing the weight of the moving mass as a fraction of the plate’s weight, the
mass ratios equal to 0.05, 0.1 and 0.2 are considered in this example.

¥y

F 3

¥ * X

<4 I
* oL Ll

Fig.2. Path of the moving mass
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The spatial function ¢(x,y) is assumed to be the simply supported plate’s first modal shape
function. The first mode shape and the related natural period of the plate are:

¢(x,y) = sin (%x) sin (%y) (32)
T, =

ph (33)

As it was mentioned earlier, it is assumed that the plate is demonstrating a geometrically nonlinear
behaviour under the applied loading. The moving mass M is assumed to travel along a linear path
over the plate. Under the moving mass excitation, the dynamic response of the plate is made up of a
forced vibration part followed by a free vibration, once the moving mass leaves the plate’s
boundaries. The linear path is defined by the following equation (Fig.2):

Yolt) =2 ,xo(t) = ct (34)

In which c is the velocity of the moving mass. Fig.3 shows the dynamic amplification factor (DAF)
of the center point of a 2Zm x 2m rectangular plate, when the weight of the moving mass is
considered to be 0.05, 0.1 and 0.2 of the plate’s weight. The velocity of the mass in this figure is

2a
0.1v' where v’ = e
1

ViV =w/wy,=0.1 & s = M/p abh=0.05

— —Multiple Scales Result
—— Numeric Result

[u] 1 2 3 4 a
t/T;
ViV =w/wy=0.1 & s = M/p abh=0.1

— —Multiple Scales Result
—— Numeric Result

— —Multiple Scales Result
——Numeric Result

Dynamic Amplification Factor

Fig.3. Plate’s center time history response for v =0.1v" and € = 0.05,0.1 and 0.2
The result for the case with the mass velocity equal to 0.3v' is presented in Fig. 4. Similarly, Fig. 5
shows the output for the mass velocity equal to 0.5v".
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VIV =wl/w,=0.3 & £ = M/p abh=0.05

1 — —Multiple Scales Result
—— Numeric Result

t/T,
vV =w/w,=0.3 & £= M/p abh=0.1

1 — —Multiple Scales Result
—— Numeric Result

05 I | | L | | \ \ \ |
0 1 2 3 4 5 & 7 e E 10

tT,
viv' =w/w,=0.3 & £ = M/p abh=0.2

— —Multiple Scales Result
—— Numeric Result

Dynamic Amplification Factor

Fig.4. Plate’s center time history response for » =0.3v" and € = 0.05,0.1 and 0.2

vV =/ w,=0.5 & £ = M/p abh=0.05 — —Multiple Scales Result
r —— Numeric Result

ViV =wl/w,=0.5 & £ = M/p abh=0.1 — —Multiple Scales Result
r ——Numeric Result

5
tT;

vV =w/wy=0.5 & £ = M/p abh=0.2 — —Multiple Scales Result
r —— Numeric Result

Dynamic Amplification Factor

Fig.5. Plate’s center time history response for v =0.5v" and € = 0.05,0.1 and 0.2

The dynamic amplification factor (DAF) is defined as the ratio of the absolute maximum dynamic
deflection of the plate to its maximum static response at the center point. The static deflection of the

center point of a square plate under a concentrated mass M, applied at the same point is equal to
_0.0116Mga?

Astatic -~  p [7]

As it can be observed, the accuracy of the solution obtained using perturbation technique is highly
dependent on the mass weight and the velocity of the moving mass. Deviation of the analytical
results from their numerical counterpart grows as the mass and velocity ratios increase. Since the
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mass ratio is considered as the perturbation parameter, this phenomenon makes sense for this case,
while the velocity ratio effect originates from the time-varying nature of Eq. (17). As the velocity
of the mass increases, the characteristic parameters (natural frequencies) of the governing equation
change more rapidly. Therefore the slowly-varying time scales incorporated in the multiple scales
method fail to capture this rapid change which leads to considerable errors in their related results.

4 Conclusion

The dynamic response of a geometrically nonlinear rectangular plate under a moving concentrated
mass is evaluated utilizing both perturbation techniques and numerical methods. Governing
differential equation of motion for von Karman plates subjected to a moving mass was developed
based on Lagrange method. This equation was solved for the case of recti-linear mass trajectory.
The effects of weight and velocity of the mass on the dynamic response of the system have been
investigated. The solutions gained using multiple scales method show good agreement with their
pertinent numeric results for cases in which the mass ratios are less than 0.2 and their velocities be a
small fraction of the specific value v'. As the mass velocity and its weight increases, the obtained
results start to deviate from the numerical results. For appropriate ranges of mass and velocity
ratios, the closed form solution resulted from the application of multiple scale method, captures the
real response of the geometrically nonlinear plate quite well.
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THE STUDY OF A NONLINEAR SYSTEM
IN THE CASE WITH TWO OSCILLATING MASS
LAST LINE

FLOREA Olivia, (RO)

Abstract. The dynamical system referred in this paper is part of the category of the
dynamical systems with geometrical or mechanical variables parameters. Such oscillating
parametrical systems are encountered in the case of the pendulum with variable length
wire, of the variation of the length or the width of the shaft rotation, of the modification
of the rigidity and amortization coefficients. These systems have an important utility in
practice in the case of elevators or cranes, in the case of the transporters based on the
vibrations. These systems are controlled from the stability, bifurcations and resonances
point of view, such type of control leading to the avoidance of the catastrophes.

We consider a fixed system of axis and a mass M which performs some oscillations on an
inclined plane; on this mass is suspended a pendulum of mass m and length 1(t) and the
wire is passing over a pulley.

The mathematical model leads to a system with two freedom degrees; the two masses
are connected non stationary, hence obtaining some non linear equations with variables
coefficients. In our model we have: the displacement of M on the inclined plane is r,
the oscillating angle of the pendulum is 6, the angle of the inclined plane made with
the horizontal axis is « and the wire length of the pendulum which varies linearly or
harmonically is 1(t). The solutions for the Cauchy problem are obtained through the
method of the small parameters or the method of successive approximations, but more
important is the study of the stability, of the bifurcations and the resonance. Some
of equations are of the Hill or Mathieu type. The Ince - Strutt stability chart or the
analytical and numerical simulations with averages in the phase’s plane are used.

Key words and phrases. nonlinear dynamical systems, stability, Ince Strutt diagrams.
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1 The study of a nonlinear dynamic system of two nonstationary bound bodies
with permanent oscillations

Given a dynamic system which consists in a M mass oscillator operated by an elastic resort POA
on an incline plane ( POA = ro+r , Pand O fixed, where PO = ry is the static position) and a
mass m pendulum suspended in A trough the AB=I[ (A(M), B(m)) wire. The wire is operated
by affixed pulley N and passes trough NAB; the pulley mobility can give various variations of
the wire length AB=I(t) (linear I(t) = lp & vt or harmonic [(t) = I(t) cos xt ). Given the zQOy
axes in the vertical plane (with Oz vertical and Oy horizontal) whre the forces act; the elastic
F, = —k(7 +7) force and the gravity force G = Mg = M gi act over M : and the gravity force
mgi acts on m; with k the elastic constant. The coordinates of A, B are A(z1,11), B(x2,y2)

&

17

x1 =rsina,y; =rcosa,rs =x1 +lcost,ys =y, + lsind (1)

Where « is the angle of the inclined plane POA with the horizontal and € is the angle
between the AB wire and the vertical.

The kinetic energy of the system is: 7' = 4 (% + y7) + 2 (#3 + 93) and the potential energy
a U for the ¢ = r, go = 0 degrees of freedom will be

_(M+m)7'"2 m (1942 - 10) m (i
T = 5 + 5 (l 0 +2rl€cos(9+oz)) + 5 (l +2rlsm(€+a)) (2)
2
U= %—l—mgl(l—cos@)

If I=ct the system becomes stationay S and if [=I(t) the system becomes nonstationary N;
for a = 0, 7 the oscillator is horizontal or vertical.
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The Lagrange equations % (c%) - g—qu =0,k = 1,2 with L=T-U become in the described

two situations:
LA (M + m)r + mlf cos(6 + oz): +kr=0, l=ct

(5) (3)

U

i mil?0 + mlr cos(6 + a)} + mglsingd =0

(M 4 m)7 + mif cos(6 + o) + misin(f + oz)_ +kr=0, =1t N (@)
mi?0 + mli cos(0 + o) | + mlr@sin(f + o) — mil cos(d + o) + mglsind = 0

Sl &=

In the paper we’ll study the two situations (3), (4) only in the case of the vertical oscillator

MWithOz:%.

2 The vertical stationary case (SV) r = 2,a = § horizontal armed crane, the A(x)
extremity oscillates vertically

The system (3) becomes:

(M +m)i — mlf sin @ — mlf? cos 0 = —kx
ml?0 — milsin @ = —mgl sin 6

We’ll make the notations:

X7+ X = p[0?cosb+ 0" sind) )
07 — X7 sinf = —dsind

We normalize the system:

X7 (1= psin®0) + X = pd? cosf — dpsin® g (8)
0’ (1 — psin? 6) = —sinf + pf?sinf cos — X sin 0

The stability study is made around the equilibrium solutions § = 0, X = & cos(7 —79) where,
for t=0, 7 = 79, Xo = 9 = £,49 = 0 . The system (8) liniarized around equilibrium points has
the characteristic polynomial Py = (r? 4+ 1)(r? + §) with pure imaginary roots. In this case the
equilibrium point for the linearized system is simple stabile (center) but we can’t appreciate
the nonlinear system stability (8). For this situation we’ll appeal the direct study of the system
(8), that will lead us to an equation of Mathieu type.

So, with the substitution ¢ = 6 and Z = X — ecos(t — 79) and the development sin ¢ =

o— %3 +. .., in the first approximation sin ¢ ~ ¢ we obtain from (8) the fundamental equations:
d*¢ . )
-z + (§ + e cosT) ¢ = 0 Mathieu equation (9)

volume 5 (2012), number 2 65



Aplimat - Journal of Applied Mathematics

The problem od stability for the solution § = 0,2 = % coswt leads to the study of the
equation (9) of Mathieu type, for witch stability studies are made trough the Ince-Strutt 6 =
d(e) diagonals.

In the equation (9) the perturbation function is cos7 with a period of 27 ; it can be seen
that a solution is ¢ = cos7 and ¢(—7) = —¢(7), ¢(—7), —@(7) must be solutions; in this case
we’ll seek for both even and odd solutions:

a = - .
¢:§0+;akcosk7r, gb:;bksmlm (10)

o0 o0
WiththeperiodT:47r;¢:“7°+kzlakcos%”, gbzkzlbksin%”.
By introducing these solutions into the equation and transforming the products in sums we

have trigonometric identifications that lead to the system homogeneous in a; which imply that
the system determinant is null.

These determinants in the (6O¢) plane lead to the e = £(J) graphics. Considering in the
Fourier solutions the n = 1,2, 3, ... rank terms, we have:

0 € 0 0 0 Ay =6(0 —

5 0-—1 5 0 0 A3 =0,.
A=1] 0 5 0—4 5 0 0 ,Anz[

0 0 -5 § —n? 5 .0 d=1—1

For € > 0 above the graphics € = £(d) we have instability and between ¢ and the graphics
we have stability. The instability is called parametrical resonance, when ¢ grows above the
diagonals. In the inferior half-plane ¢ < 0 we have symmetry. So, by taking 6 = ;% = ]1—2, k=
1,2,3,... and wy; = 2\/?, Wy = ﬂ, Ce, W = %\/? . We have parametric resonance around
these frequencies w,, . Therefore, the pendulum around € = 0 can be perturbated in the vertical
plane; the usual pendulum resonance is in the vicinity of w = \/? and in composition with

the oscillator, parametrical resonances appear in the vicinity of w, . For ¢ with small values,
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e = %, we have instability for A, with i —5<dandd < i + 5 (initil positions choosen on

the vertical), if:

Tog> = ——0rTy>— — = (12)
w w
If besides the oscillator, an damper is mount, the equation becomes:

& +2h¢ + (d+ecosT)p=0,h >0 (13)

In this case the asymptotic stability from Z is transmitted also in the nonlinear case for X.
With the transformation ¢ = e~"7¢ the equation:

2+ (0 —h?+ecosT)p =0 (14)

is obtained, which is of Mathieu type, if we take §; = § — h? . For 4, e, h given, the stability
in v is obtained, meaning asymptotic stability related to ¢ .

3 The nonstationary vertical case (NV) [ =[(t),r = z,a =

ME]

In this situation, the equations (4) become, considering ¢ small with sinf ~ 0,cosf =~ 1 and
the linear bound {; = Iy £ vt .

. 2, , d> (lL(t)§? k .
x2+w x udtgu< 5 ) L 2(0) = a,#(0) = b, w? = ,0(0) =¢,0(0)=d  (15)
L (1(1)0) + % (1,6) = 0 me

m
m-+M

Following the small parameter u = we look for solutions of the following type:

x(t) = xo(t) + pay(t) + . ..

Identifying based on the powers of u we obtain the following equations after I; = [y + vt
where the sign +v is the raise to power of M and —v is the lowering of M.

(16)

b
Fo + w?ry = 0,20(0) = a,#(0) = b = 1y = acoswt + — sin wt (17)
w

d> - .
@ (ZIQO) + gT (1100) == 0, 00(0) =C, Qo(()) =d

Considering the solution (17) we obtain for , from (18) the Cauchy problem. We look for
the solution of this problem shaped as a series of powers with Picard successive approximations

WhereOgtgl;O:X.

d 2

bolt) = e+ dp + | -2 - W)l
X 2xv

The solution y(t) is unique in the simple regularity conditions from here. We study the

implications of these solutions (17), (19) on the stability. We note with E(?) the coefficient from

. (18)
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the (18) equation; for a periodic solution E>0 and stable; we retrieve the boundaries specifying
the period, frequency and the movement.

2 2 o
o) = SR ) g << B oy (19)
2

For the case of M with the speed (4v) , the length [; shortens from Iy to I(ly > I}) with
time T = % , with Ein < B < Enax , we have for E>0, g > wva?w? + b? the solution 6,
becomes oscillated (harmonic) being able to pass trough the zero position multiple times, until

an oscillation of m is done in a period T' = %” :
. , g—wvatw?+0b* g+ wvatw? + b?
m* =min K = M* =max F = :

t€[0,7] L ’ t€[0,7] lo
During the wire shortening the length [ shortens from Iy to l; in T' = (ly — [1) /v time, the

solution 6y(t) is oscillated and the difference between two stagnations is p, \/XT <p< \/:n— :

In order for the solution 6y(t) to pass trough zero at lest k times it a must that T < \/ZT> >k
meaning
lo—1)* (g — w) Va2w? + b2

lom2v2k2 -

4 Conclusions

1. During the pendulum wire’s shortening I(t), there is the solution that for an oscillation
of M (the oscillator) in a period 7', the m pendulum can make k oscillations.

2. At a lengthening of the wire [(t), there is a possibility that for each oscillation of the m
pendulum the oscillator M can perform n vertical oscillations.

3. For short periods in which £ < 0 auto-oscillation phenomenon may appear.
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APPLICATION OF HOMOTOPY PERTURBATION METHOD
TO SOLVING SINGULAR INITIAL VALUE PROBLEMS

HALFAROVA Hana, (CZ), KUKHARENKO Alexandra, (UA),
SMARDA Zdenék, (CZ)

Abstract. In this paper we present the homotopy perturbation method. We apply the
method to solve a class of singular initial value problems for the second-order and the third-
order ordinary differential equations. The homotopy perturbation method yields solutions
in convergent series forms with easily computable terms, and in presented examples, this
method gives exact solutions.

Key words and phrases. Singular intial value problem, homotopy perturbation method.
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1 Introduction

The homotopy perturbation method (HPM) was proposed for solving linear and nonlinear di-
fferential equations, integral and integro-differential equations first by He [9-11]. The homotopy
perturbation method [7-11, 13| is a combination of the classical perturbation technique and
homotopy concept as used in topology.

Several techniques including decomposition, spline, finite difference, multi-integral, modified
variational iteration and variational iteration have been applied for solving singular equations
which arise in several physical phenomena in mathematical physics, astrophysics, theory of
stellar structure, thermal behavior of a spherical cloud of gas, isothermal gas spheres and
theory of thermionic currents (see [1-5, 12-18]).

In the paper we apply the He’s homotopy perturbation method to solving singular initial
value problems for the second-order and the third-order ordinary differential equations. Using
this method and its modification we obtain exact solutions for certain classes of singular initial
value problems.
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2 Homotopy perturbation method

To illustrate the basic ideas of this method we consider the following equation
A(u) = f(r) =0, reQ (1)

with the boundary conditions

B(u,0u/on) =0, rel (2)

where A is a general differential operator, B a boundary operator, f(r) a known analytical
function and I' is the boundary domain 2.

The operator A can be generally divided into two parts of L and N, where L is the linear
part, while N is the nonlinear part. Equation (1) can be rewritten as

L(u) + N(u) — f(r) = 0. (3)
By the homotopy technique, we construct a homotopy as

v(r,p): Q2 x[0,1] = R
which satisfies

H(v,p) = (1= p)[L(v) — L(uo)] + plA(v) = f(r)] =0, reQ (4)
H(v,p) = L(v) — L(uo) + pL(uo) + p[N(v) — f(r)] = 0 (5)

where p € [0,1] is an embedding parameter and ug is an initial approximation of (1) which
satisfies the boundary conditions. From here we obtain

H(v,0) = L(v) — L(ug) = 0, (6)

H(v,1) = A(v) — f(r) =0. (7)

Changing the variation of p from 0 to 1 is the same as changing H (v, p) from L(v) — L(uyg) to
A(u) — f(r). In topology, this is called deformation, L(v) — L(ug) and A(v) — f(r) are called
homotopic. According to HPM, we can use the embedding parameter p as a small parameter
and assume that a solution of (4) and (5) can be written as a power series

v = vy + pu1 + PPy + ... (8)

The approximate solution of (1) can be obtained as

u=limv=uvy+vy+... (9)

p—)l

The convergence of series (9) has been prooved by He[11].
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3 HPM for Lane-Emden type equations

Consider the Lane-Emden type initial value problem

2
y" + Ey’ + F(u)=m, y(0)=A, y(0)=B, (10)
where A, B are constants. We define the homotopy as
2
y'+ Y +pF(u) =0, (11)
where p € [0,1] is the embedding parameter. Let
Yy =yo+ oy + 0y + 07y A (12)
be the solution of (10). Substituting (12) in (11) we get
< 2 Sl <
(i - 7 / (P —
D_rl (szw) +pF (Zp y) 0. (13)
1=0 =0 1=0
Equating the coefficients of terms of like powers of p in (13) gives
2
P Y+ =0, 1o(0) = A, 5(0) = B.
2
ooyt E?Ji + F(yo) =0, %(0) =4;(0) = 0.
2 d
PPy S+ —F(yo) = 0, 42(0) = 55(0) =0,
z dyo
P 2 Pl + St Fl) = 0, 4s(0) = 45(0) = 0
: 3 - 3 2dy0 0 9 1 dyg 0 > 3 3 )
Example 1. Consider the following singular initial value problem
2
Y+ 2y 426+ ) =0, y(0) =y/(0) = 0.
From (13) we have
0 " 2 / /
P Yt ;yo =0, v(0) =0, yo(0) = 0.
2
Pl gl oy A2 4 ) = 0, 51(0) = y(0) = 0.
2 1
P v (267 4 5e) = 0, 42(0) = 55(0) =0,
2 1 1
PPt Ul g (2 4 e?l) 4 27 (2¢7 + 2e%) = 0, y5(0) = 13(0) = 0,
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Corresponding solutions have the form

2
@) = 0, () = —20%, (o) =2, gola) = —5a%, ..

From here we obtain
2 i 2 2
y(x) = 22"+ — 3% +... = —2In(1+2%).

Example 2. Now we consider singular initial value problem for the differential equation of the
third order

1
y" =y — Ey =0, y(0)=0,y'(0)=1, " (0)=2. (14)

Put y1(z) = y(x), ya(z) = 9", ys(x) = y”(x) then equation (14) is equivalent to the system

Y = Yo
Yo = U, (15)
, 1
Y5 = —n+ys3
xXr

According to HPM we have
v = Zpivm vy = Zpivzm vz = Zpiv&- (16)
i=0 i=0 i=0
and
yi(z) =limv(x), wyo(z) =limuvy(z), ys3(x) = limuvs(z). (17)
p—1 p—1 p—1

We can construct a homotopy of system (15) in the form

(1 =p)(v) —v2 = uyg) +p(vy — v2)

(1= p) (v — vy — o) + (0 — v3)
1
(1 = p)(vh — tho) + PLv§ = w1 — 5) = 0

=0
=0 (18)

Substituting initial conditions and (16) into (18) and rearranging based on powers of p-terms,
we get

(V19 — v20) + P(v1; = va1)p*(v}y — va2) + p*(viy — va3) +... =0,
(vho — v30) + p(vhy — v31)p° (Vhy — v32) + p*(Vh3 — v33) + ... =0,
1 1
Uéo —i—p(vél — V3o — ;UIO) +p2(v§,2 — V31 — ;UH) +p3(vé3 — V3o — ;Ulz) 4+ ... = 0
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Solving the system differential equations at powers of p*, i = 0,1,2,..., we obtain
vio(r) = x4+ 2%
(@) = 52+ 50
vu(z) = a7+ o,
1,1 1 6
via(n) = g’ + o+ e
1 11 0 13 - 1 s
us(®) = 5%+ 5550 * Toos00” 967680

1
'U21(.I‘) = §$2+6$3,
1 1 1
UQQ([L') = 51’3—‘—121’4‘1'@1‘5,
1 11 13 1
Ugg(l’) = —1'4—'—— + ——2 6+ 4

8" Tug0” T 14400" T 120960"

v3o(z) = 2,

vs1(z) = 3x+ %mQ,

vga(z) = ;:c + zl)):c + 9—161'4

vz(z) = 1$3 + ESE + 13 z° + Lo

2" T 96" Ta2400" T 172807

From (17) we obtain

1 1 1 1
y(z) = x4 2 +§x +§x +Ix —l—ax—k (19)

(0) = 1+ 20+ 20 + 28+ 2t 4 2y Loy
Volw) = 1o 20 a5 + ppat o+ S o gt

5. 1 1 23
=2430+20%+ a2+ a4+ — 4+ ——— 2+ .
ys(x) = 24 3w+ 207 4 a4 gat o+ gpat o+ et o+

Hence y(x) = y;(x) = ze® is the exact solution of equation (14).
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ON STABILITY INTERVALS OF EULER METHODS
FOR A DELAY DIFFERENTIAL EQUATION

HRABALOVA Jana, (CZ)

Abstract. The paper discusses the asymptotic stability regions of Euler discretizations
for a linear delay differential equation

y'(t) = ay(t — 7).

We compare our results with the asymptotic stability domain for the underlying delay
differential equation.

Key words and phrases. Delay differential equation, Euler methods, asymptotic sta-
bility.

Mathematics Subject Classification. Primary 39A12,65L20; Secondary 39A30.
1 Introduction

The aim of this paper is to investigate the asymptotic stability regions of Euler methods for
the test delay differential equation

y(t) = ay(t—1), aceR, t>0 (1)
y(t) = g(t), —7<t<0. (2)

We recall that equation (1) is called asymptotically stable if
lim y(t) =0

t—o0

for all continuous initial functions g(¢). It is well known that the asymptotic stability domain
S; of (1) is given by
ST:{aER:0>aT>—g}, (3)
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which yields the necessary and sufficient condition for the asymptotic stability of (1). The
aim of this paper is to formulate intervals of asymptotic stability for its Euler discretizations.
Moreover, we are going to discuss their mutual relations, as well as their relations with respect
to the asymptotic stability domain S, of (1).

The paper is organized as follows. Section 2 provides discretizations of the equation (1) for
both the forward and backward Euler method. In this part we also introduce the notion of
stability and recall the Levin-May result, which gives a criterion for the asymptotic stability of
a three-term difference equation. In Section 3, we discuss the asymptotic stability region of the
backward Euler method and its properties. The asymptotic stability intervals for the forward
Euler method are investigated in Section 4. The final section presents other discretizations of
the equation (1).

2 Preliminaries

We start with discretizations of the equation (1). Let h > 0 be a stepsize given by
h=—, kelZ*. (4)
k
This stepsize restriction is imposed to avoid an interpolation of a delayed term.
When we apply the backward Euler method with the stepsize h to the equation (1), we
obtain the difference equation
Tptl = Tp + ahl‘n-{—l—ka (5)

where x,, is the numerical solution at the grid points ¢, = nh, n € Z*.
The forward Euler method leads to the difference equation of the form
Tpil = Tp + ahx,_y. (6)
Both equations (5) and (6) are special three-term delay difference equations of the form
Tnil = Tp + ATy _pm, n=0,1,2,..., (7)
where v € R and m € Z7T are scalars. We recall that (7) is said to be asymptotically stable if

lim z, =0
n—oo
for any solution z,, of (7).
One of basic stability notions considered in numerical discretizations of delay differential
equations is the notion of 7(0)-stability (see [1]). We recall this notion for a general numerical
step-by-step method.

Definition 2.1 The 7(0)-stability region of a numerical step-by-step method for (1) is the set

ST(O) = ﬂ ST,ka

k>1

where, for given integers k and 7, S; is the set of the real numbers a such that the discrete

numerical solution {x,}n>0 of (1), with a constant step size h = 7, satisfies lim, o 2, = 0 for
all initial functions g(t).
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Definition 2.2 A numerical step-by-step method for (1) is 7(0)-stable if
S’T(O) 2 S7'~

The problem of 7(0)-stability for the equation (1) (involving also a non-delayed term by(t))
was discussed by Calvo-Grande [2] and Guglielmi [4], who showed that the backward Euler
method is 7(0)-stable, whereas the forward Euler method does not have this property. In this
paper, we aim to find explicit stability intervals for numerical discretizations (5), (6) including
their basic properties (for other recent qualitative investigations of delay differential equations
we refer, e.g. to [7]).

To analyze these properties, we utilize the following necessary and sufficient condition for
asymptotic stability of the difference equation (7), which is due to Levin-May (see [5]).

Theorem 2.1 Let o be a real constant and m be a positive integer. The difference equation
(7) is asymptotically stable if and only if

mm
2m+ 1

0>«a > —2cos

(8)

In the sequel, we use the criterion (8) in its equivalent form

0>a>—2si : 9
a sin 9)

We show that the inequalities (8) and (9) are actually equivalent, i.e. it holds
mm T

= sin .
2m +1 4dm + 2

COS (10)

Rewrite the equality (10) as

mi . T
arccos | cos = arccos | sin .
2m + 1 4dm + 2

m .
arccosxr = 5 — arcsinx

Using

we arrive at

. T T . . T T T mm mm
arccos | sin = ——arcsin | sin = —— = = arccos | cos )
dm + 2 2 dm + 2 2 4m+ 2 2m+1 2m+1

Comparing the relevant relations we can verify the equivalency of (8) and (9).

3 The backward Euler method

In this section, we will focus on the backward Euler method (5). To our purposes it is convenient
to consider the equation (5) in the form

aT
Tptl1l = T, + ?ﬁn—&-l—k- (11)
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Let S;x be the set of all real parameters a such that (11) is asymptotically stable. The direct
application of Theorem 2.1 to (11) yields

™

4k — 2

ST7k:{aER:0>aT>—2ksin

The following assertion describes some basic properties of S; .

Theorem 3.1 Let ki, ko be arbitrary positive integers such that ko > ki > 2. Then

Moreover,

Proof. We wish to show that

S‘r,kl D) Sr,kz DS,

lim Sr,k == Sq—.
k—oo

T T
—2k; si < —2kysin ——— 2<k <k
1sm4k1_2 281n4k2_2, S Ry 2
or equivalently,
T T
2k si > 2k sin ——— 2 <k <ks. 12
lsm4k1—2 251n4k2_2, <k 9 (12)
Consider the function -
= 2zl R. 13
f(z) zsin —y, T € (13)
The inequality (12) is satisfied when f(x) is decreasing on the interval (2, c0) . Since
f'(x) = 2sin T __Sm cos —
B 4 —2  (dv—2)2  dr—2’
it is enough to show that
2 sin — ST T <0 on (2,0) (14)
sin - cos on (2,00).
dr—2  (4x—2)2  4r -2 ’
Obviously,
T
0 2
COS4$—2> , x € (2,00),
hence (14) is equivalent to
; L dmx (15)
an .
der —2  (4x —2)?

Both the functions are continuous and decreasing on the interval (2, 00). Moreover, for x = 2

We consider the equality

. T - 27
an — < —.
6 9

T
dr —2 (4o —2)?

(16)

tan
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If we substitute -

T2
then z = £ + 1 and (16) becomes

2

2s s
tans = s+ —, SG(O,—>.
m 6

Let gi(s) =tans and go = s + % Both the functions are increasing on (O, %> and

7r T
01(0) = 0:(0) and g (T) <0 (F)
We show that g1(s) < g2(s) on (O, %> Doing this, we first investigate the derivatives
1 4s
/ /
- —14 2
91(s) o2 5’ 95(5) + -

Obviously,
510 =00, ot () < (5)

and both g{(s), g5(s) are increasing on (0, ¥ ). To discuss the inequality g{(s) < gj(s) on (0, %)
we consider the second derivatives

2sin s 4
gi(s) = gh(s) =~

cos3 s’

It holds
T

8 4

1(0)=0 and ”(—>:—>—.
91(0) 91 6 3/3 7
Since ¢/ (s) is continuous on (0, %), g{(s) and g5(s) intersects each other on (0, Z). Moreover,

2 cos? s + 6sin’ s cos? s

g/ (s) = > 0, s € (0, E> ,

cos® s 6

hence g{(s) is increasing on (0, ) and there exists a unique 3 € (0; %) such that g{(6) = g4 (5).
Since g7 (g) < %, we can specify that 3 € (%, %) Consequently,

9h(s) <gp(s).  se(0.5). ()

Discussions on g{(s), g5(s) show that there exists at most one root v € (5; %) of ¢;(s) = gh(s).

However,
/ ™ / ™
i (5) <% (5)

/ / E
g1(s) < gs(s), and s€ (0, 6>'

and combining with (17) we have

Consequently,

9(9) <gals). se(0:F).
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which yields that f(z) is decreasing on (2;00). It ensures the validity of (12), which implies

that Sr,kl D Sr,k2~
Further, we show that lim;_.., S-r = S;. We are interested in the limit

™

T
lim —2k si :
Jim, —2ksin 77

Using the L’Hospital rule we have
. —27 ™
sin —"— “oyz COS 7= —8mk? T
1i _9 . _ 4k—2 — 1 (4k—2) 4k—2 — 1 __nr
T g S T ST o oo Ak —2)7 P ak—2 "~ 2

and the required limit property is proved.

Corollary 3.2 The backward Euler method is T(0)-stable.

Remark 3.3 The stability regions for k =1 and k = 2 are identical.

Remark 3.4 Recall that the stepsize h is inversely proportional to k via the relation (4). Hence,
we can interpret Theorem 3.1 as a dependence of the stability regions on changing stepsize h.
Theorem 3.1 implies that stability intervals for the backward Euler discretization (5) enlarge
with increasing h. On the contrary, if h is approaching zero, the stability domain of (5) tends
to the stability domain of the corresponding delay differential equation. Note that the above

conclusions have been verified only experimentally in [6].

4 The forward Euler method

Now we analyze the asymptotic stability regions for the forward Euler method (6). Similarly

as in the previous section, we find useful to represent (6) in the form

aT

——Tp—k-

Tpt1 = Ty + L

By Levin-May result, the asymptotic stability region S, is

T
Srp = R:0>ar > —2ksi .
& {a € at Sin 4/<:+2}

Theorem 4.1 Let ky, ko be arbitrary positive integers such that ko > ki > 1. Then
Sty C Sk, CSr.

Moreover,
lim Sr,k = ST.

k—oo

(18)
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Proof.
To prove Theorem 4.1, we can use a similar approach as we utilized in the proof of Theorem
3.1. In this case, we aim to show that

7r T
2k si < 2kg sin ——— 1 <k < ko.
P 2 ST g, 1 =
i.e. that the function -
f(x):2x31n4x+2, reR (19)
is increasing on (1, 00). Obviously f'(x) > 0 on (1;00) if
t T dma € (1,00) (20)
an x 00).
dr+2° (4o +2)% ’
Let us introduce the substitution -
ST wte
The inequality (20) can be transformed to
25* T
tans > s — — € (0, —>. 21
ans > s — — s 5 (21)

Let g1(s) = tans, ga(s) = s— % Obviously, g;(0) = g2(0) = 0. Using expressions for gj(s) and
¢5(s) we can directly conclude that the inequality (21) holds for all s € (0, %). Consequently,
the function f(x) is increasing on (1,00). That implies S;, C S:,. The proof of the limit
property of the stability intervals is a simple modification of the technique used in Theorem
3.1.

Remark 4.2 Analogously as in Section 3, we can interpret the assertion of Theorem 4.1 as a
dependence of stability intervals for the forward Euler method on changing stepsize h. Theorem
4.1 implies that the stability region is enlarging with decreasing stepsize h. If h is approaching
zero, the corresponding stability region is tending to S, .

5 Final remarks

We presented the analysis of the asymptotic stability intervals for the backward and forward
Euler method applied to the delay differential equation (1). These methods are particular cases
of a wider class of methods called the f-methods. When we apply the #-method with the
stepsize h to (1), we obtain a difference equation of the form

Tpnt1 = Tp + ah(9$n+17k + (1 — (9)l'n,k) (22)

If 6 = 1 we get the backward Euler method, while the case § = 0 yields the forward Euler
method. We note that the general §-method leads to a four-term difference equation. Therefore
the Levin-May criterion (Theorem 2.1) cannot be used for its stability analysis. Instead, we
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can use the result of Cermék et al. [3], who derived the conditions for the asymptotic stability
of four terms difference equations. The analysis of these more advanced discretizations will be
a subject of our further research.
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THE AUTONOMOUS SYSTEM DERIVED
FROM VAN DER POL-MATHIEU EQUATION

KADERABEK Zdenék, (CZ)

Abstract. This work is devoted to the autonomous system derived from Van der Pol-
Mathieu equation which was applied to the study the dynamics of dusty plasmas in the
article [3]. In this work we shall investigate mathematically this autonomous system and
shall find how large region of the plane will be attracted to the equilibrium point.

Key words and phrases. Autonomous system, Van der Pol-Mathieu equation, attract-
ing set, equilibrium point, ordinary first order differential equation.

Mathematics Subject Classification. Primary 34C05, 34C25; Secondary 34D05.

1 Introduction

The main inducement for the study of the autonomous system derived from Van der Pol-
Mathieu equation, which describes the dynamics of dusty plasmas, was the article [3]. The
mathematical analysis of the autonomous system in [3] is mathematically deficient and this
article complete this analysis.

F. Veerman and F. Verhulst proved the existence of periodic and quasiperiodic solu-
tions of the Van der Pol-Mathieu equation in [5]. The aim of this work is to extend the
article [5], to perform the phase space analysis, describe the asymptotic behavior of trajec-
tories and to find the attracting set of equilibrium point of the investigated autonomous system.
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2 The autonomous system derived from Van der Pol-Mathieu equation

In article [3], this autonomous system is derived:

da « b hwo B, 4 9
g2 =) E 1
3 = 3¢ 2(e+ 5 ) 8(a + ab”), (1)
db o, a hwo B,
Bt ATl PR i I 2
1z 26+2(6 5 ) 8(b + a“b), (2)

where a, 3,wg, h € R and € € R, |¢] < 1, h < 1. The real unknowns a(t) and b(t) vary slowly
with time ¢ and they occur as the coefficients of the estimated solution of Van der Pol-Mathieu
equation in the work [3]. The estimated solution has the form:

z(t) = a(t) cos (wg + %) t + b(t) sin (wo + g) t. (3)

We will examine the autonomous system of two ordinary first order differential equations
(1), (2). From the form of the autonomous system it is evident that the equations (1),
(2) are invariant under the transformation (a,b) — (—a,—0b). Thanks to the continuity of
right-hand sides of the autonomous system (1), (2) and their first order derivations it follows
that solutions of any initial problem for the autonomous system (1), (2) exist and they are
uniquely determined by initial conditions.

3 The equilibrium points

It is clear that the autonomous system (1), (2) has the equilibrium point (a,b) = (0,0).
1. Assuming

b h . h
a2 <e+ﬂ) —é(a3+a62)=0, %b+g(e—%) —g(b3+azb)=0,

we get four further equilibrium points:

hwo 2 hwo 2
[ =52+ € [h2w, [ 20 —€ [h2w,
— 2 4/ 0 2 2 - 4/ Z0 2
(a11,b11) = | 2 Bl \/a 1 €2,2 S \/a 1 e, (5)
(st = (-2 Bt o R Exy A
12, 012 ﬁhwo ﬁhwo
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hu)o 2 hwo h2
(as1, bay) = + e\/ [ h Wo \/ Ih wo
ﬁhwo ﬁhwo
hwo hOJO
/ + € th / th
b 0 0
(a22; 22 ﬁth ﬁhwg \/

To determine the type of equilibrium points we calculate eigenvalues for these equilibrium
points. The eigenvalues are given by the Jacobi matrix of the right-hand sides of (1), (2):

1
@ _Bagzipy -1 H@)_%
g 2 8 2 2 4 (9)
| Lo feoy _abB e B ey ‘
2\ 7 2 4 28

First, we investigate the type of the equilibrium point (0,0). From the Jacobi matrix of the
right-hand sides of (1), (2) we get the characteristic equation

2 1 2, .2
)\Q—CY)\—I—%—I-Z <62—h:’0) = 0. (10)

This quadratic equation has a discriminant D = Wl ¢ which is, with respect to (4), always

positive. The eigenvalues of the equilibrium point (0,0) are

)\01702 = . (11)

The assumption (4) implies that the eigenvalues are positive and the origin is an unstable
improper node.
For the equilibrium points (aj1,b11) and (a2, bi2) we get the characteristic equation

h2 2 h2 2 h2 2
/\2+<a—2 %—é))\—a\/%—e?—l—%—g:& (12)

The discriminant of this quadratic equation is D = o? > 0, so this equation has always real
roots. The eigenvalues of the equilibrium points (a11,b11) and (aq2, bys) are

2 [ Hh2
)\11 = h UJO — 62 )\12 = —a+ h WO (13)

The assumption (4) for the existence of equilibrium points then implies that A; > 0 and Ay < 0
and therefore the points (aj1,b11) and (a2, b12) are equilibrium points of saddle type.
If we form the characteristic equation for the points (ag1, ba1) and (age, baz), we obtain

2, ,2 2, ,2 2,.,2
)\2+<a+2\/h2) >A+a hZO e2+%—62:0. (14)
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2

This quadratic equation has again a positive discriminant D = «“, so eigenvalues are always

the real values
h2.,2 [ 12,2
)\21 = — 4CUO — 62, )\22 = —x — 4&)0 — €2 (15)

From assumption (4) it is clear that both eigenvalues are negative and therefore the equilibrium
points (ag, be1) and (agg, bag) are the stable improper nodes.

The Figures 1, 2 show vector fields with nullclines of the autonomous system of equations
(1), (2) for specific values of the parameters. These vector fields with nullclines confirm the
existence of stable nodes in 2nd and 4th quadrant and the saddles in 1st and 3rd quadrant.

Figure 1: Vector field with nullclines for — Figure 2: Vector field with nullclines for
a=123=1€e=0,01,h=0,05w, = 4. a = 0508 = 08 = 0,0001,r =
0,01,wp = 1,5.

2. Now we assume that only

hu}o
2

is satisfied and the second condition is not met. We see that the system (1), (2) has trivial
equilibrium (0,0) and two nontrivial equilibria (asy, bo1), (age,bes). The trivial equilibrium is

saddle point for a < 4/ %‘”g — €2 and nonhyperbolic equilibrium having a character of a saddle

(16)

el <

2,2
h2wg

for o = — €2. The nontrivial equilibria are stable nodes (positive attractors). The Figure

3 show two stable nodes (nontrivial equilibria) and saddle point (0, 0).

3. Now we assume that the condition (16) is not met. The system (1), (2) has only trivial
equilibrium for || > 22 and this equilibrium is unstable focus (Figure 4). For |¢| = 22 the
autonomous system (1), (2) has unstable node in (0,0) and two nonhyperbolic equilibria.

The autonomous system (1), (2) with only the trivial equilibrium unstable focus investigated
F. Veerman and F. Ver