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CONTROLLABILITY FOR A CERTAIN CLASS OF LINEAR
MATRIX SYSTEMS WITH DELAY

BAŠTINEC Jaromı́r, (CZ), PIDDUBNA Ganna, (CZ)

Abstract. In this paper existence of solutions of a certain class of differential linear
matrix equations with delay was investigated. The solutions were found in general form.
Necessary and sufficient condition for controllability of differential linear matrix equation
with delay was defined and control was built. Paper contains calculated examples.

Key words and phrases. matrix equation with delay, matrix exponential.

Mathematics Subject Classification. Primary 34K20, 34K25; Secondary 34K12.

1 Introduction

This paper is devoted to computing of the solution of differential linear matrix equation with
delay Ẋ(t) = AX(t)+AX(t−τ), with help of the special matrix function - matrix exponential.
Matrix exponential was used for solving differential equations by Krasovsky [10], [11] and for
solving systems with aftereffects by many authors, e.g. Boichuk, Dibĺık, Khusainov, Růžičková,
Shuklin [3] - [9].

Definition 1.1 Let A be a square matrix. Matrix exponential is defined by

eAt = I + A
t

1!
+ A2 t2

2!
+ A3 t3

3!
+ · · · =

∞∑
i=0

Ai t
i

i!
,

where I is the identity matrix.

Lemma 1.2 Let A be a square matrix, then holds AeAt = eAtA, eAteAτ = eA(t+τ).
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2 Linear matrix equation with delay

Let we have the equation
Ẋ(t) = AX(t) + AX(t − τ), (1)

with initial condition
X(t) = I, −τ ≤ t ≤ 0, (2)

where A is square matrix, I is identity matrix, τ > 0, τ ∈ R is a constant delay.

Theorem 2.1 Let A is regular. Then the solution of equation (1) with identity initial condi-
tionhas the recurrence form:

Xn+1(t) = eA(t−nτ)Xn(nτ) +

∫ t

nτ

eA(t−s)AXn(s − τ)ds, (3)

where Xn(t) is defined on the interval (n − 1)τ ≤ t ≤ nτ .

Proof: Theorem 3.1 is a special case of the more general Theorem 3.1, [2].

Theorem 2.2 Let A is regular. Then the solution of equation (1) with identity initial condition
has the form:

Xk(t) =
k−1∑
l=o

2eA(t−lτ)

l∑
p=0

(−1)p+lAp (t − lτ)p

p!
+ (−1)kI, (4)

where Xk(t) is defined on the interval (k − 1)τ ≤ t ≤ kτ .

Proof: To prove Theorem 2.2, we find the form of the solution for kτ ≤ t ≤ (k + 1)τ .
Let kτ ≤ t ≤ (k + 1)τ holds. Then the equation (1) has the form

Ẋk+1(t) = AXk+1(t) + AXk+1(t − τ) = AXk+1(t) + AXk(t − τ).

Then from (3) follows, that for the solution of equation (1) on this interval for n = k

Xk+1(t) = eA(t−kτ)Xk(kτ) +

∫ t

kτ

eA(t−s)AXk(s − τ)ds.

After substitution Xk(t) from (4) we have

Xk+1(t) = eA(t−kτ)

[
k−1∑
l=o

2eA(kτ−lτ)

l∑
p=0

(−1)p+lAp (kτ − lτ)p

p!
+ (−1)kI

]

+

∫ t

kτ

eA(t−s)A

[
k−1∑
l=o

2eA(s−τ−lτ)

l∑
p=0

(−1)p+lAp (s − τ − lτ)p

p!
+ (−1)kI

]
ds

=

[
k−1∑
l=o

eA(t−kτ)2eA(kτ−lτ)

l∑
p=0

(−1)p+lAp (kτ − lτ)p

p!
+ (−1)keA(t−kτ)

]

14 volume 5 (2012), number 2
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+

[
k−1∑
l=o

∫ t

kτ

eA(t−s)A2eA(s−τ−lτ)

l∑
p=0

(−1)p+lAp (s − τ − lτ)p

p!
ds + (−1)k

∫ t

kτ

eA(t−s)Ads

]

=

[
k−1∑
l=o

2eA(t−lτ)

l∑
p=0

(−1)p+lAp (kτ − lτ)p

p!
+ (−1)keA(t−kτ)

]

+

[
k−1∑
l=o

∫ t

kτ

2eA(t−(l+1)τ)

l∑
p=0

(−1)p+lAp+1 (s − (l + 1)τ)p

p!
ds + (−1)k

∫ t

kτ

eA(t−s)Ads

]

=
k−1∑
l=o

2eA(t−lτ)

l∑
p=0

(−1)p+lAp (kτ − lτ)p

p!
+ (−1)k2eA(t−kτ)

+
k−1∑
l=0

2eA(t−(l+1)τ)

l∑
p=0

(−1)p+lAp+1 (t − (l + 1)τ)p+1

(p + 1)!

−
k−1∑
l=0

2eA(t−(l+1)τ)

l∑
p=0

(−1)p+lAp+1 (kτ − (l + 1)τ)p+1

(p + 1)!
+ (−1)k+1I)

=
k−1∑
l=0

2eA(t−lτ)

l∑
p=0

(−1)p+lAp (kτ − lτ)p

p!
+ (−1)k2eA(t−kτ) + (−1)k+1I

+
k∑

l=1

2eA(t−lτ)

l∑
p=1

(−1)p+lAp (t − lτ)p

p!
−

k−1∑
l=1

2eA(t−lτ)

l∑
p=1

(−1)p+lAp (kτ − lτ)p

p!

= 2eAt +
k−1∑
l=1

2eA(t−lτ)(−1)l +
k∑

l=1

2eA(t−lτ)

l∑
p=1

(−1)p+lAp (t − lτ)p

p!
+ (−1)k2eA(t−kτ) + (−1)k+1I

=

(
2eAt +

k−1∑
l=1

2eA(t−lτ)

l∑
p=0

(−1)p+lAp (t − lτ)p

p!

)
+

(
2eA(t−kτ)

l∑
p=0

(−1)p+kAp (t − kτ)p

p!

)
+(−1)k+1I

=
k−1∑
l=0

2eA(t−lτ)

l∑
p=0

(−1)p+lAp (t − lτ)p

p!
+ 2eA(t−kτ)

l∑
p=0

(−1)p+kAp (t − kτ)p

p!
+ (−1)k+1I.

Finally we get Xk+1(t) =
k∑

l=0

2eA(t−lτ)
l∑

p=0

(−1)p+lAp (t−lτ)p

p!
+ (−1)k+1I.

And we got the expression (4) for kτ ≤ t ≤ (k + 1)τ .
If we have initial condition in the form

X(t) = ϕ(t), − τ ≤ t ≤ 0, (5)

where ϕ(t) ∈ C1[−τ, 0], then we could write the following result.

volume 5 (2012), number 2 15
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Theorem 2.3 [1] Let A is regular. Then the solution of equation (1) with initial condition (5)

have the form: X(t) = Xn(t)ϕ(−τ) +
0∫

−τ

Xn(t − τ − s)ϕ′(s)ds, where Xn(t) is the solution of

the same equation with identity initial condition, defined in Theorem 2.2.

Let we have the linear heterogeneous equation with delay

Ẋ(t) = AX(t) + AX(t − τ) + F (t). (6)

Theorem 2.4 [1] Let A is regular. Then the solution X(t) of the heterogeneous equation (6)

with zero initial condition, has the form X(t) =
t∫

0

Xn(t − τ − s)F (s)ds, t ≥ 0, where Xn(t)

is defined in Thheorem 2.2.

Theorem 2.5 [1] Let A is regular. The solution of heterogeneous equation (6) with the initial

condition (5) has the form X(t) = Xn(t)ϕ(−τ)+
0∫

−τ

Xn(t − τ − s)ϕ′(s)ds+
t∫

0

Xn(t − τ − s)F (s)ds,

where Xn(t) is defined in Theorem 2.2.

3 Controllability of the linear matrix system with delay

3.1 General terms

Let X is the space of states of dynamic system; U is the set of the controlled effects (controls).
Let x = x(x0, u, t) is the vector that characterizes state of the dynamic system in moment of
time t, by the initial condition x0, x0 ∈ X, (x0 = x|t=t0

) and by the control function u, u ∈ U .

Definition 3.1 The state x0 is called controllable state in the class U (controlled state), if
there are exist such control u(x0) ∈ U and the number T, t0 ≤ T that x(x0, u(x0), T ) = 0.

Definition 3.2 If every state x0 ∈ X of the dynamic system is controllable, then we say that
the system is controllable (controlled system).

Consider the following Cauchy’s problem:

ẋ(t) = Ax(t) + Ax(t − τ) + Bu(t), t ∈ [0, T ] , T < ∞,
x(0) = x0, x(t) = ϕ(t), −τ ≤ t < 0,

(7)

where x = (x1, ..., xn)T is the vector of phase coordinates, x ∈ X, u(t) = (u1(t), ..., ur(t))
T is

the control function, u ∈ U , U is the set of piecewise-continuous functions; A,B are constant
matrices of dimensions (n × n), (n × r) respectively, τ is the constant delay.
Space of states Z of this system is the set of n-dimensional functions.

{x(θ), t − τ ≤ θ ≤ t} (8)

16 volume 5 (2012), number 2
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The space of the n-dimensional vectors x (phase space X) is subspace for Z. The initial state
z0 of the system (7) is determined by conditions

z0 = {x0(θ), x0(θ) = ϕ(θ), −τ ≤ θ < 0, x(0) = x0}. (9)

The state z = z(z0, u, t) of the system (7) in the space Z in moment of time t is defined by
trajectory segment (8) of phase space X.
Next considered, that the movement system (7) goes (t ≥ 0) in the space of continuous function.
We determined initial state (9) of the function ϕ(θ) as piecewise-continuous.
In accordance with specified definitions, state (9) of the system (7) is controllable if there exist
such control u ∈ U that x(t) ≡ 0, T − τ ≤ t ≤ T when T < ∞.

3.2 The construction of control for system with delay

Let we have the control system of differential matrix equation

ẋ (t) = Ax (t) + Ax(t − τ) + Bu(t), x (t) ∈ Rn, t ≥ 0, τ > 0. (10)

where x(t) = ϕ(t),−τ ≤ t ≤ 0, A,B are square constant matrices.

Remark 3.3 For convenience purpose, here and further, we say that x(t) is a vector of length
n. All next statements are proved in the same way for the case when x(t) = X(t) is a matrix
of dimension (n × n).

Theorem 3.4 For controllability of linear system with delay (10) is necessary and sufficient to
next condition to hold: t ≥ (k − 1)τ and rank(S) = n, where S = {B AB A2B ... Ak−1B ...},
hence S is a matrix which was achieved by recording matrices B, AB, ..., Ak−1B, ... side by
side.

Proof: Let system (10) is controllable. Then for any ϕ(t), x1 and t1 there exist a control u∗(t)
such that for a system (10) exist solution x∗(t) which satisfies initial condition x(t) = ϕ(t),
−τ ≤ t ≤ 0. The representation of the solution of the Cauchy problem for heterogeneous
equation is:

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t − τ − s)ϕ′(s)ds +

t∫
0

X0(t − τ − s)Bu(s)ds.

When the control is u∗(t), then in time moment t = t1 we get

x1 = X0(t1)ϕ(−τ) +

0∫
−τ

X0(t1 − τ − s)ϕ′(s)ds +

t1∫
0

X0(t1 − τ − s)Bu∗(s)ds. (11)

Denoted

x1 − X0(t1)ϕ(−τ) −
0∫

−τ

X0(t1 − τ − s)ϕ′(s)ds = μ. (12)

volume 5 (2012), number 2 17
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And using the representation of X0(t) from (4) we get

t1∫
0

X0(t1 − τ − s)Bu∗(s)ds

=

t1∫
0

[
k−1∑
l=o

2eA(t1−τ−s−lτ)

l∑
p=0

(−1)p+lAp (t1 − τ − s − lτ)p

p!
+ (−1)kI

]
Bu∗(s)ds

=

t1∫
0

k−1∑
l=o

2eA(t1−s−(l+1)τ)

l∑
p=0

(−1)p+lAp (t1 − s − (l + 1)τ)p

p!
Bu∗(s)ds + (−1)kB

t1∫
0

u∗(s)ds

=
k−1∑
l=o

l∑
p=0

(−1)p+l2Ap

t1∫
0

eA(t1−s−(l+1)τ) (t1 − s − (l + 1)τ)p

p!
Bu∗(s)ds + (−1)kB

t1∫
0

u∗(s)ds

=
k−1∑
l=o

l∑
p=0

(−1)p+l2Ap

t1∫
0

∞∑
m=0

Am (t1 − s − (l + 1)τ)m+p

m!p!
Bu∗(s)ds + (−1)kB

t1∫
0

u∗(s)ds

=
k−1∑
l=o

l∑
p=0

∞∑
m=0

(−1)p+l2Ap+mB

t1∫
0

(t1 − s − (l + 1)τ)m+p

m!p!
u∗(s)ds + (−1)kB

t1∫
0

u∗(s)ds = (h).

Denoted

ψl,p,m(t1) = (−1)p+l2

t1∫
0

(t1 − s − (l + 1)τ)m+p

m!p!
u∗(s)ds,

then

(h) =
k−1∑
l=o

l∑
p=0

∞∑
m=0

Ap+mBψl,p,m(t1) + (−1)kB

t1∫
0

u∗(s)ds

= B

⎡
⎣k−1∑

l=0

ψl,0,0(t1) + (−1)k

t1∫
0

u∗(s)ds

⎤
⎦

+AB

[
k−1∑
l=0

ψl,0,1(t1) +
k−1∑
l=1

ψl,1,0(t1)

]
+ A2B

[
k−1∑
l=0

ψl,0,2(t1) +
k−1∑
l=1

ψl,1,1(t1) +
k−1∑
l=2

ψl,2,0(t1)

]
+ ...

+Ak−1B

[
k−1∑
l=0

ψl,0,k−1(t1) +
k−1∑
l=1

ψl,1,k−2(t1) + ... +
k−1∑

l=k−2

ψl,k−2,1(t1) + ψl,k−1,0

]
+ ...

= Bf1(t1) + ABf2(t1) + A2Bf3(t1) + ... + Ak−1Bfk(t1) + ...

And using (12), correlation (11) get the form

Bf1(t1) + ABf2(t1) + A2Bf3(t1) + ... + Ak−1Bfk(t1) + ... = μ.
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So we got a system with an infinite number of unknown functions fi and the vector of constant
terms μ is length n. The system will have only one solution if and only if the rank of the matrix
S = {B AB A2B ... Ak−1B ...} equals n. In this case the solution of the system will be the
vector f , that is uniquely determined by the vector of constant terms x1. Since the vector of
constant terms is defined from any finite state of the system (10), we conclude that system (10)
can be moved in any point if the conditions of the theorem is true. It means, that the system
(10) is controllable if and only if the rank of matrix S is n.

Theorem 3.5 Let t1 ≥ (k − 1)τ and the necessary and sufficient condition for controllability
is implemented: rank(S) = rank

({B AB A2B ... Ak−1B ...}) = n. Then the control function
can be taken as

u(s) = [X0(t1 − τ − s)B]T

⎡
⎣ t1∫

0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]T ds

⎤
⎦
−1

μ,

where μ = x1 − X0(t1)ϕ(−τ) −
0∫

−τ

X0(t1 − τ − s)ϕ′(s)ds.

Proof: Using the result of the Theorem 2.5, we have that the solution of the system (10) with
initial conditions x0(t) = ϕ(t), −τ ≤ t ≤ 0 has the form

x(t) = X0(t)ϕ(−τ) +

0∫
−τ

X0(t − τ − s)ϕ′(s)ds +

t∫
0

X0(t − τ − s)Bu(s)ds (13)

Using the notations (12), we obtain: for the system (13) to have a solution x(t) that satisfies
the initial conditions x(t) = ϕ(t), −τ ≤ t ≤ 0, x(t1) = x1, is necessary and sufficient that the
integrated equation

t1∫
0

(
k−1∑
l=o

2eA(t1−s−(l+1)τ)

l∑
p=0

(−1)p+lAp (t1 − s − (l + 1)τ)p

p!
+ (−1)kI

)
Bu(s)ds = μ (14)

has solution u(s), 0 ≤ s ≤ t1. We will search a solution as a linear combination

u(s) =

[(
k−1∑
l=o

2eA(t1−s−(l+1)τ)

l∑
p=0

(−1)p+lAp (t1 − s − (l + 1)τ)p

p!
+ (−1)kI

)
B

]T

C (15)

where C = (c1, c2, ....., cn)T - is unknown vector. After substitution (15) in system (14), we get⎡
⎣ t1∫

0

(
k−1∑
l=o

2eA(t1−s−(l+1)τ)

l∑
p=0

(−1)p+lAp (t1 − s − (l + 1)τ)p

p!
+ (−1)kI

)
B

×BT

(
k−1∑
l=o

2eA(t1−s−(l+1)τ)

l∑
p=0

(−1)p+lAp (t1 − s − (l + 1)τ)p

p!
+ (−1)kI

)T

ds

⎤
⎦C = μ. (16)
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We will show that system (16) has the only one solution. From prove of previous theorem
we know, that X0(t − τ − s)B can be represented as a linear combination with coefficients
B; AB; ...; AkB; .... Since rank(S) = n, then, when 0 ≤ s ≤ t1, will be done X0(t−τ −s)B �= 0.
Therefore for any vector l = (l1, l2, ....., ln)T in 0 ≤ s ≤ t1 will be done ([X0(t−τ −s)B]T l)2 �= 0,
0 ≤ s ≤ t1. And for any l > 0

t1∫
0

⎛
⎝BT

[
k−1∑
l=o

2eA(t1−s−(l+1)τ)

l∑
p=0

(−1)p+lAp (t1 − s − (l + 1)τ)p

p!
+ (−1)kI

]T

l

⎞
⎠

2

ds

=

⎡
⎣ t1∫

0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]T ds

⎤
⎦ l2.

Because the matrix
t1∫
0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]T ds is positive definite. Therefore its

determinant is nonzero. Solving system (16), we obtain

C =

⎡
⎣ t1∫

0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]T ds

⎤
⎦
−1

μ.

4 Examples

Let us consider few examples of controllability researches of the linear matrix systems with
delay.

Example 4.1

Let us have the differential equation of 3-th degree with a constant delay:

ẋ(t) = Ax(t) + Ax(t − 1) + Bu(t), where A =

⎛
⎝ 1 1 1

0 1 1
0 0 1

⎞
⎠ , B =

⎛
⎝ 1 1 0

1 1 0
0 0 0

⎞
⎠ .

As we see τ = 1, n = 3 and A is regular. We want to know if this system is controllable so let
us check the necessary and suffisient condition. We will find the matrix S:

S = {B AB A2B ... Ak+1B ...} =

⎧⎨
⎩

1 1 0
1 1 0
0 0 0

2 2 0
1 1 0
0 0 0

3 3 0
1 1 0
0 0 0

...
k k 0
1 1 0
0 0 0

...

⎫⎬
⎭

We have, rank(S) = 2 , so the system is not controllable.

Example 4.2
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Let us have the differential equation of 3-th degree with a constant delay:

ẋ(t) = Ax(t) + Ax(t − 1) + Bu(t), where A =

⎛
⎝ 1 1 1

0 1 1
0 0 1

⎞
⎠ , B =

⎛
⎝ 1 1 0

1 1 0
0 0 1

⎞
⎠ .

As we see τ = 1, n = 3 and A is regular. It is easy to see that the necessary and sufficient
condition for controllability is implemented (becase of full rank of the matrix B, matrix S have
full rank too), so the system is controllable.
Let us construct such control function, that move system in time moment t1 = 2 in point
x1 = (1, 1, 1)T , using initial condition x0(t) = ϕ(t) = (0, 0, 0)T , −1 ≤ t ≤ 0. Using the result of
the theorem (3.5) we write:

u(t) = [X0(t1 − τ − t)B]T

⎡
⎣ t1∫

0

X0(t1 − τ − s)BBT [X0(t1 − τ − s)]T ds

⎤
⎦
−1

μ,

μ = x1 − X0(t1)ϕ(−τ) −
0∫

−τ

X0(t1 − τ − s)ϕ′(s)ds.

While ϕ(t) = (0, 0, 0)T , −1 ≤ t ≤ 0 then μ = (1, 1, 1)T . So, we have

u(t) = [X0(1 − t)B]T

⎡
⎣ 2∫

0

X0(1 − s)BBT [X0(1 − s)]T ds

⎤
⎦
−1 ⎛

⎝ 1
1
1

⎞
⎠ .

While t1 = 2, then k = 2 and, using (4) we can calculate

u(t) =

(
2(t + 1)et + 2(t2 − t − 1)et−1 + 1 2et + 2(t − 2)et−1 0
2(t + 1)et + 2(t2 − t − 1)et−1 + 1 2et + 2(t − 2)et−1 0
(t2 + 2t)et + (t3 − 3t + 2)et−1 2tet + 2(t − 1)2et−1 2et + 2(t − 2)et−1

) (
0.05 − 0.13 0.09
−0.13 0.38 − 0.25
0.09 − 0.25 0.18

) (
1
1
1

)
,

u(t) = 0.01

(
2(t + 1)et + 2(t2 − t − 1)et−1 + 1
2(t + 1)et + 2(t2 − t − 1)et−1 + 1
(t2 + 2t + 4)et + (t3 + t − 6)et−1

)
.

5 Conclusion

In this paper a solution of the system in general form was built. The necessary and sufficient
condition for controllability of this system was defined and control was built. Two examples
were given to illustrate the proposed theory. Getting results analogous to the ones in sections
3 and 4 for equation Ẋ(t) = AX(t) + BX(t − τ), where A,B are different matrices, remains
an open problem.
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EQUILIBRIUM STOCHASTIC STABILITYS
OF MARKOV DYNAMICAL SYSTEMS

CARKOVS Jevgeņijs, (LV), ŠADURSKIS Kārlis, (LV)

Abstract. In first section of paper we will prove that for linear Markov dynamical sys-
tems an equilibrium asymptotic stochastic stability is equivalent to exponential p-stability
for sufficiently small positive values p. Then we will prove that exponential p-stability
of linearized in vicinity of equilibrium Markov dynamical system guarantees equilibrium
asymptotic (local) stochastic stability.This result permits to construct such Lyapunov
quadratic functional, which one may use for local equilibrium stochastic stability of suffi-
ciently smooth nonlinear Markov dynamical systems.

Key words and phrases. Markov dynamical systems; stochastic stability; Lyapunov
stability.
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1 Stochastic stability of linear differential equations with Markov coefficients

Let y(t) be Feller type Markov process on phase space Y and with weak infinitesimal operator
[Doob] L,f(x, y) be a continuous mapping R

n × Y → R
n, and f(0, y) ≡ 0. The solution of

equation
dx(t)

dt
= f(x(t), y(t)) (1)

with initial condition x(s) = x, y(s) = y we will denote x(t, s, x, y). We will say [3] that trivial
solution of differential equation (1)

• locally stable almost sure, if for any s ∈ R, η > 0 and β > 0 there exists such δ > 0 that
the inequality

sup
y∈Rm

ξ∈G

P(sup
t≥s

|x(t, s, x, y)| > η) < β, (2)

follows the condition x ∈ Bδ(0), where Bδ(0) := {x ∈ R
n : |x| < δ};



Aplimat - Journal of Applied Mathematics

• locally asymptotically stochastically stable, if it is locally almost sure stable and there exists
such γ > 0 that the trajectories which do not leave the ball Bγ tend to 0 as t → ∞;

• asymptotically stochastically stable, if it is locally almost sure stable and for any x ∈ R
n,

s ∈ R, and c > 0 the equality

lim
T→∞

sup
y∈Rm

ξ∈G

P(sup
t>T

|x(t, s, x, y)| > c) = 0 (3)

is fulfilled;

• exponentially p-stable, if there exist such positive numbers M and γ that for any x ∈
R

n, y ∈ R
m, ξ ∈ G, s ∈ R and t > s the inequality

E |x(t, s, x, y)|p ≤ M |x|pe−γ(t−s) (4)

is fulfilled.

In this section we will deal with linear differential equations in R
n

dx

dt
= A(y(t))x, (5)

where A(y) is continuous bounded matrix-valued function and y(t) is stochastically contin-
uous Feller Markov process with weak infinitesimal operator Q. The pair {x(t), y(t)} forms
[Skorokhod] homogeneous stochastically continuous Markov process with the weak infinitesimal
operator L0 defined by equality

L0 v(x, y) = (A(y) x, ∇x) v(x, y) + Qv(x, y). (6)

It is clearly that there exists family of the matrix-valued functions {X(t, s, y), t ≥ s ≥ 0},
defined by equality X(t, s, y)x = x(t, s, x, y), where x(t, s, x, y) is the solution of Cauchy problem
x(s, s, x, y) = x under condition y(s) = y. The matrices X(t, s, y) also satisfy the equation (5)
for all t > s and initial condition X(s, s, y) = I, where I is matrix unit. This matrix family
has the evolution property:

X(t, s, y) = X(t, τ, y(τ))X(τ, s, y) (7)

for any y ∈ Y, t ≥ τ ≥ s ≥ 0. Let us define the Lyapunov p-index of (5) as

λ(p) = sup
x,y

lim
t→∞

1
pt

ln E|X(t, s, y)x|p. (8)

Not so difficult to prove that exponential p-stability of trivial solution of the equation (5) is
equivalent to inequality λ(p) < 0. Because

(E|X(t, s, y)x|p1)1/p1 ≤ (E|X(t, s, y)x|p2)1/p2 (9)

for any positive p1 < p2, the inequality

λ(p1) ≤ λ(p2) (10)
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follows the inequality p1 < p2 and λ(p) is monotone decreasing function as p decreases to 0. It
is intuitively clearly, that asymptotic stochastic stability of (5) is equivalent to the condition

∃p0 > 0, ∀p ∈ (0, p0) : λ(p) < 0.

We will assentially use further this assertion and hence it should be proven.

Lemma 1. If the equation (5) is asymptotically stochastically stable then it is exponentially
p-stable for all sufficiently small positive p.

Proof. Let us put in definition of almost sure stability η = 1, β = 1
2

and choose so small
positive α that the inequality

sup
|x|≤2−α

y∈Y

P(sup
t≥0

|X(t, 0, y)x| > 1) < 1
2
.

is fulfilled. Due to a linearity of the equation (5) from the above inequality one may write the
inequality

sup
|x|≤2−α(l−1)

y∈Y

P(sup
t≥0

|X(t, 0, y)x| > 2lα) < 1
2

for any l ∈ N. Let us denote

gl := sup
|x|≤1
y∈Y

P(sup
t≥0

|X(t, 0, y)x| ≥ 2lα).

The pair {x(t), y(t)} is stochastically continuous Markov process and it has the Markov prop-
erty in the moment τ1(x) of exit of the trajectory x(t, 0, x, y) from the ball B1(0) if x ∈ B1(0).
Hence

g
l+1

= sup
|x|≤1
y∈Y

P(sup
t≥0

|X(t, 0, y)x| ≥ 2(l+1)α)

= sup
|x|≤1
y∈Y

∞∫
s=0

∫
|u|=2lα

v∈Y

Px,y(τ1(x) ∈ ds, x(s) ∈ du, y(s) ∈ dv)×

×P(sup
t≥0

|X(t, 0, v)u| > 2(l+1)α)

≤ sup
|x|≤2lα

y∈Y

P(sup
t≥0

|X(t, 0, y)x| > 2(l+1)α) sup
|x|≤1
y∈Y

×

×
∞∫

s=0

∫
|u|=2lα

v∈Y

Px,y(τ1(x) ∈ ds, x(s) ∈ du, y(s) ∈ dv)

≤ 1

2
sup
|x|≤1
y∈Y

P(sup
t≥0

|X(t, 0, y)x| ≥ 2lα) = 1
2
gl.
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Hence g
l
≤ 1

2l for any l ∈ N. Let us denote

ζ := sup
t≥0

|x(t, 0, x, y)|p.

It is clearly to see that for all p > 0, x ∈ R
n, y ∈ Y it may be written

E ζ ≤ |x|p sup
|x|≤1

E ζ ≤
∞∑
l=1

2lαp
P(sup

t≥0
|x(t, 0, x, y)| ≥ 2(l−1)α)

≤
∞∑
l=1

2lαp2−l|x|p := K1|x|p.

Therefore random variable ζ has expectation for all x ∈ R
n, y ∈ Y, p ∈ (0, α−1). According

to Lemma’s conditions the solution of (5) x(t, 0, x, y) tends to 0 almost sure as t tends to ∞
uniformly on y ∈ Y and by the Lebesque Theorem one can write

lim
t→∞

sup
y∈Y

E|x(t + s, s, x, y)|p = 0

for all x ∈ R
n, p ∈ (0, α−1). Besides, not complicatedly to verify that this convergence is

uniform on x in the ball B1(0) and s ≥ 0, i.e.

lim
t→∞

sup
x∈B1(0)

y∈Y

E|x(t + s, s, x, y)|p = 0.

Now we can choose a number T so large then the inequality

sup
y∈Y

E|x(t + s, s, x, y)|p ≤ |x|pe−1

is fulfilled and further, by using the inequality

E|x(lT, 0, x, y)|p =

∫
Rn

∫
Y

P(x, y, (l − 1)T, du, , dv)E|x(T, 0, u, v)|p

≤ e−1
E|x((l − 1)T, 0, x, y)|p,

where P(x, y, t, du, , dv) is transition probability of homogeneous Markov process {x(t), y(t)},
one can write

E|x(t, 0, x, y)|p ≤ K1e
−[

t
T

]T |x|p,
where [a] is integer of number a. This inequality completes the proof.

To analyze the behaviour of solutions of (5) one may use well known the Dynkin formula [2]

E
(u)
x,yv(x(τr(t)), y(τr(t))) = v(x, y) + E

(u)
x,y

⎧⎨
⎩

τr(t)∫
u

(L0v)(x(s), y(s)) ds

⎫⎬
⎭ , (11)

where the indexes of expectation denote the condition x(u) = x, y(u) = y and τr(t) =
min{τr, t}, τr = inf{t > u : x(t, u, x, y) /∈ Br(0)}. If u = 0, then upper index will be absent.
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If for all t ≥ u ≥ 0 there exist the expectations Ex,yv(x(t), y(t)) and Ex,y(L0v)(x(t), y(t)) one
can use the Dynkin formula (11) in the more simple form

E
(u)
x,yv(x(t), y(t)) = v(x, y) +

t∫
u

E
(u)
x,y(L0v)(x(s), y(s)) ds. (12)

Sometimes it is necessary to use the Lyapunov functions depending also on argument t. If the
function v(t, x, y) belongs (as the function of arguments x and y) to the region of definition
of infinitesimal operator L0 and has continuous t-derivative, one may use the Dynkin formula
(11) in the form

E
(u)
x,yv(τr(t), x(τr(t)), y(τr(t))) =

= v(u, x, y) + E
(u)
x,y

⎧⎨
⎩

τr(t)∫
u

(
∂
∂s

+ L0

)
v(s, x(s), y(s)) ds

⎫⎬
⎭ ,

or formula (12) in the form

E
(u)
x,yv(t, x(t), y(t)) =

= v(u, x, y)+

t∫
u

E
(u)
x,y

{( ∂

∂s
+ L0

)
v(s, x(s), y(s))

}
ds. (13)

Besides Dynkin formula and the Second Lyapunov method one can use also well known the
supermartingale inequality [1] for positive supermartingale {ξ(t), Ft} with filtration Ft in the
form

P(sup
t≥u

ξ(t) ≥ c) ≤ 1
c
Eξ(u). (14)

Lemma 2. The trivial solution of equation (5) is exponentially p-stable if and only if there
exists the Lyapunov function v(x, y), which satisfies the conditions

c1|x|p ≤ v(x, y) ≤ c2|x|p, c1 > 0 (15)

L0v(x, y) ≤ − c3|x|p, c3 > 0 (16)

for all x ∈ R
n, y ∈ Y with some positive p.

Proof. Let there exists above mentioned the Lyapunov function. It is clearly to verify that(
∂
∂s

+ L0

)(
v(x, y)e

c3
c2

t
)

≤ 0,

and then one can write

Ex,yv(x(t), y(t))e
c3
c2

t ≤ v(x, y) ≤ c2|x|p
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for all t > 0, x ∈ R
n and y ∈ Y. Hence

Ex,y|x(t)|p ≤ 1
c1

e
− c3

c2
t
Ex,yv(x(t), y(t))e

c3
c2

t ≤ c2
c1

e
− c3

c2
t|x|p

and the equation (5) is exponentially p-stable. By using the solutions x(t + s, s, x, y) of the
equation (5) one can construct for any T > 0 function

v(x, y) :=

T∫
0

E|x(s + t, s, x, y)|p dt, (17)

which do not dependent on s owing to homogeneity of Markov process y(t). It is easily to verify
that under conditions that the matrix A(y) is uniformly bounded, that is, supy∈Y ||A(y)|| :=
a < ∞ this function satisfies the conditions (15). Let L0 be the weak infinitesimal operator of
the pair {x(t), y(t)}. If the trivial solution of equation (5) is exponentially p-stable, one can
write the inequality

L0 v(x, y) = limδ→0
1
δ
[

T∫
0

Ex,y{Ex(δ),y(δ)|x(t)|p} dt −
T∫
0

Ex,y|x(t)|p dt]

= limδ→0
1
δ
[

T∫
0

Ex,y|x(t + δ)|p dt −
T∫
0

Ex,y|x(t)|p dt]

= Ex,y|x(T )|p − |x|p ≤ (Me−γT − 1)|x|p,

where M and γ are constants from from definition of exponential p-stability stability. Now we
can put T = (ln2 + lnM)/γ and proof is complete.

Corollary 1. In the conditions of Lemma 2 the trivial solution of equation (5) is asymptotically
stochastically stable.

Proof. Due to formula (16) for v(t, x, y) = v(x, y)e
c3
c2

t
one may conclude that random process

ξ(t) := v(x(t), y(t))e
c3
c2

t

is positive supermartingale. Hence

sup
y∈Y

P(sup
t≥0

|x(t, 0, x, y| > ε) = sup
y∈Y

P(sup
t≥0

|x(t, 0, x, y|p > εp)

≤ sup
y∈Y

Px,y(sup
t≥0

{ 1
c1

v(x(t), y(t))} > εp)

= sup
y∈Y

Px,y(sup
t≥0

{ 1
c1

ξ(t)e
− c3

c2
t} > εp)

≤ sup
y∈Y

Px,y(sup
t≥0

ξ(t) > εpc1) ≤ 1
εpc1

Ex,yξ(0) ≤ c2
εpc1

|x|p
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and trivial solution of (5) is stochastically stable almost sure. Now to prove asymptotic stochas-
tic stability one can apply the supermartingale inequality (14) and write the inequalities

sup
y∈Y

P(sup
t≥u

|x(t, u, x, y| > c) = sup
y∈Y

P(sup
t≥u

|x(t, u, x, y|p > cp)

≤ sup
y∈Y

P
(u)
x,y(sup

t≥u
{ 1

c1
v(x(t), y(t))} > cp)

≤ sup
y∈Y

P
(u)
x,y(sup

t≥u
{ 1

c1
)ξ(t)e

− c3
c2

t} > cp)

≤ sup
y∈Y

P
(u)
x,y(sup

t≥u
{ 1

c1
)ξ(t)e

− c3
c2

u} > cp) ≤ 1
cpc1

Eξ(u) ≤ c2
cpc1

|x|pe−
c3
c2

u
.

2 Stochastic stability by linear approximation

In this section we will consider the quasilinear equation

dx̃

dt
= A(y(t))x̃ + g(x̃, y(t)), (18)

under conditions that the matrix A(y) and Markov process y(t) satisfy the conditions of the
Section 1, the function g(x, y) has bounded continuous x-derivative with conditions g(0, y) ≡ 0,
and for any r > 0 its x-derivative is uniformly bounded at any ball Br(0) , i.e.

sup
y∈Y

x∈Br(0)

||Dxg(x, y)|| := gr < ∞ (19)

Theorem 1.If the equation (5) is asymptotically stochastically stable and lim
r→0

gr = 0, then the

trivial solution of equation (18) is asymptotically stochastically stable.

Proof. Side by side with the equation (18) we will consider the equation (5) as an equation
of its linear approximation. Due to Lemma 1 and Lemma 2 we can construct the Lyapunov
function (17) with some small positive p. Because the matrix-valued function Dxx(t, 0, x, y) is
the Cauchy matrix of the equation (5) it permits the estimation

sup
y∈Y

E||Dxx(t + s, s, x, y)||p ≤ h2e
−γt

with some positive constants h, γ for all t > 0. Therefore the above Lyapunov function
satisfies the conditions (15)-(16) and by construction for all x �= 0 has x-derivative satisfying
the inequalities

|�xv(x, y)| = |
T∫

0

E{�x|x(t + s, s, x, y)|p} dt|

≤ p

T∫
0

E{|x(t + s, s, x, y)|(p−2)|{Dxx(t + s, s, x, y)}x(t + s, s, x, y)|} dt

≤ p|x|(p−1)

T∫
0

sup
y∈Y

E||Dxx(t + s, s, x, y)||p dt ≤ c3|x|(p−1)

volume 5 (2012), number 2 31



Aplimat - Journal of Applied Mathematics

with some positive c3. Because the above estimations do not dependent on initial time moment
s we will put for simplicity s = 0. Now one can estimate the function Lv(x, y) where L is weak
infinitesimal operator of the pair {x̃(t), y(t)}:

Lv(x, y) := (A(y)x + g(x, y),�x)v(x, y) + Qv(x, y)

= L0 v(x, y) + (g(x, y),�x) v(x, y)

≤ −1
2
|x|p + c3|x|p|g(x, y)| ≤ (grc3 − 1

2
)|x|p

for all y ∈ Y, x ∈ Br(0), r > 0. Hence, due to Dynkin formula, we may use inequality

E
(u)
x,yv(x̃(τr(t)), y(τr(t))) = v(x, y) + E

(u)
x,y{

τr(t)∫
u

(Lv)(x̃(s), y(s)) ds}

≤ v(x, y) + (grc3 − 1

2
)E(u)

x,y{
τr(t)∫
u

|x̃(s)|p ds} (20)

for all y ∈ Y, x ∈ Br(0), r > 0, t ≥ u ≥ 0. If r is sufficiently small number the second
summand in the right hand part of inequality (16) is nonpositive. Hence the stochastic process
v(x̃(τr(t)), y(τr(t))) is supermartingale and we can write the inequalities

Px,y(sup
t≥0

|x̃(t)| > ε) = Px,y(sup
t≥0

|x̃(t)|p > εp)

= Px,y(sup
t≥0

|x̃(τr(t))|p > εp) ≤ Px,y(sup
t≥0

v(x̃(τr(t)), y(τr(t)))

> c1ε
p) ≤ v(x, y)

c1εp
≤ c2δ

p)

c1εp
(21)

for all y ∈ Y, x ∈ Bδ(0), δ ∈ (0, ε), ε ∈ (0, r) and sufficiently small r > 0. The local stability
almost sure immediately follows from these inequalities. Let us define function

hR(r) =

⎧⎪⎨
⎪⎩

1, for x ∈ [0, R)
2R−r

R
, for x ∈ [R, 2R)

0, for x ≥ 2R.

The differential equation

dxR

dt
= A(y(t))xR + hR(|xR(t)|)g(xR, y(t)) (22)

has unique solution of the Cauchy problem xR(0) = x because function hR(|x|)g(x, y) satisfies
the Lipschitz condition with constant c2R. Hence the pair {xR(t), y(t)} is Markov process with
weak infinitesimal operator LR defined by equality

LRv(x, y) = (A(y)x, �x)v(x, y) + (hR(|x|)g(x, y),�x)v(x, y) + Qv(x, y)

= L0v(x, y) + (hR(|x|)g(x, y),�x)v(x, y)

and choosing R such small that (c2Rc3 − 1
2
) := −c4 < 0 one can write the inequality

LRv(x, y) ≤ −c4|x|p.
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Therefore

E
(u)
x,yv(xR(t), y(t)) ≤ v(x, y) − c4

t∫
u

E
(u)
x,y|xR(s)|p ds

≤ v(x, y) − c4

c1

t∫
u

E
(u)
x,yv(xR(s), y(s)) ds (23)

for all t ≥ u ≥ 0. Hence the stochastic process v(xR(t), y(t)) is positive supermartingale and
one can write

Px,y(sup
t≥s

|xR(t)| > ε) = Px,y(sup
t≥s

|xR(t)|p > εp)

≤ Px,y(sup
t≥s

v(xR(t), y(t)) > c1ε
p) ≤ 1

c1εp
Ex,yv(xR(s), y(s)) (24)

for all y ∈ Y, x ∈ BR(0), ε ∈ (0, R) and sufficiently small R > 0. It is not complete to get the
inequality

Ex,yv(xR(t), y(t)) ≤ v(x, y)e
− c4

c1
t ≤ c2|x|pe−

c4
c1

t

from the inequality(19), and then f it can be written

Px,y(sup
t≥s

|xR(t)| > ε) ≤ c2|x|p
εpc1

e
− c4

c1
s
.

Hence all solutions of the equation (22) which have start at t = 0 in the ball Bε(0) with
ε ∈ (0, R) and sufficiently small R tend to 0 with probability one. But up to time of the ball
Bε(0) leaving the solutions of the equations (18) and (22) with the same initial conditions in
the ball Bε(0) are coincident. So all solutions of (18) which do not leave the ball Bε(0) with
sufficiently small ε tend to zero with probability one and the proof is complete.
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ON STABILITY ANALYSIS OF QUASILINEAR DIFFERENCE
EQUATIONS IN BANACH SPACE

(SPECTRAL THEORY APPROACH)

CARKOVS Jevgenijs, (LV), SLYUSARCHUK Vasyl, (UA)

Abstract. The paper deals with the mappings of Banach space E given in a form of
quasilinear difference equation

xn+1 = Axn + Fn(xn), n ≥ 0 (1)

where A is linear continuous operator, {Fn : E → E} are nonlinear bounded operators
satisfying identity Fn(0) ≡ 0. Side by side with the above equation we consider an equation
of the first approximation, that is, the linear difference equation

yn+1 = Ayn, n ≥ 0 (2)

We will discuss the assertions which guarantee local stability or instability for the trivial
solution of (1) if (2) to be of this specificity. The proposal paper not only generalizes well
known finite dimensional stability analysis results for quasilinear difference equations.
Using spectral properties of operator A as a basis, our research shows that the infinite
dimension of the space E not only strongle complicates computations and proofs of relevant
theorems on stability analysis by the first approximation but also can have significant
influence to statement of these results.

Key words and phrases. Quasilinear difference equations; Lyapunov stability; Insta-
bility..

Mathematics Subject Classification. Primary 65P35; Secondary 39A11.

1 Notations, main definitions, and auxiliary assertions

We will follow the giving below classical notations of linear opertor theory [12]:

L(E) – Banach algebra of linear continuous operators with unit I;
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K(E) – subset of compact operators in L(E);

Ker(A) – kernel of operator A ∈ L(E);

Im(A) – image of operator A ∈ L(E);

σ(A) – spectrum of operator A ∈ L(E), that is,
λ ∈ σ(A) ⇔ Im(A − λI) �= E ;

r(A) := max{|λ| : λ ∈ σ(A)} – spectral radius of operator A ∈ L(E).

The trivial solution xn ≡ 0 is fixed point of mpping Ax+F(x) and we will discuss a behavior
of iterations (1) in some neighbourhood of it. The trivial solution of (1) is referred to as

• stable if for any positive number ε and number n0 ∈ N ∪ {0} there exists such a number
δ = δ(ε, n0) > 0, that for any solution xn of this equation the inequality sup

n≥n0

‖xn‖ < ε

follows inequality ‖xn0‖ < δ;

• instable if for some ε > 0, n0 ∈ N∪{0}, and any δ > 0 there exists such a solution xn of
this equation that ‖xn0‖ < δ and sup

n≥n0

‖xn‖ ≥ ε;

• asymptotically stable if this solution is stable and for any n0 ∈ N∪{0} there exists such a
number γ = γ(n0) > 0 that from inequality ‖xn0‖ < γ it follows the equality lim

n→∞
‖xn‖ = 0;

• exponential stable if for any n0 ∈ N ∪ {0} there exist such numbers M = M(n0) ≥ 1 and
q = q(n0) ∈ (0, 1) that

∀n ≥ n0 : ‖xn‖ ≤ Mqn−n0‖xn0‖ (3)

for any solution of this equation;

• local exponential stable if for any n0 ∈ N∪{0} there exist such numbers M = M(n0) ≥ 1,
q = q(n0) ∈ (0, 1), and r = r(n0) that for any solution of this equation from inequality
‖xn0‖ < r follows an inequality (3).

In the subsequent text of this paper we will need some of our previous results citing below.

Theorem 1.1 The following assertions are implications:

(i) the trivial solution of (2) is exponential stable;

(ii) r(A) < 1;

(iii) the series
∞∑

k=0

∥∥Ak
∥∥ converges.

Theorem 1.2 Let E be a complex Banach space, and μ is a boundary point of the set σ(A)\{0}.
For any δ > 0 and m ∈ N there exists such a vector ξ that

(1 − δ)|μ|n ≤ ‖Anξ‖ ≤ (1 + δ)|μ|n|ξ|
for all n = 0,m.
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Theorem 1.3 Let E be a real Banach space, and μ is a boundary point of the set σ(A) \ {0}.
For any δ > 0 and m ∈ N there exist such an integer number m0 ≥ m and vector u ∈ E with
norm |u| = 1 that

‖Anu‖ ≤
(√

2 + δ
)
|μ|n for any n = 0,m0

and

‖Anu‖ ≥ (1 − δ)|μ|m0

The proofs of these results one can find in the papers [1] and [7].

2 Stability by the first approximation.

This Section is devoted to stability analysis of equation (1) by the first approximation. It seems
naturally that the linear approximation equation (1) has to be subjected to condition r(A) < 1.
But it is wrong to believe that even the aasertion r(A) ≤ 1 is necessary in a case dim E = ∞.
Corresponding examples we will give in Section 3. But the proposal in this Section resalts
only generalize the well known similar theorems for finite dimensional space E and therefore an
assertion r(A) < 1 is present there.

Theorem 2.1 Assume that

(i) the trivial solution of linear equation (2) is exponential stable;

(ii) the operators Fn, n ≥ 0 satisfy condition of uniform sufficiently small sublinear growth at
zero, that is, for some positive number R there exists such a positive number ν that

sup
n≥0

‖Fnx‖ ≤ ν‖x‖, for ‖x‖ ≤ R

and

ν

∞∑
k=0

∥∥Ak
∥∥ < 1 (4)

Then the trivial solution of (1) is local exponential stable.

Proof. On the basis of the Theorem 3.1 and the first condition of the present theorem one

may be certain of convergence of series
∞∑

k=0

∥∥Ak
∥∥ := M . This permits to introduce in the space

E new norm ‖x‖A =
∞∑

k=0

∥∥Akx
∥∥ which satisfies inequality ‖x‖ ≤ ‖x‖A ≤ M‖x‖. Assuming

‖xn‖ ≤ R one can estimate the value of difference �‖xn‖A = ‖xn+1‖A − ‖xn‖A for solution of
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equation (1) in a following form:

�‖xn‖A =
∞∑

k=0

∥∥Akxn+1

∥∥ −
∞∑

k=0

∥∥Akxn

∥∥ =

=
∞∑

k=0

∥∥Ak+1xn + AkFnxn

∥∥ −
∞∑

k=0

∥∥Akxn

∥∥ ≤

≤
∞∑

k=0

∥∥Ak+1xn

∥∥ +
∞∑

k=0

∥∥AkFnxn

∥∥ −
∞∑

k=0

∥∥Akxn

∥∥ =

= −‖xn‖ +
∞∑

k=0

∥∥AkFnxn

∥∥ ≤ −‖xn‖ + M‖Fnxn‖ ≤

≤ −‖xn‖ + Mν‖xn‖ = (−1 + Mν)‖xn‖ ≤ Mν − 1

M
‖xn‖A ≤ Mν − 1

M
‖xn‖A

Therefore under condition ‖xn‖ ≤ R one can apply inequality

‖xn+1‖A ≤ q‖xn‖A

where q = 1 + Mν−1
M

< 1 because by assuption of theorem Mν < 1 and M > 1 by definition.
Taking into account the above inequality and ineqality ‖x‖ ≤ ‖x‖A ≤ M‖x‖ one can may be
sure that

‖xn‖ ≤ Mqn−n0‖xn0‖, n ≥ n0

for any ‖xn0‖ ≤ R

M
, where n0 – any integer number.

Corollary 2.2 If the trivial solution of linear equation (2) is exponential stable and

lim
‖x‖→0

sup
n≥0

‖Fnx‖
‖x‖ = 0

then the trivial solution of (1) is local exponential stable.

Remark 2.3 If (4) is not to hold then the trivial solution f equation (1) may not be local
exponential stable.

Example 2.4 Let us consider scalar difference equation

xn+1 = axn + ν|xn|, n ≥ 0, (5)

where a, ν ∈ (0, 1). The formula (4) for this equation has a form ν
∞∑

k=0

ak < 1 which equivalent

to inequality a + ν < 1. If a + ν ≥ 1 then xn = (a + ν)nx0 for each n ≥ 0 and trivial solution
of (5) is not local exponential stable.
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The proof technique of the above theorem may be used for more interesting assertion. Let
F

[m]
n : E −→ E , n ≥ m ≥ 0, be mappings defined by equalities

F[m]
n = F[m−1]

n (A + Fn−m), n ≥ m ≥ 0, F[0]
n = Fn

where A and Fn, n ≥ 0 from equation (1).

Theorem 2.5 Assume that:

(i) the trivial solution of equation (2) is exponential stable;

(ii) operators Fn, n ≥ 0 satisfy inequalities

sup
n≥0

‖Fnx‖ ≤ ϕ(‖x‖), for ‖x‖ ≤ R,

where R > 0 and ϕ : [0, R] −→ [0, +∞) – is positive continuous definitely increasing
function, and ϕ(0) = 0;

(iii) sup
n≥m

∥∥∥F
[m]
n x

∥∥∥ ≤ ν‖x‖, for ‖x‖ ≤ R, and
√

ν
∞∑

k=0

∥∥Ak
∥∥ < 1 for some integer m and positive

number ν.

Then the trivial solution of equation (1) is local exponential stable.

Proof. Further we will apply the same notations as in the proof of 2.1. It is easily seen that
the solutions of (1) satisfies inequalities

xn+1 = Axn + F[k]
n xn−k, n ≥ k,

for any k = 0,m. Under assumption ‖xn−m‖A ≤ R one can write the inequalities

�‖xn‖A =
∞∑

k=0

∥∥Akxn+1

∥∥ −
∞∑

k=0

∥∥Akxn

∥∥ =

=
∞∑

k=0

∥∥Ak+1xn + AkFnxn

∥∥ −
∞∑

k=0

∥∥Akxn

∥∥ ≤

≤
∞∑

k=0

∥∥Ak+1xn

∥∥ +
∞∑

k=0

∥∥AkFnxn

∥∥ −
∞∑

k=0

∥∥Akxn

∥∥ =

= −‖xn‖ +
∞∑

k=0

∥∥AkFnxn

∥∥ ≤ −‖xn‖ + M‖Fnxn‖ ≤

≤ − 1

M
‖xn‖A + M‖Fnxn‖ = − 1

M
‖xn‖A + M

∥∥F [m]
n xn−m

∥∥ ≤

≤ − 1

M
‖xn‖A + Mν‖xn−m‖ ≤ − 1

M
‖xn‖A + Mν‖xn−m‖A

and therefore

‖xn+1‖A ≤
(

1 − 1

M

)
‖xn‖A + Mν‖xn−m‖A (6)
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Let n0 be an arbitrary integer and μ ∈ (0, R) is such a number, that for any ‖xn0‖ ≤ μ the
solution of (1) with this initial condition satisfies inequality

max
0≤k≤m

‖xn0+k‖A ≤ R.

It may be done because continuous function ϕ : [0, R] −→ [0, +∞) definitely increases and
ϕ(0) = 0. Then based on (6) and inequalities(

1 − 1

M

)
+ Mν < 1 (7)

one can write ‖xn‖A ≤ R for each n ≥ n0. Now from (6) it is easily conclude that

‖xn+1‖A ≤
(

1 − 1

M
+ Mν

)
max {‖xn‖A . . . , ‖xn−m‖A},

for ‖xn−m‖A ≤ R. Then under condition max
0≤k≤m

‖xn0+k‖A ≤ R, where

[
n − n0

m

]
is ineger part

of number
n − n0

m
one can write inequalities

‖xn‖A ≤
(

1 − 1 − M2ν

M

)[
n−n0

m

]
max

0≤k≤m
‖xn0+k‖A

for any n ≥ n0. From this and (7) follows that the trivial solution of equation (1) is local
exponential stable.

The special case of the above theorem is following assertion.

Corollary 2.6 Assume that:

(i) the first and the second assumptions of Theorem 2.4 are fulfilled;

(ii) there exists such a number ν > 0 that

sup
n≥1

‖Fn(Ax + Fn−1x)‖ ≤ ν‖x‖, for ‖x‖ ≤ R,

and
√

ν

∞∑
k=0

∥∥Ak
∥∥ < 1.

Then the trivial solution of equation (1) is local exponential stable.

Remark 2.7 In Theorem 2.4 and Corollary 2.5 function ϕ(t) may be also of this a type as

lim
t→+0

ϕ(t)

t
= +∞. (8)
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The next example illustrates possibility of application of Theorem 2.4 or Corollary 2.5 when
the Theorem 2.1 is unusable.

Example 2.8 Let H be a nilpotent operator satisfying equalities H2 �= 0 and H3 = 0, and
F : E −→ E is operator defined by equality

F(x) =

{
0, if x = 0,
‖x‖−1/2H2x + ‖x‖Hx, if x �= 0.

Let us consider equation
xn+1 = Hxn + F(xn), n ≥ 0, (9)

It is easily seen that
‖F(x)‖ ≤ ‖H2‖

√
‖x‖ + ‖H‖‖x‖2

for each x ∈ E, and ∣∣‖x‖−1/2
∥∥H2x

∥∥ − ‖x‖‖Hx‖∣∣ ≤ ‖F(x)‖ (10)

for x ∈ E \ {0}, (that is the condition of Corollary 2.5 for function ϕ(t) = ‖H2‖√t + ‖H‖t2).
This function satisfies equality (8). This and (10) make it clear that the Theorem 4 may not
be in use for stability analysis of (1). It is obviously that the first assumption of Theorem 5 is
also fulfilled. Besides

‖F(Hx + F(x))‖ = o(‖x‖) if ‖x‖ → 0 (11)

because Hx + F(x) �= 0 and therefore

F(Hx + F(x)) = ‖Hx + F(x)‖−1/2H2(Hx + F(x)) + ‖Hx + F(x)‖H(Hx + F(x)) =

= ‖Hx + F(x)‖−1/2H2
(
Hx + ‖x‖−1/2H2x + ‖x‖Hx

)
+

+ ‖Hx + ‖x‖−1/2H2x + ‖x‖Hx‖H (
Hx + ‖x‖−1/2H2x + ‖x‖Hx

)
=

= ‖Hx + ‖x‖−1/2H2x + ‖x‖Hx‖ (
H2x + ‖x‖H2x

)
Then

‖F(Hx + F(x))‖ ≤
(
‖H‖‖x‖ +

∥∥H2
∥∥√

‖x‖ + ‖H‖‖x‖2
) ∥∥H2

∥∥ (1 + ‖x‖) ‖x‖

for any x ∈ E and local exponential stability of the trivial solution of equation (9) follows
formula (11). It should be mentioned that this assertion is trivial corollary of operator H
nilpotency because xn = 0 for any n ≥ 3.

3 Conditions of instability by the first approximation.

In this section we will analyze equation (2) under assumption that r(A) > 1. As in previous
Section the proof in many respects uses Banach space renormalization technique. This permits
not only sufficiently easily to prove results, which are similar to corresponding results for finite
dimentional space E , but also to derive theorems which are specific in a case dim E = ∞.

Theorem 3.1 Assume that:

(i) r(A) > 1;
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(ii) ∃r ∈ [1, r(A)) : σ(A) ∩ {z ∈ C : |z| = r} = ∅;

(iii) there exist such positive numbers q and ρ that

sup
n≥0

‖Fnx‖ ≤ q‖x‖ for x ∈ {y ∈ E : ‖y‖ ≤ ρ}.

Then for sufficiently small q the trivial solution of equation (1) instable.

Proof. From the beginning let us assume that r = 1 and σ(A) ∩ {z ∈ C : |z| < 1} �= ∅. Let
P+ and P− be spectral projectors corresponding to spectral sets

σ+(A) = σ(A) ∩ {z ∈ C : |z| > 1}

and

σ−(A) = σ(A) ∩ {z ∈ C : |z| < 1}

These operators define spectral decomposition of space E E+ = P+E , E− = P−E and restrictions
A|E+ and A|E− of operator A on these subspaces. By definition the spectrum of the above
restrictions coincide with sets σ+(A) and σ−(A), besides 0 �∈ σ+(A). Therefore operator

A|E+ : E+ −→ E+ is reversible and spectral radiuses of operators A|E− and
(
A|E+

)−1
less than

1. By the Theorem 1.1 the serieses

∞∑
k=1

∥∥(A|E+)−k
∥∥ and

∞∑
k=0

∥∥(A|E−)k
∥∥ .

are convergent and this permits to define in the space E a new norm

‖x‖A =
∞∑

k=1

∥∥(A|E+)−kP+x
∥∥ +

∞∑
k=0

∥∥(A|E−)kP−x
∥∥

Owing inequality m‖x‖ ≤ ‖x‖A ≤ M‖x‖ for all x ∈ E , where m = min
{

1, 1
‖A|E+

‖−1

}
> 0 and

M =
∞∑

k=1

∥∥(A|E+)−k
∥∥ +

∞∑
k=0

∥∥(A|E−)k
∥∥ < ∞ one makes sure that the norms ‖ · ‖ and ‖ · ‖A are
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equivalent. It follows the inequalities

min

{
1,

1

‖A|E+‖ − 1

}
‖x‖ ≤

≤ min

{
1,

1

‖A|E+‖ − 1

}
‖P+x‖ + ‖P−x‖ ≤

≤ 1

‖A|E+‖ − 1
‖P+x‖ + ‖P−x‖ =

=
∞∑

k=1

∥∥A|E+

∥∥−k ‖P+x‖ + ‖P−x‖ =

=
∞∑

k=1

∥∥A|E+

∥∥−k
∥∥∥(

A|E+

)k (
A|E+

)−k
P+x

∥∥∥ + ‖P−x‖ ≤

≤
∞∑

k=1

∥∥A|E+

∥∥−k ‖A|E+‖k
∥∥∥(

A|E+

)−k
P+x

∥∥∥ + ‖P−x‖ =

=
∞∑

k=1

∥∥∥(
A|E+

)−k
P+x

∥∥∥ + ‖P−x‖ ≤

≤
∞∑

k=1

∥∥∥(
A|E+

)−k
P+x

∥∥∥ +
∞∑

k=0

∥∥∥(
A|E−

)k
P−x

∥∥∥ =

= ‖x‖A ≤
( ∞∑

k=1

∥∥(A|E+)−k
∥∥ +

∞∑
k=0

∥∥(A|E−)k
∥∥)

‖x‖

Now one can apply the above constructed projective operators to solution xn of equation (1)

‖P+xn‖A =
∞∑

k=1

∥∥(A|E+)−kP+xn

∥∥ , ‖P−xn‖A =
∞∑

k=0

∥∥(A|E−)kP−xn

∥∥ and write a decomposition

‖xn‖A = ‖P+xn‖A + ‖P−xn‖A Let us estimate each item taken separately:

�‖P+xn‖A = ‖P+xn+1‖A − ‖P+xn‖A =

= ‖P+Axn + P+Fnxn‖A − ‖P+xn‖A ≥
≥ ‖P+Axn‖A − ‖P+xn‖A − ‖P+Fnxn‖A =

= ‖P+xn‖ − ‖P+Fnxn‖A ≥ 1

M
‖P+xn‖A − ‖P+Fnxn‖A

and �‖P−xn‖A ≤ − 1
M
‖P−xn‖A + ‖P−Fnxn‖A. Therefore

‖P+xn+1‖A − ‖P+x0‖A ≥
n∑

k=0

(
1

M
‖P+xk‖A − ‖P+Fkxk‖A

)
,

‖P−xn+1‖A − ‖P−x0‖A ≤
n∑

k=0

(
− 1

M
‖P−xk‖A + ‖P−Fkxk‖A

)
and one may write an inequality

‖xn+1‖A ≥ ‖P+xn+1‖A − ‖P−xn+1‖A ≥

≥ ‖P+x0‖A − ‖P−x0‖A +
n∑

k=0

(
1

M
‖xk‖A − ‖Fkxk‖A

)
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Suppose that ‖xk‖ < ρ for k = 0, n. Then ‖Fnxn‖A ≤ M‖Fnxn‖ ≤ Mq‖xn‖ ≤ M
m

q‖xn‖A and
for initial vector x0 = P+x0 we can use an inequality

‖xn+1‖A ≥
n∑

k=0

(
1

M
− M

m
q

)
‖xk‖A + ‖x0‖A (12)

Note that for 0 < q <
m

M2
value

1

M
− M

m
q is positive and therefore

‖xn‖A ≥
(

1 +
1

M
− M

m
q

)n

‖x0‖A (13)

An instability of trivial solution of (1) follows the above inequality because for ε < ρ and for
any ‖x0‖ = ‖P+x0‖ there exists such anumber n ∈ N that ‖xn‖ ≥ ε. Note that if σ(A) ∩ {z ∈
C : |z| < 1} = ∅ the theorem can be proved with the help of norm ‖x‖A =

∞∑
k=1

∥∥A−kx
∥∥ in the

same way as for σ(A) ∩ {z ∈ C : |z| < 1} �= ∅. First we shall show that for solution of (1)
under assumption max

0≤k≤n
‖xk‖ < ρ the formula (12) is true. Secondly as it has been done before

one can establish the inequality (13) which convinces of instability of trivial solution of (1).
Thus we have proved Theorem 3.1 for a case r = 1.

Let us assume now that r ∈ (1, r(A)). Side by side with (1) we consider equation

xn+1 = Axn + F̆nxn, n ≥ 0 (14)

where

F̆nx =

⎧⎨
⎩

Fnx, for ‖x‖ ≤ ρ,
‖x‖
ρ

Fn
ρ

‖x‖x, for ‖x‖ > ρ.

Owing inequality ‖F̆nx‖ ≤ q‖x‖ for each x ∈ E one can easy be certain that the trivial solutions
of equtions (1) and (2) are stable or instable concurrently. Substituting in (14)

xn = rnyn (15)

we will have for yn equation

yn+1 = r−1Ayn + r−n−1F̆nrnyn, n ≥ 0 (16)

where r(r(A))−1 > 1, σ(r−1A) ∩ {z ∈ C : |z| = 1} = ∅, and ‖r−n−1F̆nrnx‖ ≤ r−1q‖x‖ ≤ q‖x‖
for any x ∈ E . As it follows from our previous results, this inequality quarantees instabiliuty
of the trivial solution of equation (16). With regard to equation (15) and inequality r > 1 one
may assert that the trivial solution of equation (14) is instable.

Let us remark that for a case dim E < ∞ it follows that spectrum set σ(A) consists of
finite number of points and therefore one may resign the third assertion of Theorem 3.1. This
convins of the following assertion. But if dim E = ∞ the below example makes it clear that un
the above this assertion may not be rejected.
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Example 3.2 ([2]). Let B ∈ L(E), σ(B) = {z ∈ C : |z| ≤ 1}, and (Bm)m≥0 be a sequnce of
nilpotent operators acting in Banach space E satisfying following assumptions:

lim
n→∞

‖Bn − B‖ = 0 (17)

Applying the results of [10] one can construct the above mentiontioned operators for example
in the spaces l2 or L2([0, 1]). Assume that in (1) A = e−εI+B with ε ∈ (0, 1), and F[m]x =(
e−εI+Bm − e−εI+B

)
x, x ∈ E By definition r(A) > 1, and

‖F[m]x‖ ≤ ∥∥e−εI+Bm − e−εI+B
∥∥ ‖x‖, x ∈ E

Therefore it follows from (17) that lim
m→∞

‖F[m]x‖ = 0 and for any q > 0 due to assumption (17)

one can choose such an integer m that ‖F [m]x‖ ≤ q‖x‖ for any x ∈ E. Besides equation (1) of
our example may be rewritten in a following form

xn+1 = e−εI+Bmxn, n ≥ 0,

and r
(
e−εI+Bm

)
= e−ε < 1, m ≥ 1. Therefore the trivial solution of defined in our example

difference equation (1) is asymptotically stable for whatever positive number q.

It should be mentioned that if dim E = ∞ even under assumptions lim
‖x‖→0

sup
n≥0

‖Fnx‖
‖x‖ = 0 and

r(A) > 1 the trivial solution of (1) may be asymptotically stable. Corresponding example one
can find in [5]. To resign the second assertion permits more rigid condition on behaviour of
function Fn(x) as ||x|| → 0. In our previous paper [1] we have prove a following result.

Theorem 3.3 Assume that:

(i) r(A) > 1;

(ii) there exist such positive number a, p, and ρ that
sup
n≥0

‖Fnx‖ ≤ a‖x‖1+p for any x ∈ {y ∈ E : ‖y‖ ≤ ρ}.

Then the trivial solution of (1) is instable.

In this paper we prove more stronger result, weakening the second assertion of the above therem.

Theorem 3.4 . Assume that:

(i) r(A) > 1;

(ii) there exists such a continuous monotone function {q(y), 0 ≤ y ≤ ρ} that q(0) = 0 and ρ
that sup

n≥0
‖Fnx‖ ≤ q(‖x‖)‖x‖;

(iii) there exist such a number ν ∈ (0, ρ] and a sequence {f(n), n ∈ N} that ‖An‖≤f(n)(r(A))n

for any n ∈ N and series
∞∑

k=1

f(k)q
(
ν(r(A))−k

)
converges.
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Then the trivial solution of (1) is instable.

Proof.. At first we assume that E is a complex Banach space. Let δ, P and γ are such positive
numbers that 1 + δ < P < 2, and

∞∑
k=0

f(k)q
(
γr−k

)
<

(P − 1 − δ)r

P
<

r

2
(18)

Taking into account (18), a monotony of function q(y), and choosing such a number ε ∈
(0, γP−1r−1), and an integer n(ε) > 0 that

γ

r
≤ εPrn(ε) ≤ γ (19)

one can be certain of the inequality

n−1∑
k=0

f(n − 1 − k)q
(
εPrk

)
<

(P − 1 − δ)r

P
, (20)

for any n = 1, n(ε). Based on Theorem 1.2 one can find such a vector ξ ∈ {x ∈ E : ‖x‖ = 1}
that

(1 − δ)rn ≤ ‖Anξ‖ ≤ (1 + δ)rn, n = 1, n(ε) (21)

Let us split the solution xn of equation (1) with initial condition x0 = ξ ∈ {x ∈ E : ‖x‖ = 1}
in a following form

xn = x1,n + x2,n, (22)

where x1,n = Anx0, and x2,n =
n−1∑
k=0

An−1−kFkxk, n ≥ 1

In compliance with (21) and the second asseretion of theorem there exists such an integer
m ∈ [0, n(ε)], that

‖xn‖ ≤ εPrn (23)

for any n = 0,m. Therefore

‖x2,n‖ =

∥∥∥∥∥
n−1∑
k=0

An−1−kFkxk

∥∥∥∥∥ ≤
n−1∑
k=0

‖An−1−k‖ ‖Fkxk‖ ≤

≤
n−1∑
k=0

f(n − 1 − k)rn−1−kq
(
εPrk

)
εPrk =

= εrn P

r

n−1∑
k=0

f(n − 1 − k)q
(
εPrk

)

and ‖x1,n‖ ≤ (1 + δ)εrn for any n ∈ [1,m]. Then

∀n = 1,m : ‖xn‖ ≤
(

1 + δ +
P

r

n−1∑
k=0

f(n − 1 − k)q
(
εPrk

))
εrn,
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and, because from (20) follows inequality

1 + δ +
P

r

n−1∑
k=0

f(n − 1 − k)q
(
εPrk

)
< P,

for n = 1, n(ε), we may apply (23) for any n ∈ [1, n(ε)]. Applying (19)–(21), we can find lower
bound for ‖xn(ε)‖:

‖xn(ε)‖ ≥ ‖x1,n(ε)‖ − ‖x2,n(ε)‖ ≥

≥ (1 − δ)εrn(ε) − εrn(ε)P

r

n(ε)−1∑
k=0

f(n(ε) − 1 − k)q(εPrk) =

= εrn(ε)

⎛
⎝1 − δ − P

r

n(ε)−1∑
k=0

f(n(ε) − 1 − k)q
(
εPrk

)⎞⎠ ≥

≥ εrn(ε)

(
1 − δ − P

r
· (P − 1 − δ)r

P

)
≥ γ(2 − P )

Pr
= a > 0

Therefore ‖xn(ε)‖ ≥ a for any arbitrarily small ε = ‖x0‖ and the proof of theorem for a complex
Banach space is completed. Now let E be a real Banach space. Like before we can find such
positive numbers δ, P and γ that

√
2 + δ < P < 2 and

∞∑
k=0

f(k)q
(
γr−k

)
<

(
P −√

2 − δ
)
r

P
<

r

2
(24)

For any ε ∈ (0, γP−1r−1) there exists such an integer n(ε) > 0, that γ
r
≤ εPrn(ε) ≤ γ. Applying

Theorem 1.3 one can choose a number m0 ≥ n(ε) and a vector u ∈ E, ‖u‖ = 1, which permits
write inequalities

∀n = 0,m0 : ‖Anu‖ ≤
(√

2 + δ
)
|μ|n (25)

and
‖Anu‖ ≥ (1 − δ)|μ|m0 (26)

Besides owing monotony of sequaence f(n) from (24) follows inequality

n−1∑
k=0

f(n − 1 − k)q
(
εPrk

)
<

(
P −√

2 − δ
)
r

P
(27)

for all n = 1,m0. Let us choose such a number ε1 ∈ (0, ε) that

γ

r
≤ ε1Prm0 ≤ γ (28)

and estimate the solution xn of (1) with initial condition x0 = ε1u, splitting this in a form
(22). Fomula (25) and the second assertion of theorem guarantee existence such an integer
m ∈ [0,m0] that

‖xn‖ ≤ ε1Prn (29)
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for any n = 0,m. Then

‖x2,n‖ =

∥∥∥∥∥
n−1∑
k=0

An−1−kFkxk

∥∥∥∥∥ ≤
n−1∑
k=0

‖An−1−k‖ ‖Fkxk‖ ≤

≤
n−1∑
k=0

f(n − 1 − k)rn−1−kq
(
ε1Prk

)
ε1Prk =

= ε1r
n P

r

n−1∑
k=0

f(n − 1 − k)q
(
ε1Prk

)
‖x1,n‖ ≤

(√
2 + δ

)
ε1r

n

and one can apply inequality

‖xn‖ ≤
(√

2 + δ +
P

r

n−1∑
k=0

f(n − 1 − k)q
(
ε1Prk

))
ε1r

n

for each n = 1,m. Because from (27) follows formula

√
2 + δ +

P

r

n−1∑
k=0

f(n − 1 − k)q
(
ε1Prk

)
< P

for any n = 1,m0, we have proved inedquality (29) for any integer n ∈ [1,m0].
To find lower bound of ‖xm0‖ one can use the formulae (25)–(27) and derive inequalities

‖xm0‖ ≥ ‖x1,m0‖ − ‖x2,m0‖ ≥

≥ (1 − δ)ε1r
m0 − ε1r

m0
P

r

m0−1∑
k=0

f(m0 − 1 − k)q
(
ε1Prk

)
=

= ε1r
m0

(
1 − δ − P

r

m0−1∑
k=0

f(m0 − 1 − k)q
(
ε1Prk

)) ≥

≥ ε1r
m0

(
1 − δ − P

r
·
(
P −√

2 − δ
)
r

P

)
≥ γ

(
1 +

√
2 − P

)
Pr

= a > 0

Therefore the value of chosen solution ‖xm0‖ with satisfying equality ε1 = ‖x0‖ initial condition
remains not less then a > 0 for any arbitrary small number ε1. The proof is completed.

Example 3.5 Let us consider difference equation

xn+1 = Axn +

{
(1 − ln ‖xn‖)−2−pBxn, if xn �= 0,
0, if xn = 0,

(30)

where p > 0, operator A ∈ L(E) satisfies inequality

∀n ∈ N : ‖An‖ ≤ M(1 + n)2n,
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σ(A) = {t : 0 ≤ t ≤ 2}, B ∈ L(E) – nontrivial operator, and E – a complex Banach space.
Now we choose sequence f(n) = M(1 + n) and function

q(y) =

{
‖B‖|1 − ln y|−2−p, for y > 0,

0, if y = 0,

and substitute these in series
∞∑

k=0

f(k)q
(
ν(r(A))−k

)
from the third assertion of Theorem 3.4:

∞∑
k=0

M‖B‖(1 + k)

(1 − ln ν + kln 2)2+p

Not so difficult to proof that this series converges for any ν ∈ (0, 1). From the above we can be
sure that for equation (30) all assertions of theorem 3.4 are satisfied and therefore the trivial
solution of (30) is instable.

Remark 3.6 Theorem 3.3 is a sequence of Theorem 3.4.

Proof. Let us define sequence f(n) = max
s∈[0,n]∩(N∪{0})

‖As‖(r(A))−s and function

q(y) =

⎧⎪⎨
⎪⎩

(
f̂

(
1

ln r(A)
ln

1

y

))−1

(1 − ln y)−1−p, for y ∈ (0, 1],

0, if y = 0,

where p > 0 and f̂(t) is such a continuous monotony function that restriction f̂ |N∪{0} onto
N ∪ {0} coinside with above defined f(n). By definition

f̂

(
1

ln r(A)
ln

1

y

)
≥ f̂

(
1

ln r(A)
ln

v

y

)

for each y ∈ (0, v] and v ∈ (0, 1]. Therefore

∞∑
k=0

f(k)q
(
v(r(A))−k

) ≤
∞∑

k=0

f(k)q
(
(r(A))−k

)
=

=
∞∑

k=0

f(k)
(
f̂(k)

)−1

(1 + k ln r(A))−1−p =

=
∞∑

k=0

(1 + k ln r(A))−1−p < ∞

To prove that

lim
y→+0

yε

q(y)
= 0 for any ε > 0 (31)

one may apply a substitution y = (r(A))−t and rewrite (31) in following form

lim
t→+∞

(r(A))−εt

q((r(A))−t)
= 0 for any ε > 0 (32)
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Taking into accountan Gelfand formula r(A) = lim
n→+∞

n
√‖An‖ and equalities

yε

q(y)
=

f̂(t)(1 + t ln r(A))1+p

(r(A))εt
≤ f([t + 1])(1 + t ln r(A))1+p

(r(A))ε[t]
=

=
f([t + 1])√
(r(A))ε[t]

· (1 + t ln r(A))1+p√
(r(A))ε[t]

,

lim
t→+∞

f([t + 1])√
(r(A))ε[t]

= 0,

lim
t→+∞

(1 + t ln r(A))1+p√
(r(A))ε[t]

= 0,

we can get formula (32), which is equivalent to (31). Therefore if one may apply Theorem 3.4
then, based on (31), one also may apply Theorem 3.3.

It is well known [12] that the spectrum σ(A) may be presented as a sum of disjoint sets

σ(A) = σp(A) ∩ σc(A) ∩ σr(A)

where

λ ∈ σp(A) ⇔ {∃x �= 0 : (A − λI)x = 0};
λ ∈ σc(A) ⇔ {Im(A − λI) = E ,∃x /∈ Im(A − λI)};
λ ∈ σr(A) ⇔ {Im(A − λI) �= E}.

Here and further an overline over a metric set denotes a closure of it. Stability analysis of (1)
becomes simpler if there exists such a number δ < 1 that the set {z ∈ C : |z| > δ contains only
eigenvalues of operator A (for example, dim E < ∞,A is compact opertor). But sometimes, as
it has been shown by our research, one can succesfully use bound points of σ(A), eleminating
a part of spectrum σess.a(A) ⊂ σ(A) called essentially approximative spectrum.

Definition 3.7 ([6]) Complex number λ is an essentially approximative spectrum point iff there
exists such an essentially divergent sequence {xn, n ∈ N} ⊂ E that lim

n→∞
||(A − λI)xn|| = 0.

In [6] has been proved follofing results.

Lemma 3.8 For any A ∈ �L(E)

σ(A) ∩ {z ∈ C : |z| = r} �= ∅ ⇔ σ(A) ∩ {z ∈ C : |z| = r} �= ∅ (33)

Theorem 3.9 Let us assume that:

(i) σess.a(A) ∩ {z ∈ C : |z| > 1} �= ∅;
(ii) there exist such a continuous function ϕ : R+ → R and operator sequnce Kn ∈ K(E), n ≥ 0

that ϕ(0) = 0 and ‖Fnx‖ ≤ ϕ(‖Knx‖) for all (n, x) ∈ N × E.

50 volume 5 (2012), number 2



Aplimat - Journal of Applied Mathematics

Then the trivial solution of (1) is instable.

Applying the above results, we can reasonably simply generelize Theorem 3.1.

Theorem 3.10 Let us assume that:

(i) r(A) > 1;

(ii) there exists a sequence of compact opoerators {Kn, n ∈ N} ⊂ K(E), and q0 := sup
n≥0

‖Kn‖ <

∞;

(iii) ‖Fnx‖ ≤ ‖Knx‖ for all (n, x) ∈ N × E.

Then for sufficiently small q0 the trivial solution of (1) is instable.

Proof. If σ(A)∩{z ∈ C : |z| = r} = ∅ for some r ∈ [1, r(A)) the proof of theorem follows from
Theorem 3.1. If σ(A) ∩ {z ∈ C : |z| > 1} �= ∅ then by (33) σess.a(A) ∩ {z ∈ C : |z| > 1} �= ∅
and one can apply Theorem 3.4. The proof is completed.
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GEOMETRICALLY   NONLINEAR   PLATES   SUBJECTED 

TO  A MOVING MASS 
 

ENSHAEIAN  Alireza,  (IR),    ROFOOEI  Fayaz R., (IR)  
 
 

Abstract. The dynamic displacement of a geometrically nonlinear rectangular plate under a 
moving concentrated mass is evaluated utilizing both perturbation techniques and numerical 
methods. The governing differential equation of motion for an un-damped large deformable 
rectangular plate is derived using Lagrange method. While the main differential equation is 
obtained for a moving mass travelling on an arbitrary trajectory, the multiple scales method is 
used to find the solution for a moving mass passing over the plate on a straight line parallel to 
any of the plate’s edges. The inertial effect of the moving mass is considered by inclusion of all 
out-of-plane translational acceleration components. A numerical example is used to evaluate the 
dynamic response of the nonlinear plate obtained using perturbation method. The numerical 
results obtained show good agreement with the closed form solution for the case of relatively 
slow moving mass velocity, for the moving mass weight being less than 20% of the plate’s 
weight. 
 
Key Words: Moving Mass, Geometric Nonlinearity, Multiple Scales Method, Dynamic 
Amplification Factor, Lagrange Method  
 
Mathematics Subject Classification:  Dynamic equations on time scales  

 
 
1 Introduction 
 
The dynamic behavior of the structures subjected to moving loads has been addressed by many 
researchers over time. The problem is of central importance in the structural design of bridges as an 
example, where the nature of loading influences the optimum design substantially. There exist 
numerous investigations in this regard. The earlier studies were generally based on an integral 
transformation approach, and the inertial effects of the moving mass were limited only to 
considering a moving load (vertical component of the mass inertia) ([1, 2]). On the other hand, the 
inertial effects of the moving mass cannot be ignored especially when the weight of the moving 
mass is comparable to the weight of the supporting structure. Recent investigations have proved that 
neglecting the convective acceleration components may lead to significant errors in determining the 
dynamic response of the system[5]. 
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The moving mass problem has been mostly focused on beam models, while the effect of traveling 
masses on plates has received less attention. Various researches performed on the influence of a 
moving mass traversing a Kirchhoff plate, have recognized the importance of load inertia [4, 6]. A 
comprehensive investigation on the dynamic response of plates subjected to moving masses has 
been performed by Fryba [3]. Surprisingly, not much attention has been paid to study the effect of 
geometric nonlinearities on the dynamic response of plates under a moving mass with the inclusion 
of all vertical and convective acceleration components. 

In the present work, the geometrical nonlinearities of a simply supported plate under a moving mass 
are included in the form of dynamic analog of von Karman equations. In this regard, the membrane 
and bending energies of a Hookean linear plate is evaluated using a vibrational mode shape of a 
simply supported rectangular plate. Also, the potential energy associated with the moving mass is 
obtained by considering all inertial components. Having calculated the potential energy terms of the 
coupled mass-plate system and also the kinetic energy of the excited plate, the governing 
differential equation of motion is derived through application of the well-known Lagrange method. 
Observing the significance of the moving mass inertial effects, all out-of-plane translational 
acceleration components are considered in the formulation of the problem. 

The resulting governing ordinary differential equation describes the vibration of Duffing’s oscillator 
with cubic nonlinearity and time varying coefficients. Since derivation of this equation incorporates 
all inertial component, apart from time-varying mass coefficient, damping term and time-varying 
stiffness coefficient are also present. The solution to the complete form of the derived differential 
equation is obtained employing multiple scales method. Besides, the resulting non-linear ODE is 
numerically solved using the MATLAB program, to investigate the accuracy of the developed 
closed-form solution to the problem. Since the perturbation solution provides an insight into the 
dynamic behavior of the system, it is of more scientific value in comparison to the numerical 
solution. It is shown that the geometric nonlinearity is well captured by the provided solution, 
especially for low-velocity, low weight moving masses. 
 
 
2 Problem formulation 
 
As it was mentioned before, the dynamic behavior of a plate is considered using the von Karman 
plate theory. The discrete governing equations are derived by application of Hamilton’s principle. A 
uniform un-damped rectangular plate of length ܽ and width ܾ, shown in Fig. 1, with arbitrary 
boundary condition is considered.  

 

 
Fig.1. Moving mass traversing the plate on a arbitrary trajectory 
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The mass density of the plate is assumed to be  ߩ, with its bending stiffness defined as D ൌ ୉hయ

ଵଶ൫ଵ‐஝మ൯
, 

in which ܧ, ݄  and ߥ are plate’s modulus of elasticity, thickness and Poisson’s ratio, respectively. 
Also, ݑሺݔ, ,ݕ ,ݔሺݒ ,ሻݐ ,ݕ ,ݔሺݓ ሻ andݐ ,ݕ  ሻ denote the deflection of the mid-plane of the plate at anyݐ
point and at any time ݐ, in directions parallel to ݕ ,ݔ and ݖ axes. The kinetic energy of the plate is 
equal to: 

௣௟௔௧௘ܭ  ൌ
ଵ

ଶ
׬ ሶݓ݄ߩ ଶ	݀ܣ
	
஺  (1) 

On the other hand, assuming Green-Lagrange strains, the strain energy of plate becomes equal to 
[8]: 

 ܷ௣௟௔௧௘ ൌ
஽

ଶ
׬ ൜ሺ׏ଶݓሻଶ ൅

ଵଶ

௛మ
݁ଵଶ െ 2ሺ1 െ ሻߥ ൤ଵଶ

௛మ
݁ଶ ൅

డమ௪

డ௫మ
డమ௪

డ௬మ
െ ቀ డ

మ௪

డ௫డ௬
ቁ
ଶ
൨ൠ  (2) ܣ݀

 
where, 

 ݁ଵ ൌ ݑ߲ ݔ߲ ൅⁄ ଵ

ଶ
ቀడ௪
డ௫
ቁ
ଶ
൅ ݒ߲ ݕ߲ ൅⁄ ଵ

ଶ
ቀడ௪
డ௬
ቁ
ଶ
 (3) 

and, 

 ݁ଶ ൌ ൬߲ݑ ݔ߲ ൅⁄ ଵ

ଶ
ቀడ௪
డ௫
ቁ
ଶ
൰ ൬߲ݒ ݕ߲ ൅⁄ ଵ

ଶ
ቀడ௪
డ௬
ቁ
ଶ
൰ െ

ଵ

ସ
ቀ߲ݑ ݕ߲ ൅⁄ ݒ߲ ݔ߲ ൅⁄ డ௪

డ௫

డ௪

డ௬
ቁ
ଶ
 (4) 

Using the Dirac-delta function, the external excitation force due to a moving mass, ܯ, traveling on 
an arbitrary trajectory on the plate surface can be described as, 

 ݂ሺݔ, ,ݕ ሻݐ ൌ ܯ ቀ݃ െ ௗమ௪బሺ௧ሻ

ௗ௧మ
ቁ ݔ൫ߜ െ ݕ൫ߜሻ൯ݐ଴ሺݔ െ  ሻ൯ (5)ݐ଴ሺݕ

where ݃ is the acceleration of gravity. The vertical displacement of the moving mass is shown by 
 ሻ describe its trajectory on the plate. Considering all the out-of-planeݐ଴ሺݕ ሻ andݐ଴ሺݔ ሻ, whileݐ଴ሺݓ
translational acceleration components, and observing the full contact condition between the moving 
mass and the plate, Eq. (5) can be expanded as: 

 ݂ሺݔ, ,ݕ ሻݐ ൌ ܯ ቀ݃ െ ௗమ௪ሺ௧ሻ

ௗ௧మ
ቁ
௫ୀ௫బሺ௧ሻ,௬ୀ௬బሺ௧ሻ
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൅
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డ௬
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ቋ ݔ൫ߜ െ ݕ൫ߜሻ൯ݐ଴ሺݔ െ  ሻ൯ (6)ݐ଴ሺݕ

 
Therefore the virtual work done by external force becomes: 

 ܹ ൌ ׬ ݂ሺݔ, ,ݕ ܣ݀	ݓሻݐ
	
஺  (7) 

where ݂ሺݔ, ,ݕ ,ݔሺݑ is evaluated using Eq. (6). The unknown parameters of the plate are	ሻݐ ,ݕ  ,ሻݐ
,ݔሺݒ ,ݕ ,ݔሺݓ ሻ andݐ ,ݕ  :ሻ that can be discretized using appropriate spatial functions as the followingݐ

 
,ݔሺݑ  ,ݕ ሻݐ ൌ ,ݔሺߟሻݐሺݎ ,			ሻݕ ,ݔሺݒ ,ݕ ሻݐ ൌ ,ݔሻ߰ሺݐሺݏ ,		ሻݕ ,ݔሺݓ ,ݕ ሻݐ ൌ ,ݔሻ߶ሺݐሺݍ  ሻ (8)ݕ

 
Where the selected spatial functions ߟሺݔ, ,ݔሻ, ߰ሺݕ ,ݔሻ and ߶ሺݕ  ሻ should satisfy the requiredݕ
boundary conditions. The function associated with the vertical displacement ߶ሺݔ,  ሻ is selected asݕ
the linear mode shape of the plate in the vertical direction. Using Eq. (8) and applying Lagrange 
method leads to, 
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డ൫௄೛೗ೌ೟೐ି௎೛೗ೌ೟೐൯

డ௥
െ ௗ

ௗ௧
ቀ
డ௄೛೗ೌ೟೐

డ௥
ቁ ൌ െ డௐ

డ௥
 (9) 
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ቀ
డ௄೛೗ೌ೟೐

డ௦
ቁ ൌ െ డௐ

డ௦
 (10) 

 
డ൫௄೛೗ೌ೟೐ି௎೛೗ೌ೟೐൯

డ௤
െ ௗ

ௗ௧
ቀ
డ௄೛೗ೌ೟೐
డ௤

ቁ ൌ െ డௐ

డ௤
 (11) 

Performing the mathematical manipulations, equations (9) and (10) can be used to calculate the 
parameters ݎሺݐሻ and ݏሺݐሻ as functions of ݍሺݐሻ. Therefore, both potential and kinetic energy of the 
system in Eq. (11) are expressed as functions of  ݍሺݐሻ only. Thus, Eq. (11) reduces to an ordinary 
differential equation with cubic nonlinearity as the following: 

 

 ቂ׬ ܣଶ݀߶݄ߩ
஺
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ଶ ቀ׬ ܣଶ݀߶݄ߩ

஺
଴ ቁ ൅

,ሻݐ଴ሺݔ൫߶ܯ ሶ଴ݔሻ൯ൣݐ଴ሺݕ
ଶሺݐሻ߶,௫௫൫ݔ଴ሺݐሻ, ሻ൯ݐ଴ሺݕ ൅ ሶ଴ݕ

ଶሺݐሻ߶,௬௬൫ݔ଴ሺݐሻ, ሻ൯ݐ଴ሺݕ ൅
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஽

ଶ
ሻଷݐሺݍ߁ ൌ ,ሻݐ଴ሺݔ൫߶݃ܯ  ሻ൯  (12)ݐ଴ሺݕ

 
Selecting ߶ሺݔ,  ሻ as the natural mode shape of the linear system, ߱଴ denotes the related naturalݕ
frequency of the plate. Assuming a simply supported plate, the general mode shape is, ߶ሺݔ, ሻݕ ൌ

sin ቀ௠గ௫

௔
ቁ sin ቀ௡గ௬

௕
ቁ, where ݉ and ݊ are positive integers. The associative natural frequency is as 

the following: 

 ߱଴
ଶ ൌ ܦ గర

ఘ௛
ቀ௠

మ

௔మ
൅ ௡మ

௕మ
ቁ
ଶ
 (13) 

Parameter ߁ in Eq. (12) is a constant that depends on the geometric shape of the plate, Poisson’s 
ratio and the vertical spatial function parameters respectively. This parameter originates from the 
nonlinear strain terms in equations (3) and (4) leading to a nonlinear equation of motion. Eq. (12) 
includes all the vertical and convective acceleration components. 
 
 
2.1 Equation Solution 
 

Consider a simply supported plate with the general mode shape, ߶ሺݔ, ሻݕ ൌ sin ቀ௠గ௫

௔
ቁ sin ቀ௡గ௬

௕
ቁ. A 

moving mass is traversing the plate with constant velocity ܿ on a path parallel to ݔ axis that is 
coincided on one of the plate’s edge. In that case, Eq. (12) becomes: 
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where, 
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Introducing the perturbation parameter as,  

 ߳ ൌ ெ

ఘ௛௔௕
 (16) 

and substituting in Eq. (14) leads to: 
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Introducing the following non- dimensional parameters: 
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ఠ
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Equation (17) can be re-written in a non- dimensional form as the following: 

 ሾ1 ൅ 4߳ ଶሺ݉߬ሻ݊݅ݏ ߨଶሺ݊݊݅ݏ ଴ܻሻሿ ሷܳ ሺ߬ሻ ൅ 4	݉߳ ሺ݉߬ሻ݊݅ݏ ߨଶሺ݊݊݅ݏ ଴ܻሻ ሺ݉߬ሻݏ݋ܿ ሶܳ ሺ߬ሻ ൅ ൛ ഥ߱଴
ଶ െ

4	݉ଶ߳ ଶሺ݉߬ሻ݊݅ݏ ߨଶሺ݊݊݅ݏ ଴ܻሻൟܳሺ߬ሻ ൅ ሺ߬ሻଷܳ	߳ߗ ൌ ܩ߳	4 ሺ݉߬ሻ݊݅ݏ ߨሺ݊݊݅ݏ ଴ܻሻ (19) 

Equation (19) now is in the right from for application of perturbation techniques such as multiple 
scales method. Defining: 

 ଴ܶ ൌ ߬				,					 ଵܶ ൌ ߳߬ (20) 
and: 

଴ܦ  ൌ
డ

డ బ்
ଵܦ					,				 ൌ

డ

డ భ்
 (21) 

The unknown function ܳሺݐሻ can be assumed as: 

 ܳሺ߬ሻ ൌ ܳ଴ሺ ଴ܶ, ଵܶሻ ൅ ߳ܳଵሺ ଴ܶ, ଵܶሻ (22) 

Substituting equations (20) to (22) in Eq. (19) and separating different orders of ߳, the following 
two linear ordinary differential equations are obtained: 

଴ܦ												:	߳	݂݋	ݎ݁݀ݎ݋	݋ݎ݁ݖ	ݎ݋݂ 
ଶܳ଴ ൅ ഥ߱଴

ଶܳ଴ ൌ 0 (23) 
and : 

 	:߳	݂݋	ݎ݁݀ݎ݋	ݐݏ1	ݎ݋݂																																													

଴ܦ			
ଶܳଵ ൅ ഥ߱଴

ଶܳଵ ൌ
െ2ܦ଴ܦଵܳ଴ െ 4 sinଶሺ݉߬ሻ sinଶሺ݊ߨ ଴ܻሻ ଴ܦ

ଶܳ଴ െ 4	݉	 sinሺ݉߬ሻ sinଶሺ݊ߨ ଴ܻሻ cosሺ݉߬ሻܦ଴ܳ଴ ൅
4	݉ଶ 	sinଶሺ݉߬ሻ sinଶሺ݊ߨ ଴ܻሻ ܳ଴ െ Ωܳ଴

ଷ ൅ ܩ4 sinሺ݉߬ሻ sinሺ݊ߨ ଴ܻሻ                                                 (24) 

The solution to Eq. (23) is as follows: 

 ܳ଴ ൌ ሺܣ ଵܶሻ݁௜ఠഥబ బ் ൅ ܿܿ (25) 

Where the ܿܿ denote the complex conjugate of the other present terms on the right hand side. To 
avoid secular terms in solution of ܳଵ, the coefficients on the right side of Eq. (24) should be set to 
zero: 

 2 sinଶሺ݊ߨ ଴ܻሻ ൫ ഥ߱଴
ଶ ൅ ݉ଶ൯ܣ െ 3	Ω	ܣଶ̅ܣ െ 2 డ஺

డ భ்
݅ ഥ߱଴ ൌ 0 (26) 

Thus from equation (24),  ܳଵ is calculated as: 
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 ܳ ଵ ൌ ܣ sinଶሺ݊ߨ ଴ܻሻ ቂ
൫ఠഥబ

మା௠మା௠	ఠഥబ൯

ሺఠഥబାଶ௠ሻమିఠഥబ
మ ݁௜ఠഥబ బ்ାଶ௜௠ బ் ൅

൫ఠഥబ
మା௠మି௠	ఠഥబ൯

ሺఠഥబିଶ௠ሻమିఠഥబ
మ ݁௜ఠഥబ బ்ିଶ௜௠ బ்ቃ ൅ Ωܣଷ ቀ௘

య೔ഘഥబ೅బ

଼ఠഥబ
మ ቁ െ

	݅	ܣ	2 ୱ୧୬
ሺ௡గ௒బሻீ

ఠഥబ
మି௠మ ݁௜௠ బ் ൅ ܿܿ  (27) 

Assuming ܣ ൌ ଵ

ଶ
ሺߙ ଵܶሻ݁௜ఉ

ሺ భ்ሻ and using Eq. (26) to evaluate  ܣሺ ଵܶሻ, one gets: 

ߙ  ൌ ,							଴ߙ ߚ ൌ ߟ ଵܶ ൅ ଴ߚ ൌ ቆ ଷஐ

଼	ఠഥబ
଴ଶߙ െ ഥ߱଴ sinଶሺ݊ߨ ଴ܻሻ ൬1 ൅ ቀ௠

ఠഥబ
ቁ
ଶ
൰ቇ ଵܶ ൅  ଴ (28)ߚ

Where ߙ଴ and ߚ଴ can be obtained using initial conditions. Having calculated ܣሺ ଵܶሻ from Eq. (28),  
ܳሺ߬ሻ is found to be: 

 ܳሺ߬ሻ ൌ ܳ଴ ൅ ߳ܳଵ ൌ ଴ߙ cosሺ ഥ߱଴߬ ൅ ߟ ߳ ߬ ൅ ଴ሻߚ ൅ ߳ ቂsinଶሺ݊ߨ ଴ܻሻ
൫ఠഥబ

మା௠మା௠	ఠഥబ൯

ሺఠഥబାଶ௠ሻమିఠഥబ
మ cosሺ ഥ߱଴߬ ൅ ߟ ߳ ߬ ൅

2݉߬ ൅ ଴ሻߚ ൅ sinଶሺ݊ߨ ଴ܻሻ
൫ఠഥబ

మା௠మି௠	ఠഥబ൯

ሺఠഥబିଶ௠ሻమିఠഥబ
మ cosሺ ഥ߱଴߬ ൅ ߟ ߳ ߬ െ 2݉߬ ൅ ଴ሻߚ ൅

ஐ

ଷଶ
଴ଷߙ cosሺ3 ഥ߱଴߬ ൅ ߟ	3

߳ ߬ ൅ ଴ሻߚ3 ൅
ସ	ீ

ఠഥబ
మି௠మ sinሺ݊ߨ ଴ܻሻ sinሺ݉߬ሻቃ  (29) 

In Eq. (29), the constants ߙ଴ and ߚ଴ can be calculated using the initial conditions of the problem. 
Eq. (29) is valid as long as the moving mass has not left the plate. After the mass traverses the plate 
completely, the plate vibrates in its free vibration phase described by ([8]), 

 ܳሺ߬ሻ ൌ ߳ܽ cosሺ ഥ߱′߬ ൅ ଴ሻߚ ൅ ܱሺ߳ଷሻ (30) 
where: 

 ഥ߱′ ൌ ഥ߱଴ ቂ1 ൅
ଷஐఢ

଼ఠഥబ
మ ሺ߳ܽሻଶቃ ൅ ܱሺ߳ଷሻ (31) 

The parameters ߳ܽ and ߚ଴ are calculated using the initial conditions for the free oscillation phase.  
Equations (29) and (31) present the closed form solution of the moving mass problem described 
earlier. The ODE solver of the MATLAB program which is based on the Runge-Kutta method, is 
utilized to numerically verify the accuracy of the presented closed-form solutions.  

 
 
3 Nnumerical Example 
 
A simply supported square plate shown in Fig. 2, with a modulus of elasticity, ܧ ൌ 7.1 ൈ 10ଵ଴ܲܽ, 
mass density: ߩ ൌ 2700	݇݃/݉ଷ	, length: 2 ݉, thickness: 1	ܿ݉, and the Poisson’s ratio: ߥ ൌ 0.33, is 
considered. A straight trajectory is assumed for the moving mass, passing through the center line of 
the plate as shown in Fig.2. The problem is solved for three moving mass velocities as well as three 
mass weights. Representing the weight of the moving mass as a fraction of the plate’s weight, the 
mass ratios equal to 0.05	, 0.1 and 0.2 are considered in this example.  

 
Fig.2. Path of the moving mass 
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The spatial function ߶ሺݔ,  ሻ is assumed to be the simply supported plate’s first modal shapeݕ
function. The first mode shape and the related natural period of the plate are: 

 ߶ሺݔ, ሻݕ ൌ sin ቀగ௫
௔
ቁ sin ቀగ௬

௕
ቁ (32) 

 ଵܶ ൌ
ଶ

൜గ൤ቀభ
ೌ
ቁ
మ
ାቀభ

್
ቁ
మ
൨ൠ
ටఘ௛

஽
 (33) 

 
As it was mentioned earlier, it is assumed that the plate is demonstrating a geometrically nonlinear 
behaviour under the applied loading. The moving mass M is assumed to travel along a linear path 
over the plate. Under the moving mass excitation, the dynamic response of the plate is made up of a 
forced vibration part followed by a free vibration, once the moving mass leaves the plate’s 
boundaries. The linear path is defined by the following equation (Fig.2): 

ሻݐ଴ሺݕ  ൌ
௕

ଶ
	, ሻݐ଴ሺݔ ൌ  (34) ݐܿ

In which ܿ is the velocity of the moving mass. Fig.3 shows the dynamic amplification factor (DAF) 
of the center point of a 2݉	x 2݉ rectangular plate, when the weight of the moving mass is 
considered to be 0.05, 0.1 and 0.2 of the plate’s weight. The velocity of the mass in this figure is 

ᇱݒ where ′ݒ0.1 ൌ ଶ௔

భ்
. 

Fig.3. Plate’s center time history response for  ݒ ൌ0.1ݒ′ and ߳ ൌ 0.05,0.1	and	0.2 
The result for the case with the mass velocity equal to 0.3ݒ′ is presented in Fig. 4. Similarly, Fig. 5 
shows the output for the mass velocity equal to 0.5ݒ′. 
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Fig.4. Plate’s center time history response for  ݒ ൌ0.3ݒ′ and ߳ ൌ 0.05,0.1	and	0.2 
 

Fig.5. Plate’s center time history response for  ݒ ൌ0.5ݒ′ and ߳ ൌ 0.05,0.1	and	0.2 
 

The dynamic amplification factor (DAF) is defined as the ratio of the absolute maximum dynamic 
deflection of the plate to its maximum static response at the center point. The static deflection of the 
center point of a square plate under a concentrated mass ܯ, applied at the same point is equal to 

Δ௦௧௔௧௜௖ ൌ
଴.଴ଵଵ଺ெ௚௔మ

஽
 [7].  

As it can be observed, the accuracy of the solution obtained using perturbation technique is highly 
dependent on the mass weight and the velocity of the moving mass. Deviation of the analytical 
results from their numerical counterpart grows as the mass and velocity ratios increase. Since the 
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mass ratio is considered as the perturbation parameter, this phenomenon makes sense for this case, 
while the velocity ratio effect originates from the time-varying nature of Eq.  (17). As the velocity 
of the mass increases, the characteristic parameters (natural frequencies) of the governing equation 
change more rapidly. Therefore the slowly-varying time scales incorporated in the multiple scales 
method fail to capture this rapid change which leads to considerable errors in their related results. 

 
 
4 Conclusion 
 
The dynamic response of a geometrically nonlinear rectangular plate under a moving concentrated 
mass is evaluated utilizing both perturbation techniques and numerical methods. Governing 
differential equation of motion for von Karman plates subjected to a moving mass was developed 
based on Lagrange method. This equation was solved for the case of recti-linear mass trajectory. 
The effects of weight and velocity of the mass on the dynamic response of the system have been 
investigated. The solutions gained using multiple scales method show good agreement with their 
pertinent numeric results for cases in which the mass ratios are less than 0.2 and their velocities be a 
small fraction of the specific value ݒ′. As the mass velocity and its weight increases, the obtained 
results start to deviate from the numerical results. For appropriate ranges of mass and velocity 
ratios, the closed form solution resulted from the application of multiple scale method, captures the 
real response of the geometrically nonlinear plate quite well. 
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THE STUDY OF A NONLINEAR SYSTEM
IN THE CASE WITH TWO OSCILLATING MASS

LAST LINE

FLOREA Olivia, (RO)

Abstract. The dynamical system referred in this paper is part of the category of the
dynamical systems with geometrical or mechanical variables parameters. Such oscillating
parametrical systems are encountered in the case of the pendulum with variable length
wire, of the variation of the length or the width of the shaft rotation, of the modification
of the rigidity and amortization coefficients. These systems have an important utility in
practice in the case of elevators or cranes, in the case of the transporters based on the
vibrations. These systems are controlled from the stability, bifurcations and resonances
point of view, such type of control leading to the avoidance of the catastrophes.
We consider a fixed system of axis and a mass M which performs some oscillations on an
inclined plane; on this mass is suspended a pendulum of mass m and length l(t) and the
wire is passing over a pulley.
The mathematical model leads to a system with two freedom degrees; the two masses
are connected non stationary, hence obtaining some non linear equations with variables
coefficients. In our model we have: the displacement of M on the inclined plane is r,
the oscillating angle of the pendulum is θ, the angle of the inclined plane made with
the horizontal axis is α and the wire length of the pendulum which varies linearly or
harmonically is l(t). The solutions for the Cauchy problem are obtained through the
method of the small parameters or the method of successive approximations, but more
important is the study of the stability, of the bifurcations and the resonance. Some
of equations are of the Hill or Mathieu type. The Ince - Strutt stability chart or the
analytical and numerical simulations with averages in the phase’s plane are used.

Key words and phrases. nonlinear dynamical systems, stability, Ince Strutt diagrams.
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1 The study of a nonlinear dynamic system of two nonstationary bound bodies
with permanent oscillations

Given a dynamic system which consists in a M mass oscillator operated by an elastic resort POA
on an incline plane ( POA = r0 +r , P and O fixed, where PO = r0 is the static position) and a
mass m pendulum suspended in A trough the AB=l (A(M), B(m)) wire. The wire is operated
by affixed pulley N and passes trough NAB; the pulley mobility can give various variations of
the wire length AB=l(t) (linear l(t) = l0 ± vt or harmonic l(t) = l(t) cos χt ). Given the xOy
axes in the vertical plane (with Ox vertical and Oy horizontal) whre the forces act; the elastic
F̄e = −k(r̄ + r̄0) force and the gravity force Ḡ = Mḡ = Mg�i act over M ; and the gravity force
mg�i acts on m; with k the elastic constant. The coordinates of A, B are A(x1, y1), B(x2, y2)

x1 = r sin α, y1 = r cos α, x2 = x1 + l cos θ, y2 = y1 + l sin θ (1)

Where α is the angle of the inclined plane POA with the horizontal and θ is the angle
between the AB wire and the vertical.

The kinetic energy of the system is: T = M
2

(ẋ2
1 + ẏ2

1)+ m
2

(ẋ2
2 + ẏ2

2) and the potential energy
a U for the q1 = r, q2 = θ degrees of freedom will be

T =
(M + m)ṙ2

2
+

m

2

(
l2θ̇2 + 2ṙlθ̇ cos(θ + α)

)
+

m

2

(
l̇2 + 2ṙl̇ sin(θ + α)

)
(2)

U =
kr2

2
+ mgl(1 − cos θ)

If l=ct the system becomes stationay S and if l=l(t) the system becomes nonstationary N;
for α = 0, π

2
the oscillator is horizontal or vertical.
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The Lagrange equations d
dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= 0, k = 1, 2 with L=T-U become in the described

two situations: ⎧⎨
⎩

d
dt

[
(M + m)ṙ + mlθ̇ cos(θ + α)

]
+ kr = 0, l = ct

d
dt

[
ml2θ̇ + mlṙ cos(θ + α)

]
+ mgl sin θ = 0

(S) (3)

⎧⎨
⎩

d
dt

[
(M + m)ṙ + mlθ̇ cos(θ + α) + ml̇ sin(θ + α)

]
+ kr = 0, l = l(t)

d
dt

[
ml2θ̇ + mlṙ cos(θ + α)

]
+ mlṙθ̇ sin(θ + α) − mṙl̇ cos(θ + α) + mgl sin θ = 0

(N) (4)

In the paper we’ll study the two situations (3), (4) only in the case of the vertical oscillator
M with α = π

2
.

2 The vertical stationary case (SV) r = x, α = π
2

horizontal armed crane, the A(x)
extremity oscillates vertically

The system (3) becomes:{
(M + m)ẍ − mlθ̈ sin θ − mlθ̇2 cos θ = −kx

ml2θ̈ − mẍl sin θ = −mgl sin θ
(5)

We’ll make the notations:

μ = m
m+M

, ω2 = k
m+M

, x0 = (M+m)g
k

, ε = x0

l
, τ = ωt

X = x
l
, δ = g

lω2

(6)

Where: dx
dt

= dx
dτ

ω = x′ω, dθ
dt

= θ′ω we obtain:{
X” + X = μ [θ′2 cos θ + θ” sin θ]
θ” − X” sin θ = −δ sin θ

(7)

We normalize the system:{
X”

(
1 − μ sin2 θ

)
+ X = μθ′2 cos θ − δμ sin2 θ

θ”
(
1 − μ sin2 θ

)
= −δ sin θ + μθ′2 sin θ cos θ − X sin θ

(8)

The stability study is made around the equilibrium solutions θ = 0, X = ε cos(τ−τ0) where,
for t=0, τ = τ0, X0 = x0

l
= ε, ẋ0 = 0 . The system (8) liniarized around equilibrium points has

the characteristic polynomial P4 = (r2 + 1)(r2 + δ) with pure imaginary roots. In this case the
equilibrium point for the linearized system is simple stabile (center) but we can’t appreciate
the nonlinear system stability (8). For this situation we’ll appeal the direct study of the system
(8), that will lead us to an equation of Mathieu type.

So, with the substitution φ = θ and Z = X − ε cos(τ − τ0) and the development sin φ =

φ− φ3

3
+ . . . , in the first approximation sinφ ≈ φ we obtain from (8) the fundamental equations:

d2φ

dτ 2
+ (δ + ε cos τ) φ = 0 Mathieu equation (9)
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The problem od stability for the solution θ ≡ 0, x = x0

l
cos ωt leads to the study of the

equation (9) of Mathieu type, for witch stability studies are made trough the Ince-Strutt δ =
δ(ε) diagonals.

In the equation (9) the perturbation function is cos τ with a period of 2π ; it can be seen
that a solution is φ = cos τ and φ(−τ) = −φ(τ), φ(−τ),−φ(τ) must be solutions; in this case
we’ll seek for both even and odd solutions:

φ =
a0

2
+

∞∑
k=1

ak cos kπ, φ =
∞∑

k=1

bk sin kπ (10)

With the period T = 4π ; φ = a0

2
+

∞∑
k=1

ak cos kπ
2

, φ =
∞∑

k=1

bk sin kπ
2

.

By introducing these solutions into the equation and transforming the products in sums we
have trigonometric identifications that lead to the system homogeneous in ak which imply that
the system determinant is null.

These determinants in the (δOε) plane lead to the ε = ε(δ) graphics. Considering in the
Fourier solutions the n = 1, 2, 3, . . . rank terms, we have:

Δ =

∣∣∣∣∣∣∣∣∣∣

δ ε 0 0 . . . 0
ε
2

δ − 1 ε
2

0 . . . 0
0 ε

2
δ − 4 ε

2
0 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 . . . ε

2
δ − n2 ε

2
. . . 0

∣∣∣∣∣∣∣∣∣∣
,

Δ2 = δ(δ − 1) − ε2

2
= 0

Δ3 = 0, . . . , Δn = 0

Δn =
[
δ − (n − 1)2] Δn−1 − ε2

4
Δn−2 ⇒

δ = δ(ε) → ε = ε(δ)
δ = 1 − 1

12
ε2, δ = 1

4
− ε

2
, δ = 1

4
+ ε

2

(11)

For ε ≥ 0 above the graphics ε = ε(δ) we have instability and between ε and the graphics
we have stability. The instability is called parametrical resonance, when ε grows above the
diagonals. In the inferior half-plane ε < 0 we have symmetry. So, by taking δ = g

lω2 = k2

4
, k =

1, 2, 3, . . . and ω1 = 2
√

g
l
, ω2 =

√
g
l
, . . . , ω1 = 2

n

√
g
l

. We have parametric resonance around
these frequencies ωn . Therefore, the pendulum around θ = 0 can be perturbated in the vertical
plane; the usual pendulum resonance is in the vicinity of ω =

√
g
l

and in composition with
the oscillator, parametrical resonances appear in the vicinity of ωn . For ε with small values,

66 volume 5 (2012), number 2



Aplimat - Journal of Applied Mathematics

ε = x0

l
, we have instability for Δ2 with 1

4
− ε

2
< δ and δ < 1

4
+ ε

2
(initil positions choosen on

the vertical), if:

x0 >
l

2
− 2g

ω2
or x0 >

2g

ω2
− l

2
(12)

If besides the oscillator, an damper is mount, the equation becomes:

φ” + 2hφ′ + (δ + ε cos τ)φ = 0, h > 0 (13)

In this case the asymptotic stability from Z is transmitted also in the nonlinear case for X.
With the transformation φ = e−hτψ the equation:

ψ2 + (δ − h2 + ε cos τ)ψ = 0 (14)

is obtained, which is of Mathieu type, if we take δ1 = δ − h2 . For δ, ε, h given, the stability
in ψ is obtained, meaning asymptotic stability related to φ .

3 The nonstationary vertical case (NV) l = l(t), r = x, α = π
2

In this situation, the equations (4) become, considering θ small with sin θ ≈ 0, cos θ ≈ 1 and
the linear bound l1 = l0 ± νt .

{
ẍ + ω2x = μ d2

dt2

(
l1(t)θ2

2

)
d2

dt2
(l(t)θ) + g−ẍ

l
(l1θ) = 0

, x(0) = a, ẋ(0) = b, ω2 =
k

m + M
, θ(0) = c, θ̇(0) = d (15)

Following the small parameter μ = m
m+M

we look for solutions of the following type:

x(t) = x0(t) + μx1(t) + . . .
θ(t) = θ0(t) + μθ1(t) + . . .

(16)

Identifying based on the powers of μ we obtain the following equations after l1 = l0 ± νt
where the sign +ν is the raise to power of M and −ν is the lowering of M.

ẍ0 + ω2x0 = 0, x0(0) = a, ẋ(0) = b ⇒ x0 = a cos ωt +
b

ω
sin ωt (17)

d2

dt2
(l1θ0) +

g − ẍ

l
(l1θ0) = 0, θ0(0) = c, θ̇0(0) = d

Considering the solution (17) we obtain for θ0 from (18) the Cauchy problem. We look for
the solution of this problem shaped as a series of powers with Picard successive approximations
where 0 ≤ t ≤ l0

ν
= χ .

θ0(t) = c + dt +

[
−d

χ
− (g + aω2) c

2χν

]
t2 + . . . (18)

The solution θ0(t) is unique in the simple regularity conditions from here. We study the
implications of these solutions (17), (19) on the stability. We note with E(t) the coefficient from
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the (18) equation; for a periodic solution E>0 and stable; we retrieve the boundaries specifying
the period, frequency and the movement.

E(t) =
g + ω

√
aω2 + b2 sin(ωt + ϕ)

l2(t)
, tgϕ =

aω

b
, 0 ≤ t ≤ l0

ν
= χ (19)

For the case of M with the speed (+v) , the length l1 shortens from l0 to l∗1(l0 > l∗1) with

time T =
l0−l∗1

v
, with Emin < E < Emax , we have for E>0, g > ω

√
a2ω2 + b2 the solution θ0

becomes oscillated (harmonic) being able to pass trough the zero position multiple times, until
an oscillation of m is done in a period T = 2π

ω
.

m∗ = min E
t∈[0,T ]

=
g − ω

√
a2ω2 + b2

l0
,M∗ = max E

t∈[0,T ]
=

g + ω
√

a2ω2 + b2

l0
.

During the wire shortening the length l shortens from l0 to l1 in T = (l0 − l1)/v time, the
solution θ0(t) is oscillated and the difference between two stagnations is ρ, π√

M∗ ≤ ρ ≤ π√
m∗ .

In order for the solution θ0(t) to pass trough zero at lest k times it a must that T
(

π√
m∗

)
≥ k

meaning

(l0 − l1)
2 (g − ω)

√
a2ω2 + b2

l0π2v2k2
≥ 1 (20)

4 Conclusions

1. During the pendulum wire’s shortening l(t), there is the solution that for an oscillation
of M (the oscillator) in a period T , the m pendulum can make k oscillations.

2. At a lengthening of the wire l(t), there is a possibility that for each oscillation of the m
pendulum the oscillator M can perform n vertical oscillations.

3. For short periods in which E < 0 auto-oscillation phenomenon may appear.
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Abstract. In this paper we present the homotopy perturbation method. We apply the
method to solve a class of singular initial value problems for the second-order and the third-
order ordinary differential equations. The homotopy perturbation method yields solutions
in convergent series forms with easily computable terms, and in presented examples, this
method gives exact solutions.
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1 Introduction

The homotopy perturbation method (HPM) was proposed for solving linear and nonlinear di-
fferential equations, integral and integro-differential equations first by He [9-11]. The homotopy
perturbation method [7-11, 13] is a combination of the classical perturbation technique and
homotopy concept as used in topology.

Several techniques including decomposition, spline, finite difference, multi-integral, modified
variational iteration and variational iteration have been applied for solving singular equations
which arise in several physical phenomena in mathematical physics, astrophysics, theory of
stellar structure, thermal behavior of a spherical cloud of gas, isothermal gas spheres and
theory of thermionic currents (see [1-5, 12-18]).

In the paper we apply the He’s homotopy perturbation method to solving singular initial
value problems for the second-order and the third-order ordinary differential equations. Using
this method and its modification we obtain exact solutions for certain classes of singular initial
value problems.
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2 Homotopy perturbation method

To illustrate the basic ideas of this method we consider the following equation

A(u) − f(r) = 0, r ∈ Ω (1)

with the boundary conditions

B(u, ∂u/∂n) = 0, r ∈ Γ (2)

where A is a general differential operator, B a boundary operator, f(r) a known analytical
function and Γ is the boundary domain Ω.

The operator A can be generally divided into two parts of L and N , where L is the linear
part, while N is the nonlinear part. Equation (1) can be rewritten as

L(u) + N(u) − f(r) = 0. (3)

By the homotopy technique, we construct a homotopy as

v(r, p) : Ω × [0, 1] → R

which satisfies

H(v, p) = (1 − p)[L(v) − L(u0)] + p[A(v) − f(r)] = 0, r ∈ Ω (4)

or

H(v, p) = L(v) − L(u0) + pL(u0) + p[N(v) − f(r)] = 0 (5)

where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation of (1) which
satisfies the boundary conditions. From here we obtain

H(v, 0) = L(v) − L(u0) = 0, (6)

H(v, 1) = A(v) − f(r) = 0. (7)

Changing the variation of p from 0 to 1 is the same as changing H(v, p) from L(v) − L(u0) to
A(u) − f(r). In topology, this is called deformation, L(v) − L(u0) and A(v) − f(r) are called
homotopic. According to HPM, we can use the embedding parameter p as a small parameter
and assume that a solution of (4) and (5) can be written as a power series

v = v0 + pv1 + p2v2 + . . . (8)

The approximate solution of (1) can be obtained as

u = lim
p→1

v = v0 + v1 + . . . (9)

The convergence of series (9) has been prooved by He[11].
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3 HPM for Lane-Emden type equations

Consider the Lane-Emden type initial value problem

y′′ +
2

x
y′ + F (u) = m, y(0) = A, y′(0) = B, (10)

where A,B are constants. We define the homotopy as

y′′ +
2

x
y′ + pF (u) = 0, (11)

where p ∈ [0, 1] is the embedding parameter. Let

y = y0 + py1 + p2y2 + p3y3 + . . . (12)

be the solution of (10). Substituting (12) in (11) we get

∞∑
i=0

piy′′
i +

2

x

( ∞∑
i=0

piy′
i

)
+ pF

( ∞∑
i=0

piyi

)
= 0. (13)

Equating the coefficients of terms of like powers of p in (13) gives

p0 : y′′
0 +

2

x
y′

0 = 0, y0(0) = A, y′
0(0) = B.

p1 : y′′
1 +

2

x
y′

1 + F (y0) = 0, y1(0) = y′
1(0) = 0.

p2 : y′′
2 +

2

x
y′

2 +
d

dy0

F (y0) = 0, y2(0) = y′
2(0) = 0,

p3 : y′′
3 +

2

x
y′

3 + y2
d

dy0

F (y0) +
1

2
y2

1

d2

dy2
0

F (y0) = 0, y3(0) = y′
3(0) = 0,

...

Example 1. Consider the following singular initial value problem

y′′ +
2

x
y′ + 4(2ey + ey/2) = 0, y(0) = y′(0) = 0.

From (13) we have

p0 : y′′
0 +

2

x
y′

0 = 0, y0(0) = 0, y′
0(0) = 0.

p1 : y′′
1 +

2

x
y′

1 + 4(2ey0 + ey0/2) = 0, y1(0) = y′
1(0) = 0.

p2 : y′′
2 +

2

x
y′

2 + 4y1(2e
y0 +

1

2
ey0/2) = 0, y2(0) = y′

2(0) = 0,

p3 : y′′
3 +

2

x
y′

3 + 4y2(2e
y0 +

1

2
ey0/2) + 2y2

1(2e
y0 +

1

4
ey0/2) = 0, y3(0) = y′

3(0) = 0,

...
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Corresponding solutions have the form

y0(x) = 0, y1(x) = −2x2, y2(x) = x4, y3(x) = −2

3
x6, . . .

From here we obtain

y(x) = −2x2 + x4 − 2

3
x6 + . . . = −2 ln(1 + x2).

Example 2. Now we consider singular initial value problem for the differential equation of the
third order

y′′′ − y′′ − 1

x
y = 0, y(0) = 0, y′(0) = 1, y′′(0) = 2. (14)

Put y1(x) = y(x), y2(x) = y′′, y3(x) = y′′(x) then equation (14) is equivalent to the system

y′
1 = y2,

y′
2 = y3, (15)

y′
3 =

1

x
y1 + y3

According to HPM we have

v1 =
∞∑
i=0

piv1i, v2 =
∞∑
i=0

piv2i, v3 =
∞∑
i=0

piv3i (16)

and

y1(x) = lim
p→1

v1(x), y2(x) = lim
p→1

v2(x), y3(x) = lim
p→1

v3(x). (17)

We can construct a homotopy of system (15) in the form

(1 − p)(v′
1 − v2 − u′

10) + p(v′
1 − v2) = 0

(1 − p)(v′
2 − v3 − u′

20) + p(v′
2 − v3) = 0 (18)

(1 − p)(v′
3 − u′

30) + p(v′
3 −

1

x
v1 − v3) = 0

Substituting initial conditions and (16) into (18) and rearranging based on powers of p-terms,
we get

(v′
10 − v20) + p(v′

11 − v21)p
2(v′

12 − v22) + p3(v′
13 − v23) + . . . = 0,

(v′
20 − v30) + p(v′

21 − v31)p
2(v′

22 − v32) + p3(v′
23 − v33) + . . . = 0,

v′
30 + p(v′

31 − v30 − 1

x
v10) + p2(v′

32 − v31 − 1

x
v11) + p3(v′

33 − v32 − 1

x
v12) + . . . = 0
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Solving the system differential equations at powers of pi, i = 0, 1, 2, . . . , we obtain

v10(x) = x + x2,

v11(x) =
1

2
x3 +

1

24
x4,

v12(x) =
1

8
x4 +

1

60
x5 +

1

2880
x6,

v13(x) =
1

40
x5 +

11

2880
x6 +

13

100800
x7 +

1

967680
x8,

...

v20(x) = 1 + 2x,

v21(x) =
3

2
x2 +

1

6
x3,

v22(x) =
1

2
x3 +

1

12
x4 +

1

480
x5,

v23(x) =
1

8
x4 +

11

480
x5 +

13

14400
x6 +

1

120960
x7,

...

v30(x) = 2,

v31(x) = 3x +
1

2
x2,

v32(x) =
3

2
x2 +

1

3
x3 +

1

96
x4,

v33(x) =
1

2
x3 +

11

96
x4 +

13

2400
x5 +

1

17280
x6,

...

From (17) we obtain

y1(x) = x + x2 +
1

2!
x3 +

1

3!
x4 +

1

4!
x5 +

1

5!
x6 + . . . (19)

y2(x) = 1 + 2x +
3

2
x2 +

2

3
x3 +

5

24
x4 +

1

20
x5 +

1

180
x6 + . . .

y3(x) = 2 + 3x + 2x2 +
5

6
x3 +

1

4
x4 +

1

30
x5 +

23

14400
x6 + . . .

Hence y(x) = y1(x) = xex is the exact solution of equation (14).
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e-mail: xhalfa06@stud.feec.vutbr.cz

Aleksandra Kukharenko
Department of Complex Systems Modelling
Kiev University, 01033 Kiev, UKRAINE
e-mail: akukharenko@ukr.net

Doc. RNDr. Zdeněk Šmarda, CSc.
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ON STABILITY INTERVALS OF EULER METHODS
FOR A DELAY DIFFERENTIAL EQUATION

HRABALOVÁ Jana, (CZ)

Abstract. The paper discusses the asymptotic stability regions of Euler discretizations
for a linear delay differential equation

y′(t) = ay(t − τ).

We compare our results with the asymptotic stability domain for the underlying delay
differential equation.

Key words and phrases. Delay differential equation, Euler methods, asymptotic sta-
bility.

Mathematics Subject Classification. Primary 39A12,65L20; Secondary 39A30.

1 Introduction

The aim of this paper is to investigate the asymptotic stability regions of Euler methods for
the test delay differential equation

y′(t) = ay(t − τ), a ∈ R, t > 0 (1)

y(t) = g(t), −τ ≤ t ≤ 0. (2)

We recall that equation (1) is called asymptotically stable if

lim
t→∞

y(t) = 0

for all continuous initial functions g(t). It is well known that the asymptotic stability domain
Sτ of (1) is given by

Sτ =
{

a ∈ R : 0 > aτ > −π

2

}
, (3)
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which yields the necessary and sufficient condition for the asymptotic stability of (1). The
aim of this paper is to formulate intervals of asymptotic stability for its Euler discretizations.
Moreover, we are going to discuss their mutual relations, as well as their relations with respect
to the asymptotic stability domain Sτ of (1).

The paper is organized as follows. Section 2 provides discretizations of the equation (1) for
both the forward and backward Euler method. In this part we also introduce the notion of
stability and recall the Levin-May result, which gives a criterion for the asymptotic stability of
a three-term difference equation. In Section 3, we discuss the asymptotic stability region of the
backward Euler method and its properties. The asymptotic stability intervals for the forward
Euler method are investigated in Section 4. The final section presents other discretizations of
the equation (1).

2 Preliminaries

We start with discretizations of the equation (1). Let h > 0 be a stepsize given by

h =
τ

k
, k ∈ Z

+. (4)

This stepsize restriction is imposed to avoid an interpolation of a delayed term.
When we apply the backward Euler method with the stepsize h to the equation (1), we

obtain the difference equation
xn+1 = xn + ahxn+1−k, (5)

where xn is the numerical solution at the grid points tn = nh, n ∈ Z
+.

The forward Euler method leads to the difference equation of the form

xn+1 = xn + ahxn−k. (6)

Both equations (5) and (6) are special three-term delay difference equations of the form

xn+1 = xn + αxn−m, n = 0, 1, 2, . . . , (7)

where α ∈ R and m ∈ Z
+ are scalars. We recall that (7) is said to be asymptotically stable if

lim
n→∞

xn = 0

for any solution xn of (7).
One of basic stability notions considered in numerical discretizations of delay differential

equations is the notion of τ(0)-stability (see [1]). We recall this notion for a general numerical
step-by-step method.

Definition 2.1 The τ(0)-stability region of a numerical step-by-step method for (1) is the set

Sτ(0) =
⋂
k≥1

Sτ,k,

where, for given integers k and τ , Sτ,k is the set of the real numbers a such that the discrete
numerical solution {xn}n≥0 of (1), with a constant step size h = τ

k
, satisfies limn→∞ xn = 0 for

all initial functions g(t).
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Definition 2.2 A numerical step-by-step method for (1) is τ(0)-stable if

Sτ(0) ⊇ Sτ .

The problem of τ(0)-stability for the equation (1) (involving also a non-delayed term by(t))
was discussed by Calvo-Grande [2] and Guglielmi [4], who showed that the backward Euler
method is τ(0)-stable, whereas the forward Euler method does not have this property. In this
paper, we aim to find explicit stability intervals for numerical discretizations (5), (6) including
their basic properties (for other recent qualitative investigations of delay differential equations
we refer, e.g. to [7]).

To analyze these properties, we utilize the following necessary and sufficient condition for
asymptotic stability of the difference equation (7), which is due to Levin-May (see [5]).

Theorem 2.1 Let α be a real constant and m be a positive integer. The difference equation
(7) is asymptotically stable if and only if

0 > α > −2 cos
mπ

2m + 1
. (8)

In the sequel, we use the criterion (8) in its equivalent form

0 > α > −2 sin
π

4m + 2
. (9)

We show that the inequalities (8) and (9) are actually equivalent, i.e. it holds

cos
mπ

2m + 1
= sin

π

4m + 2
. (10)

Rewrite the equality (10) as

arccos

(
cos

mπ

2m + 1

)
= arccos

(
sin

π

4m + 2

)
.

Using

arccos x =
π

2
− arcsin x

we arrive at

arccos

(
sin

π

4m + 2

)
=

π

2
−arcsin

(
sin

π

4m + 2

)
=

π

2
− π

4m + 2
=

mπ

2m + 1
= arccos

(
cos

mπ

2m + 1

)
.

Comparing the relevant relations we can verify the equivalency of (8) and (9).

3 The backward Euler method

In this section, we will focus on the backward Euler method (5). To our purposes it is convenient
to consider the equation (5) in the form

xn+1 = xn +
aτ

k
xn+1−k. (11)
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Let Sτ,k be the set of all real parameters a such that (11) is asymptotically stable. The direct
application of Theorem 2.1 to (11) yields

Sτ,k =

{
a ∈ R : 0 > aτ > −2k sin

π

4k − 2

}
.

The following assertion describes some basic properties of Sτ,k.

Theorem 3.1 Let k1, k2 be arbitrary positive integers such that k2 > k1 ≥ 2. Then

Sτ,k1 ⊃ Sτ,k2 ⊃ Sτ .

Moreover,
lim
k→∞

Sτ,k = Sτ .

Proof. We wish to show that

−2k1 sin
π

4k1 − 2
< −2k2 sin

π

4k2 − 2
, 2 ≤ k1 < k2

or equivalently,

2k1 sin
π

4k1 − 2
> 2k2 sin

π

4k2 − 2
, 2 ≤ k1 < k2. (12)

Consider the function
f(x) = 2x sin

π

4x − 2
, x ∈ R. (13)

The inequality (12) is satisfied when f(x) is decreasing on the interval 〈2,∞) . Since

f ′(x) = 2 sin
π

4x − 2
− 8πx

(4x − 2)2
cos

π

4x − 2
,

it is enough to show that

2 sin
π

4x − 2
− 8πx

(4x − 2)2
cos

π

4x − 2
< 0 on 〈2,∞) . (14)

Obviously,

cos
π

4x − 2
> 0, x ∈ 〈2,∞) ,

hence (14) is equivalent to

tan
π

4x − 2
<

4πx

(4x − 2)2
. (15)

Both the functions are continuous and decreasing on the interval 〈2,∞). Moreover, for x = 2

tan
π

6
<

2π

9
.

We consider the equality

tan
π

4x − 2
=

4πx

(4x − 2)2
. (16)
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If we substitute
s =

π

4x − 2
,

then x = π
4s

+ 1
2

and (16) becomes

tan s = s +
2s2

π
, s ∈

(
0,

π

6

〉
.

Let g1(s) = tan s and g2 = s + 2s2

π
. Both the functions are increasing on

(
0, π

6

〉
and

g1(0) = g2(0) and g1

(π

6

)
< g2

(π

6

)
.

We show that g1(s) < g2(s) on
(
0, π

6

〉
. Doing this, we first investigate the derivatives

g′
1(s) =

1

cos2 s
, g′

2(s) = 1 +
4s

π
.

Obviously,

g′
1(0) = g′

2(0), g′
1

(π

6

)
< g′

2

(π

6

)
and both g′

1(s), g′
2(s) are increasing on

(
0, π

6

〉
. To discuss the inequality g′

1(s) < g′
2(s) on

(
0, π

6

〉
we consider the second derivatives

g′′
1(s) =

2 sin s

cos3 s
, g′′

2(s) =
4

π
.

It holds

g′′
1(0) = 0 and g′′

1

(π

6

)
=

8

3
√

3
>

4

π
.

Since g′′
1(s) is continuous on

(
0, π

6

〉
, g′′

1(s) and g′′
2(s) intersects each other on

(
0, π

6

〉
. Moreover,

g′′′
1 (s) =

2 cos4 s + 6 sin2 s cos2 s

cos6 s
> 0, s ∈

(
0,

π

6

〉
,

hence g′′
1(s) is increasing on

(
0, π

6

〉
and there exists a unique β ∈ (0; π

6
) such that g′′

1(β) = g′′
2(β).

Since g′′
1(

π
8
) < 4

π
, we can specify that β ∈ (

π
8
, π

6

)
. Consequently,

g′
1(s) < g′

2(s), s ∈
(
0,

π

8

)
. (17)

Discussions on g′′
1(s), g′′

2(s) show that there exists at most one root γ ∈ (
π
8
; π

6

)
of g′

1(s) = g′
2(s).

However,

g′
1

(π

6

)
< g′

2

(π

6

)
and combining with (17) we have

g′
1(s) < g′

2(s), and s ∈
(
0;

π

6

〉
.

Consequently,

g1(s) < g2(s), s ∈
(
0;

π

6

〉
,
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which yields that f(x) is decreasing on 〈2;∞). It ensures the validity of (12), which implies
that Sτ,k1 ⊃ Sτ,k2 .

Further, we show that limk→∞ Sτ,k = Sτ . We are interested in the limit

lim
k→∞

−2k sin
π

4k − 2
.

Using the L’Hospital rule we have

lim
k→∞

−2k sin
π

4k − 2
= lim

k→∞
sin π

4k−2

− 1
2k

= lim
k→∞

−2π
(4k−2)2

cos π
4k−2

1
4k2

= lim
k→∞

−8πk2

(4k − 2)2
cos

π

4k − 2
= −π

2

and the required limit property is proved.

Corollary 3.2 The backward Euler method is τ(0)-stable.

Remark 3.3 The stability regions for k = 1 and k = 2 are identical.

Remark 3.4 Recall that the stepsize h is inversely proportional to k via the relation (4). Hence,
we can interpret Theorem 3.1 as a dependence of the stability regions on changing stepsize h.
Theorem 3.1 implies that stability intervals for the backward Euler discretization (5) enlarge
with increasing h. On the contrary, if h is approaching zero, the stability domain of (5) tends
to the stability domain of the corresponding delay differential equation. Note that the above
conclusions have been verified only experimentally in [6].

4 The forward Euler method

Now we analyze the asymptotic stability regions for the forward Euler method (6). Similarly
as in the previous section, we find useful to represent (6) in the form

xn+1 = xn +
aτ

k
xn−k. (18)

By Levin-May result, the asymptotic stability region Sτ,k is

Sτ,k =

{
a ∈ R : 0 > aτ > −2k sin

π

4k + 2

}
.

Theorem 4.1 Let k1, k2 be arbitrary positive integers such that k2 > k1 ≥ 1. Then

Sτ,k1 ⊂ Sτ,k2 ⊂ Sτ .

Moreover,

lim
k→∞

Sτ,k = Sτ .
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Proof.
To prove Theorem 4.1, we can use a similar approach as we utilized in the proof of Theorem

3.1. In this case, we aim to show that

2k1 sin
π

4k1 + 2
< 2k2 sin

π

4k2 + 2
, 1 ≤ k1 < k2.

i.e. that the function
f(x) = 2x sin

π

4x + 2
, x ∈ R (19)

is increasing on 〈1,∞). Obviously f ′(x) > 0 on 〈1;∞) if

tan
π

4x + 2
>

4πx

(4x + 2)2
, x ∈ 〈1,∞) . (20)

Let us introduce the substitution
s =

π

4x + 2
.

The inequality (20) can be transformed to

tan s > s − 2s2

π
, s ∈

(
0,

π

6

〉
. (21)

Let g1(s) = tan s, g2(s) = s− 2s2

π
. Obviously, g1(0) = g2(0) = 0. Using expressions for g′

1(s) and
g′
2(s) we can directly conclude that the inequality (21) holds for all s ∈ (

0, π
6

〉
. Consequently,

the function f(x) is increasing on 〈1,∞) . That implies Sτ,k1 ⊂ Sτ,k2 . The proof of the limit
property of the stability intervals is a simple modification of the technique used in Theorem
3.1.

Remark 4.2 Analogously as in Section 3, we can interpret the assertion of Theorem 4.1 as a
dependence of stability intervals for the forward Euler method on changing stepsize h. Theorem
4.1 implies that the stability region is enlarging with decreasing stepsize h. If h is approaching
zero, the corresponding stability region is tending to Sτ .

5 Final remarks

We presented the analysis of the asymptotic stability intervals for the backward and forward
Euler method applied to the delay differential equation (1). These methods are particular cases
of a wider class of methods called the θ-methods. When we apply the θ-method with the
stepsize h to (1), we obtain a difference equation of the form

xn+1 = xn + ah(θxn+1−k + (1 − θ)xn−k). (22)

If θ = 1 we get the backward Euler method, while the case θ = 0 yields the forward Euler
method. We note that the general θ-method leads to a four-term difference equation. Therefore
the Levin-May criterion (Theorem 2.1) cannot be used for its stability analysis. Instead, we

volume 5 (2012), number 2 83



Aplimat - Journal of Applied Mathematics

can use the result of Čermák et al. [3], who derived the conditions for the asymptotic stability
of four terms difference equations. The analysis of these more advanced discretizations will be
a subject of our further research.
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THE AUTONOMOUS SYSTEM DERIVED

FROM VAN DER POL-MATHIEU EQUATION
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Abstract. This work is devoted to the autonomous system derived from Van der Pol-
Mathieu equation which was applied to the study the dynamics of dusty plasmas in the
article [3]. In this work we shall investigate mathematically this autonomous system and
shall find how large region of the plane will be attracted to the equilibrium point.
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ing set, equilibrium point, ordinary first order differential equation.
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1 Introduction

The main inducement for the study of the autonomous system derived from Van der Pol-
Mathieu equation, which describes the dynamics of dusty plasmas, was the article [3]. The
mathematical analysis of the autonomous system in [3] is mathematically deficient and this
article complete this analysis.

F. Veerman and F. Verhulst proved the existence of periodic and quasiperiodic solu-
tions of the Van der Pol-Mathieu equation in [5]. The aim of this work is to extend the
article [5], to perform the phase space analysis, describe the asymptotic behavior of trajec-
tories and to find the attracting set of equilibrium point of the investigated autonomous system.
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2 The autonomous system derived from Van der Pol-Mathieu equation

In article [3], this autonomous system is derived:

d a

d t
=

α

2
a − b

2

(
ε +

hω0

2

)
− β

8
(a3 + ab2), (1)

d b

d t
=

α

2
b +

a

2

(
ε − hω0

2

)
− β

8
(b3 + a2b), (2)

where α, β, ω0, h ∈ R
+ and ε ∈ R, |ε| � 1, h � 1. The real unknowns a(t) and b(t) vary slowly

with time t and they occur as the coefficients of the estimated solution of Van der Pol-Mathieu
equation in the work [3]. The estimated solution has the form:

x(t) = a(t) cos
(
ω0 +

ε

2

)
t + b(t) sin

(
ω0 +

ε

2

)
t. (3)

We will examine the autonomous system of two ordinary first order differential equations
(1), (2). From the form of the autonomous system it is evident that the equations (1),
(2) are invariant under the transformation (a, b) → (−a,−b). Thanks to the continuity of
right-hand sides of the autonomous system (1), (2) and their first order derivations it follows
that solutions of any initial problem for the autonomous system (1), (2) exist and they are
uniquely determined by initial conditions.

3 The equilibrium points

It is clear that the autonomous system (1), (2) has the equilibrium point (a, b) = (0, 0).
1. Assuming

|ε| <
hω0

2
∧ α >

√
h2ω2

0

4
− ε2, (4)

and solving the system of equation

α

2
a − b

2

(
ε +

hω0

2

)
− β

8
(a3 + ab2) = 0,

α

2
b +

a

2

(
ε − hω0

2

)
− β

8
(b3 + a2b) = 0,

we get four further equilibrium points:

(a11, b11) =

⎛
⎝2

√
hω0

2
+ ε

βhω0

√
α −

√
h2ω2

0

4
− ε2, 2

√
hω0

2
− ε

βhω0

√
α −

√
h2ω2

0

4
− ε2

⎞
⎠ , (5)

(a12, b12) =

⎛
⎝−2

√
hω0

2
+ ε

βhω0

√
α −

√
h2ω2

0

4
− ε2,−2

√
hω0

2
− ε

βhω0

√
α −

√
h2ω2

0

4
− ε2

⎞
⎠ , (6)
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(a21, b21) =

⎛
⎝−2

√
hω0

2
+ ε

βhω0

√
α +

√
h2ω2

0

4
− ε2, 2

√
hω0

2
− ε

βhω0

√
α +

√
h2ω2

0

4
− ε2

⎞
⎠ , (7)

(a22, b22) =

⎛
⎝2

√
hω0

2
+ ε

βhω0

√
α +

√
h2ω2

0

4
− ε2,−2

√
hω0

2
− ε

βhω0

√
α +

√
h2ω2

0

4
− ε2

⎞
⎠ . (8)

To determine the type of equilibrium points we calculate eigenvalues for these equilibrium
points. The eigenvalues are given by the Jacobi matrix of the right-hand sides of (1), (2):

J =

⎛
⎜⎜⎝

α

2
− β

8
(3a2 + b2) −1

2

(
ε +

hω0

2

)
− abβ

4
1

2

(
ε − hω0

2

)
− abβ

4

α

2
− β

8
(3b2 + a2)

⎞
⎟⎟⎠ . (9)

First, we investigate the type of the equilibrium point (0, 0). From the Jacobi matrix of the
right-hand sides of (1), (2) we get the characteristic equation

λ2 − αλ +
α2

4
+

1

4

(
ε2 − h2ω2

0

4

)
= 0. (10)

This quadratic equation has a discriminant D =
h2ω2

0

4
− ε2 which is, with respect to (4), always

positive. The eigenvalues of the equilibrium point (0, 0) are

λ01,02 =
α ±

√
h2ω2

0

4
− ε2

2
. (11)

The assumption (4) implies that the eigenvalues are positive and the origin is an unstable
improper node.

For the equilibrium points (a11, b11) and (a12, b12) we get the characteristic equation

λ2 +

(
α − 2

√
h2ω2

0

4
− ε2

)
λ − α

√
h2ω2

0

4
− ε2 +

h2ω2
0

4
− ε2 = 0. (12)

The discriminant of this quadratic equation is D = α2 > 0, so this equation has always real
roots. The eigenvalues of the equilibrium points (a11, b11) and (a12, b12) are

λ11 =

√
h2ω2

0

4
− ε2, λ12 = −α +

√
h2ω2

0

4
− ε2. (13)

The assumption (4) for the existence of equilibrium points then implies that λ1 > 0 and λ2 < 0
and therefore the points (a11, b11) and (a12, b12) are equilibrium points of saddle type.

If we form the characteristic equation for the points (a21, b21) and (a22, b22), we obtain

λ2 +

(
α + 2

√
h2ω2

0

4
− ε2

)
λ + α

√
h2ω2

0

4
− ε2 +

h2ω2
0

4
− ε2 = 0. (14)
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This quadratic equation has again a positive discriminant D = α2, so eigenvalues are always
the real values

λ21 = −
√

h2ω2
0

4
− ε2, λ22 = −α −

√
h2ω2

0

4
− ε2. (15)

From assumption (4) it is clear that both eigenvalues are negative and therefore the equilibrium
points (a21, b21) and (a22, b22) are the stable improper nodes.

The Figures 1, 2 show vector fields with nullclines of the autonomous system of equations
(1), (2) for specific values of the parameters. These vector fields with nullclines confirm the
existence of stable nodes in 2nd and 4th quadrant and the saddles in 1st and 3rd quadrant.

Figure 1: Vector field with nullclines for
α = 1,2, β = 1, ε = 0,01, h = 0,05, ω0 = 4.

Figure 2: Vector field with nullclines for
α = 0,5, β = 0,8, ε = 0,0001, h =
0,01, ω0 = 1,5.

2. Now we assume that only

|ε| <
hω0

2
(16)

is satisfied and the second condition is not met. We see that the system (1), (2) has trivial
equilibrium (0, 0) and two nontrivial equilibria (a21, b21), (a22, b22). The trivial equilibrium is

saddle point for α <

√
h2ω2

0

4
− ε2 and nonhyperbolic equilibrium having a character of a saddle

for α =

√
h2ω2

0

4
− ε2. The nontrivial equilibria are stable nodes (positive attractors). The Figure

3 show two stable nodes (nontrivial equilibria) and saddle point (0, 0).

3. Now we assume that the condition (16) is not met. The system (1), (2) has only trivial
equilibrium for |ε| > hω0

2
and this equilibrium is unstable focus (Figure 4). For |ε| = hω0

2
the

autonomous system (1), (2) has unstable node in (0, 0) and two nonhyperbolic equilibria.
The autonomous system (1), (2) with only the trivial equilibrium unstable focus investigated

F. Veerman and F. Verhulst in [5]. They demonstrated that solution of Van der Pol-Mathieu
equation from [3] exhibits quasiperiodic behavior.
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4 2 2 4

4

2

2

4

Figure 3: Vector field with nullclines for
α = 0,35, β = 1, ε = 0,9, h = 2, ω0 = 1.

4 2 2 4

4

2

2

4

Figure 4: Vector field with nullclines for
α = 0,1, β = 0,1, ε = 0,2, h = 0,2, ω0 = 1.

4 The attracting set

Now we try to find how large region of the plane will be attracted to the equilibrium point
(a21, b21) or (a22, b22). We assume the condition (16).

Theorem 4.1 Consider some trajectory x(t) of the autonomous system (1), (2). If the trajec-
tory x(t) starts in the set X1 = {(a, b) : a ≥ 0 ∧ b ≤ 0}, then the trajectory will not leave the
set X1 and will be attracted to the point (a22, b22).

Proof. The considered set X1 is the 4th quadrant of the Cartesian coordinate system which is
bounded by straight lines b = 0 and a = 0. Now we show what happens to the trajectory x(t)
which begins near the line b = 0.

Let x(t) be an arbitrary trajectory starting at the line b = 0. Since the trajectory x(t)
corresponds to a solution of the system of equations (1), (2), we obtain, by putting b = 0, the
following equations:

d a

d t
=

α

2
a − β

8
a3 =

a

2

(
α − a2β

4

)
, (17)

d b

d t
=

a

2

(
ε − hω0

2

)
. (18)

The assumptions ε < hω0

2
and a > 0 imply that d b

d t
< 0. For this reason we see that the second

coordinate of the point of the considered trajectory is decreasing.
Derivation d a

d t
is determined by the polynomial of degree 3 with respect to the variable a.

This polynomial equals zero for values a = 0, a = 2
√

α
β
, a = −2

√
α
β
. If a ∈

(
0, 2

√
α
β

)

then the inequality d a
d t

> 0 holds and for a ∈
(

2
√

α
β
,∞

)
we have d a

d t
< 0. It follows that the

trajectory x(t) starting at the points of a half line b = 0, a ∈ (0,∞), is directed towards the
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node (a22, b22).
Analogously we get:

d a

d t
= − b

2

(
ε +

hω0

2

)
> 0, (19)

d b

d t
=

α

2
b − β

8
b3 =

b

2

(
α − b2β

4

)
(20)

for the trajectory near the line a = 0. Again we get that the trajectory cannot leave the set
X1 because the first coordinates of points on a half line a = 0 for b ∈ (−∞, 0) increase.

For the derivation d b
d t

we find the points where the derivation changes sign. For values

b ∈
(

0,−2
√

α
β

)
the inequality d b

d t
< 0 holds whereas for a ∈

(
−2

√
α
β
,−∞

)
we have d b

d t
> 0.

This information about the behavior of trajectories near the boundary lines of the set X1

is shown in Figure 5. One can see that every trajectory which starts near the boundary lines
of the 4th quadrant a = 0 and b = 0, will be directed towards an equilibrium point (a22, b22).

Now we prove that every trajectory x(t) starting in the set X1 approaches the equilibrium

Figure 5: Directional field in the 4th quad-
rant.

Figure 6: Directional field in the 2nd quad-
rant.

point (a22, b22).
We will show that any trajectory of (1), (2) starting in the 4th quadrant is bounded and

does not leave this quadrant with increasing t. Indeed, let K1 > 0 and K2 > 0 be sufficiently
large real numbers and X ′

1 = {(a, b) : 0 ≤ a < K1 ∧ −K2 ≤ b < 0}. If K1 is substituted into
(1) we find that for the points near the line a = K1 the inequality d a

d t
< 0 holds, for large K1.

Similarly for the points near the line b = −K2 the inequality d b
d t

> 0 is true. Therefore using the
information from Figure 5 we obtain that every trajectory going out from an arbitrary point
of the 4th quadrant will remain in X ′

1 with increasing time t for sufficiently large K1, K2.
To complete the proof, we prove that all trajectories of the 4th quadrant come close just to

the equilibrium point (a22, b22) with increasing time. Let us have any positive half trajectory
x(t) in the 4th quadrant. Suppose that ω−limit set of the trajectory x(t) contains no equilibrium
point. Then, according to the Poincaré - Bendixson’s theorem the ω−limit set contains a closed
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trajectory. Reversely, according to the Dulac’s criterion the autonomous system contains no
closed trajectory in a simply connected set, if the expression

g(a, b) =
∂

∂a

[
1

ab
·
(

α

2
a − b

2

(
ε +

hω0

2

)
− β

8
(a3 + ab2)

)]
+ (21)

+
∂

∂b

[
1

ab
·
(

α

2
b +

a

2

(
ε − hω0

2

)
− β

8
(b3 + a2b)

)]
(22)

in this set is still positive or negative. This requirement is true for our autonomous system (1),
(2) in the 4th quadrant, since

g(a, b) = −β

4

(
a

b
+

b

a

)
− 1

2b2

(
ε − hω0

2

)
+

1

2a2

(
ε +

hω0

2

)
(23)

is positive in this quadrant. Therefore any closed trajectory cannot exist in the 4th quadrant
and the ω−limit set of any positive half trajectory going out from any point of the 4th quadrant
cannot contain a closed trajectory. The case, that it would contain no equilibrium point, is
impossible. Therefore the ω−limit set of the positive half trajectory x(t) include at least
one equilibrium point. In the fourth quadrant there are only two equilibrium points (0, 0) and
(a22, b22), origin is an unstable node and the point (a22, b22) is a stable node. Hence the ω−limit
set of some positive half trajectory consists of the unique point (a22, b22). For that reason every
trajectory beginning in the fourth quadrant comes with increasing time just to a stable node
(a22, b22).

From the symmetry of the autonomous system (1), (2), the following Theorem 4.2 for equilib-
rium point (a21, b21) which can be proved analogously as Theorem 4.1 is true. The directional
field in the 2nd quadrant is reported in Figure 6.

Theorem 4.2 Consider some trajectory x(t) of the autonomous system of the equations (1),
(2). If the trajectory x(t) begins in the set X2 = {(a, b) : a ≤ 0 ∧ b ≥ 0}, then this trajectory
will not leave the set X2 and will be attracted to the equilibrium point (a21, b21).

Before we formulate a main theorem we prove a following lemma about a boundedness of every
trajectory x(t).

Lemma 4.3 Consider some trajectory x(t) of the autonomous system (1), (2). If the trajectory

x(t) begins in the set X3 = {(a, b) : a ∈ 〈−M,M〉 , b ∈ 〈−kM, kM〉}, where k =

√
hω0
2

−ε
hω0
2

+ε
and

M � 0, then this trajectory will not leave the set X3.

Proof. The set X3 is bounded by four straight lines: 1. a = M, b ∈ 〈−kM, kM〉; 2. a =
−M, b ∈ 〈−kM, kM〉; 3. b = kM, a ∈ 〈−M,M〉 and 4. b = −kM, a ∈ 〈−M,M〉. These lines
are shown in Figure 7. We shall prove what happens to the trajectory x(t) which begins at the
point of these lines. We shall examine the signs of d a

d t
or d b

d t
.

1. For a = M, b ∈ 〈−kM, kM〉 we have

d a

d t
=

α

2
M − b

2

(
hω0

2
+ ε

)
− β

8
(M3 + Mb2) ≤ M

8

(
4α + 4k

(
hω0

2
+ ε

)
− βM2

)
.
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This expression is still negative for M > 2

√
α+

q
(hω0

2
+ε)(hω0

2
−ε)

β
.

2. For a = −M, b ∈ 〈−kM, kM〉 it is true that

d a

d t
= −α

2
M − b

2

(
hω0

2
+ ε

)
− β

8
(−M3 − Mb2) ≥ −M

8

(
4α + 4k

(
hω0

2
+ ε

)
− βM2

)
.

This expression is still positive for M > 2

√
α+

q
(hω0

2
+ε)(hω0

2
−ε)

β
.

3. Using the equation (2) we obtain for b = kM, a ∈ 〈−M,M〉 , that

d b

d t
=

α

2
kM +

a

2

(
ε − hω0

2

)
− β

8
(k3M3 + kMa2) ≤ M

8

(
4αk − 4

(
ε − hω0

2

)
− βk3M2

)
.

If M > 2

√
αk−(ε−hω0

2 )
βk3 then this expression is still negative.

4. For b = −kM, a ∈ 〈−M,M〉 we have analogously

d b

d t
= −α

2
kM +

a

2

(
ε − hω0

2

)
− β

8
(−k3M3 + kMa2) ≥ −M

8

(
4αk − 4

(
ε − hω0

2

)
− βk3M2

)
.

This expression is still positive for M > 2

√
αk−(ε−hω0

2 )
βk3 .

Figure 7 shows directional field in the set X3. If the trajectory x(t) starts at the point of
the line a = M, b ∈ 〈−kM, kM〉, then d a

d t
< 0 for large M . First coordinate decrease therefore

this trajectory is directed into the set X3. For the other boundary lines from the steps 2. − 4.
we obtain analogously that the trajectory x(t) will be still in the set X3. If the trajectory x(t)
starts at the point (M,kM) (similarly for (−M,kM), (M,−kM) or (−M,−kM)) then d a

d t
< 0

and d b
d t

< 0. Therefore this trajectory does not leave the set X3.
From these four steps it follows that every trajectory starting in the set X3 does not leave

this set X3 for large M .

We want prove more general theorems than Theorem 4.1 and 4.2. Therefore we transform
coordinates a, b to polar coordinates ρ, ϕ:

ρ(t) =
√

a2(t) + b2(t), cos ϕ(t) =
a(t)√

a2(t) + b2(t)
, sin ϕ(t) =

b(t)√
a2(t) + b2(t)

. (24)

Using the formulas (24) we transform the system (1), (2) into a form

d ϕ

d t
=

1

2

(
ε − hω0

2

)
cos2 ϕ +

1

2

(
ε +

hω0

2

)
sin2 ϕ, (25)

d ρ

d t
=

α

2
ρ − hω0

4
ρ sin(2ϕ) − β

8
ρ3. (26)

If we go back to the coordinates of equilibrium points (5), (6), (7) and (8) then we find that
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Figure 7: Directional field in the set X3. Figure 8: The sets Y1 and Y2 with signs of the
derivation ϕ

′
.

these coordinates comply with b = ±
√

hω0
2

−ε
hω0
2

+ε
· a. All non-trivial equilibrium points belong to

these two lines. It follows that the points (a21, b21), (a22, b22) belong to the line with a slope

−k = −
√

hω0
2

−ε
hω0
2

+ε
.

Now we formulate the main theorems of this section. They describe the largest region of
the plane which is attracted to the equilibrium point (a21, b21) or (a22, b22).

Theorem 4.4 Suppose that x(t) is an arbitrary trajectory of the system (1), (2). If the trajec-

tory x(t) starts in the set Y1 = {(a, b) : b < k · a}, where k =

√
hω0
2

−ε
hω0
2

+ε
, then this trajectory will

not leave this set and will be attracted to the point (a22, b22).

Proof. Let’s assume that x(0) is located in the set Y1 and M > 0 is sufficiently large to be
valid Lemma 4.3. Suppose an arbitrary trajectory x(t) = (ρ(t) cos t, ϕ(t) sin t) starting in the
set Y1, ϕ(0) ∈ (arctg k − π, arctg k).

The Lemma 4.3 implies that all trajectories from the set X3 will remain bounded with
increasing time in this set. Besides the set Y1 is bounded by the line b = k · a. The equilibria
(a11, b11), (a12, b12) belong to this line and for the polar angle ϕ(t) of the point of this line

d ϕ
d t

= 0 is satisfied. It implies that the set P1 = {(a, b) : b =

√
hω0
2

−ε
hω0
2

+ε
· a} is invariant set of the

autonomous system (1), (2). Therefore these informations imply that all trajectories starting
in the set Y1 do not leave this set.

We shall prove now that every trajectory in the set Y1 is directed to the line with a slope

−k = −
√

hω0
2

−ε
hω0
2

+ε
. Obviously, if the polar angle ϕ(t) approaches the angle arctg(−k) then the

trajectory x(t) goes to the line with a slope −k.
The set Y1 corresponds the polar angle ϕ ∈ (arctg k − π, arctg k). Using (25) we have
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d ϕ
d t

> 0 if tg2 ϕ >
hω0
2

−ε
hω0
2

+ε
. It follows that d ϕ

d t
> 0 is satisfied for ϕ ∈ (arctg k − π,− arctg k). The

polar angle ϕ(t) of the trajectory x(t) with ϕ(0) ∈ (arctg k − π,− arctg k) will be increase and
this trajectory will be directed to the line with a slope −k where d ϕ

d t
= 0.

Analogously we have d ϕ
d t

< 0 for ϕ ∈ (− arctg k, arctg k) and this polar angle ϕ(t) will
decrease to ϕ = arctg(−k). The informations which we proved are shown in Figure 8.

Now we know that every trajectory x(t) starting in the set Y1 is directed to the line with a
slope −k. It remains to prove that every trajectory beginning in the set Y1 is attracted to the
point (a22, b22).

From this proof we know that the trajectories from Y1 will go into the set X1 with increasing
time and will not leave this set X1. Therefore the preceding Theorem 4.1 implies that ω−limit
set consists of only the stable improper node (a22, b22).

It’s clear from this proof that every trajectory x(t) starting in the set Y1 remains in this
set and it is attracted to the node (a22, b22) with increasing time.

Analogously we can prove the following theorem. The set Y2 and a sign of a derivation ϕ
′
are

shown in Figure 8.

Theorem 4.5 Assume that x(t) is an arbitrary trajectory of the system (1), (2). If the trajec-
tory x(t) starts in the set Y2 = {(a, b) : b > k · a}, where k is defined as in Lemma 4.3, then
this trajectory will not leave this set and will be attracted to the point (a21, b21).

5 Conclusion

The previous section supplements the article [5] and shows that all trajectories of (1), (2)
in the set Y1 approach the node (a22, b22). The trajectories located in the set Y2 arrive with

increasing time to the node (a21, b21). The trajectories starting at a half line b =

√
hω0
2

−ε
hω0
2

+ε
· a

for a > 0 go to the point (a11, b11), which is the type of saddle. The trajectory of the opposite

half line, i.e. b =

√
hω0
2

−ε
hω0
2

+ε
· a for a < 0, goes to the saddle (a12, b12).

The derived results show that the coefficients in the estimated solution (3) stabilize with
increasing time t at values corresponding to the equilibrium points of the autonomous system
of equations (1), (2).
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SINGULAR INITIAL VALUE PROBLEM
FOR IMPLICIT VOLTERRA INTEGRO-DIFFERENTIAL

EQUATIONS
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Abstract. Singular initial value problem for implicit Volterra integro-differential equa-
tions depending on a parameter and continuous dependence of solutions are the subject of
the paper. The existence and uniqueness of a solution is proved using Banach contraction
principle. Obtained results are illustrated with an example.
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1 Introduction

In the past three decades, singular initial value problems for differential and integro-differential
equations have been studied under various conditions on the nonlinearity and the kernel (see
e.g.[1-17]). The fundamental tools used in the existence proofs of all mentioned works are essen-
tially Schauder-Tychonoff’s fixed point theorem, Banach contraction principle and Wazewki’s
topological method.

In cases of integro-differential equations of Fredholm type it is necessary to use Lipschitz con-
stants with weighted exponential functions (see [12], [13]). In the paper we obtain for Volterra
type of singular implicit integrodifferential equations similar results as in above mentioned pa-
pers but using only Lipschitz constants without weighted exponential functions.

Consider the following singular initial value problem

y′(t) = F
(

t, y(t), y′(t),
∫ t

0

K(t, s, y(s), y′(s))ds, μ

)
, y(i)(0+, μ) = 0, i = 0, 1, (1)

where
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(I) F : Ω → R
n, F ∈ C0(Ω), Ω = {(t, u1, u2, u3, μ) ∈ J × (Rn)3 × R : |u1| ≤ φ1(t),

|u2| ≤ φ2(t), |u3(t)| ≤ ψ(t)}, J = (0, t0], 0 < t0 < 1, 0 < φi(t) ∈ C0(J), i = 1, 2,
φ1(0

+) = 0, 0 < ψ(t) ∈ C0(J),
∫ t

0
φ2(s)ds ≤ φ1(t), |.| denotes the usual norm in R

n,

|F(t, u1, u2, u3, μ) −F(t, u1, u2, u3, μ| ≤
∑3

i=1 Mi|ui − ui|
for all (t, u1, u2, u3, μ), (t, u1, u2, u3, μ) ∈ Ω, M1,M3 > 0, 0 < M2 < 1 are constants.

(II) K : Ω1 → R
n, K ∈ C0(Ω1),

Ω1 = {(t, s, v1, v2) ∈ J × J × (Rn)2 : |v1| ≤ φ1(t), |v2| ≤ φ2(t), },
|K(t, s, v1, v2) − K(t, s, v1, v2| ≤

∑2
j=1 Nj|vj − vj|

for all (t, s, v1, v2), (t, s, v1, v2, ) ∈ Ω1, Nj > 0, j = 1, 2 are constants.
There is a sufficiently large constant λ > 0 such that(

M2 +
M1 + M3N2

λ
+

M3N1

λ2

)
< 1.

2 Main results

Theorem 2.1. Let the functions F(t, u1, u2, u3, μ), K(t, s, v1, v2) satisfy conditions (I),(II) and
furthermore

|F| ≤
3∑

i=1

gi(t)|ui|, 0 < gi(t) ∈ C0(J), i = 1, 2, 3,

∫ t

0

g1(s)φ2(s)ds ≤ α1φ2(t),

g2(t)φ2(t) ≤ α2φ2(t) g3(t))ψ(t) ≤ α3φ2(t), αj ∈ R
+,

3∑
j=1

αj < 1,

then the initial problem (1) has a unique solution y(t, μ) for each μ ∈ R, t ∈ J.

Proof. Put

y(t) =

∫ t

0

r(s)ds,

where r(t) ∈ C0(J) is an unknown function. Then y’(t) = r(t) and the system (1) is equivalent
to the system of integral equations

r(t) = F
(

t,

∫ t

0

r(s)ds, r(t),

∫ t

0

K
(
t, s,

∫ s

0

r(τ)dτ, r(s)
)
ds, μ

)
. (2)

Denote H the Banach space of continuous vector-valued functions h : J0 → R
n, J0 = [0, t0],

|h(t)| ≤ φ2(t) for each t ∈ J0 with the norm

||h(t)||λ = max
t∈J0

{e−λt|h(t)|},

where λ > 0 is an arbitrary parameter. Define the operator T by right- hand side of (2)

T (h) = F
(

t,

∫ t

0

h(s)ds, h(t),

∫ t

0

K(t, s,

∫ s

0

h(τ)dτ, h(s))ds, μ

)
,
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where h ∈ H. Let μ ∈ R be fixed. The transformation T maps H continuously into itself
because

|T (h)| ≤
∣∣∣∣F

(
t,

∫ t

0

h(s)ds, h(t),

∫ t

0

K(t, s,

∫ s

0

h(τ)dτ, h(s))ds, μ

)∣∣∣∣
≤ g1(t)

∣∣∣∣
∫ t

0

h(s)ds

∣∣∣∣ + g2(t)|h(t)| + g3(t)

∣∣∣∣
∫ t

0

K(t, s,

∫ s

0

h(τ)dτ, h(s))ds

∣∣∣∣
≤ g1(t)

∫ t

0

φ2(s)ds + α2φ2(t) + g3(t)ψ(t) ≤ φ2(t)

for every h ∈ H. Now, we prove that

||T (h2) − T (h1)||λ ≤
(

M2 +
M1 + M3N2

λ
+

M3N1

λ2

)
||h2 − h1||λ, (3)

for all h1, h2 ∈ H. Using (I),(II) and the definition ||.||λ we have

|T (h2) − T (h1)| =∣∣∣∣F
(

t,

∫ t

0

h2(s)ds, h2(t),

∫ t

0

K(t, s,

∫ s

0

h2(τ)dτ, h2(s))ds, μ

)

− F
(

t,

∫ t

0

h1(s)ds, h1(t),

∫ t

0

K(t, s,

∫ s

0

h1(τ)dτ, h1(s))ds, μ

)∣∣∣∣
≤ M1

∫ t

0

|h2(s) − h1(s)|ds + M2|h2(t) − h1(t)|

+M3

∫ t

0

∣∣∣∣K(t, s,

∫ s

0

h2(τ)dτ, h2(s)) − K(t, s,

∫ s

0

h1(τ)dτ, h1(s))

∣∣∣∣ ds

≤ M1||h2 − h1||λ
∫ t

0

eλsds + M2e
λt||h2 − h1||λ + M3N1

∫ t

0

∫ s

0

|h2(τ) − h1(τ)|dτds

+M3N2

∫ t

0

|h2(s) − h1(s|ds

)
ds

≤ ||h2 − h1||λ
(

M1
eλt − 1

λ
+ M2e

λt + M3N1

(
eλt − 1

λ2
− t

λ

)
+ M3N2

eλt − 1

λ

)

≤ eλt||h2 − h1||λ
(

M2 +
M1 + M3N2

λ
+

M3N1

λ2

)
Thus

||T (h2) − T (h1)||λ ≤ q ||h2 − h1||λ,
where

q := M2 +
M1 + M3N2

λ
+

M3N1

λ2
< 1.

Applying the clasical Banach contraction principle to T and the distance function ||h2 − h1||λ
we get the assertion of Theorem 2.1.
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Theorem 2.2. Let the assumptions of Theorem 2.1. be satisfied and there exist a constant
L > 0 and the integrable function γ : J0 → J0, J0 = [0, t0] such that

|F(t, u1, u2, u3, μ2) −F(t, u1, u2, u3, μ1)| ≤ γ(t)|μ2 − μ1|,
where ((t, u1, u2, u3, μ2), (t, u1, u2, u3, μ1) ∈ Ω and

max
t∈J0

{e−λtγ(t)} ≤ L,

then the solution y(t, μ) of (1) is continuous with respect to the variables (t, μ) ∈ J × R.

Proof. Define as above, for h ∈ H, the transformation Tμ(h) by means of the right-hand
side (2). From (3) we obtain

||Tμ(h) − Tμ(y)||λ ≤
(

M2 +
M1 + M3N2

λ
+

M3N1

λ2

)
||h − y||λ.

By the assumptions of Theorem 2.2 we get

e−λt|Tμ2(h) − Tμ1(h)| ≤∣∣∣∣F
(

t,

∫ t

0

h(s)ds, h(t),

∫ t

0

K(t, s,

∫ s

0

h(τ)dτ, h(s))ds, μ2

)

− F
(

t,

∫ t

0

h(s)ds, h(t),

∫ t

0

K(t, s,

∫ s

0

h(τ)dτ, h(s))ds, μ1

)∣∣∣∣
≤ e−λtγ(t)|μ2 − μ1| ≤ L|μ2 − μ1|.

Hence
||Tμ2(h) − Tμ1(h)||λ ≤ L|μ2 − μ1|.

From here and by Theorem 2.1 we obtain

||h(t, μ2) − h(t, μ1)||λ = ||Tμ2 [h(t, μ2)] − Tμ2 [h(t, μ1)] + Tμ2 [h(t, μ1)] − Tμ1 [h(t, μ1)]||λ
≤ ||Tμ2 [h(t, μ2)] − Tμ2 [h(t, μ1)]||λ + ||Tμ2 [h(t, μ1)] − Tμ1 [h(t, μ1)]||λ

≤
(

M2 +
M1 + M3N2

λ
+

M3N1

λ2

)
||h(t, μ2) − h(t, μ1)||λ + L|μ2 − μ1|.

Thus

||h(t, μ2) − h(t, μ1)||λ ≤
(

1 −
(

M2 +
M1 + M3N2

λ
+

M3N1

λ2

))−1

L|μ2 − μ1|.

Consequently y(t, μ) is continuous with respect two variables (t, μ) ∈ J × R, which completes
the proof.

Example. Consider the following initial value problem

y′(t) − t

3
y(t) +

1

10
arctan

1

t
y′(t) + 2t2

∫ t

0

√
se−

µ
ts (y(s) + 2y′(s))ds, y(i)(0+, μ) = 0, (4)
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where t ∈ J, i = 1, 2.

Put

M1 =
1

3
, M2 =

π

20
, M3 = 2, N1 = 2, N2 = 4, λ = 100,

then

q = M2 +
M1 + M3N2

λ
+

M3N1

λ2
=

π

20
+

1

300
+

8

100
+

4

10000
< 1

and

|F| ≤ t

3
|u1| + 1

10
arctan

1

t
|u2| + |u3| ⇒ g1(t) =

t

3
, g2(t) =

1

10
arctan

1

t
, g3(t) = 1.

Set φ1(t) = t5

4
, φ2(t) = t4, ψ(t) = t4

10
. Thence

∫ t

0

g1(s)φ2(s)ds =
t6

18
≤ 1

18
φ2(t) ⇒ α1 =

1

18
,

g2(t)φ2(t) =
1

10
arctan

1

t
t4 ≤ π

20
φ2(t) ⇒ α2 =

π

20
,

g3(t)ψ(t) =
t4

10
=

1

10
φ2(t) ⇒ α3 =

1

10
.

Thus

α1 + α2 + α3 =
1

18
+

π

20
+

1

10
< 1.

By Theorem 2.1. there exists a unique solution of (4) such that

|y(t, μ)| ≤ t5

4
, |y′(t, μ)| ≤ t4.
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e-mail: smarda@feec.vutbr.cz

102 volume 5 (2012), number 2



EXISTENCE OF NONOSCILLATORY SOLUTIONS
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Abstract. The article is concerned with the existence of the positive solutions of the
delay differential equations. The solutions are bounded by the positive functions. The
main results are illustrated with some examples.
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1 Introduction

The article deals with the existence of the nonoscillatory solutions of the delay differential
equations of the form

ẋ(t) + p(t)x(t) + q(t)x(τ(t)) = 0, t ≥ t0. (1)

With respect to Eq. (1) thoroughout we will assume the following conditions:
(i) τ, q ∈ C([t0,∞), [0,∞)), q(t) �≡ 0, p ∈ C([t0,∞), R),
(ii) τ is increasing, τ(t) < t and lim

t→∞
τ(t) = ∞.

A solution of Eq. (1) is called oscillatory if it has arbitrarily large zeros and otherwise it is
nonoscillatory.
The problem of the existence of nonoscillatory solutions of the delay differential equations
received less attention as oscillation problem. It is due mainly to the technical difficulties
arising in analysis of the problem. For the similar problems we refer the readers to [1–9] and
the references cited therein. In this article we are interested in the study of the existence of
solutions of Eq. (1) which are bounded by positive functions.
The following fixed point theorem will be used to prove the main results in the next section.
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Lemma 1.1 ([4,5]Schauder’s Fixed Point Theorem) Let Ω be a closed, convex and non-
empty subset of a Banach space X. Let S : Ω → Ω be a continuous mapping such that SΩ is a
relatively compact subset of X. Then S has at least one fixed point in Ω. That is, there exists
an x ∈ Ω such that Sx = x.

2 Existence of Nonoscillatory Solutions

In this section we will study the existence of nonoscillatory solutions for Eq.(1), which are
bounded by positive functions. The main result is in the next theorem.

Theorem 2.1 Suppose that there exist functions k1, k2 ∈ C([t0,∞), (0,∞)) such that

k1(t) ≤ k2(t), t ≥ t0,

p(t) + k1(t)q(t) ≥ 0, t ≥ t0,

ln k1(t) ≤
∫ t

τ(t)

[p(s) + k1(s)q(s)] ds and

∫ t

τ(t)

[p(s) + k2(s)q(s)] ds ≤ ln k2(t), t ≥ t0. (2)

Then Eq. (1) has a solution which is bounded by positive functions.

Proof. We choose T ≥ t0 + τ(T ) and set

u(t) = exp
(
−

∫ t

T

[p(s) + k2(s)q(s)] ds
)
, v(t) = exp

(
−

∫ t

T

[p(s) + k1(s)q(s)] ds
)
, t ≥ T.

Let C([t0,∞), R) be the set of all continuous functions with the norm ‖x‖ = supt≥t0 |x(t)| < ∞.
Then C([t0,∞), R) is a Banach space. We now define a close, bounded and convex subset Ω of
C(t0,∞), R) as follows:

Ω = {u(t) ≤ x(t) ≤ v(t), t ≥ T,

x(τ(t)) ≤ k2(t)x(t), t ≥ T,

x(τ(t)) ≥ k1(t)x(t), t ≥ T,

x(t) = 1, τ(T ) ≤ t ≤ T}.

Define the map S : Ω → C([t0,∞), R) as follows

(Sx)(t) =

⎧⎪⎨
⎪⎩

exp
(
−

∫ t

T

[
p(s) + q(s)

x(τ(s))

x(s)

]
ds

)
, t ≥ T,

1, τ(t) ≤ t ≤ T.

We will show that for any x ∈ Ω we obtain Sx ∈ Ω. For every x ∈ Ω and t ≥ T we get

(Sx)(t) ≤ exp
(
−

∫ t

T

[p(s) + k1(s)q(s)] ds
)

= v(t).
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Furthermore for t ≥ T and x ∈ Ω we obtain

(Sx)(t) ≥ exp
(
−

∫ t

T

[p(s) + k2(s)q(s)] ds
)

= u(t).

For t ∈ [τ(T ), T ] we have (Sx)(t) = 1, that is (Sx)(t) ∈ Ω. Further for every x ∈ Ω and
τ(t) ≥ T we get

(Sx)(τ(t)) = exp
(
−

∫ τ(t)

T

[
p(s) + q(s)

x(τ(s))

x(s)

]
ds

)

= (Sx)(t) exp
( ∫ t

τ(t)

[
p(s) + q(s)

x(τ(s))

x(s)

]
ds

)
. (3)

With regard to (2) and (3) it follows

(Sx)(τ(t)) ≤ (Sx)(t) exp
( ∫ t

τ(t)

[
p(s) + k2(s)q(s)

]
ds

)
≤ k2(t)(Sx)(t), τ(t) ≥ T,

(Sx)(τ(t)) ≥ (Sx)(t) exp
( ∫ t

τ(t)

[
p(s) + k1(s)q(s)

]
ds

)
≥ k1(t)(Sx)(t), τ(t) ≥ T,

For τ(T ) ≤ τ(t) ≤ T we have (Sx)(τ(t)) = 1, that is (Sx)(τ(t)) ∈ Ω. Thus we have proved
that Sx ∈ Ω for any x ∈ Ω.
We now show that S is continuous. Let xi = xi(t) ∈ Ω be such that xi(t) → x(t) as i → ∞.
Because Ω is closed, x = x(t) ∈ Ω. For t ≥ T we get

|(Sxi)(t) − (Sx)(t)|
=

∣∣∣ exp
(
−

∫ t

T

[
p(s) + q(s)

xi(τ(s))

xi(s)

]
ds

)
− exp

(
−

∫ t

T

[
p(s) + q(s)

x(τ(s))

x(s)

]
ds

)∣∣∣.
By applying the Lebesgue dominated convergence theorem we obtain that

lim
i→∞

‖(Sxi)(t) − (Sx)(t)‖ = 0.

For t ∈ [τ(T ), T ] the relation above is also valid. We conclude that S is continuous.
The family of functions {Sx : x ∈ Ω} is uniformly bounded on [τ(T ),∞). It follows from
the definition of Ω. This family is also equicontinuous on [τ(T ),∞), (cf. [5], p. 45).Then by
Arzela-Ascoli theorem the SΩ is relatively compact subset of C([t0,∞), R). By Lemma 1.1
there is an x0 ∈ Ω such that Sx0 = x0. We see that x0(t) is a positive solution of Eq. (1) which
is bounded by the functions u, v. The proof is complete.
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3 Corollaries

In this section we will present some corollaries.

Corollary 3.1 Sppose that 0 < k1 ≤ k2,

p(t) + k1q(t) ≥ 0, t ≥ t0,

ln k1 ≤
∫ t

τ(t)

[p(s) + k1q(s)] ds and

∫ t

τ(t)

[p(s) + k2q(s)] ds ≤ ln k2, t ≥ t0.

Then Eq. (1) has a solution which is bounded by positive functions.

Proof. We put k1(t) = k1, k2(t) = k2 and apply the Theorem 2.1.

Corollary 3.2 Suppose that there exists a function k ∈ C([t0,∞), (0,∞)) such that

p(t) + k(t)q(t) ≥ 0, t ≥ t0,∫ t

τ(t)

[p(s) + k(s)q(s)] ds = ln k(t), t ≥ t0.

Then Eq. (1) has a solution

x(t) = exp
(
−

∫ t

T

[p(s) + k(s)q(s)] ds
)
, t ≥ T.

Proof. We put k1(t) = k2(t) = k(t) and apply the Theorem 2.1.

Corollary 3.3 Suppose that k > 0 and

p(t) + kq(t) ≥ 0, t ≥ t0,∫ t

τ(t)

[p(s) + kq(s)] ds = ln k, t ≥ t0.

Then Eq. (1) has a solution

x(t) = exp
(
−

∫ t

T

[p(s) + kq(s)] ds
)
, t ≥ T.

Proof. We put k(t) = k and apply the Corollary 3.2.

Corollary 3.4 Suppose that there exist functions k1, k2 ∈ C([t0,∞), (0,∞)), α ∈ C([t0,∞),
[0,∞)) such that

α(t) ≤ k1(t) ≤ k2(t), t ≥ t0,

p(t) + α(t)q(t) = 0, t ≥ t0,

ln k1(t) ≤
∫ t

τ(t)

[k1(s) − α(s)]q(s) ds,

∫ t

τ(t)

[k2(s) − α(s)]q(s) ds ≤ ln k2(t), t ≥ t0.

Then Eq. (1) has a solution which is bounded by positive functions.
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Proof. We put p(t) = −α(t)q(t) into (2) and apply the Theorem 2.1.

Corollary 3.5 Suppose that 0 ≤ α < k1 ≤ k2 and

p(t) + αq(t) = 0, t ≥ t0,

ln k1

k1 − α
≤

∫ t

τ(t)

q(s) ds ≤ ln k2

k2 − α
, t ≥ t0.

Then Eq. (1) has a solution which is bounded by positive functions.

Proof. We put α(t) = α, k1(t) = k1, k2(t) = k2 and apply the Corollary 3.4.

4 Examples

Example 4.1 Consider the delay differential equation

ẋ(t) +
1

5
x(t) +

1

10
x(t − 1) = 0, t ≥ 1. (4)

If we take k1 = 1, k2 = 2, then all conditions of Corollary 3.1 are satisfied and Eq. (4) has a
solution which is bounded with the functions

u(t) = exp(−0.4(t − 1)), v(t) = exp(−0.3(t − 1)), t ≥ 1.

Example 4.2 Consider the delay differential equation

ẋ(t) +
1

2
x(t) +

1

2
e−tx(t − 2) = 0, t ≥ 2. (5)

If we set k1(t) = 2, k2(t) = et, then all conditions of Theorem 2.1 are satisfied and Eq. (5) has
a solution which is bounded by the functions

u(t) = exp(2 − t), v(t) = exp(1 − e−2 + e−t − 0.5t), t ≥ 2.

Example 4.3 Consider the delay differential equation

ẋ(t) +
1

2t
x(t) +

1

5t
x(0.5t) = 0, t ≥ 1. (6)

If we take k1 = 1.5, k2 = 2, then all conditions of Corollary 3.1 are satisfied and Eq. (6) has
a solution which is bounded by the functions

u(t) =
(2

t

)0.9

, v(t) =
(2

t

)0.8

, t ≥ 2.
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Example 4.4 Consider the delay differential equation

ẋ(t) +
1

2t
x(t) +

1

3t
x
(2

3
t
)

= 0, t ≥ 1. (7)

If we take k = 1.5, then all conditions of Corollary 3.3 are satisfied and Eq. (7) has the solution

x(t) =
2

t
, t ≥ 2.

Example 4.5 Consider the delay differential equation

ẋ(t) +
1

t
x(t) +

1

t2
x
(√

t
)

= 0, t ≥ 1. (8)

If we set k(t) = t, then all conditions of Corollary 3.2 are satisfied and Eq. (8) has the solution

x(t) =
4

t2
, t ≥ 2.

Acknowledgement

The research was supported by the grants 1/0090/09 and 1/1260/12 of the Scientific Grant
Agency of the Ministry of Education of the Slovak Republic.

References
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DIFFERENTIABILITY WITH RESPECT TO DELAY
OF THE SOLUTION OF A CAUCHY PROBLEM

MUREŞAN Viorica, (RO)

Abstract. In this paper we use fiber contraction principle (see Rus I. A. [24]), to study the
differentiability with respect to delay of the solution of a Cauchy problem for a differential
equation with linear modification of the argument.
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of the solution.
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1 Introduction

The theory of functional differential equations and of functional integral equations are both
active fields in mathematics.

Many problems from physics, chemistry, astronomy, biology, engineering, social sciences
lead to mathematical models described by functional differential equations. The theory of
these equations has developed very much.

The differential equations with linear modification of the argument are a special class of
functional differential equations. The pantograph equation and its generalization have been
studied very much (see [ 9] - [11 ], [13], [17], [18],...).

For the monographs in the field of functional differential equations we quote here ([1] - [6],
[12], [14], [15], [19],...).

All these monographs and papers contain a lot of techniques, ideas and applications.

In the conditions of an existence and uniqueness theorem, we study the differentiability
with respect to delay of the solution of a Cauchy problem for a differential equation with linear
modification of the argument. We apply fiber contraction principle (Theorem 2.3.).
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2 Needed notions from Picard operators’ theory

Here, we present some notions and results from Picard operators’ theory.
Let (X, d) be a metric space and A : X −→ X an operator.
We denote by A0 := 1X , A1 := A, ..., An+1 := A ◦ An, n ∈ N, the iterate operators of the

operator A. Also:

P (X) : = {Y ⊂ X / Y �= ∅},
I(A) : = {Y ∈ P (X) / A(Y ) ⊂ Y },

the family of all nonempty invariant subsets of A,

FA = {x ∈ X /A(x) = x},

the fixed point set of the operator A.

Following Rus I.A. [19] - [23], [25] - [27], we have:
Definition 2.1. A is a Picard operator if there exists x∗ ∈ X such that

1) FA = {x∗};
2) the successive approximation sequence (An(x0))n∈N converges to x∗, for all x0 ∈ X.

Definition 2.2. A is a weakly Picard operator if the sequence (An(x0))n∈N converges for all
x0 ∈ X and the limit (which generally depends on x0) is a fixed point of A.

Definition 2.3. For an weakly Picard operator A : X → X we define the operator A∞ as
follows:

A∞ : X → X, A∞(x) := lim
n→∞

An(x), for all x ∈ X.

Remark 2.1. A∞(X) = FA.

Theorem 2.1. (Contraction principle). Let (X, d) be a complete metric space and
A : X → X a contraction. Then A is a Picard operator.

Theorem 2.2. (data dependence theorem). Let (X, d) be a complete metric space and
A,B : X −→ X two operators. We suppose that:

(i) A is an α-contraction and let FA = {x∗
A};

(ii) FB �= ∅ and let x∗
B ∈ FB;

(iii) there exists δ > 0, such that d(A(x), B(x)) ≤ δ, for all x ∈ X.
Then

d(x∗
A, x∗

B) ≤ δ

1 − α
.

The following theorem can be used for proving solution of operatorial equations to be differen-
tiable:
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Theorem 2.3. (fiber contraction principle) (Hirsch-Pugh [8], Rus [24]) Let (X, d) be a
metric space, (Y, ρ) be a complete metric space and T : X×Y → X×Y a continuous operator.
We suppose that:

(i) T (x, y) = (T1(x), T2(x, y));
(ii) T1 : X → X is a Picard operator;
(iii) there exists 0 < c < 1 such that

ρ(T2(x, y), T2(x, z)) ≤ c ρ(y, z), for all x ∈ X and all y, z ∈ Y.

Then the operator T is a Picard operator.

3 Mathematical models which contain differential equations with linear modifi-
cation of the argument

Example 3.1. (A problem of the pantograph) As it was shown by Ockendon and Tayler in [18]
(1971) and Ockendon in [17] (1980), the dynamics of a current collection system for an electric
locomotive (of a pantograph) with some imposed physical conditions, gives a mathematical
model. This model is a system of equations with linear modification of the argument of the
form:

Y ′(t) = AY (λt) + BY (t), t > 0, 0 < λ < 1,

where A and B are constant matrices.

Remark 3.1. The equation

y′(t) = y(λt), t > 0, 0 < λ < 1,

appeared for the first time in the paper of Mahler [13] (1940) in relationship with a problem
from the theory of numbers.

Remark 3.2. The equation

y′(t) = y
( t

2

)
, t ≥ 0

was mentioned by Harari and Palmer in [7] (1977) in relationship with a problem from the
theory of graphs.

Example 3.2. (A problem from the geometry of curves)
Consider (C) : y = y(x), x ∈ I ⊆ R and M(x, y(x)) ∈ (C). We have to determine all
the curves y = y(x) for which the tangent vector in every point M(x, y(x)) is parallel with
the vector determined by O(0, 0) and P (1, y(λx)), where λ ∈ R. So, we obtain the following
equation with linear modification of the argument:

y′(x) = y(λx), x ∈ I, λ ∈ R.
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In 1971 appeared a very important paper [11] in which Kato and McLeod studied the asymp-
totical properties for the solutions of the following problem for the pantograph equation:

y′(x) = ay(λx) + by(x), x > 0, λ > 0, λ �= 1
y(0) = 1,

in the cases 0 < λ < 1 and λ > 1, where a, b ∈ R.
In the next years appeared many papers on the subject of pantograph equation and its

generalizations ([9], [10], [14], [16], [17], [18], [30],...). So, the subject of ”pantograph equation”
is an old but very actual subject.

4 Differentiability with respect to delay

Consider the following problem

y′(x) = f(x, y(x), y(λx)), x ∈ [0, b], 0 < λ < 1 (4.1)

y(0) = ỹ0, (4.2)

where f ∈ C
(
[0, b] × R × R

)
and ỹ0 ∈ R.

As it is well known, this problem is equivalent with the following functional integral equation:

y(x) = ỹ0 +

∫ x

0

f(s, y(s), y(λs))ds, x ∈ [0, b], 0 < λ < 1. (4.3)

Consider the following Bielecki norm ‖ · ‖B on C[0, b], defined by

‖y‖B = max
x∈[0,b]

(|y(x)|e−τx), where τ > 0.

By using this norm and by applying Contraction principle to the operator

A : (C[0, b], ‖ · ‖B) → (C[0, b], ‖ · ‖B),

(A(y))(x) : = ỹ0 +

∫ x

0

f(s, y(s), y(λs))ds, x ∈ [0, b], 0 < λ < 1,

we obtain

Theorem 4.1.(Theorem 3.1. [16]) Suppose that the following conditions are satisfied:
(i) f ∈ C([0, b] × R × R) and ỹ0 ∈ R;
(ii) there exists L > 0 such that

|f(x, u, v) − f(x, u, v)| ≤ L(|u − u| + |v − v|),

for all x ∈ [0, b] and u, u, v, v ∈ R.
Then the problem (4.1)+(4.2) has in C[0, b] a unique solution y∗ and this solution can be
obtained by the successive approximation method starting from any element of C[0, b].
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Let us consider the following problem:

y′(x) = g(x, y(x), y(λx)), x ∈ [0, b], 0 < λ < 1 (4.4)

y(0) = ỹ0, (4.5)

where g ∈ C
(
[0, b] × R × R

)
and ỹ0, λ are the same as in the problem (4.1)+(4.2).

By using data dependence theorem (Theorem 2.2.), we obtain

Theorem 4.2.(Theorem 3.2. [16]) Suppose that:
(i) the conditions in Theorem 4.1 are satisfied and y∗ ∈ C[0, b] is the unique solution of the

problem (4.1)+(4.2);
(ii) there exists η > 0 such that

|f(x, u, v) − g(x, u, v)| ≤ η, for all x ∈ [0, b] and u, v ∈ R.

Then

d(y∗, w∗) ≤ ηb

1 − LA

, where LA =
L(1 + 1

λ
)

τ
,

for all w∗solutions of (4.4)+(4.5).

In [14], we have studied Cauchy problems for differential equations with linear modification of
the argument. We have given existence, uniqueness and data dependence results. The aim of
this paper is to study the differentiability with respect to delay of the solution of a Cauchy
problem, by applying fiber contraction principle (Theorem 2.3.).
So, in what follows we consider the following integral equation:

y(x, λ) = ỹ0 +

∫ x

0

f(s, y(s, λ), y(λs, λ))ds, x ∈ [0, b], λ ∈ [0, 1], (4.6)

where f ∈ C([0, b] × R × R) and ỹ0 ∈ R.
We are looking for the solution of this equation in

X = (C([0, b] × [0, 1]), || · ||B) with ||y||B = max
x∈[0,b]
λ∈[0,1]

|y(x, λ)| e−τx, where τ > 0.

We have

Theorem 4.3. We suppose that:
(i) f ∈ C1([0, b] × R × R);
(ii) there exists Mi > 0 such that

| ∂f

∂ui

(s, u1, u2)| ≤ Mi, i = 1, 2.

Then
(a) the equation (4.6) has in C([0, b] × [0, 1]) a unique solution y∗;
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(b) for all y0 ∈ C([0, b] × [0, 1]), the sequence (yn)n∈N , defined by

yn+1(x, λ) := ỹ0 +

∫ x

0

f(s, yn(s, λ), yn(λs, λ))ds, x ∈ [0, b], λ ∈ [0, 1],

converges uniformly to y∗;
(c) y∗ ∈ C1([0, b] × [0, 1]).

Proof. By the same proof as of the Theorem 4.1. we obtain (a), (b) and the continuity of y∗.
We remark that ∂y∗

∂x
∈ C([0, b] × [0, 1]).

Let y∗ be the solution of the equation (4.6). So, we have

y∗(x, λ) := ỹ0 +

∫ x

0

f(s, y∗(s, λ), y∗(λs, λ))ds, x ∈ [0, b], λ ∈ [0, 1]. (4.7)

Let us prove that there exists ∂y∗
∂λ

(x, λ) and ∂y∗
∂λ

∈ C([0, b] × [0, 1]).

We consider a subset X1 ⊂ X, X1 := {y ∈ X/ ∂y
∂x

(·, λ) ∈ C[0, b]}. We remark that for all fixed
λ ∈ [0, 1], y∗ ∈ X1 and T1(X1) ⊂ X1, where T1 : (X1, || · ||B) → (X1, || · ||B) is defined by

(T1(y))(x, λ)) := ỹ0 +

∫ x

0

f(s, y(s, λ), y(λs, λ))ds, x ∈ [0, b], λ ∈ [0, 1]

and T1 is a Picard operator. We shall use the following heuristic argument.
We suppose that there exists ∂y∗

∂λ
. Then from (4.7) we obtain

∂y∗

∂λ
(x, λ) =

∫ x

0

∂f

∂u1

(s, y∗(s, λ), y∗(λs, λ))
∂y∗

∂λ
(s, λ)ds +

+

∫ x

0

∂f

∂u2

(s, y∗(s, λ), y∗(λs, λ))
∂y∗

∂λ
(λs, λ)ds +

+

∫ x

0

∂f

∂u2

(s, y∗(s, λ), y∗(λs, λ)) s
∂y∗

∂u
(u, λ)|u:=λsds,

for x ∈ [0, b], where f = f(s, u1, u2).
This relationship suggests us to consider the operator T2 : X1 × X → X, (y, z) → T2(y, z),
defined by

(T2(y, z))(x, λ) : =

∫ x

0

∂f

∂u1

(s, y(s, λ), y(λs, λ)) z(s, λ)ds +

+

∫ x

0

∂f

∂u2

(s, y(s, λ), y(λs, λ)) z(λs, λ)ds +

+

∫ x

0

s
∂f

∂u2

(s, y(s, λ), y(λs, λ))
∂y

∂u
(u, λ)|u:=λsds ,

for x ∈ [0, b] and λ ∈ [0, 1].
By using (ii), we obtain

||T2(y, z) − T2(y, w)||B ≤ (M1 +
M2

λ
)τ−1||z − w||B,
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for all y ∈ X1 and all z, w ∈ X.
Choosing τ = M1 + M2

λ
+1, we have that T2 is a contraction with respect to its last argument. If

we take the operator T = (T1, T2), then we are in the conditions of the fiber contraction principle
(Theorem 2.3). It follows from this theorem that T : X1 × X → X1 × X, T (y, z) = (T1(y),
T2(y, z)) is a Picard operator. So, the sequences (yn)n∈N, (zn)n∈N , defined by (yn+1, zn+1) =
T (yn, zn), where

yn+1(x, λ) := ỹ0 +

∫ x

0

f(s, yn(s, λ), yn(λs, λ))ds, x ∈ [0, b], λ ∈ [0, 1],

respectively

zn+1(x, λ) : =

∫ x

0

∂f

∂u1

(s, yn(s, λ), yn(λs, λ)) zn(s, λ)ds +

+

∫ x

0

∂f

∂u2

(s, yn(s, λ), yn(λs, λ)) zn(λs, λ)ds +

+

∫ x

0

s
∂f

∂u2

(s, yn(s, λ), yn(λs, λ))
∂yn

∂u
(u, λ)|u:=λsds ,

converge uniformly on [0, b]× [0, 1] to (y∗, z∗), for all y0 ∈ X1, z0 ∈ X, and (y∗, z∗) is the unique
fixed point of the operator T. But for fixed y0 ∈ X1 and z0 ∈ X such that z0 = ∂y0

∂λ
we have

that z1 = ∂y1

∂λ
. By induction, we can prove that zn = ∂yn

∂λ
. Thus (yn)n∈N converges uniformly to

y∗ and (∂yn

∂λ
)n∈N converges uniformly to z∗. By using a Weierstrass argument, we conclude that

∂y∗
∂λ

exists and ∂y∗
∂λ

= z∗. These imply that ∂y∗
∂λ

is a continuous function.
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Abstract. In the present study the dynamic oscillations of a large deformable rectangular plate 
caused by a concentrated moving mass is investigated using modified Homotopy method. The 
displacement parameter is assumed to be the product of a time dependent weighting function by 
the related mode shape of the plate depending on the given boundary conditions. Due to the 
trigonometric modal shapes assumed for the spatial functions and also the moving nature of the 
loading, the governing differential equation possesses periodic coefficients. Fourier expansion 
of these coefficients, leads to a nonlinear non-homogenous Hill’s equation. In the present study, 
the analytical solution for the resulting nonlinear Hill’s differential equation is presented, using 
the modified Homotopy technique. Finally, the obtained results are compared with the 
numerical solutions to the problem using an example. The comparison shows good agreement 
between analytical and numerical results for a relatively wide range of moving mass weights 
and velocities. 
 
Key Words:  Modified Homotopy Method, Moving Mass, Geometric Nonlinearity, Floquet 
Theory, Dynamic Amplification Factor 
 
Mathematics Subject Classification:  Dynamic equations on time scales  

 
 
1 Introduction 
 
The dynamic vibrations induced in structural members by a moving object have been an interesting 
issue for many researchers in the last decades. For the first time, this subject was raised by bridge 
engineers, who found that ignoring vertical dynamic deformations in the bridge structural elements 
caused by moving traffic load may lead to catastrophic events. Afterwards, mathematical models 
were developed using different methods to describe this phenomenon. The earliest models were 
generally based on integral transformations which provided an algebraic version of the differential 
equations ([1, 2]). Also finite element and finite difference methods were utilized to find a solution 
for this issue ([2]). In most of these methods, the moving object is assumed as a moving force rather 
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than a moving mass. That resulted in a differential equation with constant coefficients. On the other 
hand, recent investigations have proved that neglecting the convective acceleration components of 
the moving object may cause significant errors in determining the dynamic response of the system 
([4]). Therefore, numerical and semi-numerical methods are applied to attack the moving mass 
problem with complete terms. The moving mass problem has been mostly scrutinized for beam 
structural models, while the effect of traveling masses on plates being received less attention. 
Meanwhile, some researchers have studied the dynamic influence of a moving mass traversing a 
Kirchhoff plate, recognizing the importance of load inertia ([4]). Herein, the moving mass problem 
for large deformable plates is addressed using analytical methods. Therefore some mathematical 
relations are developed so as to determine the dynamic response of a rectangular plate under a 
concentrated moving mass. 

As already mentioned, the dynamic deformations are assumed to follow a related modal shape of 
the plate, depending on the assumed boundary conditions, multiplied by a time-dependent 
weighting function. Based on these spatial functions, the kinetic and potential energies of the plate 
and the moving mass are determined. The Lagrange method is then employed to derive the main 
governing differential equation of the problem. Since in the calculation of the strain energy of the 
plate, Green-Lagrange strain relations are considered so as to include the effect of large 
deformations, that resulted in a cubic nonlinearity term in the main differential equation of the 
dynamic system.  

Because of utilized trigonometric modal shapes, the governing nonlinear differential equation 
possesses periodic coefficients. Eventually, the final nonlinear non-homogenous Hill’s equation is 
obtained through Fourier expansion of the periodic coefficients. The nonlinearity of this equation is 
overcome analytically using modified Homotopy technique. Since the Homotopy method applied 
herein is based on the linear solution of the governing differeretial equation, therefore the linear 
non-homogenous Hill’s equation is primarily investigated utilizing Floquet theory. Eventually, the 
final analytical results are compared with the numerical solutions using an example. The 
comparisons made show good agreement between the analytical and the numerical results for a 
relatively wide range of moving mass weights and velocities. 
 
 
2 Problem formulation 
 
The dynamic deformation of a large deformable rectangular plate is expressed using the von 
Karman theory for plates. In this regard, a uniform un-damped rectangular plate of length ܉ and 
width ܊ with arbitrary boundary condition is considered. The mass density of the plate is  ρ, and its 
bending stiffness is designated by D ൌ Ehଷ ൫12ሺ1 െ νଶሻ൯ൗ , in which E,  ݄ and ν are the plate’s 
modulus of elasticity, thickness and Poisson’s ratio respectively (Fig.1). Mid-plane deformations of 
the assumed plate in directions parallel to x, y and z axes are denoted by uሺx, y, tሻ, vሺx, y, tሻ and 
wሺx, y, tሻ. Ignoring the in-plane velocity components based on the von Karman theory, the kinetic 
energy of the plate is as the following: 

௣௟௔௧௘ܭ  ൌ
ଵ

ଶ
׬ ሶݓ݄ߩ ଶ	݀ܣ
	
஺  (1) 

Also the relevant strain energy of the plate is derived using Green-Lagrange strains relations ([7]) as 
the following: 

 ܷ௣௟௔௧௘ ൌ
஽

ଶ
׬ ൜ሺ׏ଶݓሻଶ ൅

ଵଶ

௛మ
݁ଵଶ െ 2ሺ1 െ ሻߥ ൤ଵଶ

௛మ
݁ଶ ൅

డమ௪

డ௫మ
డమ௪

డ௬మ
െ ቀ డ

మ௪

డ௫డ௬
ቁ
ଶ
൨ൠ  (2) ܣ݀
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Fig.1. A mass traversing the plate on a arbitrary trajectory 

 
where, 

 ݁ଵ ൌ ݑ߲ ݔ߲ ൅⁄ ଵ

ଶ
ቀడ௪
డ௫
ቁ
ଶ
൅ ݒ߲ ݕ߲ ൅⁄ ଵ

ଶ
ቀడ௪
డ௬
ቁ
ଶ
 (3) 

and, 

 ݁ଶ ൌ ൬߲ݑ ݔ߲ ൅⁄ ଵ

ଶ
ቀడ௪
డ௫
ቁ
ଶ
൰ ൬߲ݒ ݕ߲ ൅⁄ ଵ

ଶ
ቀడ௪
డ௬
ቁ
ଶ
൰ െ

ଵ

ସ
ቀ߲ݑ ݕ߲ ൅⁄ ݒ߲ ݔ߲ ൅⁄ డ௪

డ௫

డ௪

డ௬
ቁ
ଶ
 (4) 

As the moving mass M, traverses the plate on a trajectory described by ݔ଴ሺݐሻ and ݕ଴ሺݐሻ, it 
experiences a vertical displacement of ݓ଴ሺݐሻ. Therefore, assuming full contact between the mass 
and the plate, the external excitation force of the moving object on the plate underneath will be 
calculated as the following: 

 ݂ሺݔ, ,ݕ ሻݐ ൌ ܯ ቀ݃ െ ௗమ௪ሺ௧ሻ

ௗ௧మ
ቁ
௫ୀ௫బሺ௧ሻ,௬ୀ௬బሺ௧ሻ

ݔ൫ߜ െ ݕ൫ߜሻ൯ݐ଴ሺݔ െ  ሻ൯ (5)ݐ଴ሺݕ

Including all translational acceleration components of the moving mass, Eq. (5) can be expanded as: 

 ݂ ሺݔ, ,ݕ ሻݐ ൌ ܯ ቊ݃ െ ቂడ
మ௪

డ௧మ
൅ ሶ଴ݔ

ଶሺݐሻ డ
మ௪

డ௫మ
൅ ሶ଴ݕ

ଶሺݐሻ డ
మ௪

డ௬మ
൅ ሻݐሶ଴ሺݕሻݐሶ଴ሺݔ2

డమ௪

డ௫డ௬
൅ ሻݐሶ଴ሺݔ

డమ௪

డ௫డ௧
൅ ሻݐሶ଴ሺݕ

డమ௪

డ௬డ௧
൅

ሻݐሷ଴ሺݔ
డ௪

డ௫
൅ ሻݐሷ଴ሺݕ

డ௪

డ௬
ቃ
௫ୀ௫బሺ௧ሻ,௬ୀ௬బሺ௧ሻ

ቋ ݔ൫ߜ െ ݕ൫ߜሻ൯ݐ଴ሺݔ െ  ሻ൯ (6)ݐ଴ሺݕ

So, the external work imposed by external force on the plates turns out to be: 

 ܹ ൌ ׬ ݂ሺݔ, ,ݕ ܣ݀	ݓሻݐ
	
஺  (7) 

where ݂ሺݔ, ,ݕ ,ݔሺݑ ,is calculated in Eq. (6). The plate’s unknown displacement parameters	ሻݐ ,ݕ  ,ሻݐ
,ݔሺݒ ,ݕ ,ݔሺݓ ሻ andݐ ,ݕ  ሻ,  are considered as the product of a time-dependant weighting function byݐ
appropriate spatial functions as: 

,ݔሺݑ  ,ݕ ሻݐ ൌ ,ݔሺߟሻݐሺݎ ,			ሻݕ ,ݔሺݒ ,ݕ ሻݐ ൌ ,ݔሻ߰ሺݐሺݏ ,		ሻݕ ,ݔሺݓ ,ݕ ሻݐ ൌ ,ݔሻ߶ሺݐሺݍ  ሻ (8)ݕ

where the spatial functions ߟሺݔ, ,ݔሻ, ߰ሺݕ ,ݔሻ and ߶ሺݕ  ሻ are selected as the vibrational modalݕ
functions which satisfy the essential boundary conditions. Substituting Eq. (8), into relations (1), (2) 
and (7) and applying the Lagrange method, an ordinary differential equation describing the vertical 
vibrations of the plate will be resulted:  
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ቈන ܣଶ݀߶݄ߩ
஺

଴
൅ ,ሻݐ଴ሺݔ൫߶ܯ ,ሻݐ଴ሺݔሻ൯߶൫ݐ଴ሺݕ ሻ൯቉ݐ଴ሺݕ ሷݍ ሺݐሻ

൅ ,ሻݐ଴ሺݔ൫߶ܯ ,ሻݐ଴ሺݔሻ߶,௫൫ݐሶ଴ሺݔሻ൯ൣݐ଴ሺݕ ሻ൯ݐ଴ሺݕ ൅ ,ሻݐ଴ሺݔሻ߶,௬൫ݐሶ଴ሺݕ ሶݍሻ൯൧ݐ଴ሺݕ ሺݐሻ 

 ൅ቄ߱଴
ଶ ቀ׬ ܣଶ݀߶݄ߩ

஺
଴ ቁ ൅ ,ሻݐ଴ሺݔ൫߶ܯ ሶ଴ݔሻ൯ൣݐ଴ሺݕ

ଶሺݐሻ߶,௫௫൫ݔ଴ሺݐሻ, ሻ൯ݐ଴ሺݕ ൅ ሶ଴ݕ
ଶሺݐሻ߶,௬௬൫ݔ଴ሺݐሻ, ሻ൯ݐ଴ሺݕ ൅

,ሻݐ଴ሺݔሻ߶,௫൫ݐሷ଴ሺݔ ሻ൯ݐ଴ሺݕ ൅ ,ሻݐ଴ሺݔሻ߶,௬൫ݐሷ଴ሺݕ ሻ൯ݐ଴ሺݕ ൅ ,ሻݐ଴ሺݔሻ߶,௫௬൫ݐሶ଴ሺݕሻݐሶ଴ሺݔ2 ሻ൯൧ቅݐ଴ሺݕ ሻݐሺݍ ൅
஽

ଶ
ሻଷݐሺݍ߁ ൌ ,ሻݐ଴ሺݔ൫߶݃ܯ  ሻ൯  (9)ݐ଴ሺݕ

As described, the spatial function ߶ሺݔ,  ሻ is chosen as the natural vibrational mode shape of theݕ
plate according to: 

 ߶ሺݔ, ሻݕ ൌ sin ቀ௠గ௫

௔
ቁ sin ቀ௡గ௬

௕
ቁ (10) 

where ݉ and ݊ are positive integers. Thus, the associative plate’s natural frequency will be equal to: 

 ߱଴ ൌ ቀ௠
మ

௔మ
൅ ௡మ

௕మ
ቁ ଶටߨ

஽

ఘ௛
 (11) 

Parameter ߁ in Eq. (9) is a constant that depends on the geometric shape of the plate, Poisson’s ratio 
and the vertical and horizontal spatial functions. This parameter originates from the nonlinear strain 
terms in equations (3) and (4) leading to a non-homogenous nonlinear equation of motion with 
time-dependent coefficients. The general Eq. (9) is now simplified for a specific simply supported 
plate with the general mode shape given by Eq. (10). In this case, the moving mass traverses the 
plate with constant velocity ܿ on a straight path parallel to ݔ axis with constant ݕ଴. Introducing the 
following non- dimensional parameters: 

 ߱ ൌ గ௖

௔
, ܺ଴ሺ߬ሻ ൌ

௫బሺ௧ሻ

௔
, ଴ܻ ൌ

௬బ
௕
, ܳሺ߬ሻ ൌ ௤ሺ௧ሻ

௔
, ߳ ̅ ൌ ସெ

ఘ௛௔௕
ߨଶሺ݊݊݅ݏ ଴ܻሻ,	 

																																												Λഥ ൌ ଶ௰௔௕௛మ

గరቀೌ
್
௠మା್

ೌ
௡మቁ

మ , ߬ ൌ ,߱ݐ ഥ߱଴ ൌ
ఠబ

ఠ
, ܩ ൌ ݃ ௔

గమ௖మ
 (12) 

and substituting Eq. (10) into Eq. (9), the following differential equation is derived: 

 ሷܳ ሺ߬ሻ ൅	௠ఢത ௦௜௡ሺ௠ఛሻ ௖௢௦ሺ௠ఛሻ

ଵାఢത ௦௜௡మሺ௠ఛሻ
ሶܳ ሺ߬ሻ ൅ ఠഥబ

మି௠మఢത ௦௜௡మሺ௠ఛሻ

ଵାఢത ௦௜௡మሺ௠ఛሻ
ܳሺ߬ሻ ൅ ஃഥఠഥబ

మ

ଵାఢത ௦௜௡మሺ௠ఛሻ
ቀ௔
௛
ቁ
ଶ
ܳሺ߬ሻଷ ൌ

																																																															 ఢത	ீ

௦௜௡ሺ௡గ௒బሻ
	 ௦௜௡ሺ௠ఛሻ

ଵାఢത ௦௜௡మሺ௠ఛሻ
 (13) 

Contrary to the moving force case, Eq. (13), which describes the moving mass problem, includes 
some damping terms originated from the convective acceleration components of the mass inertia. 
Using a change of variable according to: 

 ܳሺ߬ሻ ൌ ௫ሺఛሻ

ሺଵାఢത ௦௜௡మሺ௠ఛሻሻ
భ
ర
 (14) 

Equation (13) turns into a simplified form with no distinct damping terms as the following: 
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ቀ݉߳̅ ሺ2݉߬ሻ݊݅ݏ

1൅߳̅ 2ሺ݉߬ሻ݊݅ݏ
ቁ
2

൰ ሺ߬ሻݔ ൅
Λതഥ߱0

2

ሺ1൅߳̅ 2ሺ݉߬ሻሻ3/2݊݅ݏ
ቀܽ
݄
ቁ
2

ሺ߬ሻଷݔ ൌ ܩ	̅߳

0ሻܻߨሺ݊݊݅ݏ
	

ሺ݉߬ሻ݊݅ݏ

ሺ1൅߳̅ 2ሺ݉߬ሻሻ3/4݊݅ݏ
 (15) 

which is considered as the fundamental equation whose solution is discussed in the rest of the work.  
2.1 Solution to the Derived Equation 
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Observing the periodic coefficients in Eq. (15), it can be written as a non-homogenous nonlinear 
Hill’s equation. To do so, these coefficients are expanded using Fourier series relations. Thus, the 
Eq. (15) can be written as: 

ሷሺ߬ሻݔ  ൅	൫ܽ଴ ൅ ∑ ௝ܽܿݏ݋ሺ2݆݉߬ሻ
ஶ
௝ୀଵ ൯ݔሺ߬ሻ ൅ ൫ܾ଴ ൅ ∑ ௝ܾܿݏ݋ሺ2݆݉߬ሻ

ஶ
௝ୀଵ ൯ݔሺ߬ሻଷ ൌ ∑ ௝ܿ	݊݅ݏሺ݆݉߬ሻ

ஶ
௝ୀଵ  (16) 

To solve Eq. (16) three steps are considered. First, the general solution for the linear version of the 
equation is discussed using the Floquet theory. Then, the pertinent particular solution is obtained 
using the general solution through the method of variation of constants. Finally, calculating the 
linear solution, its nonlinear version is addressed via modified Homotopy technique. 
 
2.1.1 General Solution 
 
Observing evenness and periodicity of the coefficients in the left hand side of Eq. (16) which have a 
period of  ߨ, the related general solution is considered as: 

௚ݔ  ൌ ଵሺ߬ሻݔܣ ൅ ଶሺ߬ሻݔܤ ൌ ଵሺ߬ሻݔܣ ൅ ଵሺെ߬ሻݔܤ ൌ ఓఛΦሺ߬ሻ݁ܣ	 ൅  ఓఛΦሺെ߬ሻ (17)ି݁ܤ

Exponential Fourier expansion of periodic function Φሺ߬ሻ, which it also has a period of ݔ ,ߨଵሺ߬ሻ is 
written as: 
ଵሺ߬ሻݔ  ൌ ݁ఓఛΦሺ߬ሻ ൌ ݁ఓఛ ∑ ௥݁ଶ௥௜ఛஶߙ

௥ୀିஶ  (18) 

Substituting Eq. (18) into Eq. (16) and assuming ௝ܾs and ௝ܿs to be zero, one arrives at a set of 
infinite homogenous equations which can be presented in a matrix form as the following for the 
case of ݉ ൌ 1: 

 ሾܪሿሼߙሽ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

…

1
ೌభ
మ

௔బାሺఓିସ௜ሻమ
ೌభ
మ

௔బାሺఓିଶ௜ሻమ
1

ೌమ
మ

௔బାሺఓିସ௜ሻమ

ೌయ
మ

௔బାሺఓିସ௜ሻమ

ೌర
మ

௔బାሺఓିସ௜ሻమ
ೌభ
మ

௔బାሺఓିଶ௜ሻమ

ೌమ
మ

௔బାሺఓିଶ௜ሻమ

ೌయ
మ

௔బାሺఓିଶ௜ሻమ
ೌమ
మ

௔బାఓమ

ೌభ
మ

௔బାఓమ
ೌయ
మ

௔బାሺఓାଶ௜ሻమ

ೌమ
మ

௔బାሺఓାଶ௜ሻమ
ೌర
మ

௔బାሺఓାସ௜ሻమ

ೌయ
మ

௔బାሺఓାସ௜ሻమ

1
ೌభ
మ

௔బାఓమ

ೌమ
మ

௔బାఓమ
ೌభ
మ

௔బାሺఓାଶ௜ሻమ
1

ೌభ
మ

௔బାሺఓାଶ௜ሻమ
ೌమ
మ

௔బାሺఓାସ௜ሻమ

ೌభ
మ

௔బାሺఓାସ௜ሻమ
1

…

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ

..

.
ଶିߙ
ଵିߙ
଴ߙ
ଵߙ
ଶߙ
..
. ۙ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۗ

ൌ

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ
..
.
0
0
0
0
0
..
. ۙ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۗ

(19) 

To avoid the trivial solution for ߙ௥s, the determinant of matrix [H] should become zero. This 
determinant is the well-known Hill’s infinite determinant. Setting ݀݁ݐሺܪሻ ൌ 0, the value of ߤ is 
calculated considering enough rows and columns of the determinant. In this regard, the following 
relation is invaluably helpful ([3]): 

ሻܪሺݐ݁݀  ൌ ሻ|ఓୀ଴ܪሺݐ݁݀ െ ቆ
ୱ୧୬ቀഏ

మ
௜ఓቁ

ୱ୧୬ቀഏ
మඥܽ0ቁ

ቇ
ଶ

 (20) 

According to Floquet theory and noting Eq. (18), stability of the general solution is guaranteed if ߤ 
becomes an imaginary number with zero real part. Besides, elimination of the central row and 
column of matrix in Eq. (19) helps to evaluate ߙ௥|௥ஷ଴ in terms of ߙ଴ according to: 

ଵሺ߬ሻݔ  ൌ ൫݁ఓఛ	଴ߙ ∑ ത௥݁ଶ௥௜ఛஶߙ
௥ୀିஶ ൯ (21) 

Therefore, having obtained the value of ߤ, all ߙത௥ parameters in Eq. (21) are known. Since ߙ଴ in Eq. 
(21) is an arbitrary constant, the general solution of Eq. (16) will be equal to equations (17) and 
(18), in which ߙ௥ parameters are substituted by known ߙത௥ values. 
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2.1.2 Particular Solution to the Derived Equation 
  
If the right hand side of linear Hill’s equation is nonzero, one can obtain its particular solution using 
general functions in Eq. (17) through the method of variation of constants. Therefore the particular 
solution of the Eq. (16), assuming ௝ܾs to be zeros, will be equal to: 

௣ሺ߬ሻݔ  ൌ ଶሺ߬ሻݔ ׬
௫భሺఛሻቀ∑ ௖ೕ	௦௜௡ሺ௝௠ఛሻ

ಮ
ೕసభ ቁ

ఋ
݀߬ െ ଵሺ߬ሻݔ ׬

௫మሺఛሻቀ∑ ௖ೕ	௦௜௡ሺ௝௠ఛሻಮ
ೕసభ ቁ

ఋ
݀߬ (22) 

where ߜ is the Wronskian determinate equal to: 

ߜ  ൌ ଶ′ሺ߬ሻݔଵሺ߬ሻݔ െ ଵ′ሺ߬ሻݔଶሺ߬ሻݔ ൌ ݐ݊ܽݐݏ݊݋ܥ ് 0 (23) 

Taking ߬ ൌ 0, this constant determinate is calculated as: 

 ߬ ൌ 0 ⇒ ߜ ൌ ଶ′ሺ0ሻݔଵሺ0ሻݔ െ ଵ′ሺ0ሻݔଶሺ0ሻݔ ൌ 2ሺ∑ ௦ஶߙ
௦ୀିஶ ሻሺ∑ ߤ௥ሺߙ ൅ ሻஶ݅ݎ2

௥ୀିஶ ሻ (24) 

Performing the required manipulations, the particular solution to the linear form of Eq. (16) 
becomes equal to: 

௣ሺ߬ሻݔ  ൌ
ଵ

ఋ
	∑ ቂ ௝ܿ ∑ ∑ ௦ߙ௥ߙ ቀ

ଵ

ଶ௥௜ା௝௠௜ାఓ
െ ଵ

ଶ௦௜ା௝௠௜ିఓ
ቁ ݎሺሾ2ሺ݊݅ݏ ൅ ሻݏ ൅ ݆݉ሿ߬ሻஶ

௥ୀିஶ
ஶ
௦ୀିஶ ቃஶ

௝ୀଵ  (25) 

Equations (17) and (25) are sufficient to calculate the solution for the linear non-homogenous Hill’s 
equation. In the following, the modified Homotopy method will be used to evaluate the nonlinear 
response of the system. 
 
 
2.1.3 Nonlinear Solution (Homotopy) 
 
Introducing an embedment parameter ߦ ,the nonlinear operator Ψሺ߬;  :ሻ is defined asߦ

 Ψሺ߬; ሻߦ ൌ
ሷ߰ ሺ߬; ሻߦ ൅	൫ܽ଴ ൅ ∑ ௝ܽܿݏ݋ሺ2݆݉߬ሻ

ஶ
௝ୀଵ ൯߰ሺ߬; ሻߦ ൅ ݂ሺߦሻ൫ܾ଴ ൅ ∑ ௝ܾܿݏ݋ሺ2݆݉߬ሻ

ஶ
௝ୀଵ ൯߰ሺ߬; ሻଷߦ െ

∑ ௝ܿ	݊݅ݏሺ݆݉߬ሻ
ஶ
௝ୀଵ   (26) 

to create a transformation. In this transformation, ߰ሺ߬;  ሻ is a function which equals the particularߦ
linear solution of Eq. (16) when ߦ ൌ 0 and is the corresponding nonlinear solution when  ߦ ൌ 1. 
Therefore, as the value of ߦ starts form zero towards unity, ݂ሺߦሻ shall approach unity from zero and 
also the solution of ߰ሺ߬;  ሻ deviates from the linear solution of Eq. (16) towards its nonlinearߦ
solution. The transformation parameter, 	߰ሺ߬; ߦ ሻ can be expanded aroundߦ ൌ 0 using Taylor series 
as the following: 

 ߰ሺ߬; ሻߦ ൌ ∑ ܺ௞ሺ߬ሻ	௞ߦ
ஶ
௞ୀ଴ 			,			ܺ௞ሺ߬ሻ ൌ

ଵ

௞!

డೖటሺఛ;కሻ

డకೖ
 (27) 

Substituting ߦ ൌ 1 in Eq. (27), the particular solution of the nonlinear equation (16) is obtained as: 

ሺ߬ሻݔ  ൌ ߰ሺ߬; 1ሻ ൌ ∑ ܺ௞ሺ߬ሻ
ஶ
௞ୀ଴  (28) 

To obtain the functions ܺ௞ሺ߬ሻ in Eq. (28), one can substitute ߦ ൌ 0 in Eq. (26) according to: 

ߦ  ൌ 0 ∶ 	ܺ଴ሷ ሺ߬ሻ ൅	൫ܽ଴ ൅ ∑ ௝ܽܿݏ݋ሺ2݆݉߬ሻ
ஶ
௝ୀଵ ൯ܺ଴ሺ߬ሻ ൌ ∑ ௝ܿ	݊݅ݏሺ݆݉߬ሻ

ஶ
௝ୀଵ  (29) 

which yields the function ܺ଴ that is also the particular solution of the linear equation (16), obtained 
in Eq. (25). Based on Eq. (27), ߰ሺ߬;  ሻ is differentiable to the required order with respect toߦ
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parameter ߦ. Therefore 
డೖஏሺఛ;కሻ

డకೖ
 is analytical for integer values of ݇. Differentiating Eq. (26) with 

respect to ߦ  and letting ߦ ൌ 0, leads to: 

 డஏሺఛ;కሻ

డక
ቚ
కୀ଴

: ଵܺሷ ሺ߬ሻ ൅	൫ܽ଴ ൅ ∑ ௝ܽܿݏ݋ሺ2݆݉߬ሻ
ஶ
௝ୀଵ ൯ ଵܺሺ߬ሻ ൅ ݂′ሺ0ሻ൫ܾ଴ ൅ ∑ ௝ܾܿݏ݋ሺ2݆݉߬ሻ

ஶ
௝ୀଵ ൯ܺ଴ሺ߬ሻଷ ൌ 0(30) 

which is called the first order deformation equation. Since, function ܺ଴ can be determined from Eq. 
(29), Eq. (30) is a linear non-homogenous Hill’s equation which its solution can be analytically 
calculated applying Eq. (25). Differentiating Eq. (26) to higher orders of ߦ and letting ߦ ൌ 0, higher 
order terms of Eq. (28) can be obtained using higher order deformation equations. For instance: 

 
డమஏሺఛ;కሻ

డకమ
ቚ
కୀ଴

∶ 	ܺଶሷ ሺ߬ሻ ൅	൫ܽ଴ ൅ ∑ ௝ܽܿݏ݋ሺ2݆݉߬ሻ
ஶ
௝ୀଵ ൯ܺଶሺ߬ሻ ൅

௙"ሺ଴ሻ

ଶ
൫ܾ଴ ൅ ∑ ௝ܾܿݏ݋ሺ2݆݉߬ሻ

ஶ
௝ୀଵ ൯ܺ଴ሺ߬ሻଷ ൅

			3൫ܾ଴ ൅ ∑ ௝ܾܿݏ݋ሺ2݆݉߬ሻ
ஶ
௝ୀଵ ൯ܺ଴ሺ߬ሻଶ ଵܺሺ߬ሻ ൌ 0  (31) 

leads to a new linear non-homogenous Hill’s equation to obtain ܺଶሺ߬ሻ. Imposing the existence of 
the required derivatives of ݂ሺߦሻ according to the order of deformation equations, and also observing 
that ݂ሺ0ሻ ൌ 0 and ݂ሺ1ሻ ൌ 1, one can assume ݂ሺߦሻ as the following polynomial series: 

 ݂ሺߦሻ ൌ ∑ ଵ

ே
௡ேߦ

௡ୀଵ  (32) 

where N shows the highest order of the deformation equation. Adding the calculated 
functions	ܺ଴ሺ߬ሻ, ଵܺሺ߬ሻ, … the particular nonlinear solution of Eq. (26) is obtained. The general 
solution of Eq. (17) is then added to the final solution and the unknown constants A and B are then 
determined based on the given initial conditions. After the mass leaves the plate completely, the 
plate vibrates in its free oscillation phase. The free oscillation of the plate can be described by ([7]): 

 ܳሺ߬ሻ ൌ γ cos ቀ ഥ߱଴ ቂ1 ൅
ଷΛത

଼
ቀܽ
݄
ቁ
2

γଶቃ ߬ ൅  ଴ቁ (33)ߚ

In which the parameters γ and β଴ can be calculated using the initial conditions. Thus the analytical 
solution of the moving mass problem is obtained completely. The accuracy of the obtained 
analytical results is verified using a numerical example. The MATLAB ODE solver which is based 
on the Runge-Kutta method is used for numerical analysis.  
 
 
3 Numerical Example 
 
A simply supported square plate shown in Fig. 2, with a modulus of elasticity, ܧ ൌ 7.1 ൈ 10ଵ଴ܲܽ, 
mass density: ߩ ൌ 2700	݇݃/݉ଷ	, length: 2 ݉, thickness: 1	ܿ݉, and the Poisson’s ratio: ߥ ൌ 0.33, is 
considered. The moving mass traverses the plate with constant velocity ܿ on a straight trajectory 
passing through the center line, according to Fig.2.  

 
Fig.2. Straight path of the moving mass 
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The first general vibrational modal shape of the plate is considered in this example i.e., ݉ and ݊ are 
equal to one in Eq. (10). Prior to solving the moving mass equation, the instability of plate’s 
vibrations with respect to different moving mass weights and velocities is presented. 

Evaluation of the infinite Hill’s determinant, specifies the range of the mass weights and velocities 
for which the parameter ߤ in Eq. (17) to have nonzero real part, leading to instability of the general 
solution. The regions of instability for the given example are shown by the hatched areas in Fig. 3. 
The parameter ݒ′ is defined as ݒᇱ ൌ ܽ߱଴ ⁄ߨ . Based on Fig. 3, some different stable parameters for 
mass and velocity are chosen to evaluate the related dynamic responses in time domain.  Figures 4-
6 show the dynamic amplification factors that are presented with respect to non-dimensionalized 
time, ߬, for some selected moving mass weights and velocities which cover relatively wide range of 
possible masses and velocities. The dynamic amplification factor (DAF) is defined as the ratio of 
the absolute maximum dynamic deflection of the plate to its maximum static response at the center 
point. The static deflection of the center point of a simply supported square plate under a 
concentrated mass ܯ, applied at the same point is equal to Δୱ୲ୟ୲୧ୡ ൌ ଶܽ݃ܯ0.0116 ⁄ܦ  ([6]).  

 
 

Fig.3. Hatched area show the instability regions for different mass and velocity of the moving object 
 
 

In each of the figures 4-6, the DAF is depicted for two distinct moving mass velocities ݒ ൌ  ᇱݒ0.2
and ݒ ൌ  ᇱ. In Fig. 4, the moving object has a mass equal to 0.2 of the plate’s mass. Apart fromݒ0.9
the mass ratio of 0.2 shown in Fig.4, two other mass ratios of 0.4 and 0.6 are selected to generate 
the Fig. 5 and Fig. 6. The deformation equations up to 2nd order of the Homotopy method are used 
to produce the nonlinear analytic results shown in Fig. 4 to Fig. 6. Also, it is clearly shown that the 
analytical solution for the linear version of the main equation completely matches the corresponding 
numerical result. 
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Fig.4. Dynamic Amplification Factor in case  ܯ ⁄݄ܾܽߩ ൌ 0.2 for  ݒ ൌ ݒ ᇱ andݒ	0.2 ൌ  ᇱݒ0.9

 
 

 
Fig.5. Dynamic Amplification Factor in case  ܯ ⁄݄ܾܽߩ ൌ 0.4 for  ݒ ൌ ݒ ᇱ andݒ	0.2 ൌ  ᇱݒ0.9

 
 
4 Conclusion 
 
The governing differential equation of vibrations of a rectangular plate subjected to a moving mass 
was derived applying Lagrange method, taking into account the large deformation. This nonlinear 
equation was analytically solved using the modified Homotopy method. The effect of the velocity 
and weight of the moving mass on the plate’s dynamic response was investigated. The gained 
results show that the solution for the linear form of the differential equation completely matches the 
numerical results. When the nonlinearities are involved, the obtained analytical solutions show good 
agreement with the numerical results for different velocities and weights of the moving mass. It is 
notable that based on the Homotopy procedure used in this study, the nonlinear analytical results 
approach the exact nonlinear solutions starting from the linear ones.  
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Fig.6. Dynamic Amplification Factor in case  ܯ ⁄݄ܾܽߩ ൌ 0.6 for  ݒ ൌ ݒ ᇱ andݒ	0.2 ൌ  ᇱݒ0.9
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SOME PROPERTIES OF SPECIAL DELAYED MATRIX
FUNCTIONS IN THEORY OF SYSTEMS OF LINEAR

DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS AND WITH SINGLE DELAY

Svoboda Zdeněk, (CZ), Josef Dibĺık, (CZ), Denys Khusainov, (UA)

Abstract. The well-known “step by step” method is one of basic concepts for investigation
of linear differential equations and systems with delay. A special matrix function - so called
delayed matrix exponential - is used for application of this method to linear systems of
first order with single constant delay and with constant matrix of linear terms. Special
delayed matrix functions are defined on intervals (k − 1)τ ≤ t < kτ , k = 0, 1, . . . (where τ
is a positive delay) as matrix polynomials, continuous at nets t = kτ . This circumstance
complicates asymptotic analysis of delayed matrix functions. This contribution deals with
asymptotic properties of delayed matrix functions.

Key words and phrases. Linear differential equation, delay, matrix function, charac-
teristic equation.

Mathematics Subject Classification. Primary 34K06; Secondary 34K25.

1 Introduction

Recently, new representations of solutions of linear differential systems with constant coeffi-
cients and single constant delay were derived using special delayed matrix functions. E.g.,
investigation of the structure of solutions of the second-order linear differential systems with
constant single delay and with a constant matrix is based on the concepts of so-called delayed
matrix cosine and delayed matrix sine. Such special matrix functions are defined in [1, 2].
Analogous results for systems of linear differential equations with single constant delay and a
constant matrix are derived using the delayed matrix exponential, for more details we refer,
e.g., to [3] and [4]. Analogies of continuous special delayed matrix functions are considered for
difference systems as well and relevant results can be found, e.g., in [5]-[8]. This contribution
deals with the asymptotic properties of delayed matrix functions.
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2 Linear Systems of First-Order

Let A and B be n×n constant matrices, Θ be n×n null matrix, I be n×n unit matrix and let
τ > 0 be a constant. The delayed matrix exponential of the matrix B is n × n matrix, defined
as follows:

eBt
τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ, −∞ < t < −τ,

I, −τ ≤ t < 0,

I + B
t

1!
, 0 ≤ t < τ,

. . .

I + B
t

1!
+ B2 (t − τ)2

2!
+ · · · + Bk (t − (k − 1)τ)k

k!
(k − 1)τ ≤ t < kτ,

. . .

where k = 0, 1, . . . . The main property of the delayed matrix exponential eBt
τ is following:(

eBt
τ

)′
= BeB(t−τ)

τ ,

and the matrix
Y (t) = eBt

τ

solves the initial problem for matrix differential system with single delay

Y ′(t) = BY (t − τ), t ∈ [−τ,∞),

Y (t) = I, t ∈ [−τ, 0].

Let ϕ : [−τ, 0] → R
n be continuously differentiable vector-function. Then the solution of the

initial-value problem

y′(t) = By(t − τ), t ∈ [−τ,∞),

y(t) = ϕ(t), t ∈ [−τ, 0]

is

y(t) = eBt
τ ϕ(−τ) +

0∫
−τ

eB(t−τ−s)ϕ′(s)ds.

Let matrices A, B commute, i.e., AB = BA and let A be a regular matrix. Then the solution
of the initial-value problem

y′(t) = Ay(t) + By(t − τ), t ∈ [−τ,∞),

y(t) = ϕ(t), t ∈ [−τ, 0]

can be expressed as

y(t) = eA(t+τ)eB1(t−τ)
τ ϕ(−τ) +

0∫
−τ

eA(t−τ−s)eB1(t−τ−s)
τ eAτ [ϕ′(s) − Aϕ(s)]ds
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where
B1 = e−AτB.

Except this, in [3] the representations of solutions of the non-homogeneous system

x′(t) = Ax(t) + Bx(t − τ) + f(t),

where f : [0,∞) → R
n, through delayed matrix exponential is studied.

In [9] and [10] is proved that for regular matrix B there exists a constant matrix C such
that the exponential of the matrix eCt has the similar asymptotic properties as the matrix eBt

τ .
For such two matrices we have

lim
t→∞

(eCt − eBt
τ ) = 0

and

lim
t→∞

d

d t
(eCt − eBt

τ ) = 0.

If there exists the limit
lim

n→∞
eB(n+1)τ

τ (eBnτ
τ )−1 = eCτ (1)

and the constant matrix C has at least one eigenvalue with positive real part, then the expo-
nential of matrix C, i.e., the matrix eCt, is the solution

Y (t) = eCt

of the matrix equation
Y ′(t) = BY (t − τ)

and the matrix C is a solution of the matrix equation

C = Be−Cτ . (2)

For integers s = 0, 1, . . . we have

eBsτ
τ =

s∑
k=0

(s + 1 − k)k

k!
Bkτ k = Bs(Bτ)

where Bs are polynomials with respect to the matrix B and the delay τ . Let Jordan canonical
form of the matrix B be a diagonal matrix and let modules of the eigenvalues λj, j = 1, 2, . . . , n
of B be such that the inequalities e|λj|τ < 1 are valid. Then there exists a nonsingular matrix
P such that

e−Cτ = lim
s→∞

eBτs
τ

(
eBτ(s+1)

τ

)−1

= lim
s→∞

P−1 × diag

(
Bs(λ1τ)

Bs+1(λ1τ)
, · · · ,

Bs(λnτ)

Bs+1(λnτ)

)
× P = lim

s→∞
P−1×

diag

(
s+2∑
k=1

(−k)k−1

k!
(λ1τ)k−1 + O((λ1τ)s+3) , · · · ,

s+2∑
k=1

(−k)k−1

k!
(λnτ)k−1 + O((λnτ)s+3)

)
× P

= P−1 × diag

( ∞∑
k=1

(−k)k−1

k!
(λ1τ)k−1)) , · · · ,

∞∑
k=1

(−k)k−1

k!
(λnτ)k−1))

)
× P

= P−1 × diag

(
W0(λ1τ)

λ1τ
, · · · ,

W0(λnτ)

λnτ

)
× P
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where W0(x) is the principal branch of the well-known Lambert W -function. For the reader’s
convenience we give its explanation in the following part.

3 Lambert function

The Lambert W -function is useful tool for description of the set of solutions of characteristic
equation (2) in the scalar case, i.e., in the case

λ = be−τλ,

which is equivalent to the equation
λeτλ = b.

Lambert function (named after Johann Heinrich Lambert, see [11]) is the inverse function to
the function

f(w) = wew.

The function satisfying
z = W (z)eW (z)

is a multi-valued (except at z = 0). For real arguments z = x, x > −1/e and real w (w > −1)
the equation above defines a single-valued function W0(x). The Taylor series of W0(x) around
0 is given by

W0(x) =
∞∑

n=1

(−n)n−1

n!
xn = x − x2 +

3

2
x3 − 8

3
x4 +

125

24
x5 − · · · ,

which has radius r of convergence r = 1/e. The Lambert W -function cannot be expressed in
terms of elementary functions.

From the fact that
u + iv = W (z) ⇒ (u2 + v2)e2u = |z|2

follows that for any constant |z| and any couple of values (uk, vk), (ul, vl) such that

uk + ivk = Wk(z),

ul + ivl = Wl(z),

the implication
v2

k < v2
l ⇒ uk > ul

holds and so, the inequality
�Wk(z) > �Wl(z)

holds, too. �W0(z) is the greatest real part of all real values W (z). If the matrix B has
the diagonal Jordan canonical form with eigenvalues λj, j = 1, 2, . . . , n satisfying the inequal-
ities eλjτ < 1, then the matrix function eCt, where the matrix C is defined by (1), bounds
exponentials eC̄t of other matrices C̄. For more details see [12].

The specification of the set of complex numbers such that values of real part of the Lambert
function are non-positive yields possibility to determine asymptotic properties of above cited
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delayed matrix functions. The set of complex numbers for which the real part of the Lambert
function equals zero (u = 0) is defined in the parametric form

x = −v sin v,

y = v cos v.

Then
(0 + iv) exp(0 + iv) = iv exp(iv) = x + iy

and
�W (x + ıy) = 0.

The part of this curve corresponding the principal branch W0(x + iy) is a simple closed curve
for a parameter v ∈ [−π/2, π/2] and for numbers from the interior of this curve the value of
the real part of the principal part of the Lambert function is negative. This set is specified as
solution of the inequality: √

x2 + y2 < − arctan

(
x

|y|
)

(see the figure below).

For more details see [11].

4 Main result

In this part we give an estimation of the Euclidean norm ‖eBt
τ ‖ of the delayed matrix exponential

of the matrix B. We assume that the matrix B has eigenvalues with coinciding geometric and
algebraic multiplicities only.
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Theorem 4.1 Assume that the matrix B has eigenvalues

λs = xs + iys, s = 1, . . . , n

with coinciding geometric and algebraic multiplicities only. Let moreover inequalities

1. eτ
√

xs
2 + ys

2 < 1, s = 1, . . . , n,

2. τ
√

xs
2 + ys

2 < − arctan

(
xs

| ys|
)

, s = 1, . . . , n

are valid. Then for the Euclidean norm of the delayed exponential of matrix we have

lim
t→∞

‖eBt
τ ‖ = 0.

Proof. The first inequality implies the existence the of the constant matrix C such that

P−1 × diag

(
W0(λ1τ)

λ1τ
, · · · ,

W0(λnτ)

λnτ

)
× P = e−Cτ = lim

n→∞
eBτn

τ

(
eBτ(n+1)

τ

)−1
.

This limit equality we may for any ε > 0, any positive integer k and sufficiently large n rewrite
in the form:

‖eBτ(n+k)
τ − eBτ(n)

τ eCkτ‖ < ε

where ‖ · ‖ is Euclidean norm. Therefore the matrix C is a matrix solution of the characteristic
equation (2). We obtain

C = Be−Cτ = P−1 × diag

(
W0(λ1τ)

τ
, . . . ,

W0(λnτ)

τ

)
× P

The second inequality says that real parts of eigenvalues of the matrix C are negative and the
Euclidean norm of the matrix satisfies inequality ‖eCτ‖ < 1. The proof is complete.

5 Conclusion

In this contribution some properties of special matrix delayed functions were considered. Such
functions can successfully be used to represent solutions of linear differential equations and
systems with the single delay. It was shown, that in some cases there exists non-delayed matrix
functions having the same asymptotic properties as delayed matrix functions. Investigation in
this way can lead to further interesting applications in the field of linear differential equations
with a single delay. We refer, e.g., to recent papers [13]-[15].
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value problems for differential systems with a single delay. Nonlinear Analysis 72, pp.
2251–2258, 2010.

[5] J. DIBLÍK, D. YA. KHUSAINOV, M. RŮŽIČKOVÁ: Controllability of linear discrete
systems with constant coefficients and pure delay SIAM J. Control Optim. 47, No. 3, pp.
1140–1149, 2008.
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SOME GENERALIZATIONS IN THEORY OF
RAPID VARIATION ON TIME SCALES AND

ITS APPLICATION IN DYNAMIC EQUATIONS

VÍTOVEC Jǐŕı, (CZ)

Abstract. In this paper we introduce a new definition of rapidly varying function on time
scales. Unlike the recently studied concept of rapid variation, this new concept is more
general and naturally extends and complements the already established class of rapidly
varying functions. We prove some of its properties and show the relation between this new
type of definition and recently introduced “classical” Karamata type of definition of rapid
variation on time scales. Note that the theory of rapid variation on time scales unifies
the existing theories from continuous and discrete cases. As an application, we establish
necessary and sufficient conditions for all positive solutions of the second order half-linear
dynamic equations on time scales to be rapidly varying.

Key words and phrases. Rapidly varying function, regularly varying function, regularly
bounded function, time scale, half-linear dynamic equation.

Mathematics Subject Classification. Primary 26A12, 26A99, 26E70; Secondary 34N05.

1 Introduction

Recall that a measurable function f : [a,∞) → (0,∞) of a real variable is said to be rapidly
varying of index ∞, resp. of index −∞ if it satisfies

lim
x→∞

f(λx)

f(x)
=

{
∞ resp. 0 for λ > 1,

0 resp. ∞ for 0 < λ < 1;
(1)

we write f ∈ RPVR(∞), resp. f ∈ RPVR(−∞). For more information about the rapid
variation on R, see for example [1] and references therein.
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In [8], the concept of rapidly varying sequences was introduced in the following way. Let
[u] denote the integer part of u. A positive sequence {fk}, k ∈ {a, a + 1, . . . } ⊂ Z is said to be
rapidly varying of index ∞, resp. of index −∞ if it satisfies

lim
k→∞

f[λk]

fk

=

{
∞ resp. 0 for λ > 1,

0 resp. ∞ for 0 < λ < 1;
(2)

we write f ∈ RPVZ(∞), resp. f ∈ RPVZ(−∞). Note that these types of definitions of
rapidly varying functions (1) and rapidly varying sequences (2), which include a parameter
λ, correspond to the classical Karamata type definition of regularly varying functions, see
[1, 6, 7, 15] and references therein. In [8] it was shown that if a positive sequence {fk} has the
property that Δfk increases, then f ∈ RPVZ(−∞) if and only if

lim
k→∞

kΔfk

fk

= −∞. (3)

This result shows that under certain conditions there exists an alternative (in some cases more
practical) possibility, how to define rapidly varying sequences (resp. functions). For further
reading of rapid and regular variation in discrete case we refer, e.g., to [3, 4, 8, 9, 10] and the
references therein.

In [16], we introduced the concept of rapidly varying functions on time scales (i.e., considered
functions are defined on nonempty closed subsets of R) in these two following ways:

Definition 1.1 A measurable function f : T → (0,∞) is said to be rapidly varying of index ∞,
resp. of index −∞ if there exist bounded (from below and above the positive constants) function
or regularly varying function ϕ : T → (0,∞) and a positive rd-continuously Δ-differentiable
function ω such that f(t) = ϕ(t)ω(t) and

lim
t→∞

tωΔ(t)

ω(t)
= ∞, resp. lim

t→∞
tωΔ(t)

ω(t)
= −∞; (4)

we write f ∈ RPVT(∞), resp. f ∈ RPVT(−∞). Moreover, the function ω is said to be
normalized rapidly varying of index ∞, resp. normalized rapidly varying of index −∞; we
write ω ∈ NRPVT(∞), resp. ω ∈ NRPVT(−∞).

Definition 1.2 (Karamata type definition) Let τ : R → T be defined as τ(t) = max{s ∈
T : s ≤ t}. A measurable function f : T → (0,∞) satisfying

lim
t→∞

f(τ(λt))

f(t)
=

{
∞ resp. 0 for λ > 1,

0 resp. ∞ for 0 < λ < 1
(5)

is said to be rapidly varying of index ∞, resp. of index −∞ in the sense of Karamata. We
write f ∈ KRPVT(∞), resp. f ∈ KRPVT(−∞).

We studied properties of these two definitions, where the earlier one was motivated by (3).
In this paper we improve and generalize the Definition 1.1 to get a “wider” class of rapidly

varying functions. Then we show their representation, properties and relation between this
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new definition and Karamata type definition. The theory of rapid variation on time scales
automatically holds for the continuous and discrete cases, moreover, at the same time, the
theory works also on other time scales which may be different from the “classical” ones. Finally,
note that the theory of rapid variation on time scales naturally extends and completes our
knowledge concerning the theory of regular variation on time scales, which was earlier studied
in [12, 14].

As an application, we study asymptotic properties of solutions of the second order half-linear
dynamic equation

[Φ(xΔ)]Δ − p(t)Φ(xσ) = 0 (6)

on a time scale, where p > 0 is an rd-continuous function, and Φ(x) = |x|α−1sgn x, α > 1. We
show that the central theorem mentioned in [16] is also fulfilled for the newly defined class of
rapidly varying functions.

In this paper, the time scale T is assumed to be unbounded above, min T = a (with a > 0)
and the graininess satisfies μ(t) = o(t). This condition was precisely discussed in [16]. As
was shown there, if we want to obtain a reasonable theory, we cannot omit this additional
requirement on the graininess.

2 Preliminaries

We assume that the reader is familiar with the notion of time scales. Thus note just that T,
σ, ρ, fσ, μ, fΔ,

∫ b

a
fΔ(s) Δs, R+ and ep(t, a) stand for the time scale, forward jump operator,

backward jump operator, f ◦ σ, graininess, Δ-derivative of f , Δ-integral of f from a to b, class
of positive regressive function and generalized exponential function, respectively. See [5], which
is the initiating paper of the time scale theory, and [2] containing a lot of information on time
scale calculus.

In [12], the concept of regular variation on T was introduced in the following way. A
measurable function f : T → (0,∞) is said to be regularly varying of index ϑ, ϑ ∈ R, if there
exists a positive rd-continuously Δ-differentiable function g satisfying

f(t) ∼ Cg(t) and lim
t→∞

tgΔ(t)

g(t)
= ϑ, (7)

C being a positive constant; we write f ∈ RVT(ϑ). If ϑ = 0, then f is said to be slowly
varying ; we write f ∈ SVT. Moreover, the function g is said to be normalized regularly varying
of index ϑ; we write g ∈ NRVT(ϑ). If ϑ = 0, then g is said to be normalized slowly varying ;
we write g ∈ NSVT. In [14], we introduced a Karamata type definition of regularly varying
function on time scales and developed and enriched the existing theory with new statements
(the embedding theorem, a relation between previous and Karamata type definition, etc.). Here
is the Karamata type definition. Let f : T → (0,∞) be a measurable function satisfying

lim
t→∞

f(τ(λt))

f(t)
= λϑ (8)

uniformly on each compact λ-set in (0,∞), where τ is defined as in Definition 1.2. Then f is said
to be regularly varying of index ϑ (ϑ ∈ R) in the sense of Karamata; we write f ∈ KRVT(ϑ).
If ϑ = 0, then f is said to be slowly varying in the sense of Karamata; we write f ∈ KSVT.
For further information about theory of regular variation on T see, e.g., [12, 13, 14].
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3 Theory of rapid variation on time scales

Before we introduce a new definition of rapidly varying function, we established (analogously
as in discrete and continuous case) a concept of regularly bounded function on time scale. This
concept can be viewed as a generalization of regular variation on time scales in the sense that
the limit in (8) may not exist, but the expression in them still exhibit a “moderate” behavior.
Recall that throughout the paper, T is assumed to be unbounded above, min T = a (with
a > 0) and μ(t) = o(t).

Definition 3.1 A measurable function f : T → (0,∞) is said to be regularly bounded if it is
satisfies

0 < lim inf
t→∞

f(τ(λt))

f(t)
≤ lim sup

t→∞

f(τ(λt))

f(t)
< ∞ for all λ > 0,

where τ is defined as in Definition 1.2; we write f ∈ RBT.

It is clear that ∪ϑ∈RKRVT(ϑ) ⊂ RBT. Moreover, it is not difficult to show (see [14, proof
of Theorem 2]) that rd-continuously Δ-differentiable function f satisfying relation

−∞ < lim inf
t→∞

tfΔ(t)

f(t)
≤ lim sup

t→∞

tfΔ(t)

f(t)
< ∞

is regularly bounded. Now we are ready to introduce a new definition of rapidly varying function
(compare with Definition 1.1).

Definition 3.2 A measurable function f : T → (0,∞) is said to be rapidly varying of index
∞, resp. of index −∞ if there exist regularly bounded function ϕ : T → (0,∞) and a positive
rd-continuously Δ-differentiable function ω such that f(t) = ϕ(t)ω(t) and

lim
t→∞

tωΔ(t)

ω(t)
= ∞, resp. lim

t→∞
tωΔ(t)

ω(t)
= −∞; (9)

we write f ∈ RPVT(∞), resp. f ∈ RPVT(−∞). Moreover, the function ω is said to be
normalized rapidly varying of index ∞, resp. normalized rapidly varying of index −∞; we
write ω ∈ NRPVT(∞), resp. ω ∈ NRPVT(−∞).

From the above definition it is easy to see that the function f(t) = at with a > 1 is a
typical representative of the class RPVT(∞), while the function f(t) = at with a ∈ (0, 1)
is a typical representative of the class RPVT(−∞). Of course, as we can see also from the
following theorem, these classes are much wider. Using elementary properties of linear first order
dynamic equations and generalized exponential functions eδ(t, s), we establish the following
representation.

Theorem 3.3 (Representation theorem) A positive function f ∈ Crd(T) belongs to the
class RPVT(∞), resp. to the class RPVT(−∞) if and only if it has a representation

f(t) = ψ(t)eδ(t, a), (10)

where function ψ : T → (0,∞) is regularly bounded and δ ∈ R+(T) satisfies limt→∞ tδ(t) = ∞,
resp. limt→∞ tδ(t) = −∞.
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Proof. “Only if”: Let f ∈ RPVT(∞), resp. f ∈ RPVT(−∞). Then there is δ ∈ Crd(T) such
that δ = ωΔ/ω and limt→∞ tδ(t) = ∞, resp. limt→∞ tδ(t) = −∞. Moreover, ω satisfies the first
order linear dynamic equation ωΔ = δ(t)ω and hence it has the form ω(t) = ω0eδ(t, a) with
ω0 > 0. Since ω is positive, we have for every right-scattered t (for right-dense t the following
inequality holds trivially)

1 + μ(t)δ(t) = 1 + μ(t)
ωΔ(t)

ω(t)
= 1 +

ωσ(t) − ω(t)

ω(t)
=

ωσ(t)

ω(t)
> 0

and hence δ ∈ R+(T). In view of f(t) = ϕ(t)ω(t) = ω0ϕ(t)eδ(t, a) and of the fact that ψ is
defined as ϕ, (10) holds.
“If”: Let (10) hold with δ ∈ R+(T) and limt→∞ tδ(t) = ∞, resp. limt→∞ tδ(t) = −∞. Put
ω(t) = eδ(t, a). Then ω is positive function such that limt→∞ tωΔ(t)/ω(t) = limt→∞ tδ(t) = ∞,
resp. limt→∞ tωΔ(t)/ω(t) = limt→∞ tδ(t) = −∞. Since f(t) = ψ(t)ω(t), f ∈ RPVT(∞), resp.
f ∈ RPVT(−∞).

Proposition 3.4 (i) It holds f ∈ RPVT(∞) if and only if 1/f ∈ RPVT(−∞).

(ii) Let f ∈ NRPVT(∞). Then for every ϑ ∈ [0,∞) the function f(t)/tϑ is increasing for
large t and limt→∞ f(t)/tϑ = ∞.

(iii) Let f ∈ NRPVT(−∞). Then for every ϑ ∈ [0,∞) the function f(t)tϑ is decreasing for
large t and limt→∞ f(t)tϑ = 0.

(iv) f ∈ NRPVT(∞) implies fΔ(t) > 0 for large t and f(t) is increasing for large t, moreover
f and fΔ are tending to ∞.

(v) f ∈ NRPVT(−∞) implies fΔ(t) < 0 for large t and f(t) is decreasing for large t,
moreover f is tending to 0. If f is convex for large t or if there exists h > 0 such that
μ(t) > h for large t, then fΔ is tending to 0.

Proof. (i) Let f ∈ RPVT(∞), f = ϕω. First, we show that ω ∈ NRPVT(∞) ⇔ 1/ω ∈
NRPVT(−∞). Due to (9), ωΔ(t) > 0 for large t. Therefore,

ω ∈ NRPVT(∞) ⇔ lim
t→∞

ω(t)

tωΔ(t)
= 0 ⇔ lim

t→∞
ωσ(t) − μ(t)ωΔ(t)

tωΔ(t)
= 0

⇔ lim
t→∞

(
ωσ(t)

tωΔ(t)
− μ(t)

t

)
= 0 ⇔ lim

t→∞
ωσ(t)

tωΔ(t)
= 0

⇔ lim
t→∞

tωΔ(t)

ωσ(t)
= ∞ ⇔ lim

t→∞

(
t

1/ω(t)
· −ωΔ(t)

ω(t)ωσ(t)

)
= −∞

⇔ lim
t→∞

t(1/ω(t))Δ

1/ω(t)
= −∞ ⇔ 1

ω
∈ NRPVT(−∞).

Now, since ϕ ∈ RBT, we have

0 < lim inf
t→∞

ϕ(t)

ϕ(τ(λt))
≤ lim sup

t→∞

ϕ(t)

ϕ(τ(λt))
< ∞
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and hence 1/ϕ ∈ RBT. Therefore 1/f ∈ RPVT(−∞). Similarly, 1/f ∈ RPVT(−∞) implies
f ∈ RPVT(∞).

The proof of part (ii) - (v) we can find in [16].

The following proposition summarizes some important properties of rapidly varying func-
tions in the sense of Karamata. The proof of this proposition we can find in [16].

Proposition 3.5 (I) f ∈ KRPVT(∞) if and only if 1/f ∈ KRPVT(−∞).

(II) Let f : T → (0,∞) be a measurable function, monotone for large t. Then

(i) f ∈ KRPVT(∞) implies f is increasing for large t and lim
t→∞

f(t) = ∞.

(ii) f ∈ KRPVT(−∞) implies f is decreasing for large t and lim
t→∞

f(t) = 0.

(iii) lim
t→∞

f(τ(λt))

f(t)
= ∞ (λ > 1) implies f ∈ KRPVT(∞).

(iv) lim
t→∞

f(τ(λt))

f(t)
= 0 (λ > 1) implies f ∈ KRPVT(−∞).

In the end of this section we show that the Karamata type definition is under certain
conditions equivalent to Definition 3.2.

Lemma 3.6 Let f be a positive rd-continuously differentiable function and let fΔ(t) be increas-
ing for large t. Then

(i) f ∈ KRPVT(∞) iff f ∈ RPVT(∞) iff f ∈ NRPVT(∞).

(ii) f ∈ KRPVT(−∞) iff f ∈ RPVT(−∞) iff f ∈ NRPVT(−∞).

Moreover, fΔ(t) be increasing for large t is not to be assumed in all if parts.

Proof. (i) We will proceed in the following way:

f ∈ KRPVT(∞) ⇒ f ∈ NRPVT(∞) ⇒ f ∈ RPVT(∞) ⇒ f ∈ KRPVT(∞).

First implication we can find in [16]. The second implication is trivial. Now we show the third
implication. Let f ∈ RPVT(∞) and take λ > 1. Then, by Definition 3.2

lim
t→∞

f(τ(λt))

f(t)
= lim

t→∞
ϕ(τ(λt))

ϕ(t)
· ω(τ(λt))

ω(t)
= lim

t→∞
hλ(t)

ω(τ(λt))

ω(t)
. (11)

Let ϕ ∈ RBT. Therefore, hλ(t) is bounded both above and below by the positive constants.
Due to ω ∈ NRPVT(∞), ω(t) is increasing for large t (thanks to Proposition 3.4). Now, for
all λ > 1, we have

ω(τ(λt)) ≥ ω(τ(λt)) − ω(t) =

∫ τ(λt)

t

ωΔ(s)Δs ≥ ωΔ(t)[τ(λt) − t]

≥ ωΔ(t)[λt − μ(τ(λt)) − t] = ωΔ(t)[t(λ − 1) − μ(τ(λt))].
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Hence,
ω(τ(λt))

ω(t)
≥ ωΔ(t)[t(λ − 1) − μ(τ(λt))]

ω(t)
. (12)

Since λ > 1, in view of μ(τ(λt))/ω(t) → 0 as t → ∞, from (11) and (12) we have

lim
t→∞

f(τ(λt))

f(t)
≥ lim

t→∞
hλ(t)

tωΔ(t)(λ − 1)

ω(t)
= ∞ (λ > 1),

and thus (thanks to Proposition 3.5) f ∈ KRPVT(∞).
(ii) We will proceed analogically as in case (i) and get the series of three implications (where

∞ is replaced by −∞. First implication we can find in [16]. The second implication is trivial.
Now we show the third implication. Let f ∈ RPVT(−∞). By using Proposition 3.4, part (i)
of this lemma and Proposition 3.5 we can successively write:

f ∈ RPVT(−∞) ⇒ 1

f
∈ RPVT(∞) ⇒ 1

f
∈ KRPVT(∞) ⇒ f ∈ KRPVT(−∞).

4 Applications to half-linear dynamic equations

As an application of the theory of rapid variation, we show that the asymptotic behavior of
solutions of half-linear dynamic equation in the form (6) is the same as in the case, where the
class of all rapidly varying functions is “thinner”, see Definition 1.1 and [16, Theorem 1]. In
[11] the reader can find many useful information about half-linear dynamic equations. In view
of the structure of equation (6), it is not difficult to see that every positive solution y of (6)
satisfies yΔΔ > 0 , i.e., y is convex and yΔ is increasing.

Theorem 4.1 Equation (6) has solutions u ∈ RPVT(−∞) and v ∈ RPVT(∞) if and only if
for all λ > 1

lim
t→∞

tα−1

∫ τ(λt)

t

p(s)Δs = ∞. (13)

Moreover, all positive decreasing solutions of (6) belong to NRPVT(−∞) and all positive
increasing solutions of (6) belong to NRPVT(∞).

Proof. The proof of this theorem is analogous as a proof in [16, Theorem 1], but some of its
steps follow from the Proposition 3.4, Proposition 3.5 and Lemma 3.6.

In the end note, that more and precise information about equation (6) and its Karamata
solutions (i.e., solutions, which are slowly, regularly or rapidly varying) reader can find in [16].

Acknowledgement

The paper was supported by the Grant P201/10/1032 of the Czech Grant Agency.

volume 5 (2012), number 2 145



Aplimat - Journal of Applied Mathematics

References

[1] BINGHAM, N.H., GOLDIE, C.M., TEUGELS, J.L.: Regular Variation, Encyclopedia of
Mathematics and its Applications, Vol. 27, Cambridge Univ. Press, 1987.

[2] BOHNER, M., PETERSON, A. C.: Dynamic Equations on Time Scales: An Introduction
with Applications. Birkhäuser, Boston, 2001.
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616 00 Brno, Czech Republic
tel.: +420-541143134, email: vitovec@feec.vutbr.cz

146 volume 5 (2012), number 2



SOLUTION OF DIFFRACTION PROBLEMS
BY BOUNDARY INTEGRAL EQUATIONS
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Abstract. Optical diffraction belongs to fewer exploited applications of boundary integral
equations. In this paper, we describe theoretical background of their use to numerical
modeling of diffraction in periodic structures including some needed theorems and their
proofs.
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1 Introduction

Development of optical micro- and nanostructures with periodical ordering takes important
place in many branches. Besides less or more complicated experiments, theoretical studies
are carried out including mathematical models of electromagnetic wave interaction with geo-
metrically or material-wise modulated media. In the last three decades, there were published
numerous monographs and articles treating of optical scattering, especially diffraction in peri-
odic structures (e.g. [1]-[3] and references therein). The various implementation of Rigorous
Coupled Waves Algorithm (RCWA) or differential method became mostly used [4]-[5]. One
of relatively new approaches is based on Boundary Integral Equations (BIE). Purely theore-
tical background of this method is referred in [6]-[8] in framework of optical diffraction, some
important applications can be found among others in the papers [9]-[11].

In this article, we aim to show the basic features of BIE in diffractive optics. We describe
theoretical background of obtained algorithm and some needed theorems and their proofs.
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2 Boundary integral equations

2.1 Formulation of problem

We consider two semi-infinite homogenous isotropic dielectrics with relative permittivities
ε(1), ε(2) and permeabilities μ(1) = μ(2) = 1 divided by boundary, which is smooth and pe-
riodically modulated in coordinate x1 with period Λ and uniform in the x2 direction - see Fig.
1. In any medium, we introduce wave numbers k(κ) = 2π

√
ε(κ)μ(κ)/λ = k0n

(κ) and propagations

α = k(1) sin θ, γ(κ) =

√
(k(κ))

2 − α2, where n(κ) =
√

ε(κ)μ(κ), κ = 1, 2 are refractive indices of
superstrate and substrate, respectively. Incident beam of wavelength λ propagates in the plane
x2 = 0 under incidence angle θ with respect to the x3 axis.

Figure 1: Scheme to the problem formulation.

As usual, we formulate the problem for basic polarizations of planar monochromatic inci-
dent beam - normal to the plane of incidence (TE polarization) and parallel to this one (TM
polarization). Thus, the spatially dependent intensities of electro-magnetic field have the form
E = (0, E2, 0),H = (H1, 0, H3) in the first case or E = (E1, 0, E3),H = (0, H2, 0) for TM
field.

Optical diffraction as the interaction of light electromagnetic wave with material medium
is generally modeled by Maxwell equations with appropriate boundary conditions. Described
situation allows us to consider the boundary problem for a pair of Helmholtz equation. Invari-
antness of the interface in x2 coordinate let us to write the problem as two-dimensional, where
we denote

u(x) = u(x1, x3) =

{
E2(x1, x3) for TE polarization ,
H2(x1, x3) for TM polarization .

(1)

In agreement with physical principle of diffraction this function must be pseudoperiodic in x1

coordinate to fulfil the relation u(Λ, x3) = eiαΛu(0, x3). Expected solution represent correspon-
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ding field component of reflected and transmitted beam in an arbitrary point x = (x1, x3),

u(x) =

{
u(1)(x) + uin(x), x ∈ Ω(1),
u(2)(x), x ∈ Ω(2).

(2)

Incident wave given by the function uin = ei(αx1+γ
(1+)
1 x3) on zero diffraction order fulfils

Helmholtz equation in Ω(1). Upper index (+) denotes forward wave, while (−) will be used for
backward one. Described situation allows us to write problem on the one period by the pair of
Helmholtz equation

Δu(κ) +
(
k(κ)

)2
u(κ) = 0 in Ω

(κ)
Λ , κ = 1, 2 . (3)

The transient boundary conditions

u(1) = u(2) , c
∂u(1)

∂n
=

∂u(2)

∂n
(4)

express the continuity of tangential field components on common boundary S : x3 = f(x1), x1 ∈
[0, Λ]. The vector n = (n1, n3) denotes inner normal for the domain Ω

(1)
Λ , c = 1 for TE and

c = ε(2)/ε(1) for TM polarization. The Sommerfeld radiation conditions are applied for far fields
on fictious bondaries Γ(κ) : x3 = bκ :

lim
x→∞

√
x

(
∂u(1)

∂x
− ik(1)u(1)

)
= 0, lim

x→−∞
√

x

(
∂u(2)

∂x
− ik(2)u(2)

)
= 0, x = ||x||. (5)

2.2 Boundary integral equations

To formulate the scattering problem with the help of BIE, we start with the standard integral
representation of the function u(x) in an arbitrary point x ∈ Ω by integrals along the boundary
of the domain [12]. Because of the periodicity and Sommerfeld conditions the computation is
reduced only on boundary S :

u(x) =

∫
S

u(η)
∂G(x,η)

∂nη

d
η −
∫
S

∂u(η)

∂nη

G(x,η) d
η, η ∈ S, (6)

where G denotes fundamental solution of Helmholtz equation. This formula presents the back-
ground of integral equations method in the potential form, since the first integral is the double
layer potential with the density u(x), the second one is the single layer potential with the
density ∂u(η)/∂nη. While the second term is continuous on the boundary, potential of double
layer has the jump of the size ±1

2
u(ξ) for x = ξ ∈ S, the sign of which corresponds to the

normal orientation. Denoting ∂u(κ)(η)/∂nη = v(κ), we can create system of integral equation
for both regions in potential form

u(1)(x) = −
∫
S

u(1)(η)
∂G(1)(x,η)

∂nη

d
η +

∫
S

v(1)(η)G(1)(x,η)d
η − uin(x) , (7)
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u(2)(x) =

∫
S

u(2)(η)
∂G(2)(x,η)

∂nη

d
η −
∫
S

v(2)(η)G(2)(x,η)d
η . (8)

Obtained system allows us to find the solution u(κ) in an arbitrary point of the domain
Ω(κ), if we know solution and its gradient on the boundary S. Therefore, we need to realize the
limit transition x ∈ Ω(κ) → ξ ∈ S according to direction of the normal. Since we aim to solve
the system for unknown functions in the domain Ω(1), we denote u(1) = u, v(1) = v and apply
boundary conditions (4). This step leads to boundary integral equation in the form

u(ξ) = −2

∫
S

u(η)
∂G(1)(ξ,η)

∂nη

d
η + 2

∫
S

v(η)G(1)(ξ,η)d
η − 2uin(ξ) , (9)

u(ξ) = 2

∫
S

u(η)
∂G(2)(ξ,η)

∂nη

d
η − 2c

∫
S

v(η)G(2)(ξ,η)d
η . (10)

Finally, we write boundary integral operators as the potentials of single and double layer

W(κ)u = 2

∫
S

u(η)
∂G(κ)(ξ,η)

∂nη

d
η, V(κ)u = 2

∫
S

v(η)G(κ)(ξ,η)d
η (11)

to obtain the system (9)-(10) in matrix operator form[ W(1) + I −V(1)

W(2) − I −cV(2)

] [
u
v

]
=

[ −2uin

0

]
, (12)

where I is identity operator.

3 Fundamental solution of Helmholtz equation

3.1 General case

Fundamental solution of Helmholtz equation in R2 is Hankel function of the first kind zero order
G(x,y) = i

4
H1

0(k‖x − y‖) that fulfils equation ΔG + k2G = δ(x − y). Such function satisfies
Sommerfeld radiation conditions. Further, we can denote z = k‖x − y‖ and prove following
theorem.
Theorem 1. Let H1

0(z) is Hankel function of the first kind zero order. Then function i
4
H1

0(z)−
1
2π

ln 1
z

is smooth for each z ∈ C.
Proof. Hankel function of the first kind zero order can be decomposed as a sum of Bessel
function J0(z) and Neumann function N0(z) as H1

0(z) = J0(z) + iN0(z), where we can express
Neumann function in the form of convergent infinite series

N0(z) =
2

π
J0(z)(ln

z

2
+ γ) − 2

π

∞∑
k=0

(−1)k

(k!)2

(z

2

)2k
k∑

j=1

1

j
, (13)
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where γ is Euler constant. The formula can be written in the form

H1
0(z) =

2i

π
J0(z) ln z + J0(z)[1 +

2i

π
(γ − ln 2)] − 2i

π
σ(z), (14)

where the term σ(z) =
∞∑

k=0

(−1)k

(k!)2

(
z
2

)2k
k∑

j=1

1
j

must be smooth being an uniform convergent power

series. Therefore, only terms that include logarithms can have some singularities, so we take
into consideration only the first term of (14). It is sufficient to prove that the term (1−J0(z)) ln z
has finite limit at z = 0. We use recurrent relations between Bessel functions of the zero, first
and second order, their derivatives and their values for z = 0,

lim
z→0

(1 − J0(z)) ln z = −2 lim
z→0

J2
1(z) + (1 − J0(z))J′

1(z)

J0(z) − zJ1(z)
= 0. (15)

We have just proved continuity of investigated function. Furthermore, we need to prove con-
tinuity of its first derivative. The singularity can still be only in the term (1 − J0(z)) ln z,
respectively its derivative [(1 − J0(z)) ln z]′ = J1(z) ln z + 1

z
(1 − J0(z)). It is obvious that the

second term of the derivative converges to zero and we need to calculate only the limit of the
first one. Using analogical approach as in the first problem we get

lim
z→0

J1(z) ln z = − lim
z→0

2J1(z)J′
1(z)

−J′
1(z) + J0(z) + zJ′

0(z)
= 0 (16)

and prove the whole theorem.

3.2 Periodic case

If we search for solution of Helmholtz equation G(x,y) = G(x − y) in a strip of the width Λ,
for which the term e−iαx1GΛ is periodic in x1 coordinate with period Λ, the resulting function
must satisfy the equation [13]

ΔGΛ + k2GΛ =
∑
m∈Z

δ(x1 − y1 − mΛ, x3 − y3)e
iαmΛ . (17)

For clarity, the upper index (κ) will be suppressed hereafter. This requirement is fulfiled among
others for the function [3]

GΛ(x,y) =
1

2iΛ

∑
m∈Z

1

γm

exp {i [αm(x1 − y1) + γm|x3 − y3|]} , (18)

where αm = α + 2πm/Λ, γ2
m = k2 − α2

m. Fundamental solution (18) also satisfies Sommerfeld
radiation conditions (5), but for x − y = o the series diverges. Nevertheless, we are able to
prove [7] that this singularity is also of a logarithmical type, so that the difference GΛ(x−y)−
1
2π

ln 1
||x−y|| is continuous for all x,y. In the following considerations the normal derivative of

fundamental solution

∂GΛ(x,y)

∂ny

= − 1

2Λ

∑
m∈Z

1

γm

[αmn1 + γmsgn(x3 − y3)n2]e
i[αm(x1−y1)+γm|x3−y3|] (19)

plays the important role, as we have already shown in section 2.2.
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3.3 Parametrization

Let p(t) = (p(t), q(t)), t ∈ [0, 2π] be a parametrization of the boundary S with following
properties:

p(0) = 0, p(2π) = Λ, q(0) = q(2π),

p(t + 2π) = p(t) + Λ, q(t + 2π) = q(t). (20)

For the boundary points we have ξ = p(s),η = p(t), s, t ∈ [0, 2π] with corresponding normal
vector

n(t) = (n1(t), n3(t)) = (−q̇(t), ṗ(t)) , ||n|| = n(t) =
√

ṗ2(t) + q̇2(t). (21)

The kernel of the operators V(κ) is periodical fundamental solution (18), which can be
written by above parametrization as

GΛ(s, t) =
∑
m∈Z

GΛ,m(s, t) ,

GΛ,m(s, t) =
1

2iΛ

1

γm

exp {i [αm(p(s) − p(t)) + γm|q(s) − q(t)|]} (22)

with logarithmical singularity that can be transformed using following theorem.
Theorem 2. Let p : [0, 2π] → R2 is above parametrization. Then the logarithmical singularity
fulfils

ln ||p(s) − p(t)|| = −
∑
m�=0

e−im(s−t)

2|m| . (23)

Proof. Using above parametrization we consider two near points of the boundary ξ = p(s),η =
p(t), s, t ∈ [0, 2π]. In the neighbourhood of a singularity point s = t we can replace periodized
boundary S by the arc of unit circle with a centre (p0, q0), that lies out of S, i.e. p(t) =
p0 + cos t, q(t) = q0 + sin t, and, modify the singularity

ln ||p(s) − p(t)|| = ln
√

2 − 2 cos(s − t) = ln

∣∣∣∣2 sin
s − t

2

∣∣∣∣ . (24)

Now, we can use Euler formula to trasform trigonometric functions into functions of complex
variable

ln ‖p(s) − p(t)‖ = ln
(
|ei s−t

2 ||1 − e−i(s−t)|
)

. (25)

The first absolute value is equal to 1. Finally, we can use expansion of Taylor series of the

function ln(1 − z) on unit circle |z| < 1, ln(1 − z) = −
∞∑

n=1

zn

n
to prove (23).

3.4 Splitting of periodical fundamental solution

For the numerical solution it is neccessary to split off the obtained term (23) from the kernel
GΛ. We denote

GΛ,m(s, t) =
1

2iΛγm

ei(αm(p(s)−p(t))+γm|q(s)−q(t)|) (26)
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and split the kernel in the following way

GΛ(s, t) = GΛ,0(s, t) +
∑
m�=0

{
GΛ,m(s, t) − 1

2π

e−im(s−t)

2|m|
}

+
1

2π

∑
m�=0

e−im(s−t)

2|m| . (27)

While the first two terms on the right hand side are kernels of the compact operators, the
third one generates a singular kernel in the single layer potential, which needs to be treated
separatedly during the implementation. While the compactness of the first term is obvious, for
the second one we need to prove following theorem.
Theorem 3. The series ∑

m�=0

{
GΛ,m(s, t) − 1

2π

e−im(s−t)

2|m|
}

(28)

is absolutely convergent for all m ∈ Z,m �= 0.
Proof. To prove the convergence of series (28) we focus on modification of its m−th member.
For simplicity we can denote

GΛ,m(s, t) =
1

2iΛγm

eiΩm , (29)

where Ωm = αm(p(s)−p(t))+γm|q(s)−q(t)|. We have already used propagation in the direction

of x1 axis αm = α + 2πm/Λ, α = 2πε̃/λ, where we can denote ε̃ =
√

ε(1) sin θ. Permitivitty ε(1)

is used for incident media, ε for any other consequent layer. Furthermore, we denote β = Λ/λ
the ratio of period of the boundary and wavelength of incidental wave. Now, we can modify
the term (29)

2iΛγm = 2iΛ

√(
2π

λ

)2

ε −
(

2π

λ
ε̃ +

2πm

Λ

)2

=

= 4π
√

(m + βε̃)2 − β2ε. (30)

We can also denote the second term in the difference (28) Bm and now we can finally modify
the m−th member of the series:

GΛ,m − Bm =
1

4π

[
eiΩm√

(m + βε̃)2 − β2ε
− e−im(s−t)

|m|

]
=

=
1

4π

|m|eiΩm − e−im(s−t)
√

(m + βε̃)2 − β2ε

|m|√(m + βε̃)2 − β2ε
. (31)

Let us consider the singular point s = t, i.e. Ωm = 0, where for the difference holds

GΛ,m − Bm =
1

4π

|m| − √
(m + βε̃)2 − β2ε

|m|√(m + βε̃)2 − β2ε
=

=
1

4π

m2 − (m + βε̃)2 + β2ε

|m|√(m + βε̃)2 − β2ε(|m| + √
(m + βε̃)2 − β2ε)

=

=
1

4π

β2(ε − ε̃2) − 2mβε̃

m2
√

(m + βε̃)2 − β2ε + |m|((m + βε̃)2 − β2ε))
. (32)

Considering that power of the variable m is one in the numerator, but three in the denominator
of the fraction, we can simply use integral criteria of convergence to prove the theorem.
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4 Conclusion

Presented results were applied in the mathematical model of optical diffraction on periodical
boundary and implemented in MATLAB computational code. Obtained numerical results will
be refered in future work.
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Department of mathematics and descriptive geometry, Technical University of Ostrava,
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic, tel: +420 59 732 4177,
arnost.zidek@vsb.cz

Doc. RNDr. Jaroslav Vlček, CSc.
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PARALLEL   SOLUTION   OF  POISSON   EQUATION 
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Abstract. The paper is devoted to the parallel solution of Poisson equation. We distinguish two 
cases of the problem - one- and two-dimensional ones. By the usage of parallel approach to the 
linear algebra representation we create the parallel algorithm for computing a numerical solution 
of the Poisson equation. We compare calculation times of computing the approximate solution 
of the system of (linear) difference equations for different sizes of the system matrix by the 
numerical method of steepest descent on eight-processor cluster for 2, 4, and 8 processors, 
respectively.  
 
Key words and phrases. Poisson equation, finite difference method, parallel linear algebra, 
parallel mapping of a matrix, method of steepest descent, numerical experiment, parallel 
algorithm, condition number, cluster 
 
Mathematics Subject Classification:  35J05, 65M06, 65Y05, 65F10, 65N22 

 
 
1 Introduction 
 
Our model problem is represented by the Poisson equation, which discretization via the finite 
difference method leads to the system of linear algebraic equations. 

There are many methods which we can use for solving the system of linear algebraic equations. 
Some of them are based on the principles of direct solvers (such as e.g. Gaussian elimination, 
Gauss-Jordan elimination, and the use of inverse matrix), the other ones are built on the principles 
of iterative methods (we can name for example the method of steepest descent, the conjugate 
gradient method, etc.). 
 We choose the numerical method of steepest descent for solving the system of linear algebraic 
equations in this paper and we try to apply this method in parallel algorithm implemented in 
Fortran. The aim of this paper is to find how we can save the calculating time computing the system 
of linear algebraic equations on two, four, and eight processors of the cluster instead of on one 
processor. We perform our calculation in numerical experiment in which we compute the vector of 
the approximate solution of the system of difference equations by the method of steepest descent. 
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2 Setting of a problem  
 
We consider the one- and two-dimensional boundary value problems in this chapter: Find function  
u: R  fulfilling the equation 

    fu    in 
n

1,0 ,  where   = 1 and where  2,1n  (1) 

  gu 


 on  , (2) 

where f: R  is the given function and where g: R  represents Dirichlet boundary 
condition. 
 
 
2.1 One-dimensional problem  
 
For Nm  we bring up  1m equidistant line-segment points hiX i  ,  where mi ,,1,0  , 

and 1
1
 mh . The symbol iU  stands for the approximate solution at the points iX , i. e. 

 ii XuU  , and  we set  ii XfF  , consequently.  

We use three-point strencil for approximation the second derivatives in every regular knot iX , 

i.e.  

 ix
u x2

2


   

2

11 2

h

UUU iii  
. 

Using this we can rewrite (1) as 

i
iii F

h

UUU



 

2

11 2
, 1,,2,1  mi  . 

After adjustment we are able to write the difference equations for the regular knots iX , e.g. 

iiii FhUUU  
2

11 2 ,    1,,2,1,  mi  . 

 This is the standard three-point scheme. The approximate values of the sought function u in 
knots of the given grid are represented by the numerical solution of the system of (linear) algebraic 
equations 
 FAU  ,  (3) 
where 

   1
121 ,,, 
  m

mUUU RU T
  

is an unknown vector, 
 
 
 
 
 
 
 
 
 
is a matrix of the system of linear algebraic equations, and  

 






































21000

1

02100

1210

00121

00012













A
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

































mm

m

UFh

Fh

Fh

UFh

1
2

2
2

2
2

01
2

F  

is a right-hand side of the system of (linear) algebraic equations. 
The Dirichlet boundary conditions 

 00 XgU  ,  mm XgU   

result from (2). 
 
 
2.2 Two-dimensional problem  
 
For Nnm,  we bring up    11  nm  of evenly spaced points   jiij yxX ,  

 hjchia  , , where mi ,,1,0  , nj ,,1,0   and where h is the spatial step. We denote 

ijU  the approximate solution at the points ijX , i. e.    ijjiij XuyxuU  , , and we put 

   ijjiij XfyxfF  , . 

For every regular knot ijX we use three-point strencil for approximation the second derivatives, 

i.e.  

 jix
u yx ,2

2


   

2

,1,,1 2

h

UUU jijiji  
,  jiy

u yx ,2

2


   

2

11 2

h

UUU jijiji   ,,, ,  

then (1) can be reformulated into  

 ij
jijijijijiji F

h

UUU

h

UUU






 

2

1,,1,

2

,1,,1 22
, 1,,2,1  mi  , 

  1,,2,1  nj  . 

After modification we obtain the difference equations for the regular knots ijX [ ji yx , ], it means 

the equations of the form  

 ijjijijijiji FhUUUUU  
2

1,,1,1,,1 4 ,    1,,2,1,  mi  , 1,,2,1  nj  . 

 This is the standard five-point scheme. The approximate values of the sought function u in 
knots of the given grid are represented by the numerical solution of the system of (linear) algebraic 
equations (3) with an unknown vector  

     11
1,11,11,2211,111 ,,,,...,,,...,, 
  nm

nmnnn UUUUUUU RT
  

and a matrix A, which we can write in the following way 
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001
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
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



 nmmnn UUUUUU

A . 

 
as well as the vector of the right side of the mentioned system of (linear) difference equations we 
can write as follows 

.

,11,1,1
2

2,02,1
2

0,11,01,1
2

,21,2
2

22
2

0,121
2

,11,01,1
2
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2
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2
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Fh
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

F

 

 
It is also possible to write the system of (linear) difference equations by blocks 





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
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












B00

0BI

0IB

A









, 























12

22

12

mFh

Fh

Fh


F , 























1

2

1

mU

U

U


U , 



 

Aplimat – Journal of Applied Mathematics
 

volume 5 (2012), number 2  161
 

where 



























410

1

41

014









B , 





















100

0

10

001









I , 





















000

0

00

000


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0  

are the matrices of the order    11  nn  and where 

    1T
1,21

T
1,21 ,,,,,,, 

  n
niii

i
niii

i UUUUFFFF R . 

According to (2) we consider the following Dirichlet boundary conditions: 

  0,0, ii XgU  ,  nini XgU ,,    1,,2,1  mi  , 

  jj XgU ,0,0  ,  jmjm XgU ,,    1,,2,1  nj  . 

 
 

3 Parallel approach to the solution of the system of linear algebraic equations  

3.1  Basic ways of matrices mapping  
 
The way, in which the matrix is mapped on the net of processors, determines efficiency and 
elegance of algorithm in most the cases. There are two basic kinds of mapping: 

a)  striped mapping 
b)  checkerboard mapping 

These two mappings divide further on several examples. E.g. there are 6 variants of the striped 
mapping that can arise from 2 and 3 possibilities: 

1)  by rows or by columns 
2)  by blocks, cyclically or cyclically by blocks. 

 
 

3.2  The striped mapping of the matrix cyclically by rows 
 
In this paragraph we describe how we map a matrix using MPI in parallel algorithms. 

 Let us assume, without loss of generality, that there is given the matrix A of the mentioned 
shape and of the type (8, 8). Further, we assume that we work on two processors.  
(In the parallel algorithm we work generally on n processors). The first task is to map the matrix A 
onto the particular processors. The matrix A will be mapped by the striped mapping cyclically by 
rows onto the particular processors. The striped mapping assumes that the processors are connected 
into the linear virtual array and that they are numbered 0, 1, 2, …, p – 1, where p is the number of 
used processors, in general. The matrix A (denoted A_global) is generated and known only by the 
master processor. The master processor distributes data, it means the row vectors of the matrix A, 
into the particular processors. We obtain new matrices (denoted A_local) of the type (4, 8) by the 
data distribution in our illustration case (of the type (n/p, n), where n is the number of rows of 
original matrix and where p is the number of used processors, in general) that consist of the 
appropriate rows of the matrix A. 
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 Figure n. 1 illustrates the striped mapping of the matrix A of the type (8, 8) cyclically by rows 
onto two processors. 
 
 
 
 
 

 

 

Figure n. 1 – Striped mapping of a matrix cyclically by rows on two processors 

 The analogous situation is true for mapping the vector F (of the right side of the system of 
linear algebraic equations).  There is one small difference, only one element (not the whole row) is 
sent in every step of the distribution. 
 
 
3.3  Product of a matrix and of a vector in parallel algorithm 
 
We use the iterative methods for solving the system of linear algebraic equations. Part of every 
iterative method is the product of a matrix and of a vector. That is why we describe product of a 
matrix A and of a vector U from the matrix equation  

FAU   
using MPI in parallel algorithms in this paragraph. 
 

 
 

Figure n. 2 – Matrix - vector product in parallel algorithm 
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Every processor knows only a part of the vector U, with whom we want to multiply the matrix A, 
on the basis of the previous mapping of a vector onto the particular processors. (We assume that the 
given vector U is mapped in the same way in which was mapped the vector F). That is why every 
processor has to find the rest part of the vector U, which it does not know. Every processor can call 
the command “MPI_ALLGATHER” by which it can find the missing information about the rest 
parts of the vector U.  
 If all the processors know all the elements of the vector U, we can perform dot product and 
calculate the appropriate element of the result vector (denoted e.g. W).   
 Figure n. 2 illustrates, without loss of generality, the way of calculating the product of the 
matrix A of the type (8, 8) and of the vector U of the type (8, 1) in parallel algorithm computed on 
two processors.  
 
 
3.4  Scalar product of two vectors in parallel algorithm 
 
Except of the product of a matrix and a vector the scalar product of two vectors occurs in the 
iterative methods, too. In this paragraph we describe process of computing a scalar product of two 
vectors in parallel algorithms.  

 Every processor knows only a part of the vector U as well as of the vector V (which we want to 
multiply scalarly) on the basis of the previous mapping (the striped mapping cyclically by rows) of 
a vector onto the particular processors. That is why we firstly multiply scalarly the appropriate 
elements of the vectors U, V. Secondly, we call the command “MPI_ALLREDUCE” that sums over 
all processors and distributes the resulting sum onto all the processors. All the processors 
(processors P0 and P1 in our illustration case) finally know value of the scalar product of the 
vectors U, V.  

 Figure n. 3 illustrates, without loss of generality, calculation of the scalar product of the vectors 
U and V of the types (8, 1), that were mapped by striped mapping cyclically by rows, in parallel 
algorithm computed on two processors. 
 

 

 

 

 

 

 

Figure n. 3 – Scalar product of two vectors in parallel algorithm 
 
 
4 Parallel approach to the solution of the system of linear algebraic equations 

 
It is true that the method of steepest descent converges for any choice of initial approximation to the 
exact solution of the equation (3). 
 We will use the method of steepest descent for solving the mentioned system of difference 
equations. For that reason we describe the method of steepest descent step by step: 
 

1) We choose the initial approximation. E. g. we can take the trivial initial solution vector 0U  

of the type (n, 1).  
2) We calculate residue 

00 UAFr  . 
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Vector 0r  determines the direction of steepest descent function G(U) = FUAU 2
2
1   at the 

point 0U , or we can say that it determines the value – grad G( 0U ). 

3) We determine the value 0a  for which the function  00 rU  aG  takes its minimum. It is 

true that  
 
 00

00
0 ,

,

Arr

rr
a . 

4) We calculate the new vector 
  .0001 rUU  a  

 
Above process is repeated until the norm of residue achieves the prescribed precision. 
 
 
5 Numerical experiment  
 
We apply the above described theory in our numerical experiment. We prepare the parallel 
algorithm in FORTRAN 90 syntax with MPI implementation MPICH separately for one-
dimensional problem and specifically for the two-dimensional problem. 
 
5.1 Numerical experiment of one-dimensional problem 
 

We consider 
 fu   in  1,0 , (4) 

      01,00  uu  (5) 
We cover unit interval by the grid of knots with the equidistant step h. We choose the right/hand 
side f  in the problem (4) in such a way that the function  

 
 

is the exact solution.  
 The approximate values of the solution u in all the inner regular knots of the given grid are the 
numerical solution of the problem (4) – (5). We find this numerical solution by the method of 
steepest descent with prescribed tolerance 10-5 for the norm of residue. Table 1 shows the 
development of calculation times according to the number of used processors and mesh step, 
together with the number of iterations and condition number of iterative matrices. 
 

Step 
Number 
of knots 

Number 
of 

iterations 

Condition 
number 

2 processors 4 processors 8 processors 

h = 1/161 160 16 257 10 505 8 min 5 s 5 min 10 s 4 min 30 s 
h =1/321 320 43 027 41 760 27 min 21 s 10 min 49 s 20 min 1 s 
h = 1/641 640 85 835 166 523 2 h 17 min 56 s 56 min 6 s 1 h 16 min 27 s 

 
Table n. 1 – 1D problem: Calculation times needed for computing the vector U of the approximate 

solution for different mesh sizes of the grid on two, four, and eight processors. 
 

    xxxxu e14 
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5.2 Numerical experiment of two-dimensional problem 
 

We consider 

 fu   in  210, , (6) 

 0


u  on   . (7) 

We cover the domain   by the grid of knots with the spatial step h in the direction of both the 
coordinate axes x and y. We choose function f  in the problem (6) so that the function  

 
 

is the exact solution.  
 The approximate values of the solution u in all the inner regular knots of the given grid are the 
numerical solution of the problem (6) – (7). We find this numerical solution by the method of 
steepest descent with prescribed tolerance 10-5 for the norm of residue. Analogously as in 1D case, 
Table 2 illustrates the development of calculation times according to the number of used processors 
with respect to spatial step. 
 

Step 
Number of 

knots 
Number of 
iterations 

Condition 
number 

2 processors 4 processors 8 processors 

h = 1/21 400 1158 178   1 min 45 s 1 min 01 s 41 s 
h = 1/41 1600 4228 680 18 min 32 s 7 min 4 s 8 min 58 s 
h = 1/81 6400 15 652 2652 6 h 9 min 50 s 2 h 42 min 43 s 2 h 24 min 26 s 

 
Table n. 2 – 2D problem: Calculation times needed for computing the vector U of the approximate 

solution for different mesh sizes of the grid on two, four, and eight processors. 
 

 There is shown the graph of the exact solution of the problem (6) – (7) on the Figure n. 4a. 
Furthermore, there is drawn the graph of the approximate solution of the problem (6) – (7) for mesh 
size h = 9

1  on the Figure n. 4b, for mesh size h = 21
1  on the Figure n. 4c, and for mesh size h = 41

1  

 on the Figure n. 4d. 
 

                   
         
 Figure n. 4a Figure n. 4b 
  Exact solution Approximate solution, mesh size h = 9

1  

      yxyxyxyxu  e1116,
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 Figure n. 4c Figure n. 4d 
 Approximate solution, mesh size h = 21

1  Approximate solution, mesh size h = 41
1  

 
 
6 Conclusion  

 
We discussed the basic ways of mapping the matrices in parallel programming. We especially 
described the striped mapping of a matrix cyclically by rows. We showed the possibilities of 
applying the basic principles of linear algebra – product of a matrix and of a vector, scalar product 
of two vectors – in parallel algorithm. We described the method of steepest descent as well as the 
problem coming out of the Poisson equation. Finally, we commented the numerical experiments in 
which the mentioned theory is applied in practice.   
 We can summarize on the basis of the numerical experiment results that computing the 
approximate solution of the system of difference equations is two times quicker, if we calculate the 
system of linear equations, on four processors instead of on two processors. Computations on eight 
processors are not completely optimal. They are influenced by the hierarchy of the cluster. The 
cluster consists of eight processors and if the computation runs on all the eight processors then the 
resulting time is distorted by other applications running. On the other hand, the calculations for  
a larger number of knots were running faster in two-dimensional problem then the computations for 
a smaller number of knots in one-dimensional problem (see Table 1 and Table 2). This occurs due 
to condition of iteration matrices. 
 For the future work it would be interesting to compare the results e.g. with computing the same 
problem using the other method, e.g. the conjugate gradient method. 
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BLOCK-CYCLIC-STRIPED   MAPPINGS   OF   MATRICES 

  IN  THE   PARALLEL   PROGRAMMING  
 

BITTNEROVÁ  Daniela,  (CZ)  
 
 

Abstract. The paper presents one method of the parallel programming – the block-cyclic-
striped mapping of a matrix into two processors. The matrix is divided into row-blocks and 
these blocks are mapped into two processors alternately. The algorithm of it and also an 
application of the calculation of the matrix-vector product by using the way are shown. 
 
Key words. Parallel programming, block-cyclic-striped mapping, product of a matrix and a 
vector. 
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1 Introduction 
 
Matrices and vectors play a very important role in scientific and technical computations, especially 
in the economy and the engineering. The computational technology is developing permanently. The 
progress of the hardware makes the advantage possible to distribute calculations across multiple 
processors and by that way to accelerate these calculations. Therefore it is necessary to develop also 
the software. We need new technologies for mappings of a large quantum of input dates, mostly in 
a form of large matrices and vectors. These dates are coefficients of algebraic equations usually, 
which were produced from mathematical numerical models solving some technical problems, for 
example by differential or integral equations. In last years, new computer architectures are 
developed. One of them is called the parallel programming. Solving a mathematical problem we can 
use the so-called computer cluster, which is a block of linked one-processor computers working 
deeply together.  
In our faculty, the cluster consists of two servers – the central server (parallel1) and the secondary 
server (parallel2). We use the programming language FORTRAN 90 and the operating system 
LINUX. As a specification of the library functions for FORTRAN 90, we have the standard MPI 
(Message Passing Interface). 
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2 Mapping of Matrices to Two Processors 
 
Technical calculations depend on the efficiency of matrix operations often, especially on the matrix-
vector product. Using the parallel programming, a matrix can be mapped into processors by two 
ways – by the striped mapping or the checkerboard mapping. Each of these ways we choose one 
type from. Now we deal with the so-called block-cyclic-striped mapping where the matrix is 
divided into blocks of rows and these blocks are mapped into processors alternatively. 
Let us suppose that we have two processors – P1 and P2. Let  jia ,A , i = 1, … n, j = 1, …, n, be 

a matrix of order n. The matrix A, which is generated by the master processor P0 only, should be 
mapped into P1 and P2 so that each of k rows, 1  k  n, will be in one block of one from both 
processors. If the number of rows n is not divided by k, then a remainder of rows is in the last block. 
Elements of the matrix A will be map into the processors so that the first k rows go into the P1, the 
second k rows into the P2, the following k rows into the P1, and so on – see Fig. 1. 
 
 

























rows

rows

rows

rows

2

1

2

1

kP

kP

kP

kP

 

 
Fig. 1: The Mapping of the Matrix A to Blocks into the Processor P1, and P2. 

 
 
The algorithm where the i-th row is mapped into the p-th processor, 1p  or ,2p  will be given 
by the following relation: 
 
 ,1)1(2 bkpaki   (1) 
where  
 

 .1,,1,0,1
2

,,1,0  kb
k

n
a   (2) 

 
It means that for the processor P1, it is 
 
 .12,1 bakip   (3) 
 
For the processor P2, it is 
 
 .12,2 bkakip   (4) 
 
 
Example: The mapping of the matrix A of order n = 40 to blocks on the processor P1, and P2 is 
presented in Fig. 2, where, for the specific constants, the numbers of rows are shown into the 
corresponding processors. 
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P p a b i-th row 

P1 1 

0 0,1,2,3,4 1, ...,5  
1 0,1,2,3,4 11, ..., 15 
2 0,1,2,3,4 21, ..., 25 
3 0,1,2,3,4 31, ..., 35 

P2 2 

0 0,1,2,3,4 6, ..., 10 
1 0,1,2,3,4 16, ..., 20 
2 0,1,2,3,4 26, ..., 30 
3 0,1,2,3,4 36, ..., 40 

 
 

Fig. 2: The mapping of the matrix A of order n = 40 to blocks into the processor P1, and P2. 
 
 
3 The Matrix-Vector Multiplication 
 

Let A be a matrix of order n,  T
21 ,,, nuuu u  a column vector, and  T

21 ,,, nvvv v  

a column vector, which is calculated as a product  
 

Auv  .  (5) 
 
There exist some possibilities how to solve that system by using two parallel processors. The 
elements of the matrix A are distributed from the master processor to corresponding processors P1, 
and P2, and the numbers ju , nj ,,1 , to both processors in the jth column. All products of the 

blocks can now be formed in one step. Many applications of parallel computers are conversions of 
existing sequential programs. The basic (naïve) parallel algorithm is also based on the sequential 
programs, but now each processor calculates corresponding product by using the following process 
(in the block-cyclic-striped mapping case, the processor P1 calculates the rows of the numbers 
1,…,k, 2k+1, …, 3k, 4k + 1, …, 5k, … and the processor P2 calculates the rows of the numbers 
k + 1,…,2k, 3k + 1, …, 4k, …, till the last block of rows):  
 

1. Initialize the starting point V(1) = 0, POM1 = 1, POM2 = K + 1, NK1 = K, NK2 = 2K. 
2. Calculate in P1, respective P2: 
 

DO 2 N1,J   
 DO 1 NK1POM1,I   respective DO 1 I = POM2,NK2 

U(J)J)A(I,V(I)V(I)   
1 CONTINUE 

2 CONTINUE 
 

3. Repeat for POM1 = POM1 + 2K, NK1 = NK1 + 2K,  respective 
POM2 = POM2 + 2K, NK2 = NK2 + 2K. 

 
If the matrix A is sparse, we choose some of special algorithms depended on a work with non-zero 
elements of the matrix and the vector. Mapping a sparse matrix, we must map together with non-
zero elements also the column and row indexes of these elements. Methods differ by the type of 
mapping of indicators to the beginning of rows and columns each other. 
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In MPI, the data systems are sent to particular processors through the commands MPI_SEND and 
MPI_RECV, and or MPI_BCAST, which is a combination of the first two. If we map a small 
number of various types of data, it is the simplest solution to use the commands MPI_SEND or 
MPI_RECV, and or MPI_BCAST more times, for large quantum of similar data, the advantageous 
solution is to use an auxiliary vector. For large quantum of similar or larger number of various types 
of data systems, it is the best solution to use the commands MPI_PACK and MPI_UNPACK – see 
[4]. 
 
 
4 Conclusion 
 
The goal of the paper was to present one of the specific methods for a matrices mapping by using 
the parallel programming – the block-cyclic-striped mapping, which is not so often use. The method 
could be applied in solving of technical and science method where differential and integral 
equations are discretized into a set of linear equations. 
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ON EFFICIENCY OF APPROXIMATE MATRIX-VECTOR
MULTIPLICATION IN ADAPTIVE WAVELET METHODS

ČERNÁ Dana, (CZ), FINĚK Václav, (CZ)

Abstract. In recent years, wavelets have been successfully used for the numerical solution
of operator equations. Among most important advantages of wavelets belong the following
two properties. They allow to characterize various function spaces such as Sobolev or Besov
spaces by weighted sequence norms of the corresponding wavelet coefficient and they have
cancellation properties. It means that the inner product of a smooth function and a wavelet
vanishes or decreases fast as the scale of the wavelet increases. These two properties
of wavelets can be exploited considerably in numerical solution of differential equations.
Due to the cancellation properties of wavelets, a representation of functions as well as
representation of differential operators in wavelet coordinates is sparse or quasi sparse.
And further, a consequence of the equivalences between function norms and weighted
sequence norms is efficient diagonal preconditioning for stiffness matrices. To be able to
solve realistic problems, it is necessary to use adaptive methods with highly nonuniform
meshes to keep the number of unknowns at a reasonable level. Key ingredients are a
posteriori error estimators and adaptive refinement strategies. As reliable a posteriori
estimators serve wavelet expansions of the current residual. This is the consequence of
the above mentioned norm equivalences. One of the basic adaptive refinement strategies
is based on iterations in the infinite-dimensional space which are carefully approximated
by choosing accuracies in numerical subroutines for an approximation of the right-hand
side and an approximation of matrix-vector multiplications. New elements of an unknown
solution are then generated by increasing accuracy in both subroutines. The most time
consuming part of this approach is the matrix-vector multiplication and therefore it is
necessary to perform it in the most efficient way. In our contribution, we compare different
approaches for approximate matrix-vector multiplication.

Key words and phrases. Wavelet, adaptive methods, matrix-vector multiplication.
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1 Introduction

In [4, 5], automatically adaptive and asymptotically optimal wavelet based methods were pro-
posed. They consists from the following three steps:

• To transform a variational formulation into the well-conditioned infinite-dimensional l2

problem.

• To find a convergent iteration process for the l2 problem which works with infinite vectors,
the exact right hand side and exact matrix-vector multiplication.

• To derive a finite dimensional version of above idealized iteration process with an inex-
act right hand side and approximate matrix-vector multiplication. The algorithm should
provide an approximation of the unknown solution up to a given target accuracy ε, a con-
vergence rate should match the rate of the best N -term approximation, and the associated
computational work should be proportional to the number of unknowns.

Efficient approximate matrix-vector multiplication is enabled by a fast off-diagonal decay of
entries of the stiffness matrix and a fast decay of the load vector in wavelet coordinates. In
[4], a numerical routine APPLY was proposed which approximates the exact matrix-vector
product with the desired tolerance ε and that has linear computational complexity, up to sorting
operations. In [6], binning and approximate sorting was used to eliminate sorting costs and then
an algorithm with linear complexity was obtained. An optimized version of the approach from
[4] was proposed in [7]. Authors optimize estimated number of matrix-vector multiplication
subject to estimated multiplication error. To better utilize actual decay of matrix entries, a
modified approach was proposed in [2]. Vector entries are not sorted with respect to their size
but instead an actual decay of matrix entries is measured. Consequently in dependence on
this decay, the multiplication is performed. Also this approach is asymptotically optimal. At
the end, we use above mentioned matrix-vector multiplication techniques to solve adaptively
Poisson equation and compare their efficiency. In numerical experiments, we use wavelet bases
proposed in [1].

2 Discretization

Let H be a real Hilbert space with the inner product (·, ·)H and the induced norm ‖·‖H . Let
A : H → H ′ be the selfadjoint and H- elliptic differential operator, i.e.

a (v, w) := (Av,w) � ‖v‖H ‖w‖H and a (v, v) ∼ ‖v‖2
H .

Then, there exist positive constants cA and CA such that

cA ‖v‖H ≤ ‖Av‖H′ ≤ CA ‖v‖H , v ∈ H

and the equation Au = f has for any f ∈ H ′ a unique solution. Further we assume that D−1Ψ,
Ψ = {ψλ, λ ∈ I}, is a suitable wavelet (Riesz) basis in the energy space H and I an index set.
Then, there exist positive constants cψ and Cψ such that

cψ ‖v‖2 ≤
∥∥vTD−1Ψ

∥∥
H
≤ Cψ ‖v‖2 , v ∈ l2 (I) (1)
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and consequently
Au = f ⇔ Au = f ,

where D := diag (ωλ)λ∈I , ωλ =
√

(Aψλ, ψλ), A = D−1 (AΨ, Ψ)D−1 is a biinfinite diagonally
preconditioned stiffness matrix, u = uTD−1Ψ and f = D−1 (f, Ψ). The condition number of
matrix A satisfies

κ (A) ≤ C2
ψCA

c2
ψcA

< +∞ (2)

and the same holds (matrix A is positive definite) for all finite sections

AΛ := D−1 (AΨΛ, ΨΛ)D−1, ΨΛ := {ψλ, λ ∈ Λ} , Λ ⊂ I.

To solve the above mentioned system of equations, we use the steepest descent scheme

u0 := 0, un+1 := un +
(rn, rn)

(rn,Arn)
rn, rn = f − Aun, n = 0, 1, . . . , (3)

which has the error reduction parameter equal to

ρ =
κ (A) − 1

κ (A) + 1
= 1 − 2

κ (A) + 1
< 1.

And then it is a convergent process.

3 Approximate Matrix-Vector Multiplications

In [4], authors exploited an off-diagonal decay of entries of the wavelet stiffness matrices and a
decay of entries of the load vector in wavelet coordinates to design a numerical routine APPLY
which approximates the exact matrix-vector product with the desired tolerance ε and that has
linear computational complexity, up to sorting operations. An example of the decay of matrix
entries can be found in [3]. The idea of APPLY for one dimensional problems is the following:
To truncate A in scale by zeroing ai,j whenever δ(i, j) > k (δ represents the level difference of
two functions in the wavelet expansion) and denote resulting matrix by Ak. At the same time,
vector entries v are sorted with respect to the size of their absolute values. One obtains vk by
retaining 2k biggest coefficients in absolute values of v and setting all other equal to zero. The
maximum value of k is determined in a similar way as in [7] to reach a desired accuracy by
using upper bounds for errors of matrix approximations. Then one computes an approximation
of Av by

w := Akv0 + Ak−1(v1 − v0) + . . . + A0(vk − vk−1) (4)

with the aim to balance both accuracy and computational complexity.
In [6], binning and approximate sorting was used to eliminate sorting costs and then an algo-
rithm with linear complexity was obtained. The idea is following: Reorder the elements of v
into the sets V0, . . . , Vq, where vλ ∈ Vi if and only if

2−i−1 ‖v‖2 < |vλ| < 2−i ‖v‖2 , 0 ≤ i < q.

And then to generate vectors vk by successively extracting 2k elements from
⋃

i Vi, starting from
V0 and when it is empty continuing with V1 and so forth. Finally the scheme (4) is applied.
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An optimized version of the above approach was proposed in [7]. The indices of v are stored
in buckets, depending on the modulus of the corresponding wavelet coefficients in this way:

vλ ∈ vk ⇐⇒ 2−(k+1)/2 ‖v‖∞ < |vλ| ≤ 2−k/2 ‖v‖∞ .

Then ∀v ∈ l2(Λ), we compute the approximate matrix vector product by
∑

k=0 Ajk
vk, where

jk ∈ N0 are solutions of∑
k=0

cjk
#vk −→ min!,

∑
k=0

ejk
||vk|| ≤ ε − δ, (5)

and δ = ||A||
∣∣∣∣∣
∣∣∣∣∣v −

∑
k=0

vk

∣∣∣∣∣
∣∣∣∣∣ ≤ ε/2, (6)

where Aj and ej are matrices and constants such that ||A − Aj|| ≤ ej and cj are upper bounds
for the number of non-zero entries in each column of Aj. So, they try to optimize number of
arithmetic operations.
To better utilize the actual decay of matrix and vector entries, in [2] a different approach was
designed. We are not searching for 2k biggest vector entries in absolute value but instead we
trace actual decay of matrix and vector entries and then the actual number of entries in vk

depends on these decays. Let us denote SAk := max{|ai,j|, δ(i, j) = k}. Then, we multiply
matrix A0 with vector entries which are greater than given tolerance εk, matrix A1 − A0 with
vector entries which are greater than εk/SA1, . . . , and matrix Ak − Ak−1 with vector entries
which are greater than εk/SAk. The value of εk is determined to reach a desired accuracy of
approximation. In [2], an asymptotic optimality of this multiplication algorithm was proved.

4 Numerical examples

To obtain a computable version of the iteration process (3), an inexact right hand side and an
approximate matrix-vector multiplication have to be used. An approximate wavelet expansion
of a right-hand side f in the dual basis can be computed up to any given accuracy. Its realization
consists of a projection of f onto a fine multiresolution space, followed by a thresholding.

We employ the finite version of the ideal iteration (3) with a gradually increasing accuracy
in the inexact right hand side and in the approximate matrix-vector multiplication. First
we compute an approximation of the right-hand side. Then, we enlarge the set of active
coefficients by coefficients generated by the inexact right hand side and by an approximate
matrix-vector multiplication (outer iteration). Consequently, we apply several (inner) iterations
of steepest descent scheme with fixed precision in both subroutines to reduce the residual
efficiently. Finally, the accuracy is increased and this iterative procedure is repeated until
desired accuracy has been reached.

At the end, we present numerical comparison of different approximate matrix-vector mul-
tiplication techniques proposed in [4], [7], and in [2]. In numerical experiments, we employ
the quadratic wavelet basis (3,3) and cubic basis (4,4) both proposed in [1] to solve the one
dimensional Poisson equation:

−u′′ = f, in Ω = (−1, 1) , u(−1) = u(1) = 0,
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CDV DSS
OI II # ‖u − ui‖L2

DOF II # ‖u − ui‖L2
DOF

1 15 2020 0.067644 53 15 561 0.049276 12
2 8 4272 0.018469 80 9 2088 0.016542 18
3 8 9247 0.005069 110 14 5997 0.003061 34
4 9 29948 0.001205 153 9 21540 0.000872 57
5 8 63069 0.000336 234 6 57996 0.000347 106
6 9 130006 0.000085 354 10 135859 0.000086 209
7 9 229305 0.000034 556 9 222653 0.000035 415

Table 1: Results for the quadratic basis (3,3).

CF1 CF2

OI II # ‖u − ui‖L2
DOF II # ‖u − ui‖L2

DOF
1 17 465 0.059498 18 10 66 0.161959 8
2 13 1001 0.012127 26 10 176 0.038192 14
3 9 3181 0.003241 36 6 737 0.012804 23
4 11 11490 0.000745 64 6 1960 0.004668 43
5 5 25882 0.000313 148 8 6371 0.001269 92
6 8 52932 0.000088 294 9 16127 0.000299 191
7 9 107703 0.000034 571 9 40577 0.000076 453

Table 2: Results for the quadratic basis (3,3).

with the solution u given by

u (x) = (x2 − 1)ex ∀x ∈ Ω.

The maximum wavelet decomposition level was set equal to ten for the quadratic basis
and nine for the cubic basis. The required precision was set equal to 4−OI , where OI repre-
sents the order of outer iteration. Columns denoted by CF1 contain results obtained by the
method proposed in [2] using the upper bounds of errors in the similar way as in CDV , columns
denoted by CF2 contain results obtained by the method proposed in [2] using an error approx-
imation, columns denoted by DSS contain results obtained by approach (5, 6) proposed in
[7], and finally columns denoted by CDV contain results obtained by approach proposed in
[4]. The error approximation in CF2 is computed in this way: We compute an approximate
matrix-vector multiplication and at the same time we compute also an error indicator as differ-
ence between approximate matrix-vector multiplications with bins vk containing all elements
greater than εk/SAk, and with bins vk containing all elements greater than 2εk/SAk, respec-
tively. Consequently, until the error indicator is greater than the required error, we recompute
an approximate matrix-vector multiplication with slightly moved bins by decreasing εk. In all
tables, II denotes the number of inner iterations in the given outer iteration, # represents the
mean number of element by element multiplications in the given outer iteration, ‖u − ui‖L2

is the L2 norm of the difference between the exact and an approximate solution, and DOF
denotes the number of active coefficients at the end of the given outer iteration.
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5 Conclusion

Presented results show that the approximate matrix-vector multiplication technique proposed
in [2] is more efficient than methods proposed in [4, 7] because it is less computationally
demanding and in the case of cubic basis, it even produced substantially sparser approximate
solutions.
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CDV DSS
OI II # ‖u − ui‖L2

DOF II # ‖u − ui‖L2
DOF

1 35 4508 0.199827 98 29 1812 0.196595 30
2 32 9088 0.052809 140 24 3446 0.041889 46
3 34 15400 0.012869 214 28 4179 0.009039 57
4 32 27072 0.003422 264 27 7423 0.002856 84
5 34 48261 0.000848 317 31 14881 0.000802 145
6 34 86740 0.000214 392 32 30938 0.000218 262
7 34 97001 0.000055 508 34 54531 0.000055 450
8 35 173778 0.000014 635 34 87197 0.000014 681

Table 3: Results for the cubic basis (4,4).

CF1 CF2

OI II # ‖u − ui‖L2
DOF II # ‖u − ui‖L2

DOF
1 35 1405 0.191655 42 11 242 0.460329 15
2 33 2421 0.047619 55 21 569 0.116968 31
3 32 3507 0.012201 69 11 1844 0.008002 61
4 30 5442 0.003007 79 3 4015 0.006956 88
5 26 8909 0.000728 94 15 5102 0.002579 115
6 24 16804 0.000187 142 31 7360 0.000711 148
7 24 25041 0.000051 215 29 13408 0.000221 193
8 26 44208 0.000013 340 35 21152 0.000054 280

Table 4: Results for the cubic basis (4,4).
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Studentská 2, Liberec, 46117, Czech Republic, dana.cerna@tul.cz
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DISCRETE WAVELET TRANSFORM FOR FINITE SIGNALS

ČERNÁ Dana, (CZ), FINĚK Václav, (CZ)

Abstract. Originally, the discrete wavelet transform was designed for an infinite input
data. Therefore, applying the discrete wavelet transform to finite signals directly leads
to the artifacts near the boundary. There are several methods to handle this problem.
They consist in padding of a signal and applying the discrete wavelet transform to the
extended signal or using periodized wavelet filters. An alternative approach consists of
using the discrete wavelet transform with special filters near the boundary. The boundary
filters are derived from wavelet bases on the interval. The desired property is the small
condition number of a wavelet basis. The condition number guaranties the stability of
the computation and it affects the constants in error estimates. The second important
issue is the size of filter coefficients. In the paper, we propose a method which enables to
optimize the condition number of transform matrices as well as the size of boundary filter
coefficients.
Key words and phrases. Wavelet, interval, discrete wavelet transform, finite signal.
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1 Introduction

Discrete wavelet transform (DWT) uses two pairs of filters: a low pass filter {hk} and a high

pass filter {gk} for a decomposition and a low pass filter
{

h̃k

}
and a high pass filter {g̃k}

for a reconstruction. The one level of the discrete wavelet transforms maps the vector cj =(
cj
1, . . . , c

j
2m

)
to vectors cj+1 =

(
cj+1
1 , . . . , cj+1

m

)
and dj+1 =

(
dj+1

1 , . . . , dj+1
m

)
. It is given by the

formula
cj+1
k =

∑
l∈Z

hlc
j
2k+l, dj+1

k =
∑
l∈Z

glc
j
2k+l, k = 1, . . . m. (1)

As can be seen from this formula, applying DWT near the boundary of the signal requires
the values cj

l also for l < 1 or l > 2m, which are not defined. There are several methods
to handle this problem. They consist in padding of the signal and applying discrete wavelet
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transform to the extended signal. As an example, consider the finite-length input signal 1 2 3
4 5. The signal can be extended by the following methods:

• Zero-padding: . . . 0 0 0 0 1 2 3 4 5 0 0 0 0 . . .

• Symmetrization: . . . 4 3 2 1 1 2 3 4 5 5 4 3 2 . . . (half point),
. . . 5 4 3 2 1 2 3 4 5 4 3 2 1 . . . (whole point)

• Antisymmetric padding: . . . -4 -3 -2 -1 1 2 3 4 5 -5 -4 -3 -2 . . .

• Smooth padding of order 1: . . . -3 -2 -1 0 1 2 3 4 5 6 7 8 9 . . .

• Smooth padding of order 0: . . . 1 1 1 1 1 2 3 4 5 5 5 5 5 . . .

• Periodic-padding: . . . 2 3 4 5 1 2 3 4 5 1 2 3 4 . . .

The most popular method is a symmetrization, e.g. in wavelet based image compression
standard JPEG2000, the half point symmetrization is performed for a filter of even length and
the whole point symmetrization is performed for a filter of odd length [8].

An alternative approach consists of using the discrete wavelet transform with special fil-
ters near the boundary. The boundary filters are derived from wavelet bases on the interval.
Orthonormal wavelet bases on the interval were constructed in [5]. More general biorthogonal
wavelet bases were adapted to the interval in [1, 6, 7]. However, the condition numbers of some
of the constructed bases are large. It can cause problems in applications. Better cnditioned
biorthogonal wavelet bases on the interval were constructed in [2, 3, 9]. The second impor-
tant aspect is the size of filter coefficients. It plays role e.g. in image compression, where a
quantization is performed, because a quantization of large coeffients can cause large errrors. In
the paper, we propose a method which enables to optimize the condition number of refinement
matrices and the size of the filter coefficients.

2 Wavelet bases in L2 (R)

First, we shortly describe the concept of a wavelet basis for L2 (R). Let 〈·, ·〉 be an inner product
and ‖·‖ be a norm in L2 (R). Let l2 be a space of v := {vj,k}j,k∈Z

satisfying

‖v‖l2 :=
∑
j,k∈Z

|vj,k|2 < ∞. (2)

Definition 2.1 A function ψ ∈ L2 (R) is called a wavelet if the family Ψ := {ψj,k}j,k∈Z
, where

ψj,k := 2j/2ψ (2j · −k), is a Riesz basis in L2 (R), i.e. Ψ is complete in L2 (R) and there exist
constants c, C ∈ (0,∞) such that

c ‖v‖l2 ≤
∥∥∥∥∥

∑
j,k∈Z

vj,kψj,k

∥∥∥∥∥ ≤ C ‖v‖l2 , v ∈ l2. (3)

The functions ψj,k are also called wavelets.
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Let Vj be the closure of the span of the set {ψj,k, j, k ∈ Z} and let us suppose that there
exists a function φ such that Φj := {φj,k, k ∈ Z}, φj,k := φ (2j · −k), is a Riesz basis of Vj.
Functions φ and φj,k are called scaling functions.

Then there exists a sequence {hk}k∈Z
such that

φ (x) =
∑
k∈Z

hkφ (2x − k) for all x ∈ R. (4)

This equation is called a refinement or a scaling equation and the coefficients hk are known as
scaling or refinement coefficients.

By the Riesz representation theorem, there exists a unique family Ψ̃ = {ψj,k}j,k∈Z
biorthog-

onal to Ψ, i.e. 〈
ψi,k, ψ̃j,l

〉
= δi,jδk,l, i, j, k, l ∈ Z, (5)

where δi,j denotes a Kronecker delta. The family Ψ̃ is also a Riesz basis for L2 (R). The basis
Ψ is called a primal wavelet basis, Ψ̃ is called a dual wavelet basis. Dual scaling basis Φ̃, dual
scaling functions φ̃ and φ̃j,k, and dual refinement coefficients h̃k are defined in a similar way.

We define wavelet coefficients as

gn = (−1)n h̃1−n, g̃n = (−1)n h1−n. (6)

Wavelets are then given by

ψ (x) =
∑
n∈Z

gnφ (2x − n) , ψ̃ (x) =
∑
n∈Z

g̃nφ̃ (2x − n) for all x ∈ R. (7)

We say that the wavelet ψ has n vanishing moments, if∫
R

xlφ (x) = 0, for l = 0, . . . , n − 1. (8)

It is equivalent with the polynomial exactness of order n of the dual scaling functions. It means
that any polynomial up to order n − 1 lies in Ṽj.

The coefficients {hk} and {gk} are used for the discrete wavelet transform defined by (1).
Then the vector cj+1 represents coarse approximation of the vector cj and the vector dj+1

represents details. Then the vector cj+1 is transformed to vectors cj+2 and dj+2. After n steps
we obtain vector (cn,dn, . . . ,d1). The inverse discrete wavelet transform is an inverse process
and it is given by formula

cj
k =

m∑
n=1

(
h̃k−2nc

j+1
n + g̃k−2nd

j+1
n

)
, k = 1, . . . , 2m. (9)

3 Wavelet bases on the interval

The concept of wavelet bases on the interval is similar. Some scaling functions and wavelets on
the interval are just the restrictions of scaling functions and wavelets on the real line, only at
the boundaries special functions have to be constructed.
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We consider the space L2 (I), where I = [0, 1], and we denote the L2 (I)-inner product by
〈·, ·〉I and the L2 (I)-norm by ‖·‖I , respectively. Let J be some index set and let each index
λ ∈ J take the form λ = (j, k), where |λ| := j ∈ Z is a scale or a level. Let

l2 (J ) :=

{
v : J → R,

∑
λ∈J

|vλ|2 < ∞
}

. (10)

A family Ψ := {ψλ ∈ J } ⊂ L2 (I) is called a wavelet basis of L2 (I), if

i) Ψ is a Riesz basis for L2 (I), i.e. Ψ is complete in L2 (I) and there exist constants
c, C ∈ (0,∞) such that

c ‖b‖l2(J ) ≤
∥∥∥∥∥
∑
λ∈J

bλψλ

∥∥∥∥∥
I

≤ C ‖b‖l2(J ) , b := {bλ}λ∈J ∈ l2 (J ) . (11)

Constants cψ := sup {c : c satisfies (11)}, Cψ := inf {C : C satisfies (11)} are called Riesz
bounds and cond Ψ := Cψ/cψ is called the condition of Ψ.

ii) The functions are local in the sense that diam (Ωλ) ≤ C2−|λ| for all λ ∈ J , where Ωλ

is the support of ψλ, and at a given level j the supports of only finitely many wavelets
overlap in any point x ∈ I.

By the Riesz representation theorem, there exists a unique family

Ψ̃ =
{

ψ̃λ, λ ∈ J
}
⊂ L2 (I) (12)

biorthogonal to Ψ, i.e.〈
ψi,k, ψ̃j,l

〉
I

= δi,jδk,l, for all (i, k) , (j, l) ∈ J . (13)

This family is also a Riesz basis for L2 (I). The basis Ψ is called a primal wavelet basis, Ψ̃ is
called a dual wavelet basis.

In many cases, the wavelet system Ψ is constructed with the aid of a multiresolution analysis.
A sequence S = {Sj}j≥j0

, of closed linear subspaces Sj ⊂ L2 (I) is called a multiresolution or
multiscale analysis, if

Sj0 ⊂ Sj0+1 ⊂ . . . ⊂ Sj ⊂ Sj+1 ⊂ . . . ⊂ L2 (I) (14)

and ∪j≥j0Sj is complete in L2 (I). The dual wavelet system Ψ̃ generates a dual multiresolution

analysis S̃ =
{

S̃j

}
j≥j0

.

The nestedness and the closedness of the multiresolution analysis implies the existence of
the complement spaces Wj such that

Sj+1 = Sj ⊕ Wj, Wj⊥S̃j. (15)

We now assume that Sj and Wj are spanned by sets of basis functions

Φj := {φj,k, k ∈ Ij} , Ψj := {ψj,k, k ∈ Jj} , (16)
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where Ij, Jj are finite or at most countable index sets. We refer to φj,k as scaling functions
and ψj,k as wavelets. The multiscale basis is given by

Ψj0,s = Φj0 ∪
j0+s−1⋃

j=j0

Ψj (17)

and the wavelet basis of L2 (I) is obtained by

Ψ = Φj0 ∪
⋃
j≥j0

Ψj (18)

Dual scaling basis Φ̃j0 and dual wavelet basis Ψ̃j are defined in a similar way.
Polynomial exactness of order N ∈ N for the primal scaling basis and of order Ñ ∈ N for

the dual scaling basis is another desired property of wavelet bases. It means that

PN−1 (I) ⊂ Sj, PÑ−1 (I) ⊂ S̃j, j ≥ j0, (19)

where Pm (I) is the space of all algebraic polynomials on I of degree less or equal to m.
By Taylor theorem, the polynomial exactness of order Ñ on the dual side is equivalent to

Ñ vanishing wavelet moments on the primal side, i.e.

∫ 1

0

P (x) ψλ (x) dx = 0, P ∈ PÑ−1 (I) , ψλ ∈
⋃
j≥j0

Ψj. (20)

4 Refinement matrices

From the definition of spaces Sj and Wj it follows that there exist refinement matrices Mj,0,

M̃j,0, Mj,1, and M̃j,1 such that

Φj = MT
j,0Φj+1, Φ̃j = M̃T

j,0Φ̃j+1, Ψj = MT
j,1Φj+1, Ψ̃j = M̃T

j,1Φ̃j+1. (21)

The discrete wavelet transform consists of applying MT
j = (Mj,0 Mj,1)

T.
The structure of the matrix Mj,0 for wavelet bases from [3] is shown in Figure 1. Matrices

M̃j,0, Mj,1, and M̃j,1 have similar structures. The inner part is formed by coefficients corre-
sponding to the inner functions. They are the same as filter coefficients for wavelet bases on
the real line. At the boundary special filters corresponding to boundary basis functions are
used.

For some constructions of wavelet bases, the condition number of a refinement matrix is large.
It can cause problems in applications. We can improve the condition number of the refinement
matrix by the method from [10]. It is based on the following Theorem.

Theorem 4.1 Let Mj, MT
j =

(
MT

j,0,M
T
j,1

)
, be a refinement matrix for a wavelet basis Ψ, then

there exists a wavelet basis Ψa such that the matrix Ma
j of the form

(
Ma

j

)T
=

(
MT

j,0, a MT
j,1

)
is

a refinement matrix for a wavelet basis Ψa.

The proof can be found in [10]. In the following, we propose a method for an improvement
of the condition number of the refinement matrix and the size of boundary filters.
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Figure 1: The structure of the matrix Mj,0
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Theorem 4.2 Let Mj of the form MT
j =

(
MT

j,0,M
T
j,1

)
be a refinement matrix for a wavelet

basis Ψ, then there exists a wavelet basis Ψa such that the matrix

Ma
j =

⎧⎨
⎩

a mj
k,l if l = p, k ∈ Ij+1\ {p} ,

mj
k,l/a if l ∈ Ij+1\ {p} , k = p,

mj
k,l otherwise,

(22)

where p is an index of some column of the matrix Mj,0 and mj
k,l are entries of the matrix Mj,

is a refinement matrix for a wavelet basis Ψa.

Proof. As mentioned above a wavelet basis Ψ has a structure

Ψ = Φj0 ∪
⋃
j≥j0

Ψj. (23)

Let us define
Ψa = Φa

j0
∪

⋃
j≥j0

Ψj, (24)

for Φa
j containing functions

φa
j,k =

{
aφj,k if k = p
φj,k otherwise,

(25)

where φj,k are functions in Φj. Thus, scaling functions and wavelets in Ψa are the same as
scaling functions and wavelets in Ψ up to functions φa

j,p which equals a φj,p.
Due to Lemma 2.1 in [6] the Riesz basis property (11) is a consequence of the relation

‖φj,k‖I ≤ C,
∥∥∥φ̃j,k

∥∥∥
I
≤ C, j ≥ j0, (26)

where C is a constant independent of j, the polynomial exactness of primal scaling functions
and the smoothness of dual basis functions. It is easy to see that if these properties hold for
Ψ, then they hold for Ψa as well. The supports of all basis function remain unchanged, hence
functions in Φa are local. Therefore, a set Ψa is indeed a Riesz basis of the space L2 (I).
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Let us now study the structure of the refinement matrix Ma
j corresponding to Ψa. We

denote by mj,0
k,l and mj,1

k,l the entries of matrices Mj,0 and Mj,1, respectively. For k �= p we have

φa
j,k = φj,k =

∑
l∈Ij+1

mj,0
k,lφj+1,l =

∑
l∈Ij+1\{p}

mj,0
k,lφ

a
j+1,l +

mj,0
k,p

a
φa

j+1,p, (27)

and

ψa
j,k = ψj,k =

∑
l∈Ij+1

mj,1
k,lφj+1,l =

∑
l∈Ij+1\{p}

mj,1
k,lφ

a
j+1,l +

mj,1
k,p

a
φa

j+1,p. (28)

For k = p we obtain

φa
j,k =

∑
l∈Ij+1

a mj,0
k,lφj+1,l =

∑
l∈Ij+1\{p}

a mj,0
k,lφj+1,l + mj,0

k,pφ
a
j+1,p. (29)

It follows that the refinement matrix for Ψa is the matrix defined by (22).

Theorem 4.3 Let Mj of the form MT
j =

(
MT

j,0,M
T
j,1

)
be a refinement matrix for a wavelet

basis Ψ, then there exists a wavelet basis Ψa such that the matrix Ma
j of the form

(
Ma

j

)T
=(

MT
j,0,

(
Ma

j,1

)T
)
,

Ma
j,1 =

{
a mj

k,l if l = p, k ∈ Ij+1,

mj
k,l otherwise,

where p is an index of some column of the matrix Mj,1 and mj
k,l are entries of the matrix Mj,

is a refinement matrix for a wavelet basis Ψa.

Proof. A wavelet basis Ψ has a structure

Ψ = Φj0 ∪
⋃
j≥j0

Ψj. (30)

Let us define
Ψa = Φj0 ∪

⋃
j≥j0

Ψa
j , (31)

for Ψa
j containing functions

ψa
j,k =

{
aψj,k if k = p
ψj,k otherwise,

(32)

where ψj,k are functions in Ψj. By the same argument as in the proof of Theorem 4.2, Ψa is a
Riesz basis for the space L2 (I). Since we have

ψa
j,k =

∑
l∈Ij+1

am1
k,lφj+1,l (33)

and other refinements relations remain unchanged, the refinement matrix for Ψa is the matrix
defined by (4.3).

By a convenient choice of the constants for all boundary filters, we can influence the size of
boundary filter coefficients as well as the condition number of the refinement matrices.
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5 Conclusion

We propose a method for an improvement of the discrete wavelet transform with boundary
filters. The method can be applied to general wavelet bases on the interval, e.g. the wavelet
bases from [1, 2, 3, 6, 9]. Our future work is using these principles for a construction of
boundary filters for concrete wavelets suitable for a given problem, e.g. boundary filters for
CDF 9/7 wavelets suitable to an image compression.
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RECONSTRUCTION OF THE BOREHOLE WALL
USING VIDEO RECORDS

FERDIÁNOVÁ Věra, (CZ), HURTÍK Petr, (CZ), KOLCUN Alexej, (CZ)

Abstract The presented paper describes possibilities of video processing of the camera
operating in the borehole. As the motion of the camera is hand-contolled without any sta-
bilization elements, resulting sliding motion is affected by strong instability. The purpose
of this research is to eliminate the above-mentioned factors to reconstruct the borehole
walls.

Key words and phrases. image processing, video stabilization, borehole
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1 Introduction

The borehole surface monitoring represents one of methods, which enables to assess the me-
chanical state of massif. It is realized by a probe provided with a camera and a light source.
The probe is attached to the end of a conductive, stiff steel wire. The wire is hand-controlled,
thus the attached probe is lowered down/drawn up from the borehole. Unfortunately, this ac-
tivity causes a great instability of the obtained video record. For the purposes of comparison
of the state of the borehole surface, before and after the realization of various experiments, it
is advisable to keep the image information of the borehole in a standardized form - unfolded
covering of the borehole surface. For this purpose it is necessary to stabilize the image. Similar
problem is solved e.g. in [3,8], where the images of the video records are stabilized by hardware.
The contribution of this paper consists in description of the SW image stabilization method.

2 Definition of partial sub-problems

We suppose a simple model of camera – central projection with projection plane z = 0 and
focus F = (0, 0,−f).
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For unrolling the cylindric surface of the borehole into the rectangle, we need to know
what is the result of the camera projection considering the system of parrallel circles from the
borehole, perpendicular to the borehole axis. Due to the fact that the radius r of camera is
smaller than the borehole radius R, r < R we can distinguish:

• the camera axis movement; this means the camera axis may be shifted (due to the borehole
axis) or the camera axis may oscillate like a pendulum in the plane perpendicular to the
camera axis,

• rotation of the camera; the camera can rotate freely around its axis, i.e. in the plane
orthogonal to the axis.

So as the motion of the camera in the borehole is hand-controlled,

• videorecord of the borehole surface is irregular; in many cases the probe may be temporar-
ily immovable or it may even move backwards.

3 Image stabilization

The problem of image stabilization may be solved as follows.

3.1 Elimination of the camera axis movement

We can distinguish three cases of the mutual positions of the borehole and the camera axis.

1. Both axes are identical.

2. The axes are non identical but parallel.

3. The axes are skew.

The first case is rather rare; the parallel circles from the borehole, orthogonal to the borehole
axis, are projected to the concentric circles. Moreover, this phenomenon can be supposed as a
special event of the second case of mutual positions of the axes. So we shall concentrate our
attention to parallel and non identical axes of the camera and the borehole.

Let us consider the circles on the borehole surface C(S(sx, sy, sz), R) with centres S =
(sx, sy, sz), and radius R where sz = h, h1 ≤ h ≤ h2:

x =sx + R cos α,

y =sy + R sin α,

z =h,

h1 ≤ h ≤ h2, 0 ≤ α ≤ 2π.

It is easy to show, that the projection of these circles are the circles

C(S(−sxf

h
, −syf

h
, 0),

Rf

h
).
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Obrázek 1: Set of borehole circles (left) and their projections (right) – second case of axes.

It means that the parallel borehole circles are projected as a non-centric circles – see Fig. 1.

It can be shown that for skew axes the resulting projections of the borehole circles are
non-centric ellipses, Fig. 2.

x = −f

h
(r cos φ cos α − sx cos φ − h sin φ)

y = −f

h
(r sin α − sy)

z = −f

h
(r cos α sin φ + sx sin φ + h cos φ)

However, due to the ratio of R − r and the length of the probe, the angle of possible skew
is too small (less than 10o) and we can neglect this case of mutual position of axes.
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Obrázek 2: Set of borehole circles (left) and their projections (right) – 3rd case of axes.

The rate of the non-centricity is derived from the ideas described below.

1. Intensity of light source decreases with the square of the distance between the source and
the surface.

2. Image of the part of the surface which is far away from the camera is blured. So its color
is homogeneous gray.
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So the parameters for set of non-centric projections can be obtained using various tresholds
and recognizing the circles near the centre of the image which are darker than these tresholds
– Fig. 3 (left).

Obrázek 3: Two tresholds in the borehole.

3.2 Elimination of camera rotating around its axis

Stabilization of the torsional movement is based on the following steps.

1. Pair of neighbour snaps from videosequence is analysed.

2. For both snaps the area bounded by two non-centric circles is transformed into rectan-
gle (unfolded covering of an image), using linear interpolation along the radial lines –
Fig. 3 (right).

3. The maximal similarity in overlap of neighbour coverings a, b is searched.

3.3 Elimination of the irregularity of the camera movement

This part of the image stabilization is based on similar idea as the method mentioned above –
similar parts of the pair of neighbour images are removed from the sequence of video snapshots.

So, the similarity for torsional movement and for irregularity of the camera movement can
be analyzed in one step. We search minimal value

D(π, τ) =
d∑

j=1

m∑
i=1

r(ai+π,j+τ , bi,j) = min
0≤p≤h, 0≤t≤d

d∑
j=1

m∑
i=1

r(ai+p,j+t, bi,j).

where r(x, y) = (x−y)2 represents the measure of the difference of scalar values. The overlapping
area is characterized with value π, value τ represents the angle of the camera rotation between
analysed pair of snapshots.
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Obrázek 4: Final image after processing

4 Practical results

Fig.4 shows one of the videosequence snaps (left) and resulting unfolded covering (right).

5 Conclusions

We have presented stabilization method which is used for the unfolded covering procedure from
the videosequence of snapshots of the camera probe. The obtained results show that for our
configuration of the ratio of the borehole and probe radii, and the length of the probe we can
neglect the pendulum-like movement of the probe.

Following research will be focused on more complex models, which involve a greater vari-
ability of the probe dimension with respect to the radius of the borehole, as well as more exact
model of light (e.g. a ring model instead of the spotlight model).
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DISCONTINUOUS GALERKIN METHOD
FOR THE NUMERICAL SOLUTION OF OPTION PRICING

HOZMAN Jǐŕı, (CZ)

Abstract. The paper is devoted to the use of the discontinuous Galerkin (DG) method
for standard option pricing models. As a model application, we consider one-dimensional
Black-Scholes partial differential equation for the pricing of European plain vanilla options.
The investigated system represents a scalar nonstationary linear convection-diffusion-
reaction equation. For this case, we start with a variational formulation, then a DG
space semi-discretization is combined with first-order time discretization by backward Eu-
ler method. Consequently, the fully discrete scheme applied to the numerical solution of
a preliminary test examples is presented.

Key words and phrases. Black-Scholes model, discontinuous Galerkin method, convec-
tion-diffusion-reaction equation, space semidiscretization, backward Euler method.

Mathematics Subject Classification. 91G80, 65M60, 65M12, 65L06.

1 Introduction

In this article, we are concerned with the development of sufficiently robust, accurate and
efficient numerical method for the solution of option pricing models. Our model convection-
diffusion-reaction equation arise in mathematical finance from the well-known Black-Scholes
equation, see [8], [11]. A brief review of notation and terminology of financial options together
with fundamentals of classical market models is introduced in Section 2.

The discontinuous Galerkin (DG) method seems to be a promising technique for the so-
lution of such problems. DG space semidiscretization uses higher order piecewise polynomial
discontinuous approximation on arbitrary meshes, without any requirement on interelement
continuity, for a survey, see [2], [3], [10]. Among several variants of DG methods we prefer the
so-called interior penalty Galerkin (IPG) discretizations. We deal with three variants of IPG,
namely nonsymmetric (NIPG), symmetric (SIPG) and incomplete interior penalty Galerkin
(IIPG) techniques, see [1].
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The discretization in time coordinate is performed with the aid of the backward Euler
method, sidetracking the time step restriction well-known from the explicit schemes. Con-
sequently, the fully discrete problem is represented by the system of algebraic equations, see
Section 4.

Within this paper we present the derivation of the whole scheme, from a continuous problem
to the discrete one, and append the preliminary numerical experiments.

2 Financial background

In order to better understand the whole model problem comprehensively, it is necessary to
start with a brief review of modelling tools for financial options. Financial derivatives are
instruments to assist and regulate agreements on transactions of the future. They represent
financial contracts whose values are based on the value of an underlying asset, e.g. stock or
a parcel of shares of a company. Further, financial option is a special case of derivative, it is
a contract between two parties about trading the asset at a certain future time. The basic
option scheme can be written in the simple schedule

writer
sells−−−−−−→ premium

(option value)

purchases−−−−−−−→ holder,

where writer (e.g. bank) fixes the terms of the option contract and sells the option. On the
other hand, holder purchases the option for market price, which is called a premium. Each
option has a limited life time, given by expiration date T fixing the time horizon.

There are two basic types of options: The call option gives the holder the right (no obliga-
tion) to buy the underlying for an agreed price K by the date T . On the other hand, the put
option gives the holder the right to sell the underlying for an agreed price K by the date T .
The previously agreed price K is called a strike price.

From another point of view, the options can be divided into standard and non-standard
(exotic) types. In this contribution, we focus only on standard options represented by European
plain vanilla option. For European option is typical that its exercise is only permitted at
expiration T .

In our further considerations, let underlying asset be stock price S = S(τ) depending on
actual time τ . The symbol V stands for the value of certain type of option, i.e. the value
V = V (S, t) is driven according to the stock price, time to expiration t = T − τ (reversal actual
time) and model of classical market.

For modelling financial options, it is widely used the famous Black-Scholes equation, derived
under series of assumptions, for more details see [11]. The price V (S, t) of option satisfies the
following partial differential equation

−∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
= rV (1)

where t, 0 ≤ t ≤ T is time to expiration, i.e. T − t is a current time, S = S(t) price of stock at
time t, i.e. 0 ≤ S < +∞. Market parameters affecting the price are the risk-free interest rate r
and volatility σ of the price S. In real markets, values r and σ vary with time, but to keep the
model and analysis simple, we assume r and σ to be constant.
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To correctly define the initial-boundary value problem (1), it is necessary to equipped equa-
tion (1) with initial condition and set of two boundary conditions valid in the endpoints of
underlying asset. The initial condition (in reversal time) arises from the terminal condition (in
continuous time) which is given by payoff function

V (S, 0) = V 0(S) :=

{
max(S − K, 0), if V is a call,

max(K − S, 0), if V is a put,
(2)

where K is the strike price. From [11], the both types of European options have the following
asymptotic behaviour corresponding to the put-call parity of options, i.e.

V BC(t) =

{
0, for S = 0

S − Ke−rt, for S → +∞ (call), (3)

V BC(t) =

{
0, for S → +∞

Ke−rt − S, for S ≈ 0
(put). (4)

Let us note that in practical considerations, relation S → +∞ is replaced by sufficiently large
Smax > 0 (maximal possible stock price).

3 Continuous problem

In what follows, we focus only on the European call option. According to (1)-(3), we consider
the following unsteady linear convection–diffusion–reaction problem: Let Ω ≡ (0, Smax) be
a bounded open interval and T > 0. We seek a function u : QT = Ω × (0, T ) → IR such that

(a)
∂u

∂t
− 1

2
σ2x2∂2u

∂x2
− rx

∂u

∂x
+ ru = 0 in QT ,

(b) u(0, t) = uL
D(t) = 0 and u(Smax, t) = uU

D(t) = Smax − Ke−rt, (5)

(c) u(x, 0) = u0(x) = V 0(x), x ∈ Ω,

where σ and r are positive constants, uL
D, uU

D : (0, T ) → IR are Dirichlet boundary conditions
and u0 : Ω → IR is the initial condition.

The convection-diffusion-reaction equation (5a) is equipped with the initial condition (5c)
given by (2) and the set of two Dirichlet boundary conditions (5b) prescribed at the endpoints
of interval (0, Smax).

Further, we shall introduce standard notation for function spaces and their norms ‖ · ‖ and
seminorms | · |. Let k ≥ 0 be a integer and p ∈ [1,∞]. We use the well-known Lebesgue and
Sobolev spaces Lp(Ω), Hk(Ω), Bochner spaces Lp(0, T ; X) of functions defined in (0, T) with
values in Banach space X and the spaces Ck([0, T ]; X) of k-times continuously differentiable
mappings of the interval [0, T] with values in X.

In order to obtain a variational formulation of (5) we use a concept of weighted Sobolev
spaces, for survey see, e.g. [9]. Let us introduce the space

V = V (Ω) :=
{
v ∈ L2(Ω) : x · v′(x) ∈ L2(Ω)

}
(6)
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with a scalar product

(u, v)V = (u, v) +

∫
Ω

xu′(x) · xv′(x)dx u, v ∈ V, (7)

where (·, ·) denotes the scalar product of L2(Ω). Consequently, space V becomes a Hilbert

space with norm ‖ · ‖V := (·, ·)1/2
V . In order to fulfil the boundary conditions it is appropriate

to define the space

V0 := C∞
0 (Ω)

‖·‖V ≡ {v ∈ V : v(0) = v(Smax) = 0} (8)

with seminorm | · |V := ‖x d
dx

· ‖2
Ω as a norm on V0. Moreover, H1(Ω) ⊂ V0.

Further, we introduce the following bilinear forms â(·, ·) and b̂(·, ·) representing the diffusion
and convection terms, respectively.

â(u, v) =
1

2
σ2

∫
Ω

x2u′(x) v′(x) dx, (9)

b̂(u, v) = (σ2 − r)

∫
Ω

xu′(x) v(x) dx (10)

In order to simplify the notation, we set a new bilinear form

A(u, v) = â(u, v) + b̂(u, v) + r(u, v), (11)

then we are ready to define a weak solution u of the problem (5).

Definition 3.1 We say that u is a weak solution of problem (5), if the following conditions
are satisfied

(a) u ∈ L2(0, T ; V0), u ∈ L∞(QT )

(b)
d

dt
(u(t), v) + A(u(t), v) = 0 ∀ v ∈ V0 in sense of distributions on (0, T ), (12)

(c) u(0) = u0 in Ω, u0 ∈ L2(Ω).

By u(t) we denote the function on Ω such that u(t)(x), x ∈ Ω.
It can be easily checked that bilinear form A(·, ·) is continuous and coercive on V0, i.e.

∃ γ > 0 : |A(u, v)| ≤ γ|u|V |v|V ∀u, v ∈ V0 (13)

∃α > 0, λ ∈ IR : |A(v, v)| + λ‖v‖2
Ω ≥ α|u|2V ∀ v ∈ V0 (14)

and hence problem (5) has a unique solution u, for more details see [8].

4 Discretization

Let Th (h > 0) be a family of the partitions of the closure Ω = [0, Smax] of the domain Ω into
N closed mutually disjoint subintervals Ik = [xk−1, xk] with length hk := xk − xk−1 and the
symbol J stands for an index set {1, . . . , N}. Then we call Th = {Ik, k ∈ J } a triangulation
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with spatial step h := maxk∈J (hk) and interval Ik an element. By Eh we denote the smallest
possible set of all endpoints of all subintervals Ik, i.e. Eh = {x0 = 0, x1, . . . , xN−1, xN = Smax}.
Further, we label by EI

h the set of all inner nodes. Obviously, Eh = EI
h ∪ {0, Smax}.

DG method allows to treat with different polynomial degrees over elements. Therefore, we
assign a local Sobolev index sk ∈ IN and local polynomial degree pk ∈ IN to each Ik ∈ Th. Then
we set the vectors

s ≡ {sk, Ik ∈ Th}, p ≡ {pk, Ik ∈ Th}. (15)

Over the triangulation Th we define the so-called broken Sobolev space corresponding to the
vector s

Hs(Ω, Th) ≡ {v; v|Ik
∈ Hsk(Ik) ∀ Ik ∈ Th} (16)

with the seminorm |v|Hs(Ω,Th) ≡
(∑

Ik∈Th
|v|2Hsk (Ik)

)1/2

, where | · |Hsk (Ik) denotes the standard

seminorm on the Sobolev space Hsk(Ik), Ik ∈ Th. Moreover, we introduce broken weighted
Sobolev space

Hw(Ω, Th) ≡ {v; v|Ik
∈ V (Ik) ∀ Ik ∈ Th} (17)

with the seminorm |v|Hw(Ω,Th) ≡
(∑

Ik∈Th
|v|2V (Ik)

)1/2

.

Finally, the approximate solution is sought in a space of discontinuous piecewise polynomial
functions associated with the vector p by

Shp ≡ Shp(Ω, Th) ≡ {v; v ∈ L2(Ω), v|Ik
∈ Ppk

(Ik) ∀Ik ∈ Th}, (18)

where Ppk
(Ik) denotes the space of all polynomials of degree ≤ pk on Ik, Ik ∈ Th. Obviously,

Shp([0, Smax], Th) ⊂ H1([0, Smax], Th) ⊂ Hw([0, Smax], Th). (19)

For each x ∈ EI
h there exist two elements Ik, Ik+1 ∈ Th such that Ik ∩ Ik+1 = {x}. Let us

denote

v(x+) = lim
ε→0+

v(x + ε) and v(x−) = lim
ε→0+

v(x − ε) (20)

the traces of v at inner points of Ω. Moreover,

[v(x)] = v(x−) − v(x+), 〈v(x)〉 =
1

2

(
v(x−) + v(x+)

)
, (21)

denote the jump and mean value of function v at points x ∈ EI
h , respectively. By convention,

we also extend the definition of jump and mean value for endpoints of domain Ω, i.e.

[v(x0)] = −v(x+
0 ), 〈v(x0)〉 = v(x+

0 ), [v(xN)] = v(x−
N), 〈v(xN)〉 = v(x−

N) (22)

4.1 Space semidiscretization

Firstly, we introduce the semi-discrete problem, which is obtained with the aid of the method of
lines, i.e. the semi-discrete problem is discretized only in space coordinates and time is treated
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continuously. We recall the space semi-discrete DG scheme presented in [4] and [6]. To this
end we introduce the following bilinear/linear forms

aΘ
h (u, v) =

∑
k∈J

∫
Ik

1

2
σ2x2 · ∂u(x, t)

∂x
· v′(x) dx −

∑
x∈Eh

〈
1

2
σ2x2 · ∂u(x, t)

∂x

〉
[v(x)] (23)

+Θ
∑
x∈Eh

〈
1

2
σ2x2 · v′(x)

〉
[u(x, t)],

bh(u, v) = −
∑
k∈J

∫
Ik

(σ2 − r)x · u(x, t) · v′(x) dx +
∑
x∈EI

h

H
(
u(x−, t), u(x+, t)

)
[v(x)] (24)

−H
(
uL

D(t), u(x+)
)
· v(x+

0 ) + H
(
u(x−), uU

D(t)
)
· v(x−

N)

Jω
h (u, v) =

∑
x∈EI

h

ω(x)[u(x, t)] [v(x)] + ω(x0) · u(x+
0 , t) · v(x+

0 ) + ω(xN) · u(x−
N , t) · v(x−

N) (25)

lΘh (v)(t) = −Θ
1

2
σ2x2

0 · v′(x+
0 ) · uL

D(t) + Θ
1

2
σ2x2

N · v′(x−
N) · uU

D(t) (26)

+αω(x0) · uL
D(t) · v(x+

0 ) + αω(xN) · uU
D(t) · v(x−

N).

The crucial item of the DG formulation is the treatment of the linear convection and diffusion
terms.

For the convection form bh we treat boundary terms similarly as in the finite volume method,
i.e. they are approximated with the aid of the following numerical flux H(·, ·) through node
x ∈ Eh in the positive direction (i.e. outer normal is equal to one):

H
(
u(x−), u(x+)

)
=

{
(σ2 − r)x · u(x−), if A > 0

(σ2 − r)x · u(x+), if A ≤ 0
, where A = (σ2 − r)x (27)

which is based on the concept of upwinding, see [7]. The choice of u(x−), u(x+) for boundary
points {0, Smax} is necessary to specify. Here we use:

u(x−
0 ) = u(0−) = uL

D and u(x+
N) = u(S+

max) = uU
D. (28)

The diffusion form aΘ
h includes stabilization terms which are artificially added to the formu-

lation of the semi-discrete problem in order to guarantee the stability of the resulting numerical
scheme. According to value of parameter Θ, we speak of symmetric (SIPG, Θ = −1), incom-
plete (IIPG, Θ = 0) or nonsymmetric (NIPG, Θ = 1) variants of stabilization of DG method,
i.e., we generally consider three variants of the diffusion form aΘ

h and right-hand side form lΘh ,
arisen from Dirichlet boundary conditions.

Furthermore, in order to replace the inter-element discontinuities, the semi-discrete scheme
is completed with penalty vanishing for the continuous solution. Penalty terms are represented
by Jω

h and the penalty parameter function ω : Eh → IR in (25) and (26) is defined in spirit of [5]
as

ω(x) =
CW

d(x)
with d(x) =

⎧⎪⎪⎨
⎪⎪⎩

h1/p1
2 , x = x0 = 0,

min
(
hk/p

2
k, hk+1/p

2
k+1

)
, x ∈ EI

h ∧ {x} = Ik ∩ Ik+1,

hN/pN
2 , x = xN = Smax,

(29)
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where CW > 0 is a suitable constant depending on the used variant of scheme and on the degree
of polynomial approximation generally.

In what follows we define the form

BΘ
h (u, v) := aΘ

h (u, v) + bh(u, v) + αJω
h (u, v) + (2r − σ2)(u, v) u, v ∈ Hs(Ω, Th), (30)

where the forms aΘ
h (·, ·), bh(·, ·) and Jω

h (·, ·) are given by (23), (23) and (26), respectively. The
value of multiplicative constant α before the penalty form Jω

h and in the right-hand side form lΘh
depends on the properties of diffusion term −1

2
σ2x2 ∂2u

∂x2 , for survey, see [5].
Now we are ready to introduce the whole concept of semi-discrete solution uh of problem (5).

Definition 4.1 Let u0
h ∈ Shp be the L2(Ω)-projection of the initial condition u0 into Shp, i.e.

a function defined by
(u0

h − u0, vh) = 0 ∀ vh ∈ Shp. (31)

We say that uh is a semi-discrete solution of problem (5), if the following conditions are satisfied

(a) uh ∈ C1([0, T ]; Shp),

(b)

(
∂uh(t)

∂t
, vh

)
+ BΘ

h (uh(t), vh) = lΘh (vh) (t) ∀ vh ∈ Shp, ∀ t ∈ (0, T ), (32)

(c) uh(0) = u0
h.

In fact, the identity (32b) corresponds to the partial differential equation with self-adjoint
operators in diffusive and convective terms, i.e.

∂u

∂t
− ∂

∂x

(
K(x)

∂u

∂x

)
+

∂

∂x
f(u) + βu = 0 in QT (33)

with K(x) = 1
2
σ2x2, f(u) = (σ2 − r)xu and β = 2r − σ2. Obviously, the equation (33) is

equivalent with the original Black-Scholes equation (5b).
The problem (32) exhibits a system of ordinary differential equations (ODE) equipped with

initial condition for unknown uh(t) which has to be discretized in time by a suitable method.

4.2 Fully time-space discretization

There exists a wide range of approaches for time discretization of ODE systems resulting from
DG semidiscretization. In practical computations, the simplest time discretization is via explicit
scheme (e.g. Euler forward scheme and Runge-Kutta methods). Since the problem (32) belongs
to the class of stiff problems, the explicit schemes suffer from a strong limitation on the time
step. In order to avoid the strong time step restriction of explicit DG schemes, it is suitable to
use an implicit time discretization.

In our case, the proposed implicit approach via the backward Euler method is very suitable
due to a linearity of discrete form BΘ

h (·, ·) in both arguments and due to an independence of
right-hand side form lΘh (·) on semi-discrete solution which allows us the implicit treatment of
uh in (32b), consequently.

The fully discrete solution of problem (32) is defined in following way.
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Definition 4.2 Let 0 = t0 < t1 < · · · < tr = T be a partition of the interval [0, T ] and
τl ≡ tl+1 − tl, l = 0, 1, . . . , r − 1. We define the approximate solution of problem (5) as
functions uk

h ≈ uh(tk), t ∈ [0, T ], l = 0, . . . , r − 1, satisfying the conditions

(a) ul+1
h ∈ Shp,

(b)
1

τl

(
ul+1

h − ul
h, vh

)
+ BΘ

h

(
ul+1

h , vh

)
= lΘh (vh) (tk+1) ∀ vh ∈ Shp, l = 0, . . . , r − 1, (34)

(c) u0
h is Shp approximation of u0,

The discrete problem (34) is equivalent to a system of linear algebraic equations for each
tl ∈ [0, T ], which can be solved by a suitable solver, e.g. GMRES.

5 Numerical examples

In this section, we presented a simple numerical example illustrating the potency of derived
numerical scheme for solution of European option pricing model. The whole algorithm is
implemented in FORTRAN90 and uses piecewise linear, quadratic and cubic approximations
on partition of Ω with constant mesh size h and time step τ .

The numerical example represents the case of European call option with expiration date
T = 1.0 (e.g. 1 year) and strike price K = 13.0. The computational domain was set as Ω =
[0, 15] and Black-Scholes market model parameters were the risk-free interest rate r = 0.15y−1

and volatility σ = 0.01y−1.
The initial and boundary conditions are given according to (5c) and (5b), respectively. The

mesh size h = 0.01 and the time step τ = 0.01. We carried out computations by piecewise
cubic approximations and set Θ = 0 (incomplete variant). In order to guarantee the stability
of the discrete scheme (34) with respect to penalty parameter ω, the parameter CW from (29)
is chosen according to [6, Table 6.3].

Figure 1 shows the trimestrial development of approximation solution ul
h, e.g. the value

of call option with maturity 1/4 (top left), 2/4 (top right), 3/4 (bottom left) and 4/4 of year
(bottom right), respectively. Since σ2 � r, the convection term is large compared to the
diffusive term and the problem is said to be convection dominated and partial differential
equation exhibits a hyperbolic behaviour, i.e. the first-order hyperbolic term involving ∂u

∂x

propagates information from the right to the left of the x-axis. In financial terms it represents
the increase in value of the option generated by the deterministic increase in the stock price
due to the drift term.

6 Conclusion

We have dealt with the numerical solution of the standard option pricing models, represented
by the linear convection-diffusion-reaction equation. We have derived the above used numerical
scheme: from the weak solution, over the semi-discrete one to the fully discrete one. The whole
method is based on the semidiscretization by the discontinuous Galerkin method in space and
on the implicit backward Euler method used for discretization in time. Presented numerical
examples illustrated the potency of the resulting scheme for convection-dominated problems.
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Figure 1: Values of European call options in trimestral time instants (star-line), payoff function
(solid line).

For the future work, we intend to extend this method to American type of options and exotic
options with barrier or discontinuous payoff function, moreover depending on a basket of several
underlying assets, i.e. multivariate Black-Scholes equation.
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[5] DOLEJŠÍ, V., HOZMAN, J.: A priori error estimates for DGFEM applied to nonsta-
tionary nonlinear convectiondiffusion equation. Proceedings of ENUMATH 2009 confer-
ence, G. Kreiss et. Al. Eds., Springer, pp. 459-468, 2010.

[6] HOZMAN, J.: Discontinuous Galerkin method for convection-diffusion problems. PhD
thesis, Charles University Prague, Faculty of Mathematics and Physics, 2009.
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ELEMENTARY SOLUTION TO THE THREE VEHICLES
JEEP PROBLEM WITH SUPPORT OF THE CAS MAPLE

POTŮČEK Radovan, (CZ)

Abstract. The jeep problem is a well known logistics problem. A jeep must cross a desert
wider than it can travel on one tank of fuel with the help of optimal arrangement of fuel
dumps along the route. The available resources refer, especially, to solutions of two basic
variants – the single jeep problem and the convoy of jeeps problem. This contribution
deals with one modification of the jeep problem with 3 vehicles and n cans of fuel (n > 3).
Elementary solutions to this problem are detailed derived for small amounts n of cans of
fuel. A general solution, given by the formula for determination a distance which can be
reached with n cans of fuel, is stated. Some numerical results computed by two procedures,
written in the computer algebra system Maple, are presented in a form of the tables.
Key words and phrases. jeep problem, convoy of jeeps problem, harmonic numbers,
computer algebra system Maple.
Mathematics Subject Classification. Primary 90B06; Secondary 40A99.

1 Introduction and history of the jeep problem

The jeep problem, also called desert crossing problem or exploration problem, and its modifica-
tion were first mentioned in the late 19th century and in the early 20th century in books [1], [2]
containing problems of mathematical recreations. The problem was first solved in 1947 by N. J.
Fine in his paper [3]. Shortly thereafter, C. G. Phipps generalized the problem in [4], and solved
it by arguing that the single jeep problem is equivalent to a problem involving a convoy of jeeps
which travel together, some being used to refuel others, with only one jeep required to cross,
the others abandoned along the way.

The jeep problem may have application to arctic expeditions in present and to interplanetary
travel in future. A related problem is to determine the range of a fleet of n aircrafts with some
fuel capacities and with some fuel consumption. It is assumed that the aircraft may share fuel
in flight and that any of the aircraft may be abandoned at any stage. The range is defined to



Aplimat - Journal of Applied Mathematics

be the greatest distance which can be attained in this way. This fleet range problem was solved
in 1960 by J. N. Franklin in [5] using dynamic programming.

This little problem can have also a practical application in wartime situations. It achieved
a great deal of attention during World War II, especially in strategy used in the pacific theatre
in World War II by bombing missions including the atomic bombing missions at the end of this
war. The jeep problem is still a modern and topical problem – see e.g. [6], [7].

This contribution is a free follow-up to the papers [8], [9] and [10], where elementary solutions
to the single jeep problem, to the convoy of jeeps problem and to the jeep problem with two
vehicles were derived and illustrated for small amounts of units of fuel and for small number of
vehicles forming the convoy. Numerical solutions for some of the outstanding amounts of fuel
and numbers of vehicles were computed by using the computer algebra system Maple and its
basic programming language and were presented in form of tables.

2 Formulation and notation of the jeep problem

The original jeep problem is formulated as follows. Given a jeep that can carry one tankload
(one unit) of fuel and can travel one distance unit per tankload (the jeep’s fuel consumption
is assumed to be constant). The jeep is required to cross a desert wider than it can travel on
one tank of fuel. To do so, it may make depots of fuel in the desert. We assume that in the
beginning of the jeep’s mission there are n tanks (cans, units) of fuel at the border of the desert
at a fixed base and that the jeep makes n trips to maximize the distance it can travel.

Further, we will study the case of three jeeps – two supporting jeeps and the chief jeep,
which is supposed to reach the greatest distance.

We will use the following notation:

n – the number of cans, i.e. units of fuel, which three jeeps have available for their mission,
whereas we assume that the volume of a can is equal to the volume of the jeep’s fuel tank,

�x� – the floor function �x�, also called the greatest integer function, gives the largest integer
lesser or equal than x;
for example �4� = 4, �4.5� = 4,

t – the number of partial trips (stages, ways) covered by two supporting jeeps and at the end
of the mission by all three jeeps by using n cans of fuel,

p – the number of stretches of the road, i.e. the number of partial trips, covered by two
supporting jeeps and at the end of the mission by all three jeeps by using n cans of fuel,

B – the base – the starting point, where n units of fuel are saved and where the supporting
jeeps must return at the end of their every trip, except their last (final) trip, when all three
jeeps travel as a convoy as far as they can before running out the fuel,

T – the target point – the farthest point, which the chief jeep can reach by support of two
other jeeps and by successive using n units of fuel on its final trip, and the end of the chief
jeep’s journey and mission,
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Bi – the list of fuel dumps established at various points along the way for temporary storage
of fuel by using n cans (i = 1, 2, . . . , t + 1);
at the last fuel dump Bt but one the first supporting jeep remains standing and far,
towards the last fuel dump Bt+1 , continue the second supporting jeep together with the
chief jeep, at the last fuel dump Bt+1 the second supporting jeep remains standing and
far, towards to the target T , continues the chief jeep alone,

di – the length of the i-th stretch (i = 1, 2, . . . , t + 2) of the road, i.e. the distance
∣∣Bi−1Bi

∣∣
of the fuel dumps Bi−1 and Bi on the route B → B1 → B2 → · · · → Bt+1 → T , whereas
d1 =

∣∣BB1

∣∣;
for maximizing the distance the chief jeep can travel, we assume that it will start with a
full fuel tank on the last stage Bt+1 → T of the final trip, so that it holds dn =

∣∣Bt+1T
∣∣ = 1,

si – the amount of fuel leaved and stored at the i-th fuel dump Bi by i-th subsequent trip,
where 0 < si < 1 (i = 1, 2, . . . , t + 1),

D(3, n) – the maximum total distance travelled by 3 jeeps by using n cans:

D(3, n) =
t+2∑
i=1

di = d1 + d2 + · · · + dt+1 + 1 .

3 The number of trips and stretches

The number t of partial trips performed by 3 vehicles (1 chief jeep and 2 supporting jeeps),
which have n cans of fuel available, is determined by the following decomposition. The number
of n cans can be divided into the three parts:

1) 3 cans for the last trip performed by the convoy of 3 jeeps, so it remains n − 3 cans of fuel,
which are available for all other previous missions,

2) 2k cans consumed at k trips by 2 supporting jeeps, where k = �(n−3)/2�, so then it remains
� = n − 3 − 2 · �(n − 3)/2� cans of fuel,

3) � cans used up at eventual one preparatory trip performed by 2 supporting jeeps; for n odd
is � = 0 and for n even is � = 1.

For example, we get the following decompositions:
for n = 11 cans we have decomposition 11 = 4 · 2 + 1 · 3, so we have 4 trips of 2 supporting
jeeps and 1 trip of 3 jeeps convoy, so that t = 5,
for n = 12 cans we have decomposition 12 = 1 · 1 + 4 · 2 + 1 · 3, so we have 1 preparatory trip
of 2 supporting jeeps, 4 trips of 2 supporting jeeps and 1 trip of 3 jeeps convoy, so that t = 6.
Generally, we have

t =

⌊
n

2

⌋
.

The number p of stretches of the road is obviously t + 2, i.e. the number of partial trips t
increased about 2 stretches of the last trip performed by the convoy of all 3 jeeps, so that the
number of stretches is generally

p =

⌊
n

2

⌋
+ 2 .
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4 Solutions to the main basic variants of the jeep problem

A general solution maximizing the distance travelled by the single jeep with n cans of fuel was
derived, among others, in the paper [8]. It has a form

D(1, n) =
1

2n − 1
+

1

2n − 3
+ · · · + 1

5
+

1

3
+ 1 =

n∑
i=1

1

2i − 1
. (1)

A general solution to the convoy of jeeps problem was derived, in the paper [9], too. For
given n cans of fuel and for n jeeps, each with capacity of 1 can, the maximum distance which
the chief jeep can travel is

D(n, n) =
1

n
+

1

n − 1
+ · · · + 1

3
+

1

2
+ 1 =

n∑
i=1

1

i
= Hn , (2)

where Hn represents the n-th partial sum of the harmonic series, i.e. the sum from one up to
the n-th harmonic number.

Remark, that in the paper [10] was derived a general solution to the jeep problem with two
vehicles. The maximum distance which can two jeeps travel with n > 2 cans of fuel is

D(2, n) =
1

2(n − 1)
+ · · · + 1

4
+

1

2
+ 1 =

1

2

n−1∑
i=1

1

i
+ 1 =

1

2
Hn−1 + 1 . (3)

It is obvious that it holds D(n, n) > D(2, n) > D(1, n) for n > 2 and

D(n, n) > D(1, n) for n ≥ 2 . (4)

5 Elementary solution to the jeep problem with two vehicles

Because, as we stated above in (4), for n ≥ 2 a convoy of n jeeps with n cans of fuel overcomes
greater distance than a single jeep with n cans, we will consider and study, for maximizing the
distance overcoming by 3 jeeps with n cans, where n > 3, the following strategy:

For n even 2 supporting jeeps (fulled with 1/2 volume of their fuel tanks) perform one
preparatory trip and establish the first fuel dump B1. Other fuel dumps for temporary storage
of fuel in the total number �n/2� + 1 are established, step by step, during all t = �n/2� trips
of 2 supporting jeeps. At the last �n/2�-th trip, which is performed by the convoy of 3 jeeps,
are created two last fuel dumps Bt and Bt+1, where the supporting jeeps remain standing. The
chief jeep continues from the fuel dump Bt+1 alone on its journey towards to the target T .

Now, we describe in full details, for example, the solution for n = 10 cans of fuel and then
symbolically and briefly describe solutions of other four cases – for n = 4, 5, 6 and 7 cans.

For n = 10 cans we have t = �10/2� = �5� = 5 trips, t+1 = 6 fuel dumps and p = t+2 = 7
stages of the road. Because we get a decomposition 10 = 1 · 1 + 3 · 2 + 1 · 3, we have (n is
even number) 1 preparatory trip of 2 supporting jeeps, 3 trips of 2 supporting jeeps and 1
(the last and 5th) trip of 3 jeeps convoy. The supporting jeeps step by step create fuel dumps
B1, B2, B3, B4, B5, B6 at bottoms of their trips.
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On the 1st preparatory trip the both supporting jeeps (each of the jeeps is fulled only with
1/2 volume of its fuel tank) go from the base B to the fuel dump B1 and back to B. The
supporting jeeps further go from B subsequently to the fuel dumps B2, B3, B4 and back, so
through the fuel dump B1 they go during these all four trips 8-times and then together with
the chief jeep once at the last 5th trip. For the unknown distance d1 =

∣∣BB1

∣∣ thus we get
the equation 8d1 + 3d1/2 = 1/2, hence d1 = 1/19, so the amount of fuel leaved and stored by
each of the supporting jeep at the 1st fuel dump B1 by 1st subsequent and preparatory trip is
s1 = 1/2 − 2d1 = 15/38.

For the distance d2 =
∣∣B1B2

∣∣ from the equation 6d2 + 3d2/2 = 1 it follows d2 = 2/15, so
the amount of fuel leaved and stored by each of the supporting jeep at the 2nd fuel dump B2

is s2 = 1 − 2d2 = 11/15. For the distance d3 =
∣∣B2B3

∣∣ from the equation 4d3 + 3d3/2 = 1 it
follows we have d3 = 2/11, so s3 = 1 − 2d3 = 7/11, and further for the distance d4 =

∣∣B3B4

∣∣
we get 2d4 + 3d4/2 = 1, so d4 = 2/7 and s4 = 1 − 2d4 = 3/7.

Because the maximal distance performed by three jeeps convoy is D(3, 3) = 1/3 + 1/2 + 1,
so d5 = 1/3 and s5 = 1 − d5 = 2/3. This amount of fuel – the rest volume of the 1st
supporting jeep’s tank – is in the fuel dump B5 equally overdrawn to the chief jeep and to the
2nd supporting jeep, while the 1st supporting jeep remains standing in B5. The chief jeep and
the 2nd supporting jeep continue on their journey towards to the target T . Further, d6 = 1/2,
s6 = 1 − d6 = 1/2 (remaining 1/2 volume of the 2nd supporting jeep’s fuel tank is overdrawn
to the chief jeep) and d7 = 1. Totally, we have

D(3, 10) =
7∑

i=1

di =
1

19
+

2

15
+

2

11
+

2

7
+

1

3
+

1

2
+ 1 =

327441

131670
.
= 2.486831 .

This case is illustrated on the following picture:

Figure 1: The case of 3 jeeps and 10 cans of fuel

Solutions to four other cases in brief:

� n = 4 cans: t = �4/2� = 2 trips, decomposition is 4 = 1 · 1 + 1 · 3, the supporting
jeeps go through B1 once themselves on the preparatory trip and then once together with
the chief jeep, therefore we have the equation 2d1 + 3d1/2 = 1/2, hence d1 = 1/7, and thus
D(3, 4) = 1/7 + 1/3 + 1/2 + 1 = 83/42

.
= 1.976190,

� n = 5 cans: t = �5/2� = 2 trips, decomposition is 5 = 1 · 2 + 1 · 3, the supporting jeeps
go through B1 once and all 3 jeeps also once, therefore 2d1 + 3d1/2 = 1, hence d1 = 2/7, thus
D(3, 5) = 2/7 + 1/3 + 1/2 + 1 = 89/42

.
= 2.119048,

� n = 6 cans: t = 3, 6 = 1 ·1+1 ·2+1 ·3, the supporting jeeps go through B1 twice (once on the
preparatory trip) and once with the chief jeep, therefore 4d1 + 3d1/2 = 1/2, hence d1 = 1/11,
the supporting jeeps go through B2 once and once with the chief jeep, therefore 2d2+3d2/2 = 1,
hence d2 = 2/7, thus D(3, 6) = 1/11 + 2/7 + 1/3 + 1/2 + 1 = 1021/462

.
= 2.209957,
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� n = 7 cans: t = 3, 7 = 2 · 2 + 1 · 3, the supporting jeeps go through B1 twice and once with
the chief jeep, therefore we have 4d1 + 3d1/2 = 1, hence d1 = 2/11, the supporting jeeps go
through B2 once and once with the chief jeep, therefore we get 2d2 +3d2/2 = 1, hence d2 = 2/7,
thus D(3, 7) = 2/11 + 2/7 + 1/3 + 1/2 + 1 = 1063/462

.
= 2.300866.

Clearly, we get two cases – for n even, i.e. n = 2k, and for n odd, i.e. n = 2k − 1, where
k ≥ 2 is integer:

D(3, 2k) =
1

3 + 4�k − 1� +
2

3 + 4(�k − 1� − 1)
+ · · · + 2

11
+

2

7
+

1

3
+

1

2
+ 1 ,

D(3, 2k − 1) =
2

3 + 4�(2k − 3)/2� +
2

3 + 4(�(2k − 3)/2� − 1)
+ · · · + 2

11
+

2

7
+

1

3
+

1

2
+ 1 .

Because we can write �k − 1� = �(2k − 2)/2� and �(2k − 3)/2� = �[(2k − 1)− 2]/2�, we get for
n ≥ 3 a general formula

D(3, n) = 2

�(n−2)/2�∑
i=1

1

3 + 4i
− (n − 1) mod 2

3 + 4�(n − 2)/2� +
11

6
(5)

(note, that for n = 3 we get, in agree with (2), D(3, n) = 11/6 = 1/3 + 1/2 + 1 = D(3, 3)).

Now, let us consider a trivial case of n = 4 cans and note that another strategy does not
give better result than the strategy S described below and above in the begin of this section.

� Strategy S: The supporting jeep establishes depot of fuel B1 at its first trip. The second
trip is performed by the convoy of 2 jeeps, whereat the supporting jeep establishes the fuel
dump B2, overdraws the rest volume of its tank to the chief jeep and remains standing in B2,
whereas the chief jeep continues on its journey towards to the target T – see Fig. 2. Using the
formula (5) we get the distance D(2, 3) = 1/4 + 1/2 + 1 = 7/4 = 1.75.

Figure 2: Strategy S for 2 jeeps with 3 cans

� Strategy A: This strategy consists of a trip of the chief jeep from B to the fuel dump B1,
where it stores s1 units of fuel, and back, a trip of the supporting jeep from B through B1 to
the fuel dump B2, where it stores s2 units of fuel and remains standing, and then a trip of the
chief jeep from B to B1, where it tanks s1 units of fuel and continues with a full fuel tank to B2,
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Figure 3: Strategy A for 2 jeeps with 3 cans

where it tanks s2 units of fuel and continues again with the full fuel tank to the target T (see
Fig. 3), so the length of the stage B2T is d3 = 1.

The chief jeep goes 3-times through B1, so we have 3d1 = 1, hence d1 = s1 = 1/3. For
the supporting jeep in B2 we get d1 + d2 + s2 = 1, i.e. d2 + s2 = 2/3. Because for the
stage B1B2 it holds d2 = s2, we have d2 = s2 = 1/3. The maximum travelled distance is
D′(2, 3) = 1/3 + 1/3 + 1 = 5/3

.
= 1.67.

� Strategy B: Let us suppose that the supporting jeep does not participate in the mission. Then
we have the variant of the single jeep (see Fig. 4, where d1 = 1/5, d2 = 1/3, d3 = 1, s1 = 3/5,
s2 = 1/3). The maximum travelled distance is D(1, 3) = 1/5 + 1/3 + 1 = 23/15

.
= 1.53.

Figure 4: Strategy B for 2 jeeps with 3 cans

6 Some numerical solutions to the jeep problem with three vehicles

For computing some solutions to the jeep problem with three vehicles, i.e. distances D(3, n) for
n cans of fuel, according to the general formula (5), was used the following simple procedure
jp3na written in the basic programming language of the computer algebra system Maple:
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jp3na:= proc(n)

local i, s;

s := 11/6;

for i from 1 to n− 3 do

s := s+ 1/(3+ 4 ∗ floor((i+ 1)/2));

end do;

s := evalf[10](s);

print("distance D(3,n) for", n ,"cans is", s);

end proc:

Some solutions, i.e. distances, D(3, n), all expressed in 3 decimals, for the outstanding amounts
n of fuel are presented in the table Tab. 1:

n 10 20 30 40 50 60 70 80 90
D(3, n) 2.487 2.848 3.055 3.201 3.314 3.406 3.484 3.551 3.610

n 100 200 1000 2000 10000 20000 70000 80000 1000000
D(3, n) 3.663 4.011 4.817 5.163 5.968 6.315 6.941 7.008 8.271

Tab. 1: Some amounts n of fuel and corresponding distances D(3, n)

The following procedure jp3nb based on the general formula (5) and written also in the
computer algebra system Maple, contrary to preceding procedure jp3na , computes correspond-
ing amounts n of the fuel consumed by three vehicles necessary for ovecoming (or crossing)
distances greater than d = 2, 3, . . . , 10:

jp3nb:= proc(n)

local d, i, s;

s := 11/6;

d := 2;

for i from 1 to n− 3 do

s := evalf[10](s+ 1/(3+ 4 ∗ floor((i+ 1)/2));

if s > d then

print("for overcoming the distance greater than",d,"

(more exactly",s,") it is needed to use",i+3,"cans");

d := d+ 1;

end if;

end do;

end proc:

Relevant amounts n of fuel, computed by the procedure jp3nb , needed for overcoming distances
greater than d = 2, 3, . . . , 10 are stated in the table Tab. 2:

d 2 3 4 5 6 7 8 9 10
n 5 27 196 1443 10 658 78745 581842 4299257 31768295

Tab. 2: Needed amounts n of fuel for overcoming distances greater than d = 2, 3, . . . , 10
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7 Example with solutions

In the following Example 1 are solved two basic problems – determination a maximal distance
which can be reached with fixed amount of fuel and determination an amount of fuel needed
for overcoming given units of distance.

Example 1:

For a group of 3 jeeps, using the strategy S above, determine:

1) a maximal distance which can be reached with 30 cans of fuel,

2) a number of cans of fuel needed for overcoming 4 units of distance.

Solution:

1) For determination the distance D(3, 30) we use the general formula (5). In this way we have

D(3,30) = 2

�(30−2)/2�∑
i=1

1

3 + 4i
− (30 − 1) mod 2

3 + 4�(30 − 2)/2� +
11

6
= 2

14∑
i=1

1

3 + 4i
− 1

3 + 4 · 14
+

11

6
=

= 2

(
1

7
+

1

11
+

1

15
+

1

19
+

1

23
+

1

27
+

1

31
+

1

35
+

1

39
+

1

43
+

1

47
+

1

51
+

1

55
+

1

59

)
− 1

59
+

11

6
.

After a short calculation we get the searched result: D(3, 30)
.
= 3.055027.

2) We use direct the results of the procedure jp3nb above, where is, among other, stated that
for overcoming 4 (more exactly 4.000799) units of distance it is necessary to have 196 cans of
fuel available.

8 Conclusion

Elementary solutions to one of the interesting logistics problems – the jeep problem with three
vehicles – are detailed derived for small amounts of fuel. A general solution, given by the formula
for determination a distance D(3, n) which can be reached with n cans of fuel, is stated. Two
simple procedures written in the computer algebra system Maple – jp3na for determination
a maximal distance which can be reached with fixed amount of fuel and jp3nb for determination
an amount of fuel needed for overcoming given units of distance – are presented together with
some numerical results arranged in a form of the tables. This paper can be an inspiration for
teachers of mathematics or as a subject matter for work with talented students.
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[9] POTŮČEK, R.: Elementary solution to the convoy of jeeps problem and two differ-
ent computational algorithms. In Zborńık vedeckých prác ”Teoretická a edukačná trans-
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HETEROGENEOUS CLUSTER FOR ACCELERATION
OF LINEAR ALGEBRA COMPUTATIONS

ŠIMEČEK Ivan, (CZ), LANGR Daniel, (CZ)

Abstract. Plenty of numerical algebra libraries have been developed in recent years.
These libraries are tuned for the given CPU and its memory architecture, fully utilize its
memory hierarchy and inner pipelines and achieve impressive computation power. There
is also a new trend in the high-performance computing: GPU computing.
This paper deals with a new concept of the heterogeneous grid for acceleration of the
numerical linear algebra computing. We design this grid with respect to maximal ratio
between cost and computational power. It allows a parallelization of scientific codes with
minimal programming effort. We also optimize grid concept to be less sensitive to network
parameters.

Key words and phrases. General purpose GPU computing, grid computing, remote
calls, library for numerical linear algebra.
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1 Introduction

Time is very often the limiting factor in scientific codes. These codes can be accelerated by
parallel executing on special distributed systems (clusters or grids). Parallelization of code
is a very difficult task only for experts. Contributions of this paper is a new approach for
parallelization of scientific codes by converting local numerical library calls into remote grid
calls.

1.1 Libraries for CPU computing

The standard code of these routines have good performance due to high cache hit ratio only
for small sizes of order of matrix. For good performance even for larger values, it must be



Aplimat - Journal of Applied Mathematics

modified. In numerical algebra packages, this is achieved by explicit loop restructuring[1, 2]. It
includes loop unrolling-and-jam which increase the FPU pipeline utilization in the innermost
loop, loop blocking and loop interchange to maximize a cache hit ratio. After application of
these transformations, these codes are divided into two parts. Outer loops are ”out-cache”,
inner loops are ”in-cache”. Codes have almost the same performance independently on the
amount of data. Normal user just use some libraries (like BLAS [3]), where codes are error-free
and also optimized for given architecture.

1.2 Computing on GPUs

1.2.1 History of computing on GPUs

The computing on Graphics Processing Units (GPUs) is a trend caused by the surprising
fact that the most powerful part of modern Intel PCs is not the CPU, but the GPU. Modern
graphic cards overcome modern CPUs in the memory bandwidth, the number of computational
units and possibilities of the vector execution, which results in their surprising floating point
performance.

First papers about this GPU computation phenomena were published in 2001, when GPUs
(more accurately: their shader units) became programmable. And many papers were published
in recent years [4, 5, 6], because the newest GPUs have ability for floating-point computation.

1.2.2 Nowadays GPU computing

Trend of accelerate computations by means of GPU in high-performance computing still grows.
This trend recently emerged into a new research area called General-Purpose Computing on
Graphics Processing Units (shortly GPGPU). The GPGPU programming is simplified by sev-
eral existing APIs (Application Programming Interfaces), the most popular and well-established
ones are CUDA[8, 9] and OpenCL[10]. Thanks these APIs the GPGPU computations are
widespread and has been commonly used in many scientific projects.

The computational abilities of single GPU are very impressive, but some problems, especially
with large memory requirements, are still hard to solve. Although the amount of memory on
GPUs is increasing rapidly, it is still much less than we need and this leads to the limited
application of GPGPU in many scientific problems. Possible solution to that problem could be
to connect graphic cards into a GPGPU cluster to distribute computing and memory demands
across all available GPU. The benefit of this approach is that it allows us to interconnect GPUs
from various vendors but naturally there arise a new problem known as GPU’s load balancing
that we have to face to retain high computational performance.

1.2.3 Compute United Device Architecture (CUDA)

Compute United Device Architecture (for details see [7]) is a proprietary hardware and software
solution for data-intensive computing from NVIDIA. Completely built from ground up, the
CUDA represents a new generation of future graphics cards. The biggest difference from the
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previous generations resides in the simplified architecture, which however allows the processors
to run on higher clock speed. Great progress has been made in design of the processing units,
which now allows synchronization of the threads and their cooperation using shared on-chip
memory. The graphical pipeline has been enhanced by adding new programmable stage called
geometry shader and new data stream output. CUDA breaks down the traditional concepts
of the general purpose programming on GPUs by enabling techniques such as scattering and
inter-thread communication.

The united architecture comes with the G80 graphics cards series. These cards are marked
as CUDA-enabled and their possibilities is still growing. One possible motivation for GPU
computation is that the powerful six-core Intel CPU at 4 GHz, has got peak performance
about 96 GFlops while the comparable-in-price Nvidia GPU Geforce 590 has peak performance
about 2.50 TFlops!

2 Grid concept

There are a lot of grids differ in their sizes, capabilities and purposes. We want to design the
grid with the maximal ratio between cost and computational power. To achieve this goal with
limited budget, we must maximize GPU usage for the computation.

2.1 Grid architecture

We assume that:

• The service is application (on its server side) for computing results of remote calls. The
service also controls and schedules the grid.

• The whole grid (system) consists of one or more clusters. They are connected by Internet
network.

• Each cluster consists of one or more computers (nodes). For the communication among
the nodes inside one cluster we assume some type of local network and the MPI (Message
Passing Interface) library.

• Each node has some number of GPUs (not necessarily of the same type).

• Each cluster has exactly one server of service. Server of cluster will manage and schedule
other (slave) parts (CPUs and GPUs) and monitor their workload.

Since in this architecture new and old GPUs are often mixed, this requires good load-balancing
strategy. Clusters allow hybrid computations: it means that some parts of one problem are
computed on CPU, some parts on GPU.

2.2 Numerical linear algebra computations

We will use third-party routines for numerical linear algebra computations:
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• for single-node computations (multi-threaded for shared memory):

– ATLAS for optimized BLAS and LAPACK routines,

– PARDISO for sparse systems of linear equations,

• for cluster distributed memory computations:

– ScaLAPACK as library of high-performance linear algebra routines for distributed-
memory message-passing MIMD computers,

– SuperLU for sparse systems of linear equations,

• for single GPU computations:

– CUBLAS as efficient implementations of Basic Linear Algebra Subroutines on Nvidia
GPUs,

– CUFFT for Fast Fourier Transformation,

– CUSP, CUSPARSE and MAGMA for iterative methods for solution of sparse systems
of linear equations,

Figure 1: Possible responses from the server of service
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2.3 Idea of remote grid calls

Usually, only special variants of codes are executed on the grid. This approach has serious
drawback that code must be modified for the grid computing. We want to overcome this
limitation and extend the utilization of the grid. To do this, we rewrite interface for some
routines from numerical linear algebra packages (like BLAS or LAPACK). So, most of codes
can utilize the computational power of the grid without any additional modifications.

2.4 Example of remote grid calls

The following piece of code represent typical call of BLAS routine (DGEMM = matrix-matrix
multiplication).

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

A(i, j) = rand()/maxr;

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

B(i, j) = rand()/maxr;

double alpha = 1.;

double beta = 0.;

cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, n, n, n,\

alpha, &*A.begin(), n, &*B.begin(), n, beta, &*C.begin(), n);

The normal BLAS interface invoke DGEMM routine kernel and proceeds computation lo-
cally. With modified interface to BLAS routine, the behaviour is different. During initialization
of the grid, every routine is benchmarked. During call of DGEMM routine, a heuristic on client
side estimate execution time for local computations and time for computations using the grid.
Heuristica are needed because time can be precisely predicted for some routine (e.g. matrix-
matrix multiplication), but some not for some others (e.g.iterative solvers). In our example,
the heuristic for DGEMM enumerates these expressions:

t1 = k1n
3 t2 = k2n

3 + n2n
2 + l2,

where:

• k1 denotes the performance of local system (evaluated during the benchmark stage).

• k2 denotes the performance of cluster performance (evaluated during the benchmark
stage).

• n2 denotes the network throughput (evaluated periodically).

• l2 denotes the network latency (evaluated periodically).

• t1 denotes the expected time for local computations.

• t2 denotes the expected time for grid computations (remote call).
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So, the heuristic decides if it will be faster to compute this routine locally or send it to the
grid for the execution. Other requirements of routine are also considered (for example amount
of global memory). If client’s heuristic decide to use the grid for computation, the client do a
remote call of this routine by sending a demand to any server of grid. The server considers this
demand and chooses one of following options (see Figure 1) depending on current workload:

• a) It computes this demand by itself (the master node of the cluster is used).

• b) It computes this demand by its cluster (one or all nodes of the cluster are used).

• c) It forwards this demand to some other server (nodes of different cluster are used).

• d) It refuses this demand (the grid is overloaded). The client is forced to do the local
computation.

After the remote grid call is executed, results are send back to the client and the routine is
finished.

2.4.1 Optimization of the grid

To increase utilization of the grid and increase the level of parallelization, we propose these
optimizations:

• We sore all structures on the grid. It allows us to reuse these structures without sending
them repeatedly through the network. The deallocation of structures is controlled by
user.

• The ordering of operations doesn’t depends strictly on the time of arrival, but it depends
on data dependencies. So, the operations can be performed in out-of-order fashion as
soon as once they have access to all input operands. The problem of synchronization of
these accesses is known as the Readers/Writers Problem. Our implementation controls
data dependencies on the master of the cluster by using IPC mechanisms (mutexes and
semaphores).

2.4.2 Discussion

The proposed concept based on remote grid calls have some advantages:

1. Time: program can be executed faster because most time-consuming parts of the code
are executed on more powerful platform.

2. Implementation: some parts of program can be executed in parallel without any additional
modifications.

3. Administration: all mathematical libraries (only the newest versions providing the best
performance) can be installed on the servers of service.

4. Financial: the proposed grid is not very expensive, but it provides very good ratio between
performance and cost. The grid can be used for different programs.
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But this concept have also some drawbacks:

1. The server of service must have a good connectivity. Fast and reliable connections to
other servers of the grid are also required.

2. Network latency and bandwidth must be taken in account. They are periodically mea-
sured by every server of service, but this measurement causes additional network traffic.

3. The service is suitable only for some algorithms (the most time-consuming parts are
numerical linear algebra calls, without GUI, input parameters should be given by the
command line).

4. Algorithms must have computational demands greater than the communication overhead
(matrix-matrix multiplication, matrix factorization, and iterative eigensolvers are good
examples).

3 Conclusions

We propose the concept of a the new distributed system for numerical linear algebra com-
putations. This concept is based on grid usage and remote grid calls and allows the parallel
execution of many codes without any additional modifications.

4 Future works

• Dynamic reconfiguration of the grid. Nodes can be dynamically connected or disconnected
from the grid. This is great advantage because for example classroom computer can join
the grid.

• Support for another libraries like GMP, PETSc and so on.

• Compression of the communication mainly for sparse vectors and matrices.

• Current version of the grid is focused on numerical linear algebra computations, so it
supports only scalars, vectors and matrices. It would be useful to support for example
graph data structures and graph algorithms.
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Abstract. The aim of this paper is to show the standard estimate of rounding errors in
computation with real computer numbers and give examples of basic computer operations
in which the estimates for rounding errors are nearly reached in the computer.
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1 Introduction

Numerical computing is important in physics, chemistry, biology or engineering. Real numbers
are mostly used in these branches. Numerical methods using computation with real numbers
introduce rounding errors. The knowledge of real number representation and real number
arithmetic is important. The loss of precision in floating point computation can have unexpected
consequences and cause some failures or accidents, see e.g. [1].

There is a question what is the best way to represent numbers in the computer. We express
numbers in the decimal positional system developed in India hundreds of years ago. Although
decimal representation is convenient for people, it is not particularly convenient for use in
computers. The binary system is much more useful. Every number is represented as a string
of bits, each of which is either 0 or 1.

Each number can be stored in the computer only to a finite number of digits. In this
paper, it will be shown how real numbers are represented in the computer. The use of numbers
of this type causes the necessity of some way of rounding off when real numbers are input
into the computer and during performing arithmetic operations. The question of representing
numbers in various number systems and dealing with them in the computer are of fundamental
importance.
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2 Floating point representation of real numbers

The real numbers are mostly stored in the computer in floating point representation which is
based on exponential notation.

The following theorem on a general g-adic expansion of numbers is thus the basis for the
computer representation of real numbers.

Theorem 2.1 Let g be an integer, g ≥ 2, and let x be a real number, x �= 0. Then x can
always be represented in the form

x = sgn (x) ge

∞∑
i=0

ai g
−i, (1)

where e ∈ Z and ai ∈ {0, 1, . . . , g − 1}. Moreover, there is a unique representation of this type
with a0 �= 0 and with the property that for every n0 ∈ N, there exists i ≥ n0 such that

ai �= g − 1. (2)

Proof. It can be easily proved by a small modification of the proof in [2].

Remark 2.2 The number x expressed in the form (1) is called the normalized number and the
number g is called the basis of the number system.

Example 2.3 In a decimal positional system (g=10) the number x = 423.051 has the normal-
ized form x = 4.23051 · 102.

As the binary system is often used in computer arithmetic, the basis of the number system
is g = 2, so a0 = 1 and the formula (1) can be written as

x = sgn (x) 2e

∞∑
i=0

ai 2
−i = sgn(x) · 2e

(
1 +

∞∑
i=1

ai 2
−i

)
, where e ∈ Z , ai ∈ {0, 1}. (3)

The set of all numbers which can be represented in the computer is finite and it is described
in the next definition.

Definition 2.4 Let g, t, E1, E2 ∈ N, g ≥ 2, t ≥ 2, E1 ≥ 1, E2 ≥ 2. The set of all numbers
x ∈ R, x �= 0, which can be written in the the form

x = ge

t∑
i=0

ai g
−i (4)

where e ∈ Z,−E1 ≤ e ≤ E2 and ai ∈ {0, 1, . . . , g − 1}, and a0 �= 0 will be denoted by S+ and
called the set of positive computer numbers. We denote by S− the set of all numbers x such
that −x ∈ S+ and call it the set of negative computer numbers. The set S = S+ ∪ S− ∪ {0} is
called the set of computer numbers.

Remark 2.5 This type of representation is called floating point representation of real numbers.
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The expression
∑t

i=0 aig
−i is called the mantissa of the computer number x, the number t

is called the length of the mantissa. We call ge exponential part of x and the number e is the
exponent of the number x.

Floating point number x can be stored exactly in the computer, its binary form is

x = sgn(x) · 2e

(
1 +

t∑
i=1

ai 2
−i

)
, where − E1 ≤ e ≤ E2 , t ∈ N , ai ∈ {0, 1}. (5)

To store normalized numbers, we divide the computer word into three fields as follows:
one bit for the sign (0 for positive numbers, 1 for negative numbers), one field of bits for the
exponent, and one field of bits for the mantissa. Because the exponent field is limited, only
exponents e between E1 and E2 can be represented.

If a number x is not a floating point number, it must be rounded before it can be stored in
the computer, the computer number is then an approximation of the given number.

Remark 2.6 Zero cannot be expressed according to formula (4) with a0 �= 0. Zero is repre-
sented in the computer with a zero mantissa. The exponent of zero can be arbitrary, but in
computers a certain particular exponent is used.

3 Precision

The present PC’s use the IEEE Standard 754 – 1985 for computer representation of real num-
bers. There are three basic types: single precision, double precision, double-extended precision.

Real numbers in floating point arithmetic are stored in the computer in binary form, g = 2
is used in all these types. The computer word is divided into three parts, the first of them is
for the sign (1 bit), the next part is for the exponent and the remaining bits are used for the
mantissa. The scheme is

sign exponent mantissa

The assumption a0 �= 0 in Theorem 2.1 implies that a0 = 1 for g = 2, see the formula (4).
The first binary digit a0 = 1 is not represented in the computer, therefore the computer
representation contains only the digits ai , i ≥ 1.

The following table shows numbers of bits in the representation of real numbers.

precision total lenght exponent mantissa E1 E2

single 32 8 23 126 127

double 64 11 52 1022 1023

double-extended 80 15 64 16382 16383

Except these floating point normalized numbers there exist other numbers called special
values – zero, “infinity” or NaN (not a number) – the number which doesn’t exist, i.e. error,
see [4].
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4 Rounding

It is necessary to guarantee that the results of arithmetic operations are the computer numbers.
The IEEE standard recommends to do it by using rounding. In this paper we realize it by
methods based on definitions that describe the situation in an adequate way. First we define
the rounding of a real number to a computer number.

Definition 4.1 Let g, t, E1, E2 ∈ N, such that g ≥ 2, t ≥ 2, E1 ≥ 1, E2 ≥ 2, and x ∈ R, suppose
x �= 0 has the representation x = sgn (x) ge

∑∞
i=0 aig

−i , where e ∈ Z,−E1 ≤ e ≤ E2 and
ai ∈ {0, 1, . . . , g − 1}, a0 �= 0, and with the property (2). Then we define

[x]tR = sgn (x) ge

t∑
i=0

aig
−i for at+1 <

1

2
g , (6)

[x]tR = sgn (x) ge(g−t +
t∑

i=0

aig
−i) for at+1 ≥ 1

2
g . (7)

We put [0]tR = 0. [x]tR is called the value of x rounded to t digits.

It is easy to see that applied to the decimal system, this definition reduces to the usual
rounding process of arithmetic.

Remark 4.2 Cutting out was used instead of rounding in old computers. This means that the
number

x = sgn (x) ge

∞∑
i=0

aig
−i

was represented in the computer as

[x]tC = sgn (x) ge

t∑
i=0

aig
−i.

5 Absolute error, relative error

There are two ways of measuring errors of an approximation: the absolute error and the relative
error, see [5].

Definition 5.1 Let x, [x]∗ ∈ R, where [x]∗ is an approximation to x. Then∣∣x − [x]∗
∣∣

is called the absolute error. If x �= 0, then

x − [x]∗
x

is called the relative error.
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The next theorem gives the estimate for the relative error of rounding.

Theorem 5.2 Let g, t, E1, E2 ∈ N, such that g ≥ 2, t ≥ 2, E1 ≥ 1, E2 ≥ 2, and x ∈ R, suppose
x �= 0 has the representation x = sgn (x) ge

∑∞
i=0 aig

−i , where e ∈ Z,−E1 ≤ e ≤ E2 and
ai ∈ {0, 1, . . . , g − 1}, a0 �= 0, and with the property (2). Then the relative error satisfies∣∣∣∣ [x]tR − x

x

∣∣∣∣ ≤ 1

2
g−t.

Proof. For at+1 < 1
2
g , we have

∣∣∣∣ [x]tR − x

x

∣∣∣∣ =
ge

∑∞
i=t+1 aig

−i

ge
∑∞

i=0 aig−i
<

1
2
g−t

1
=

1

2
g−t.

On the other hand, if at+1 ≥ 1
2
g , then under the formula (7)

∣∣∣∣ [x]tR − x

x

∣∣∣∣ =
ge(g−t − ∑∞

i=t+1 aig
−i)

ge
∑∞

i=0 aig−i
=

g−t − at+1g
−t−1 − ∑∞

i=t+2 ai g
−i∑∞

i=0 aig−i
≤

≤ g−t−1(g − at+1) −
∑∞

i=t+2 ai g
−i

1
≤ g−t−1 1

2
g =

1

2
g−t .

Theorem 5.3 Let x ∈ R, x �= 0 and [x]tR be its value rounded to t digits. Then

[x]tR = x (1 + ε) , (8)

where |ε| ≤ 1
2
g−t.

Proof. It is evident from Theorem 5.2, because ε =
[x]tR−x

x
. The formula (8) holds also for

x = 0 with any ε.

6 Computer operations

Now we consider computer operations. We denote the basic computer operations by the symbols
+© , −© , ×© , :© . We use the symbol ∗ to denote any of the arithmetic operations +,−,×, :, and
the symbol ∗© for any basic computer operations. We denote M,m the maximal and minimal
positive computer number. We want the computer operation ∗© to be defined for all x, y ∈ S
for which

m ≤ |x ∗ y| ≤ M or x ∗ y = 0.

Division by zero is not defined.

Definition 6.1 Let x, y ∈ S. Let m ≤ |x ∗ y| ≤ M or x ∗ y = 0. Then we define

x ∗© y = [x ∗ y]tR (9)
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This definition describes the way how the computer performs arithmetic operations. The
following theorem gives the estimate of the corresponding rounding errors.

Theorem 6.2 Let x, y ∈ S. If the computer operation x ∗© y is defined, then there exists a
number ε, |ε| ≤ 1

2
g−t such that

x ∗© y = (x ∗ y)(1 + ε).

Proof. It is a direct consequence of Definition 6.1 and Theorem 5.3.

Remark 6.3 The expression 1 + ε is called the correcting factor.

Nowadays, the correcting factor is standard for the description and study of the influence
of rounding errors. Classical results were obtained for problems of linear algebra by Wilkinson,
see [6].

Remark 6.4 The number 1
2
g−t will be denoted by γ and called rounding unit. It has the

property

γ = min ( ε
∣∣ ε > 0 ∧ 1 +© ε > 1).

It is thus the least number that increases unity when computer addition is performed. Let us
underline that 1 +© γ �= 1 + γ.

The rounding unit for single precision is

γ = 2−24 =̇ 5.960464477539063 · 10−8.

It holds |ε| ≤ γ in Theorem 6.2. There is the question, if it is possible to have |ε| = γ or
how close we can approach the estimate γ .

Critical number in the following examples is such a number whose relative error is maximal.
It is for instance the number C = 1 + 2−24.

The following table compares the mantissa of the number C = 1 + 2−24 stored in a single
precision and double precision.

precission mantissa representation of C = 1 + 2−24

single 0000000 00000000 00000001

double 0000000 00000000 00000000 10000000 00000000 00000000 00000

From this we can see that the number C has the maximal relative error.

7 Examples

The following examples for addition and subtraction are very simple. The numerical values
were obtained by computation in double precision.
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Example 7.1 Addition:

x = 1 , y = 2−24 = 5.960464477539063 · 10−8 ,

x + y = 1 + 2−24 = 1.000000059604645 , x +© y = 1 + 2−23 = 1.00000011920929 ,

x +© y = (x + y)(1 + 5.960464122267716 · 10−8) ,

ε = 5.960464122267716 · 10−8 .

Example 7.2 Subtraction:

x = 1 + 2−23 = 1.00000011920929 , y = 2−24 = 5.960464477539063 · 10−8 ,

x − y = 1 + 2−23 − 2−24 = 1 + 2−24 = 1.000000059604645 ,

x −© y = 1 + 2−23 = 1.00000011920929 ,

x −© y = (x − y)(1 + 5.960464122267716 · 10−8) ,

ε = 5.960464122267716 · 10−8 .

Example 7.3 Multiplication:
We look for two computer numbers and we want their product to be the number C. This

can be obtained by splitting
1 + 2−24 = (1 + 2−8) (1 − 2−8 + 2−16).

x = 1 + 2−8 = 1.00390625 , y = 1 − 2−8 + 2−16 = 0.9961090087890625 ,

x · y = 1 + 2−24 = 1.000000059604645 , x ×©y = 1 + 2−23 = 1.00000011920929 ,

x ×©y = (x · y)(1 + 5.960464122267716 · 10−8) ,

ε = 5.960464122267716 · 10−8 .

In the case of division, we apply the theory of continued fractions to find suitable operands
for the operation of division with possibly maximum rounding error, see e.g. [3]. It is namely
known that the convergents of a continued fraction give very good approximations.

Example 7.4 Division: We express the number 2−1(1 + 2−24) = 2−1 + 2−25 as

1

1 +
1

1 +
1

223 − 1 + 2−1

and approximate it with

1

1 +
1

1 +
1

223 − 1

=
1

1 +
223 − 1

223

=
223

224 − 1
=

2−1

1 − 2−24
.
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Now, both the dividend and the divisor are computer numbers. We have

x = 2−1 = 0.5 , y = 1 − 2−24 = 0.999999940395355 ,

x

y
=

2−1

1 − 2−24
=̇ 2−1(1 + 2−24) = 0.500000029802322 ,

x :©y = 2−1(1 + 2−23) = 0.500000059604645 ,

x :©y =
x

y
(1 + 5.960463766996338 · 10−8) ,

ε = 5.960463766996338 · 10−8 .

The value of ε is the same for the addition, subtraction and multiplication. Its exact value
is

ε =
1 + 2−23

1 + 2−24
− 1 =

2−24

1 + 2−24
.

The ratio ε
γ

= 1
1+2−24 . In case of division we have ε

γ
= 1 − 2−23 .

We have shown that the absolute value of the correcting factor is less than the rounding
unit but it is very close to the estimate for all the four basic arithmetic operations for suitable
chosen numbers. We have studied operations only with two numbers. Since it is known the
accumulation of rounding errors can be dangerous in the computation it will be interesting to
study how realistic the estimates of the correcting factors are in a sequence of more operations
than only two.
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Abstract.  The term structure of interest rates is defined as the relationship between the yields 
of default-free pure discount (zero-coupon) bonds and their time to maturity. The term structure 
is not always directly observable. If we deal with approximations of empirical data to create 
yield curves it is necessary to choose suitable mathematical functions. We explore functions, 
which are a linear combination of the exponential basis functions. The mathematical apparatus 
employed for this kind of approximation is outlined. This theoretical background is applied to 
an estimation of the zero-coupon yield curve derived from the Czech coupon bond market. 
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1 Introduction 

 
The term structure of interest rates is defined as the relationship between the yields of default-free 
pure discount (zero-coupon) bonds and their time to maturity. The term structure is not always 
directly observable because, with the exception of short-term treasury-bills, most of the substitutes 
for default-free bonds (government bonds) are not pure discount bonds. In the exponential spline  
model, as introduced in Li et al. (2001), the theoretical discount function d(t) is modelled as a linear 
combination of exponential basis functions. The exponential model is used at the Bank of Canada. 
Bolder and Gusba (2002), Marciniak (2006), Lin (2002) provide an extensive review and 
comparison of a number of estimation algorithms. 
 
The mathematical apparatus employed for this kind of approximation is outlined. This theoretical 
background is applied to an estimation of the zero-coupon yield curve derived from the Czech 
coupon bond market. The exponential model is a so-called function-based model. In Hladíková 
(2010) an alternative approach employing Fourier basis function tested in the same setting can be 
found. As to the Czech coupon bond market, the function-based construction of yield curve has not 
yet been satisfactorily explored. 
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In Section 2 we define the exponential model and propose a method to solve arising least squares 
problem. In Section 3 the data sample from the Czech coupon bond market is described. In Section 
4 numerical experiments on these data are performed. 
 
 
2 The exponential model 
 
There are three equivalent descriptions of the term structure of interest rates (Malek, 2005): 

 the discount function which specifies zero-coupon bond (with a par value $1) prices as a 
function of maturity,  

 the spot yield curve which specifies zero-coupon bond yields (spot rates) as a function of 
maturity, 

 the forward yield curve which specifies zero-coupon bond forward yields (forward rates) 
as a function of maturity. 

 
We will use the following notation: 
 

t  time to payment (measured in years), 
T time to maturity 

),( Ttd  the discount function, that is the present value of a unit payment due in time t , 

),( Ttz  spot rate of maturity t, expressed as the continuously compounded annual rate. 

),( Ttf  continuously compounded instantaneous forward rate at time t. 
 
The spot rates z are related to the discount function d by the equation: 
 

 ),()(),( TtztTeTtd   (1) 
 

 tT

Ttd
Ttz





)),(ln(

),(  (2) 

 

The forward rates f are related to the spot rate z by the equation: 
 

 ).,´()(),()),(ln(),( TtztTTtzTtd
T

Ttf 



  (3) 

 

The spot rates z are related to the forward rate f by the equation: 
 

 
.

),(

),(
tT

duutf

Ttz

T

t





 
(4) 

 

We define: 

 

 N  - number of bonds, 

AiP  - price (offer), BiP  - price (ask) 
iP   - theoretical price of i-th bond 

im  - number of the payments of the i-th bond  

iP  - observed price of i-th bond 
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ijt  the time when the j-th payment of the i-th bond occurs 

],...,[ 1 iimii ttt  ,
 

ijc   - the j-th payment of the i-th bond , T
imii i

ccc ],...[ 1 , 

T
imii i

tdtdtd )](),...([)( 1  

iD   - duration of the i-th  bond  

 
Then we can express: 

 )()(
1

i

m

j

T
iijiji tdctdcP

i




  (5) 

We examine the following exponential-series basis 
 

  .....,,2,1,)(   ketf kt
k

   (6) 
 

Figure 1 shows  7,5,3,1,)(   ketf tk
k

  for 08,0 . 

 
Figure 1 Exponential series basis functions. 

 
The discount function d is given as: 

 ,)(),()(
1

Btftfatd kk

L

k
k  



 (7) 

 

The exponential model employs a linear combination of  basis functions, L  is the number of basis 

functions. The ka  and    are unknown parameters for Lk ,,1  that must be estimated. An 

interpretation of   is a long-term instantaneous forward rate.  

Since 10..  ke   and 1)0(
1

 


L

k
kad , the number of unknow parameters is reduced by one.  We 

choose the number of basis functions to be  L =4  (cf. the value of 9 on the Canadian market) . To 
get a more accurate fit, a higher number of basis functions is desirable. On the other hand, as L 
increases, the matrices used in the computations are more likely to become poorly conditioned. 
 
Exponentials are strongly related to the discount function (see Vasicek and Fong, 1981). 
Note that if one interest rate, say the instantaneous forward rate, is constant (say b), then all other 
types of interest rates will be the same constant.  
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The true discount function is tbetd )( , which agrees with the linear combination (7): 

 
0...0,1,)( 321

1

 


 L

tbtkb
L

k
k aaaaeeatd

 
 

(8) 

Further, parameter   represents a long-term instantaneous forward rate:  

 11lim
.

lim
.

)(
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2

)1.(.

1
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




 (9) 

Discount function is asymptotic to tea .
1.  . For large values of t the discount function is 

approximately given by te . . 

The theoretical price of bond number j is given by the sum of the discounted values of its cash 
flows (5). From Equation (7) it follows: 

   
  






i i
ij

i m

j

m

j

L

k

tk
kij

L

k
ijkkij

m

j
ijiji eactfactdcP

1 1 1

..

11

.)()(


,  (10) 

The final step is to actually estimate the parameters ka . A natural requirement is to find these 

parameters such that the theoretical (=computed) prices iP  are as close as possible to the observed 

prices iP . Thus, in the sense of the least squares method we want to find a set of parameters ka  that 

minimizes the function H(P) given as 

 



N

i
iii PPwPLPH

0

22 )(:)(:)(  (10) 

where iw  is weight of the i-th bond. We obtain the parameters ka  as the solution of the following 

linear system of equations: 
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(11) 

Having found ka ’s the question arises how to choose an appropriate value of parameter  . Li at al. 

(2001) proposed the following algorithm. Since   can be interpreted as a long-term instantaneous 
forward rate (cf. Equation 9) its value is restricted to an interval of 5 to 9 per cent and the one-
dimensional minimization problem is solved 
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09,0,05,0)(min  R
 

 
N

PP
R ii

2

)(



 

We employ in our numerical experiments the l2 norm as a measure of the error of observed and 
computed prices and solve the minimization problem:  

 maxmin ,)(min  R
 

2)()(
ii PPR  

 
with the values of   from a larger interval: 005,0min  , 15,0max  . Unlike in the case when B 

spline basis functions are used the exponential basis functions are sufficiently smooth, and thus 
none of the smoothing techniques is required.  
 
 
3 Data from the Czech coupon bond market 
 
The Czech market is small and not as liquid as other developed markets. The original life of the 
Czech government bond is from 3 to 50 years. The government issued bonds with annual coupon 
payments. We consider here data for a selected day as given in Table 1. 

We exclude two bonds with less than three months to maturity, since the yields on these securities 
often seem to behave oddly and one bond with more than forty-seven years to maturity, since price 
of bond will evidently include also another risk premium.  

Table 1 Government coupon bonds 22.2.2010 (Prague stock exchange). 

ISIN 
Price 
(ask) 

Price 
(offer) 

Issue 
date 

Maturity ISIN 
Price 
(ask) 

Price 
(offer) 

Issue date Maturity 

CZ0001002158 101,4 101,67 28.1.2008 11.4.2011 CZ0001000749 120,25 120,85 26.1.2001 26.1.2016 

CZ0001000764 105,03 105,37 5.10.2001 5.10.2011 CZ0001001903 106,38 106,98 30.4.2007 11.4.2017 

CZ0001001887 103,4 103,73 16.4.2007 18.10.2012 CZ0001000822 110,1 110,7 18.8.2003 18.8.2018 

CZ0001000814 104,23 104,67 16.6.2003 16.6.2013 CZ0001002471 111,9 112,5 23.3.2009 11.4.2019 

CZ0001002729 101,52 101,88 1.2.2010 16.9.2013 CZ0001001317 101,77 102,57 12.9.2005 12.9.2020 

CZ0001001143 104,82 105,28 11.4.2005 11.4.2015 CZ0001001796 102,05 106,05 4.12.2006 4.12.2036 

CZ0001002737 102,7 103,15 1.3.2010 1.9.2015      

 
 
 
4 Numerical experiments 
 
On the data set described in Section 4 we performed a series of numerical experiments mainly 
focusing on the following issues:  

 Selection of weights iw  associated with each bond,  

 Finding the value of parameter  , 
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 Imposing the initial condition 1)0( d  on the obtained solution. We simply eliminate 

one of the unknown parameters ka  using in Section 2 discussed condition 

1)0(
1

 


L

k
kad .  

As to the weights associated with each bond, general idea is that higher weights should be placed on 
bonds that we believe to have observed prices that are more accurate estimates of their true prices.  
Many authors use the reciprocal of the modified duration Di (see Table 2, weights labelled by 1 and 
11). We tried to find a measure that would reflect the liquidity of the bond. Considering the data 
available from the market we propose a reciprocal of the difference between AiP  and  BiP  ( AiP  - 

price (offer), BiP  - price (ask)). It is believed that this measure reflects to some extent bond’s 

liquidity (see Table 2, weights labelled by 12 and 13). 
 
Table 2 Weights iw  associated with bonds (labelled by numbers). 

Weight Description Weight Description 
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The tested methods are evaluated according to various criteria. The most important criterion is the 
goodness of fit. It is a measure of the difference of observed and theoretical (=computed) values. 
We compare errors of observed prices iP  and theoretical prices iP  in accordance with the 

minimization problem (10). Moreover, in place of prices the yields to maturity (YTM) are 
employed. The criteria are summarized in the following:  
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Another criterion is a smoothness of the obtained solution. Two measures of maximum smoothness 
of a curve )(xgy   between a and b are used: 
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Table 3 Basic characteristics of the methods considered for comparison. 

Method Weight 
no. 

No. of basis 
functions 

Eliminated 
for 

d(0)=1 
Method Weight no.

No. of basis 
functions 

Eliminated 
for 

d(0)=1 

E0-1   0 4 a1 E11-4 11 4 a4 

E0-4 0 4 a4 E12-1 12 4 a1 

E10-1 10 4 a1 E12-4 12 4 a4 

E10-4 10 4 a4 E13-1 13 4 a1 

E1-1  1 4 a1 E13-4 13 4 a4 

E11-1 11 4 a1 E1-4 1 4 a4 
 

Table 4 Ranking of the methods according to separate criteria. 

 Cena YTM Délka Křivost  

Metody MAE L2 RMSE L2W HR MAE L2 RMSE Disc. Spot Forw. Disc. Spot Forw. Sum1 Sum2

E10-4 1 1 1 7 1 3 11 11 11 1 7 1 1 1 58 47 

E0-4 1 1 1 11 1 3 11 11 11 1 7 1 1 1 62 51 

E10-1 3 3 3 8 1 6 9 9 9 3 11 3 3 3 74 58 

E0-1 3 3 3 12 1 6 9 9 9 3 11 3 3 3 78 62 

11-4 5 5 5 5 5 9 6 6 7 7 9 6 6 6 87 66,5 

E12-1 7 12 12 2 5 1 2 2 1 12 1 12 12 12 93 68 

E13-1 8 11 11 3 5 5 1 1 3 11 3 11 11 11 95 70 

E1-4 5 5 5 9 5 9 6 6 7 7 9 6 6 6 91 70,5 

E12-4 12 10 10 1 10 2 5 5 2 6 2 8 8 8 89 72 

E13-4 11 7 7 4 5 8 8 8 6 5 6 5 5 5 90 74 

E11-1 9 8 8 6 10 11 3 3 4 9 4 9 9 9 102 80 

E1-1 9 8 8 10 10 11 3 3 4 9 4 9 9 9 106 84 

The tested alternatives of the exponential model are summarized in Table 3. 
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Method E10-4 shows the best performance if the criteria of the least error of the observed and 
theoretical prices ire considered. The least error in terms of YTM (Yield To Maturity) reaches 
method E12-1. The accuracy of the approximation in prices decreases with the use of weights. 
Elimination of the last parameter a4 is the most appropriate. The minimum length and smoothness 
of the computed yield curves was obtained for method E10-4. Ranking of the methods according to 
separate criteria is summarized in Table 4. Sum1 is a sum of rankings according to all criteria. 
Sum2 is a weighted sum of rankings according to all criteria where less weight is put on the 
smoothness and length of the computed yield curves. The winner is in the both cases method E10-4. 

The last criterion is the stability of the solution. We measure here how the results change if one 
bond is excluded from the set of bonds. The less sensitivity of the solution to this change in data the 
methods exhibits the better stability of the method is. The best stability in prices shows method 
E10-4 and in YTM’s method E12-1 which is also best overall (see Table 5). 

Table 5 Ranking of the methods according to stability of the solution. 

  Price errors YTM errors  
Methods MAE L2 RMSE L2W MAE L2 RMSE Sum1 
E10-4  1 1 1 7 11 11 11 43 
E0-1 3 3 3 12 9 9 9 48 
E0-4 1 1 1 11 11 11 11 47 
E10-1 3 3 3 8 9 9 9 44 
E1-1  9 9 9 10 3 3 3 46 
E11-1   9 9 9 6 3 3 3 42 
E11-4 5 6 6 5 5 7 7 41 
E12-1 8 11 11 2 1 1 1 35 
E12-4 11 8 8 1 8 5 5 46 
E13-1 12 12 12 3 2 2 2 45 
E13-4 7 5 5 4 7 6 6 40 
E1-4  5 6 6 9 5 7 7 45 

 

Method E10-4 was found as the overall winner. The computed yield curves for the selected methods 
are plotted in Figures 2 and 3. On the left-hand side the discount function d is depicted (horizontal 
axis represents time in years and the vertical axis the price of zero coupon bond with the nominal 
value of 1) and on the right-hand side the forward yield curve f (dashed line) and the spot yield 
curve z (solid line) are depicted.  

Parameter   can be interpreted as a long-term instantaneous forward rate (cf. Equation 9). From 
the mathematical point of view the best approximations were obtained for values below the 
recommended 5 percent. Thus we sought for optimum   in interval 0.005 to 0,15 (i.e. 0.5 to 15 
percent). For method E10-4 the optimum value of 03.0  and for E12-1 038.0  were 
obtained. 

The computations were performed using our own program. 
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Figure 2 Computed discount function, spot and forward rates vs. time [years], method E10-4. 

 
Figure 3 Computed discount function, spot and forward rates vs. time [years], method E12-1. 

 
 
5 Conclusions 

Results presented in this paper were based on interest rate estimates from the Czech coupon bond 
market, which is characterized by a relatively low number of bonds, by moderate liquidity and 
periodically reduced efficiency. We explored function-based models using the exponential basis 
functions to create yield curves. This approach produced a reasonably looking spot amd forward 
yield curves. Our attempt to assign weights to each bond reflecting its liquidity was not successful. 
After substantial experimentation, however, we found the approach employing the exponential basis 
functions to be a stable and potentially useful. This must be clarified in our subsequent work when 
compared to other methods (methods using B-splines, Nelson-Siegel method, Svensson method, ...) 
and on larger set of data than just one day. 
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A NOTE ON SOME CLASSES OF GENERATED FUZZY
IMPLICATIONS

BIBA Vladislav, (CZ), HLINĚNÁ Dana, (CZ)

Abstract. A fuzzy implication is a hybrid monotonous extension of the classi-
cal implication to the unit interval. There are two well-known families of fuzzy
implications–(S, N)–implications and R–implications. There are also several classes of
fuzzy implications generated using appropriate monotonous functions. In this paper
we investigate the properties of one interesting class of generated fuzzy implications.
Moreover, we study connections between them and families of (S, N)–implications and
R–implications.

Key words and phrases. Fuzzy implication, (S, N)–implications, R–implications
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1 Preliminaries

First we recall notations and basic definitions used in the paper. We also briefly mention some
important properties and results in order to make this work self-contained. We start with the
basic logic connectives.

Definition 1.1 (see e.g. in [4], Definition 1.1) A decreasing function N : [0, 1] → [0, 1] is
called a fuzzy negation if for each a, b ∈ [0, 1] it satisfies the following conditions

• (i) a < b ⇒ N(b) ≤ N(a),

• (ii) N(0) = 1, N(1) = 0.

Remark 1.2 A fuzzy negation N is called strict if N is strictly decreasing and continuous for
arbitrary x, y ∈ [0, 1]. In a classical logic we have that (A′)′ = A. In multivalued logic this
equality is not satisfied for each fuzzy negation. The fuzzy negations with this equality are called
involutive negations. The strict fuzzy negation is called strong if and only if it is involutive. A
dual fuzzy negation based on a fuzzy negation N is given by Nd(x) = 1 − N(1 − x).
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Some examples of strict and/or strong fuzzy negations are included in the following example.
More examples of fuzzy negations can be found in [4].

Example 1.3 The next functions are fuzzy negations on [0, 1].

• Ns(a) = 1 − a strong fuzzy negation, standard negation,

• N(a) = 1 − a2 strict, but not strong fuzzy negation,

• N(a) =
√

1 − a2 strong fuzzy negation.

Definition 1.4 An increasing mapping C : [0, 1]2 → [0, 1] is called a fuzzy conjunction if

1. C(x, y) = 0 whenever x = 0 or y = 0, and

2. C(1, 1) = 1.

Remark 1.5 Note that the dual operator to a fuzzy conjunction C, defined by D(x, y) = 1 −
C(1 − x, 1 − y), is called a fuzzy disjunction.

Commonly used fuzzy conjunctions in fuzzy logic are the triangular norms.

Definition 1.6 ([7], Definition 1.1) A triangular norm (t-norm for short) is a binary operation
on the unit interval [0, 1], i.e., a function T : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1], the
following four axioms are satisfied:
(T1) Commutativity T (x, y) = T (y, x),
(T2) Associativity T (x, T (y, z)) = T (T (x, y), z),
(T3) Monotonicity T (x, y) ≤ T (x, z) whenever y ≤ z,
(T4) Boundary Condition T (x, 1) = x.

Remark 1.7 Commonly used fuzzy disjunctions in fuzzy logic are the triangular conorms. A
triangular conorm (also called a t−conorm) is a binary operation S on the unit interval [0, 1]
which, for all x, y, z ∈ [0, 1], satisfies (T1)−(T3) and (S4) S(x, 0) = x. For more information,
see [7].

Three most common continuous t-norms and their dual t-conorms are:

• Minimum t-norm TM(x, y) = min(x, y),
Maximum t-conorm SM(x, y) = max(x, y),

• Product t-norm TP (x, y) = x · y,
Probabilistic sum SP (x, y) = x + y − x · y,

• �Lukasiewicz t-norm TL(x, y) = max(0, x + y − 1),
�Lukasiewicz t-conorm SL(x, y) = min(1, x + y).

In the literature, we can find several different definitions of fuzzy implications. In this paper
we will use the following one, which is equivalent with the definition introduced by Fodor and
Roubens in [4]. The readers can find more details in [1], [9].
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Definition 1.8 A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies the
following conditions:

(I1) I is decreasing in its first variable,

(I2) I is increasing in its second variable,

(I3) I(1, 0) = 0, I(0, 0) = I(1, 1) = 1.

We recall definitions of some important properties of fuzzy implications which we will in-
vestigate.

Definition 1.9 A fuzzy implication I : [0, 1]2 → [0, 1] satisfies:

(NP) the left neutrality property if

I(1, y) = y; y ∈ [0, 1],

(EP) the exchange principle if

I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ [0, 1],

(IP) the identity principle if
I(x, x) = 1; x ∈ [0, 1],

(OP) the ordering property if

x ≤ y ⇐⇒ I(x, y) = 1; x, y ∈ [0, 1],

(CP) the contrapositive symmetry with respect to a given fuzzy negation N if

I(x, y) = I(N(y), N(x)); x, y ∈ [0, 1],

(LI) the law of importation with a t-norm T if

I(T (x, y), z) = I(x, I(y, z)); x, y ∈ [0, 1],

Definition 1.10 Let I : [0, 1]2 → [0, 1] be a fuzzy implication. The function NI defined by
NI(x) = I(x, 0) for all x ∈ [0, 1], is called the natural negation of I.

(S,N)–implications which are based on t-conorms and fuzzy negations form one of the
well-known classes of fuzzy implications.

Definition 1.11 A function I : [0, 1]2 → [0, 1] is called an (S,N)–implication if there exist a
t-conorm S and a fuzzy negation N such that

I(x, y) = S(N(x), y), x, y ∈ [0, 1].

If N is a strong negation then I is called a strong implication.

volume 5 (2012), number 2 245
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The following characterization of (S,N)–implications is from [1].

Theorem 1.12 (Baczyński and Jayaram [1], Theorem 5.1) For a function I : [0, 1]2 → [0, 1],
the following statements are equivalent:

• I is an (S,N)–implication generated from some t-conorm and some continuous (strict,
strong) fuzzy negation N.

• I satisfies (I2), (EP) and NI is a continuous (strict, strong) fuzzy negation.

Another way of extending the classical binary implication to the unit interval [0, 1] is based on
the residuation operator with respect to a left-continuous triangular norm T

IT (x, y) = max{z ∈ [0, 1]; T (x, z) ≤ y}.
Elements of this class are known as R–implications. The following characterization of R–
implications is from [4].

Theorem 1.13 (Fodor and Roubens [4], Theorem 1.14) For a function I : [0, 1]2 → [0, 1], the
following statements are equivalent:

• I is an R–implication based on some left-continuous t-norm T.

• I satisfies (I2), (OP), (EP), and I(x, .) is a right-continuous for any x ∈ [0, 1].

Our constructions of fuzzy implications will use extensions of the classical inverse of a
function. It can be extended as follows.

Definition 1.14 ([7] Corollary 3.3) Let ϕ : [0, 1] → [0,∞] be an increasing and non-constant
function. The function ϕ(−1) defined by

ϕ(−1)(x) = sup{z ∈ [0, 1]; ϕ(z) < x}
is called the pseudo-inverse of ϕ, with the convention sup ∅ = 0.

Definition 1.15 ([7] Corollary 3.3) Let f : [0, 1] → [0,∞] be a decreasing and non-constant
function. The function f (−1) defined by

f (−1)(x) = sup{z ∈ [0, 1]; f(z) > x}
is called the pseudo-inverse of f, with the convention sup ∅ = 0.

Lemma 1.16 ([5]) Let c be a positive real number. Then the pseudo-inverse of a positive
multiple of any monotone function f : [0, 1] → [0,∞] satisfies

(c · f)(−1) (x) = f (−1)
(x

c

)
.

Lemma 1.17 [3] Let N : [0, 1] → [0, 1] be a fuzzy negation. Then N (−1) is a fuzzy negation if
and only if

N(x) = 0 ⇔ x = 1. (1)
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2 Generated fuzzy implications

It is well-known that it is possible to generate t-norms from one variable functions. It means
it is enough to consider one variable function instead of two variable function. Therefore
the question whether something similar is possible in the case of fuzzy implications is very
interesting. Yager ([12]) introduced two new classes of fuzzy implications: f–implications
and g–implications where their generators f are continuous additive generators of continu-
ous Archimedean t-norms and generators g are continuous additive generators of continuous
Archimedean t-conorms. Smutná ([11]) and Biba, Hliněná ([5]) presented an alternative ap-
proach where fuzzy implications are generated using appropriate strictly decreasing or strictly
increasing functions and studied basic properties of proposed generated fuzzy implications.

In this section we recall some already known classes of generated fuzzy implications which
were proposed in various papers. The first class was introduced in [11] and studied in [5]. These
fuzzy implications are based on strictly decreasing functions f .

Theorem 2.1 [5] Let f : [0, 1] → [0,∞] be a strictly decreasing function such that f(1) = 0.
Then the function If (x, y) : [0, 1]2 → [0, 1] which is given by

If (x, y) =

{
1 if x ≤ y,

f (−1)(f(y+) − f(x)) otherwise,
(2)

where f(y+) = lim
y→y+

f(y) and f(1+) = f(1), is a fuzzy implication.

On the other hand, for strictly increasing functions g, fuzzy implications Ig have been
introduced in [11].

Theorem 2.2 [11] Let g : [0, 1] → [0,∞] be a strictly increasing function such that g(0) = 0.
Then the function Ig(x, y) : [0, 1]2 → [0, 1] which is given by

Ig(x, y) = g(−1)(g(1 − x) + g(y)), (3)

is a fuzzy implication.

The fuzzy implication Ig can be generalized. This generalization is based on replacing the
standard negation by arbitrary one.

Theorem 2.3 [11] Let g : [0, 1] → [0,∞] be a strictly increasing function such that g(0) = 0
and N be a fuzzy negation. Then the function Ig

N :

Ig
N(x, y) = g(−1)(g(N(x)) + g(y)), (4)

is a fuzzy implication.

If we compose a strictly decreasing function f with a fuzzy negation N then g(x) = f(N(x))
is again an increasing function (though not necessarily strictly increasing). We can apply such
a function g to (4) and have another possibility how to generate fuzzy implications.
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Theorem 2.4 ([3] without proof) Let f : [0, 1] → [0,∞] be a strictly decreasing function with
f(1) = 0 and N : [0, 1] → [0, 1] be a fuzzy negation. Then the function IN

f : [0, 1]2 → [0, 1]
defined by

IN
f (x, y) = N

(
f (−1) (f(x) + f(N(y)))

)
, (5)

is a fuzzy implication.

Proof. Let f : [0, 1] → [0,∞] be a strictly decreasing function such that f(1) = 0 and let N
be a fuzzy negation. We will proceed by points of Definition 1.8.

• Let x1 < x2, then f(x1)+f(N(y)) ≥ f(x2)+f(N(y)). Pseudo-inverse f (−1) is a decreasing
function (not necessarily strictly decreasing), which means that f (−1) (f(x1) + f(N(y))) ≤
f (−1) (f(x2) + f(N(y))) . Since N is a fuzzy negation, it is a decreasing function and
therefore IN

f (x1, y) ≥ IN
f (x2, y).

• Let y1 < y2, then N(y1) ≥ N(y2) and f(x) + f(N(y1)) ≤ f(x) + f(N(y2)). Since f (−1)

is decreasing, it holds that f (−1) (f(x) + f(N(y1))) ≥ f (−1) (f(x) + f(N(y2))) and conse-
quently IN

f (x, y1) ≤ IN
f (x, y2).

•
IN
f (1, 0) = N

(
f (−1) (f(1) + f(N(0)))

)
= N

(
f (−1)(0 + 0)

)
= N(1) = 0,

IN
f (0, 0) = N

(
f (−1) (f(0) + f(N(0)))

)
= N

(
f (−1)(f(0))

)
= N(0) = 1,

IN
f (1, 1) = N

(
f (−1) (f(1) + f(N(1)))

)
= N

(
f (−1)(f(0))

)
= N(0) = 1.

This concludes the proof.

3 Properties of generated fuzzy implications

In this part we investigate the properties of generated fuzzy implications which are mentioned
in Theorem 2.4. First we turn our attention to the following examples of fuzzy implication IN

f .

Example 3.1 Let f1(x) = 1 − x, f2(x) = − ln x, and N1(x) = 1 − x, N2(x) =
√

1 − x2. Then

the functions f
(−1)
1 and f

(−1)
2 are given by f

(−1)
1 (x) = max(1 − x, 0) and f

(−1)
2 (x) = e−x. The

fuzzy implications IN
f are given by

IN1
f1

(x, y) = min(1 − x + y, 1),

IN1
f2

(x, y) = 1 − x + x · y,

IN2
f2

(x, y) =
√

1 − x2 + x2 · y2.

Note, that IN1
f1

and IN1
f2

are the well-known �Lukasiewicz and Reichenbach implication, respec-
tively. Also note, that for all fuzzy implications it holds that I(x, 0) = N(x).

We are able to generalize the property from Example 3.1 for all IN
f implications and NIN

f
(x)

negations.
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Proposition 3.2 Let f : [0, 1] → [0,∞] be a strictly decreasing function such that f(1) = 0 and
N be an arbitrary fuzzy negation. Then the natural negation NI given by IN

f is NIN
f

(x) = N(x).

Proof. Let f : [0, 1] → [0,∞] be a strictly decreasing function such that f(1) = 0 and N be
an arbitrary fuzzy negation. For NIN

f
(x) we have

NIN
f

(x) = IN
f (x, 0) = N

(
f (−1) (f(x) + f(N(0)))

)
= N

(
f (−1) (f(x) + f(1))

)
= N

(
f (−1) (f(x))

)
.

Since the function f is strictly decreasing, its pseudo-inverse is continuous, and therefore
f (−1) ◦ f(x) = x. And for natural negation we get

NIN
f

(x) = N
(
f (−1) (f(x))

)
= N(x).

The above mentioned property of a strictly decreasing function and its pseudo-inverse is again
important for fulfilment of (NP). Therefore the proof is similar to the previous and we can omit
it.

Proposition 3.3 Let f : [0, 1] → [0,∞] be a strictly decreasing function such that f(1) = 0.
Then the fuzzy implication IN

f satisfies (NP) if and only if N is an involutive negation.

Proposition 3.4 Let f : [0, 1] → [0,∞] be a strictly decreasing function such that f(1) = 0.
Then the fuzzy implication IN

f satisfies (CP) with respect to N if and only if N is an involutive
negation.

Proof. Let f : [0, 1] → [0,∞] be a strictly decreasing function such that f(1) = 0. For fuzzy
implications IN

f (x, y) and IN
f (N(y), N(x)) we get

IN
f (x, y) = N

(
f (−1) (f(x) + f(N(y)))

)
,

IN
f (N(y), N(x)) = N

(
f (−1) (f(N(y)) + f(N(N(x))))

)
.

It is obvious that IN
f (x, y) = IN

f (N(y), N(x)) if and only if N(N(x)) = x for all x ∈ [0, 1].

Proposition 3.5 Let f : [0, 1] → [0,∞] be a continuous and bounded strictly decreasing func-
tion such that f(1) = 0 and N(x) = f−1(f(0) − f(x)). Then the fuzzy implication IN

f satisfies
(OP).

Proof. Let f : [0, 1] → [0, c] be a function described in the proposition, and c be a positive
real number, it is obvious that N(x) = f−1(f(0)− f(x)) is fuzzy negation. Since f is a strictly
decreasing and continuous function, it holds

IN
f (x, y) = N

(
f (−1) (f(x) + f(N(y)))

)
= N

(
f (−1) (f(0) + f(x) − f(y))

)
.

Now we need to distinguish two cases:
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• Let x ≤ y, then f(x) − f(y) ≥ 0 and f(0) + f(x) − f(y) ≥ f(0), i.e

IN
f (x, y) = N

(
f (−1)(f(0))

)
= N(0) = 1.

• Let x > y, then f(0)+f(x)−f(y) < f(0) and consequently f (−1) (f(0) + f(x) − f(y)) > 0,
i.e

IN
f (x, y) < N(0) = 1.

Summarizing the previous facts we get that IN
f (x, y) = 1 if and only if x ≤ y.

Remark 3.6 Let f : [0, 1] → [0,∞] be a not bounded function. Then the fuzzy implication IN
f

does not hold (OP). This follows from the fact that for all x, y ∈]0, 1[ we get f(x) + f(N(y)) <
f(0) and consequently IN

f (x, y) < 1.

Proposition 3.7 Let f : [0, 1] → [0,∞] be a strictly decreasing and continuous function such
that f(1) = 0. Let N : [0, 1] → [0, 1] be a strong negation. Then the fuzzy implication IN

f

satisfies (EP).

Proof. Let f : [0, 1] → [0,∞] be a strictly decreasing continuous function such that f(1) = 0
and N be a strong negation. Then

IN
f (x, IN

f (y, z)) = IN
f

(
x,N

(
f (−1) (f(y) + f(N(z)))

))
.

Since f is a strictly decreasing and continuous function, the following equality is satisfied

f (−1) (f(y) + f(N(z))) =

{
0 f(y) + f(N(z)) ≥ f(0),

f−1 (f(y) + f(N(z))) otherwise.

Now we apply the fact that N is a strong negation and we get

IN
f (x, IN

f (y, z)) =

{
N

(
f (−1) (f(x) + f(0))

)
if f(y) + f(N(z)) ≥ f(0),

N
(
f (−1) (f(x) + f(y) + f(N(z)))

)
otherwise.

And for IN
f (y, IN

f (x, z)) we have

IN
f (y, IN

f (x, z)) =

{
N

(
f (−1) (f(y) + f(0))

)
if f(x) + f(N(z)) ≥ f(0),

N
(
f (−1) (f(x) + f(y) + f(N(z)))

)
otherwise.

Since N
(
f (−1) (f(x) + f(0))

)
= N

(
f (−1) (f(y) + f(0))

)
= 1, we can write

IN
f (x, IN

f (y, z)) =

{
1 if f(y) + f(N(z)) ≥ f(0),

N
(
f (−1) (f(x) + f(y) + f(N(z)))

)
otherwise.

IN
f (y, IN

f (x, z)) =

{
1 if f(x) + f(N(z)) ≥ f(0),

N
(
f (−1) (f(x) + f(y) + f(N(z)))

)
otherwise.

If f(y) + f(N(z)) ≥ f(0), then also f(x) + f(y) + f(N(z)) ≥ f(0), which means that
IN
f (y, IN

f (x, z)) = 1. And, on the contrary, if f(x) + f(N(z)) ≥ f(0), then IN
f (x, IN

f (y, z)) = 1.

The following theorem describes the relationship between the generated fuzzy implications If
N

and (S,N)– or R–implications.
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Theorem 3.8 Let f : [0, 1] → [0,∞] be a strictly decreasing and continuous function such that
f(1) = 0. Let N : [0, 1] → [0, 1] be a strong negation. Then IN

f is (S,N)–implication. Moreover,
if f is bounded function and N(x) = f−1(f(0) − f(x)), then IN

f is an R–implication as well.

Some relation between these generated implications and t-norms is described in the next
proposition.

Proposition 3.9 Let f : [0, 1] → [0,∞] be a strictly decreasing and continuous function such
that f(1) = 0. Let N : [0, 1] → [0, 1] be a strong negation. Then the fuzzy implication IN

f

satisfies (LI) with a t-norm T (x, y) = f (−1)(f(x) + f(y)).

Proof. Let f : [0, 1] → [0,∞] be a strictly decreasing continuous function such that f(1) = 0, N
be a strong negation, and T : [0, 1]2 → [0, 1] be a t-norm given by T (x, y) = f (−1)(f(x)+ f(y)).
Then

IN
f (T (x, y), z) =

{
N

(
f (−1) (f(0) + f(N(z)))

)
if f(x) + f(y) ≥ f(0),

N
(
f (−1) (f(x) + f(y) + f(N(z)))

)
otherwise,

and from the previous proof we get for IN
f (x, IN

f (y, z)) the following formula

IN
f (x, IN

f (y, z)) =

{
1 if f(y) + f(N(z)) ≥ f(0),

N
(
f (−1) (f(x) + f(y) + f(N(z)))

)
otherwise.

It is obvious that N
(
f (−1) (f(0) + f(N(z)))

)
= 1 and by similar method as we have used in

previous proof we get that IN
f (T (x, y), z) = IN

f (x, IN
f (y, z)).

It is well known that generators of continuous Archimedean t-norms are unique up to a
positive multiplicative constant, and this is also valid for the f generators of If

N implications.
This follows from Lemma 1.16.

Proposition 3.10 Let c be a positive constant and f : [0, 1] → [0,∞] be a strictly decreasing
function such that f(1) = 0 . Then the implications If

N and Ic·f
N which are based on functions

f and c · f , respectively, are identical.

4 Conclusions

Note, that mentioned fuzzy implications are not the only generalizations of fuzzy implications
Ig
N . Considering Formula (5) and Lemma 1.17, we can see that N might be replaced by N (−1) if

it is a fuzzy negation. Still, there are at least two fuzzy negations (in general different from N)
which are related to N . Namely, N (−1) and Nd. Hence we have the following two additional
possibilities how to generate fuzzy implications.

Theorem 4.1 ([3]) Let f : [0, 1] → [0,∞] be a strictly decreasing function with f(1) = 0,
and N : [0, 1] → [0, 1] be a fuzzy negation such that (1) is fulfilled for N . Then the function

I
(N,N(−1))
f : [0, 1]2 → [0, 1] defined by

I
(N,N(−1))
f (x, y) = N (−1)

(
f (−1) (f(x) + f(N(y)))

)
(6)

is a fuzzy implication.
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Theorem 4.2 ([3]) Let f : [0, 1] → [0,∞] be a strictly decreasing function with f(1) = 0 and

N : [0, 1] → [0, 1] be a fuzzy negation. Then function I
(N,Nd)
f : [0, 1]2 → [0, 1] defined by

I
(N,Nd)
f (x, y) = Nd

(
f (−1) (f(x) + f(N(y)))

)
, (7)

is a fuzzy implication.
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[2] BIBA, V., HLINĚNÁ, D., KALINA, M., KRÁL’, P.: Generated fuzzy implications and
known classes of implications (to appear)
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Abstract: Anti-Commons and bureaucracy have been linked since the study of Buchanan & 
Yoon (2000). Bureaucracy involves a set of agents that have a deciding power. Conflicting 
interests, the decision makers inertia or the inertia of the system itself, excessive administrative 
procedures or excessive administrative circuits push too late decisions, or for non-rational 
decisions in terms of value creation for economic agents.  Property Rights Theory explains new 
concerns. Considering that an “anti-commons” problem arises when there are multiple rights to 
exclude, the problem of decision process in aquaculture projects makes sense at this level. 
However, little attention has been given to the setting where more than one person is assigned 
with exclusion rights, which may be exercised. “Anti-commons” problem is analyzed in 
situations in which resources are inefficiently under-utilized rather than over-utilized as in the 
familiar commons setting. In this study, fisheries problems are studied and some ways to deal 
with the problem are presented. 
 
Keywords:  Anti-Commons Theory, Property Rights, Fisheries 

 

Introduction 

“Anti-Commons” theory has appeared representing the idea of an excessive partition of property 
rights. This theory has appeared in the 80’s of last century, introduced by Michelman (1982). In the 
last years of the 20th Century several ideas about this new problem around property rights have 
emerged in which too many rights of exclusion and a reduced level of utilization of the resource are 
present. Michelman (1982), when presented the notion of “anti-commons”, defined it as “a type of 
property in which everyone always has rights respecting the objects in the regime, and no one, 
consequently, is ever privileged to use any of them except as particularly authorized by others”. 
This definition of “anti-commons” makes evidence of the lack of efficiency in several situations in 
which each one of several owners with property rights over a given resource has no effective rights 
to use the resource (and consequently, each one has the right to exclude other agents from the 
utilization of the resource). 

Property rights discussion. The underuse of resources under a situation of “anticommons” 
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The discussion involving the definition of property rights is old. The types of property rights 
demand that the limits of these concepts are hardly analyzed. The commons problems are discussed 
since the middle of last century, involving the idea that commons reflect usually the 
overexploitation of resources. The lack of property rights implies that no one may exclude others to 
access to a given resource. The existence of many agents to use a given resource, in these 
conditions, causes an inefficient level for the resource use and causes a special motivation for 
agents over-use the resource. The real level of use for the resource will take place at a higher level 
compared with the optimal level for the society as a whole. 

On the opposite side, when several owners of a resource have, each one, the right to exclude others 
from the use of a scarce resource and no one has the full privilege to use it, this resource may have a 
very limited and unsatisfactory use. This is the problem of the “tragedy of the anti-commons”: the 
resource may be prone to under-use. 

After an “anti-commons” emerge, its particular passage to an efficient process in the private 
property sphere is long and extremely slow, due to the properties inherent to “anti-commons” and to 
the difficulties existing for overcoming the “tragedy of anti-commons”. 

As a consequence of all this, it is necessary to make an important reflection about the definition of 
property rights to overcome several important aspects when resources are exploited. Indeed, we can 
see that not just the commons lead to the tragedy. When there are too many property rights and too 
many rights of exclusion, tragedy seems to be the last result, as well. Too many owners have the 
right to exclude others but, in fact, no one of them, have the privilege to use it suitably. An 
insufficient use is the corollary for this situation. 

 

An “anti-commons” view 

Along this section, it will be taken as a fundamental basis, the work of Schulz, Parisi and Depoorter 
(2003). They present a general model which permits to distinguish between the simultaneous cases 
and the sequential cases in “anti-commons” tragedies. As the authors say, the reality may present 
situations that combine characteristics of the two categories. Anyway, it is important to consider the 
two situations separately.  

For the first of these two cases, they consider that exclusion rights are exercised at the same time, 
independently. This involves several agents linked in a coincident relationship, such as multiple co-
owners with cross-veto powers on the other members’ use of the common resource.  

In the sequential case, exclusion rights are exercised in consecutive stages, at different levels of the 
value chain. The several owners of the exclusion rights exercise their own rights in a succession 
way. Each agent may be involved in a hierarchy and each one may exercise its own exclusion right 
or veto power over a given proposition (see some examples about simultaneous and sequential anti-
commons tragedies in Schulz, Parisi and Depoorter, 2003). 

In that work, a dual model of property, where commons and anticommons problems are the 
consequence of a lack of conformity between use and exclusion rights, is extended to consider the 
different equilibria obtained under vertical and horizontal cases of property fragmentation. 

Horizontal anticommons cases are the ones where situations of exclusion rights exercised 
simultaneously and independently are present. This involves situations in which are two agents 
linked in a horizontal relationship. Both agents contribute on the same level of a value chain. 

Situations of a vertical anticommons can be expressed as the situations in which the exclusion rights 
are exercised sequentially by the various right holders. This involves multiple parties in a hierarchy 
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each of whom can exercise an exclusion or veto power over a given proposition. Examples 
involving bureaucracy (for example, situations where multiple permits need to be acquired in order 
to exercise a given activity) or a production process where a given producer purchases one essential 
input from a monopolistic seller (see Parisi, Schulz and Depoorter, 2005). 

It is shown in Parisi, Schulz and Depoorter (2005) that the symmetrical features of commons and 
anticommons cases result from a misalignment of the private and social incentives of multiple 
owners in the use of a common resource. The misalignment is due to externalities not captured in 
the calculus of interests of the users (commons situations) and excluders (anticommons situations).  

The problem of anti-commons is based on a positive externality, when considering it in terms of 
efficiency1.  

In anti-commons case ix , the activities of agents, shows the extent to which agent igrants agent j

permission to use the common property. An activity 1x of agent 1 exerts a positive impact on the 

productivity of agent 2 ’s activity 2x . 

If ( , )i i jV x x is the value of the common resource of agent i , agent i  grants agent j  the right to use 

the common resource. Agent j owns a complementary right to exclude agent i from the use of the 

common resource. These grants are respectively 1x and 2x .  So, ( , )i i jV x x denotes the profit agent i  

takes from this joint project. The positive externality that agent j exerts on agent i  is given by: 

( , ) 0i
i j

j

V
x x

x





 

Assuming that the exclusion rights are exercised simultaneously and independently by the various 
rights’ holders, multiple owners exercise their veto power on equal terms. If both agents are in a 
perfect symmetric situation,  

( , ) ( , )i i j j j iV x x V x x , 

agent i  will be choosing the value of ix which maximizes ( , )i i jV x x ; and the resulting Nash 

equilibrium considering agents 1 and 2  is given by 

1
1 2

1

( , ) 0
V

x x
x





 and    2

2 1
2

( , ) 0
V

x x
x





 . 

These two conditions are the best response functions of the two agents. 
Assuming also that iV  is concave in ix , the equilibrium exists for mild assumptions on activities ix

. Given the symmetry assumption, a symmetric equilibrium is expected: 

1 2
cx x x  . 

There are uncoordinated choices for the 2 agents which can now be compared to the efficient 
choices of ix , which maximize 1 2V V  and are characterized by the following first order conditions: 

1 2
1 2 2 1

1 1

( , ) ( , ) 0
V V

x x x x
x x

 
 

 
     and  2 1

2 1 1 2
2 2

( , ) ( , ) 0
V V

x x x x
x x

 
 

 
 . 

Given the symmetric assumption, a symmetric optimum is expected. Assuming 1 2V V concave and 

that there is a symmetric solution, the efficient choices are equal: 

1 2
sx x x  . 

                                                 
1 Commons problem is based on a negative externality. 
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As can be easily concluded, sx > cx . This is, the uncoordinated choices lead to the underutilization 
of the common resource. 
If horizontal and vertical anticommons are introduced, both being obviously the consequence of the 
existence of non-conformity between use and exclusion rights, the problem of underutilization of 
resources is exacerbated if the right is fragmented into more than two exclusion rights, with more 
than two agents deciding independently on their activity or prize (see Schulz, 2000 and  Parisi, 
Schulz and Depoorter (2005). 

 

Tragedy of Fishing Commons. Looking for Solutions 

The classical theory of the “tragedy of the commons” explains the reasons why sea fisheries are 
prone to over-exploitation (see Hardin, 1968). Gordon (1954) had already examined the problems 
of common resources in the 50s. 

The emergence of individual transferable quotas (ITQs) would potentially allow overcoming, even 
partially, the serious problem of over-fishing for several species in several parts of the world. 
Anyway, the enormous enthusiasm around ITQs has given place to the appearance of the problem 
of the “anti-commons”.  

Some nations have tried to avoid the “tragedy of the commons” in sea fisheries by regulating the 
activity, decade over decade. Reducing fishing seasons, restrict open areas to fisheries, limiting the 
use of gears or reducing the power and tons for ships were just some measures to avoid tragedies to 
species. The truth is that these practices many times did not reduce over-fishing for the species that 
governments intended to protect. Fishing race and massive discards, frequently, continued. 

TACs (total allowable catches) are fixed each year by fishing management authorities. Each fisher 
has a part of the TAC to fish, representing his own individual quota. Theoretically, with this 
procedure, each fisher may use his quota when he likes and fishing race may come to an end (see 
Leal, 2002a). Meanwhile, quotas may be transferable and this procedure may lead to situations in 
which the quotas owners can adjust the dimension of his fishing operations buying or selling quotas 
or even just leaving the fishery and move the quota from the market.  

Many nations have been using this kind of measures (programs of individual transferable quotas) to 
manage fishing resources in their waters. These programs contributed to improve fishers’ rents, to 
improve the quality of products, to reduce the excess of quotas and to eliminate eventual catches 
that exceed TACs (see Alesi, 1998; see Repetto, 2001 and Wilen and Homans, 2000, as well). 

 

The emergence of anti-commons. Alaska’s Halibut example  

Alaska’s Halibut allows to study the effect of the existence of ITQs and, additionally, to study the 
consequences in terms of the “anti-commons” (see Leal, 2002b). In fact, this specie got 
overexploited and authorities implemented several measures to reduce catches. First, fishing 
seasons were reduced. At the beginning of 90s, fisheries were opened just for two or three short 
periods of about 24 hours per year. Consequently, fishing race became the solution for fishers, who 
tried to get the maximum fish as possible, throughout the available time for fishing. In fact, results 
got different than the expected ones for worse. However, after the implementation of individual 
quotas in 1995, fishing seasons became larger and fishers could exploit this resource for around 8 
months, per year. Sales increased and prices got higher (see GAO, 2002). Meanwhile, catches got 
smaller than TACs and fleets excesses were reduced. 
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Nevertheless, individual quotas excess may lead to sub-exploitation of the resource and Alaska’s 
Halibut is, in fact, a case that must be studied to see the consequences of too many existing fishing 
quotas. Authorities have implemented rules to protect small fishers. They did not authorized fishers 
to sell their quotas if they were very small. Consequently, these quotas got unexploited, because 
they were not profitable for their owners. Halibut got underexploited. Authorities had to change 
rules for this fishery. It can be seen now that ITQ promote important solutions for the “tragedy of 
the commons” but they may create conditions for a new situation of “anti-commons”. 

Some other examples may be presented. For example, Leal (2002b) shows how Alaska’s crab may 
be prone to under-use if fishers are forced to sell their catches to a little number of companies, as it 
was the case. Low prices lead to situations in which fishers under-use their quotas because they got 
unprofitable. As a consequence crab got under-exploited. 

 

The aquaculture case in Portugal 

The example of aquaculture in Portugal can be presented. There are too many entities to analyze 
projects of aquaculture. Rules and procedures are so many that projects are approved with long 
delays2. As a consequence, resources get under-used.  

The aquaculture sector in Portugal is studied and allows to evaluate the possibility of using the 
hypothesis suggested by Buchanan & Yoon (2000) that bureaucracy can be studied with the help of 
the anti-commons conceptualization.  

In this context, some questions are posed about live resources exploitation, particularly in fisheries 
and aquaculture projects and raised the legal problems in the Portuguese case. An economic 
analysis allows to show how this problem of anti-commons can originate an important loss of value. 
It is seen as anti-commons tragedies appear in such situations in the aquaculture problem. 

The suggestion of Buchanan and Yoon (2000) that the anti-commons construction offers an 
analytical means of isolating a central feature of “sometimes disparate institutional structures” 
shows the problems arisen from bureaucracy in this context. The persistence of bureaucratic circuits 
of approval and implementation of projects can difficult the entrepreneurship activities and it 
diminishes the potential of regional and coastal development. 

The responsible Department for Aquaculture is specifically DGPA (Direcção Geral das Pescas e 
Aquicultura), which is responsible for supervising and controlling the activity of aquaculture 
sector3. There are an enormous set of initial steps for a project’s approval (Decreto Regulamentar nº 
14/2000) and there are many entities deciding (see Filipe et al, 2011a). This leads to projects 
rejection or a very delayed approval. Besides it shows how bureaucracy is involved in worsening 
the conditions of exploitation of the resources.  The “disparate institutional structures” get evident 
and a problem of anti-commons is the obvious result. 

 

  

                                                 
2 Other countries have similar problems in this kind of projects. 
3 The aquaculture problem is fitted under the control and supervision of Ministério da Agricultura, do Desenvolvimento 
Rural e das Pescas (see Decreto Regulamentar nº 14/2000 – September, 21st, 2000), that is the Ministry for Agriculture, 
Fishing and Aquaculture Sector. This Decree specifies the requisites and conditions needed to install and exploit a plant 
on this area. The Decreto Regulamentar nº 9/2008 (March, 18th, 2008) defines a set of rules specifically for installations 
offshore. 
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Concluding Remarks  

The anti-commons are a very interesting issue to be studied, with an important scope of analysis. It 
is shown in this study how anti-commons are associated to negative externalities and to a underuse 
of resources.  

Some examples in wild fisheries are presented; and the aquaculture case for projects in Portugal is 
studied. Aquaculture contributes for fish production and being, as often they are,  ecologically 
sustainable, projects in this area will contribute for solving fisheries’ dilemmas about sea fishing 
resources exploitation.  

In Portugal an excessive number of regulators (some of them with veto power) analyze the projects. 
They spent too much time to overpass all the steps and when the process is ready for 
implementation it may be too late (and sometimes, the project is refused).  

Too many resources are spent on projects and they simply get unviable. A project may create value 
for the investor and for the community but all the time wasted in bureaucratic analysis makes the 
project unviable.  
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SOLUTION OF TORSION OF PRISMATIC BAR
USING PROGRAM MATHEMATICA FOR ELLIPTICAL

CROSS-SECTION AREA

JANČO Roland, (SK), KOVÁČOVÁ Monika, (SK)

Abstract. In real design of bar and beam which is load by torque we need properties of
cross section area. No all time you have circular cross section area in real problems. For
solution of non-circular cross section area we used Saint-Venant’s principle. In this paper
is short introduction how to used Saint-Venant’s principle to solution of elliptical cross
section area. Theoretical solutions for elliptical cross section are compared by numerical
solution solved in program Mathematica with package Structural Mechanics.

Key words and phrases. Torsion, Saint-Venant’s principle, elliptical cross section.

Mathematics Subject Classification. Primary 74A10, 74B05, 74G50 ; Secondary 74K10.

1 Introduction

Because many engineering structures, such as beams, shafts, and airplane wings, are subjected
to torsional forces, the torsional problem has been of practical importance in structural analysis
for a long time. Saint-Venant (1885) was the first to provide the correct solution to the problem
of torsion of bars subjected to moment couples at the ends. He made certain assumptions about
the deformation of the twisted bar, and then showed that his solutions satisfied the equations
of equilibrium and the boundary conditions. From the uniqueness of solutions of the elasticity
equations, it follows that the assumed forms for the displacements are the exact solutions to the
torsional problem. The Saint-Venant principe is adopted in Structural Mechanics packages.

In this paper is contains of theoretical background of solution elliptical cross-section area
properties for torsional problems using Saint-Venant principle and comparison of theoretical
solution with solution from Structural Mechanics package in MATHEMATICA.
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2 Theoretical background

If bar is loaded by equal and opposite torques T on its ends, we anticipate that the relative
rigid-body displacement of initially plane section will consist of rotation, leading to a twist per
unit length ϑ. These sections may also deform out of plane, but this deformation must by same
for all values of z. These kinematic considerations lead to the candidate displacement field

ux = −ϑ z y; uy = ϑ z x; uz = ϑ f(x, y) , (1)

where f is an unknown function of x,y describing the out-of-plane deformation.
Substituting these kinematic consideration into the strain-displacement relations eij =

1

2

(
∂ ui

∂ xj

+
∂ uj

∂ xi

)
yields

exy = 0; ezx =
ϑ

2

(
∂ f

∂ x
− y

)
; ezy =

(
∂ f

∂ y
+ x

)
(2)

and it follow from Hooke’s law in form σij = λ emm δij + 2 μ eij [1] that

σxx = σyy = σzz = 0 (3)

and

σxy = 0; σzx = μϑ

(
∂ f

∂ x
− y

)
; σzy = μϑ

(
∂ f

∂ y
+ x

)
. (4)

There are no body forces, so substitution into the equilibrium equations
∂ σij

∂ xj

+ Pi = 0 from

[1] yields
∇2 f = 0. (5)

The torsion problem is therefore reduced to the determination of harmonic function f such that
the stresses (4) satisfy the traction-free condition on the curved surfaces of the bar. The twist
per unit length ϑ can be determined by evaluating the torque on the cross-section Ω

T =

∫ ∫
Ω

(xσzy − y σzx)dx dy . (6)

2.1 The elliptical bar

For solution of the rectangular bar we used Prandtl’s stress function defined by

τ ≡ iσzx + jσzy = curlkφ (7)

or

σzx =
∂ φ

∂ y
; σzy = −∂ φ

∂ x
. (8)

With this representation, the traction-free boundary condition can be written

τ .n = σzn =
∂ φ

∂ t
= 0 (9)
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where n is the local normal to the boundary of Ω and n, t are a corresponding set of local
orthogonal coordinates respectively normal and tangential to the boundary, Thus φ must be
constant around the boundary and for simply-connected bodies this constant can be taken as
zero without loss of generality giving the simple condition

φ = 0 (10)

on the boundary and from this boundary condition we obtain

∇2 φ = −2 μ ϑ . (11)

We consider the bar of elliptical cross-section defined by the boundary

x2

a2
+

y2

b2
− 1 = 0 , (12)

loaded by the a torque T . The quadratic function

φ = C

(
x2

a2
+

y2

b2
− 1

)
(13)

clearly satisfies the boundary condition (10). Substituting into (11), we obtain

∇2 φ = C

(
2

a2
+

2

b2

)
= −2 μ ϑ , (14)

which will be satisfied for all x, y if

C = − μϑa2b2

a2 + b2
. (15)

The torque T is obtained from (6) as

T = 2C

∫ b

−b

∫ a(1−y2/b2)1/2

−a(1−y2/b2)1/2

(
x2

a2
+

y2

b2
− 1

)
dxdy = −πabC (16)

and hence

C = − T

πab
; ϑ =

T (a2 + b2)

πμa3b3
. (17)

The stresses are then obtained from (8) as

σzx =
∂φ

∂y
=

2Cy

b2
= − 2Ty

πab3
(18)

σzy = −∂φ

∂x
= −2Cx

a2
=

2Tx

πa3b
. (19)

The torsional rigidity of section K, defined such that

T = μKϑ , (20)

K =
πa3b3

(a2 + b2)
. (21)
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2.2 Equation for solution the elliptical bar in Mechanics of Materials

In mechanics of material [3] we used for solution of maximum shearing stress the equation

τmax =
2T

πab2
(22)

and angle of twist is defined by

ϕ =
(a2 + b2) T �

π a3 b3 G
, (23)

where � is the length of bar, G is the shear modulus of elasticity for the material.
The torsional rigidity of the section K is generally defined such that

T = μ ϑ K (24)

3 Solution of torsion in program MATHEMATICA

For solution of torsional problems in program MATHEMATICA we were used the package
”Structural Mechanics”, which consist of solution the following types of cross sections:

circular cross sections
elliptical cross sections
rectangular cross sections
equilateral-triangular cross sections
sectorial-type cross sections
semicircular cross sections

3.1 Elliptical Cross Section - Graphically

Consider a shaft with an elliptical cross section with the major axis 2a = 4 and the minor axis
2b = 2. Using the function CrossSectionPlot with the first argument EllipticalSection,
you can obtain the drawing of the elliptical cross section at the next figure.
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Definition of cross section area.

You plot a three-dimensional drawing of the twisted elliptical bar by using the function
TorsionPlot with the cross-section object EllipticalSection. The argument list of this
function indicates the shaft size and applied twist. The grids on the three background faces of
the plot box are included with the option FaceGrids in the next figure.

Deformation of elliptical bar

In the Fig.3.1 is shown how the section at z = 1. The line from the origin of the axis system
to the ellipse boundary indicates the orientation of the root cross section.

Twisting of cross section area

As in the case of the circular cross sections, you can obtain the twist per unit length and the
torsional rigidity coefficient using the domain name EllipticalSection.

We computed the torsional rigidity for EllipticalSection by the command.

By replacing the twist in the displacements, you represent the displacement components in
terms of the geometry, the modulus of rigidity of the shaft material, and the applied moment
couple in the next terms.

At z = 1, you calculate the x and y components of the displacement vector (uz, uy) in the
polar coordinates in the expression.

We generated the displacement field for the major radius a = 2 units and minor radius b = 1
unit axes with next expression.

Using the function ListPlotVectorField from the standard package Graphics‘PlotFields,
you should obtain a graphical representation of the displacement field.
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Using the command TorsionalStresses, you can generate the stress components in the bar
due to the torsional load in the next term.

By replacing the twist θ, you get the displacement field in closed form in terms of the applied
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Figure 1:

torque.

4 Conclusion

In this paper is presented the theoretical solution of torsion properties for rectangular cross
section area of bar loading by torque. This properties was derived using Saint-Venant’s prin-
ciple. In program MATHEMATICA was implemented Saint-Venant’s principle in package
Structural Mechanics. This package include two way solution of non-circular cross section
area, first way is graphically and second way is solution of analytically. Both this way is de-
scribed in this paper. When we compare theoretical solution derived in this paper by numerical
solution using package Structural Mechanics, the results are identically.
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Abstract.  A method of modelling commodity depreciation, based on the methodology of 
theoretical physics, is used to derive a deterministic linear motion equation of the second order 
to describe the degressive and progressive development of the instantaneous relative 
depreciation and price of a commodity over time in a model of market structure with perfect 
competition. The same approach is used to derive a non-linear motion equation of the second 
order for instantaneous relative depreciation with degressive/progressive development over 
time. 
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1 Introduction 
 
Let us assume that instantaneous commodity depreciation ݓ at every time ݐ throughout the entire 

lifetime of the commodity is composed of the instantaneous commodity physical depreciation ݓ௉஽ 
and the instantaneous commodity external depreciation ݓா஽. The law of internal composition of 
both types of depreciation is designated as ∆, so the instantaneous commodity depreciation ݓ is 
ݓ ൌ  ா஽. The law of composition of magnitudes of instantaneous commodity physical andݓ ∆௉஽ݓ
external depreciation is also designated by the symbol  ∆, so that ݓሺݐሻ = ݓ௉஽ሺݐሻ ∆ ݓா஽ሺݐሻ. 
In further considerations we presume (in linear approximation) that the law of composition of 
magnitudes of instantaneous commodity physical and external depreciation is algebraic addition, 
thus ݓሺݐሻ ൌ ሻݐ௉஽ሺݓ ൅  ሻ, so that the law of internal composition ∆ of instantaneousݐா஽ሺݓ
commodity physical and external depreciation is designated „+“ and so ݓ ൌ ா஽ݓ	∆௉஽ݓ ൌ ௉஽ݓ ൅
൅ݓா஽. For simplicity, we assume that the law of internal composition ∆, or law of composition 
of magnitudes ∆ respectively, does not change over time for both kinds of depreciation. We further 
assume in the linear approximation that the instantaneous commodity depreciation ݓ, the 
instantaneous commodity physical depreciation ݓ௉஽ and the instantaneous commodity external 
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depreciation ݓா஽ are continuous real functions at interval 〈ݐ଴,  ଴ is the initial time ofݐ) 〈௘ݐ
monitoring of the instantaneous commodity state and ݐ௘ is the time at which we cease monitoring 
the instantaneous commodity state i.e. level of the instantaneous commodity depreciation). The 
instantaneous commodity physical depreciation ݓ௉஽ is defined as the permanent adverse change in 
the surface or dimensions of bodies of various states, induced by the interaction of functional 
surfaces or a functional surface and medium which causes wear [4]. The instantaneous commodity 
external depreciation ݓா஽ is defined as a supplement to the instantaneous commodity physical 
depreciation i.e. the instantaneous commodity external depreciation is the permanent adverse or 
favorable change in market value of a commodity, which is not caused by instantaneous commodity 
physical depreciation (damage). 

In a market structure with perfect competition1, the instantaneous commodity relative 
depreciation ܴܦ is defined by the magnitudes of instantaneous commodity relative depreciation in 
accordance with relation [1; 7] 

ሻݐሺܦܴ  ൌ ௪ሺ௧ሻି௪ሺ௧బሻ

௪ሺ௧బሻ
,                         (1) 

where ݓሺݐ଴ሻ ൌ  ଴ݐ ଴ is the magnitude of instantaneous commodity depreciation at the initial timeݓ
and ݓሺݐሻ is the magnitude of instantaneous commodity depreciation at time ݐሺݐ ൒  ଴ሻ. In additionݐ
to instantaneous commodity relative depreciation ܴܦ, the instantaneous commodity relative price 
ܴܲ is also defined under the condition of perfect competition by the magnitudes ܴܲሺݐሻ at time ݐ in 
accordance with the relationship [1; 7] 

 ܴܲሺݐሻ ൌ ௣ሺ௧బሻି௣ሺ௧ሻ

௣ሺ௧బሻ
,                        (2) 

where ݌ሺݐ଴ሻ ൌ  ଴ ofݐ at the initial time ݌ ଴ is the magnitude of instantaneous commodity price݌
monitoring the instantaneous commodity price on a select model market and ݌ሺݐሻ is the magnitude 
of instantaneous commodity price at time ݐ ൒  .଴ݐ
 
 
2 Linear motion equation of commodity state without inflexion 
 

Instantaneous commodity depreciation ݓ is a real composite function of time, i.e. 
ሻݐሺݓ ൌ  ሻ is the continuous decreasing real function of instantaneous݌ሺݓ ሻሻ, whereݐሺ݌ሺݓ
commodity price ݌ and instantaneous commodity price ݌ is a continuous decreasing real function of 
time ݐ. If we monitor the development of instantaneous commodity depreciation at time interval 

,଴ݐ〉     ሻ it holds thatݐሺ݌ ሻ and݌ሺݓ ௘〉, then for the first derivation of functionsݐ
ௗ௪

ௗ௣
 ሺ݌ሻ ൏ 0 for 

݌ ∈ ,௘ሻݐሺ݌〉  ଴ሻ〉 andݐሺ݌
ௗ௣

ௗ௧
 ሺݐሻ ൏ 0 for ݐ ∈ ,଴ݐ〉  ௘〉. It directly follows from these relationships thatݐ

for the interval 〈ݐ଴,  ,〈௘ݐ
ௗ௪

ௗ௧
 ሺݐሻ = 

ௗ௪

ௗ௣
ሺ݌ሺݐሻሻ. ௗ௣

ௗ௧
 ሺݐሻ ൐ 0. This means that instantaneous commodity 

depreciation ݓ is a continuous increasing real function of time ݐ, which corresponds to trends for 

                                                 
1 In the model of a market structure with perfect competition we assume the following conditions are met: a) in each 

market there are a large number of buyers and sellers, none of which are strong enough to influence the price or 
output of a sector; b) all goods are homogeneous; c) there is free entry to and exit from all markets; d) all 
manufacturers and consumers have perfect information about prices and quantities traded on the market; e) 
companies attempt to maximize profit and consumers attempt to maximize utility; f) companies have free access to 
information about technologies [2; 3].  



 

Aplimat – Journal of Applied Mathematics
 

volume 5 (2012), number 2  271
 

common commodities over time. Then, instantaneous commodity relative depreciation ܴܦ is also a 

continuous real function at interval 〈ݐ଴,  ௘〉 andݐ
ௗோ஽

ௗ௧
ሺݐሻ ൐ 0 for every time ݐ ∈ ሺݐ଴,   .௘ሻݐ

The magnitude of instantaneous commodity relative depreciation ܴܦ over time ݐ increases with 
acceleration and the acceleration of instantaneous commodity relative depreciation increases in 
direct proportion to the instantaneous speed of change of instantaneous commodity relative 
depreciation at time ݐ. The motion equation of instantaneous commodity relative depreciation is 
thus [7] 

 
ௗమோ஽

ௗ௧మ
ሺݐሻ ൌ ܤ ௗோ஽

ௗ௧
ሺݐሻ,    (3) 

where ܤ is the constant of proportionality, ܤ ൐ 0. In addition, let initial conditions be met where 

଴ሻݐሺܦܴ ൌ ଴ܦܴ ൐ 0, 
ௗோ஽

ௗ௧
 ሺݐ଴ሻ = ݒ଴ ൐ 0, so that the solution of differential equation (3) at interval 

,଴ݐ〉  ௘〉 is thenݐ

ሻݐሺܦܴ  ൌ ଴ܦܴ െ
௩బ
஻
൅ ௩బ

஻
݁஻ሺ௧ି௧బሻ.                 (4) 

From here it directly follows that instantaneous commodity relative depreciation ܴܦ is a purely 
convex function at interval 〈ݐ଴,  ௘〉. This means that the increase in instantaneous commodityݐ
relative depreciation at interval 〈ݐ଴,   .௘〉 is progressiveݐ

Instantaneous commodity relative depreciation ܴܦ increases with acceleration at time ݐ again 
and the acceleration of instantaneous commodity relative depreciation increases in direct proportion 
to the speed of change of relative depreciation at time ݐ while the constant of proportionality is 
negative. The motion equation of instantaneous commodity relative depreciation is then [6; 7]  

 
ௗమோ஽

ௗ௧మ
ሺݐሻ ൌ െܤ ௗோ஽

ௗ௧
ሺݐሻ,                 (5) 

where ሺെܤሻ is the constant of proportionality, ܤ ൐ 0. In addition, let initial conditions be met 

where ܴܦሺݐ଴ሻ ൌ ଴ܦܴ ൐ 0, 
ௗோ஽

ௗ௧
 ሺݐ଴ሻ = ݒ଴ ൐ 0, so that the solution of the differential equation (5) at 

interval 〈ݐ଴,  ௘〉 is thenݐ

ሻݐሺܦܴ  ൌ ଴ܦܴ ൅
௩బ
஻
െ ௩బ

஻
݁ି஻ሺ௧ି௧బሻ.             (6) 

From here it directly follows that instantaneous commodity relative depreciation ܴܦ is a purely 
concave function at interval 〈ݐ଴,  ௘〉. This means that the increase in instantaneous commodityݐ
relative depreciation at interval 〈ݐ଴,  ௘〉 is degressive. The progressive increase of instantaneousݐ
commodity relative depreciation is characteristic, for example, of certain types of food goods, while 
degressive increase of relative depreciation may be seen in certain commodities in the automotive 
industry.  

Specific types of commodities are not listed here as the breakdown of all commodities under the 
condition of perfect competition into individual disjoint classes of commodities is the subject of 
a separate investigation. 

Motion equations (3) and (5) for instantaneous commodity relative depreciation ܴܦ yield 
a deterministic differential equation for instantaneous commodity  price ݌ while a commodity is an 
element of one of the disjoint classes of the set of all commodities. For each commodity class 
found, it will be necessary to determine the functional relationship between instantaneous 
commodity depreciation ݓ and the instantaneous commodity price ݌ at interval 〈ݐ଴,  ௘〉. Assumeݐ
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that we have selected a single specific class of commodity from the set of all commodities. For each 
commodity of this particular class let 	ݓሺݐሻ ൌ ଴ሻݐሺ݌൫ܦ െ  ሻ൯, so that, in accordance withݐሺ݌

equation (1), ܴܦሺݐሻ ൌ
ൣ஽൫௣బି௣ሺ௧ሻ൯ି௪బ൧

௪బ
 at interval 〈ݐ଴, ܦሺ ܦ ௘〉. A constantݐ ൐ 0ሻ is given in such 

units to ensure that the same units are found on both sides of the equation ݓሺݐሻ ൌ ଴ሻݐሺ݌ሺܦ െ  .ሻሻݐሺ݌
Directly following from deterministic differential equation (3) for instantaneous commodity relative 
depreciation ܴܦ is the deterministic differential equation for instantaneous commodity price ݌ at 

interval 〈ݐ଴,  ௘〉 , which isݐ
ௗమ௣

ௗ௧మ
 ሺݐሻ = ܤ 

ௗ௣

ௗ௧
 ሺݐሻ with initial conditions ݌ሺݐ଴ሻ ൌ ଴݌ ൐ 0, 

ௗ௣

ௗ௧
 ሺݐ଴ሻ ൌ  

ൌ ଴ݎ ൏ 0, where 
ௗ௣

ௗ௧
 ሺݐሻ ൏ 0 for ݐ ∈ ሺݐ଴,  ௘ሻ. The solution of this differential equation for a purelyݐ

concave drop in the instantaneous commodity price may be written as ݌ሺݐሻ ൌ ݌଴ – 
௥బ
஻

 (1 – ݁஻ሺ௧ି௧బሻ). 
Deterministic differential equation (5) for instantaneous commodity relative depreciation ܴܦ yields 
a deterministic differential equation for instantaneous commodity price ݌ at interval 〈ݐ଴,  ௘〉 whichݐ

is 
ௗమ௣

ௗ௧మ
 ሺݐሻ ൌ  െܤ 

ௗ௣

ௗ௧
 ሺݐሻ with initial conditions ݌ሺݐ଴ሻ ൌ ଴݌ ൐ 0, 

ௗ௣

ௗ௧
 ሺݐ଴ሻ = ݎ଴ ൏ 0, where 

ௗ௣

ௗ௧
 ሺݐሻ ൏ 0 

for ݐ ∈ ሺݐ଴,  ௘ሻ. The solution of this differential equation for a purely convex drop in theݐ
instantaneous commodity price may be written as ݌ሺݐሻ ൌ  ݌଴ + 

௥బ
஻

 (1 – ݁ି஻ሺ௧ି௧బሻ). 
 
 

3 Non-linear motion equation of commodity state with inflexion 
 

In this section of our work we again presume the following conditions to be met: (1) the 
commodity is on one of the markets of the model of market structure with perfect competition at 
initial time ݐ଴; (2) at time ݐ଴ the commodity is found in its initial state, which is uniquely 
determined by the magnitude of instantaneous commodity depreciation  ݓሺݐ଴ሻ ൌ  .଴ݓ

Let the acceleration of 
ௗమோ஽

ௗ௧మ
 of the instantaneous commodity relative decreciation be the sum of 

two components, i.e. 

 
ௗమோ஽

ௗ௧మ
ൌ ቀௗ

మோ஽

ௗ௧మ
ቁ
ଵ
൅ ቀௗ

మோ஽

ௗ௧మ
ቁ
ଶ
.  (7) 

The first component of acceleration is a consequence of physical and chemical processes (including 
also social/psychological processes in physico-chemical approximation), which cause the first 
component of the instantaneous acceleration to increase in direct proportion to the magnitudes of 
rate of change of the instantaneous commodity relative depreciation, i.e.  

 ቀௗ
మோ஽

ௗ௧మ
ሺݐሻቁ

ଵ
ൌ ܤ ௗோ஽

ௗ௧
ሺݐሻ,  (8) 

where ܤ is the proportionality constant, ܤ ൐ 0 and ݐ ∈ ,଴ݐ〉  ௘〉. The second component ofݐ
acceleration results from physical and chemical processes (including also social/psychological 
processes in physico-chemical approximation), which cause the second component of the 
instantaneous acceleration to be directly proportional to the product of the magnitude of rate of 
change of the instantaneous commodity relative depreciation ௗோ஽

ௗ௧
ሺݐሻ and the magnitude of 

instantaneous commodity  relative depreciation ܴܦሺݐሻ, while the proportionality constant is 
negative, thus 

 ቀௗ
మோ஽

ௗ௧మ
ሺݐሻቁ

ଶ
ൌ െܣ ௗோ஽

ௗ௧
ሺݐሻܴܦሺݐሻ,   (9) 
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where ሺെܣሻ is the proportionality constant, ܣ ൐ ݐ ,0 ∈ ,଴ݐ〉  .〈௘ݐ
By substituting relations (8) and (9) into equation (7), we obtain the following motion equation 

for the acceleration of instantaneous commodity relative depreciation  
 

ௗమோ஽

ௗ௧మ
ሺݐሻ ൌ ܤ ௗோ஽

ௗ௧
ሺݐሻ െ ܣ ௗோ஽

ௗ௧
ሺݐሻܴܦሺݐሻ,                                          (10) 

where ܣ ൐ 0, ܤ ൐ 0, ݐ ∈ ,଴ݐ〉  .〈௘ݐ
One of the subsets of the set of solutions for motion equation (10) is given by 

ሻݐሺܦܴ  ൌ 	௬మା௬భ௘
√ವሺ೟శ಴మሻ

ଵା௘√ವሺ೟శ಴మሻ
, 

where for constants ܦ, ,ଵݕ ,ଶݕ ܦ ଶ it follows thatܥ ൌ ଶܤ ൅ ଵݕ ,ଵܥܣ2 ൌ
஻ା√஽

஺
ଶݕ , ൌ

஻ି√஽

஺
, 

 0 ൏ |ଶݕ| ൏ ,ଵݕ ଶݕ ൏ 0, െ஻మ

ଶ஺
൏ ଵܥ ൏ ଶܥ ,0 ൌ

ଵ

√஽
ln ቀቚ௬మ

௬భ
ቚቁ െ  ௉| the value ofݐ| ௉. At timeݐ

instantaneous commodity relative depreciation is zero. The given subset of the solutions of motion 
equation (10) shows the progressive – degressive increase of instantaneous commodity relative 
depreciation with an inflexion point at time ݐ ൌ െܥଶ and a limit at  lim௧→ା∞ ሻݐሺܦܴ ൌ  .ଵݕ
 
 
4   Conclusions 
 

Assuming that the market value of the commodity at time t is fully determined exclusively by the 
value of the instantaneous commodity price ݌ሺݐሻ, methodological procedures taken from theoretical 
physics were used to construct motion equations for instantaneous commodity relative depreciation 
 Motion equations (3) and (5) for the progressive and degressive increase of instantaneous  .ܦܴ
commodity relative depreciation are linear differential equations of the second order with constant 
coefficients assuming market structures with perfect competition.  Motion equation (10) of 
instantaneous commodity relative depreciation for the progressive/degressive growth of 
depreciation is a non-linear differential equation of the second order with constant coefficients.  
Motion equation (10) was also derived for instantaneous commodity relative depreciation on a 
market with perfect competition.  In the solutions set for motion equation (10), there is the subset of 
solutions which model progressive/degressive growth of the magnitudes of instantaneous 
commodity relative depreciation with a single inflexion point. 
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