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APPLICATION OF THE CHAIN SEQUENCES TO
LINEAR DIFFERENCE EQUATIONS

ABDERRAMÁN MARRERO Jesús, (E)

Abstract. The chain sequences are here introduced in the study of some basic oscillatory
and spectral properties of the solutions of self-adjoint operator associated to second order
linear homogeneous difference equations. Applying these results on parameterized differ-
ence equations, approximated conditions are obtained for the values of the ε-parameter
where the absolutely continuous spectrum appears. As an illustration, the ε parameter is
taken as the energy in current examples of discrete Schrödinger operators.

Key words and phrases. Absolutely continuous spectrum; chain sequences; oscillation
theory; parameterized difference equations; Schrödinger operators; self-adjoint difference
equations.

Mathematics Subject Classification. Primary 15A90, 39A11, 40A05; Secondary 47B39.

1 Introduction

The behaviour of some qualitative properties of the solutions of the difference equations, in
particular for the second order linear difference equation, is a subject of current interest [3, 6, 7].
Not only is a line in growth, but it has practical applications in some branches of science as
discrete dynamical systems and mathematical physics. Without loss of generality, the linear
second order difference equation with variable coefficients can be write as, with n ∈ Z+

n0
= {n ∈

Z+, n0 ∈ Z+ ∪ {0} : n > n0}:

xn+1 = bnxn − anxn−1. (1)

A solution of (1) is defined as X = {xn}∞n=n0
, and each term xn is denoted as the component

solution at step n. Another equivalent representation is given by means of its 2× 2 companion
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matrix formulation [2], (
xn

xn+1

)
=

[
0 1

−an bn

] (
xn−1

xn

)
. (2)

The chain sequences [4, 11, 12] have been introduced in the study of the spectral properties
of the solutions from (1) or (2). The aim here is to apply the chain sequences to give basic results
on the oscillatory properties. An approximation about the location of its absolutely continuous
spectrum is also provided. For this task, in Section 2 a closed representation of the solutions in
form of a product is given. It permits us to introduce the chain sequences for the obtainment
of some basic oscillatory properties of the canonical self-adjoint equation associated to (1). In
Section 3 the results are applied to parameterized difference equations. Thus an inequality is
given for the coefficients of Harper as well as Fibonacci equation. These equations are current
examples of difference Schrödinger operators. This simple inequality gives an approximation
for the parameter values where the spectrum of the operator is absolutely continuous. In the
Section 4 some brief conclusions and possible lines of future work are outlined.

2 Chain sequences and oscillatory properties

2.1 The associated self-adjoint equation

We assume the following change in the component solutions of (1), with n ∈ Z+
n0+1 and the

same initial conditions yn0 = xn0 ; yn0+1 = xn0+1,

xn = yn

⎛
⎜⎝

[
n−1−(n0+1)

2
]∏

i=0

an0+1+2i+r

⎞
⎟⎠ . (3)

In the top of product, [u] is the greater integer not exceeding u. The standard convention
for products is used. That is to say, if [u] is a negative integer then the product takes the value
1. The integer parameter r = (n− n0)mod2 can take two values, 0 or 1. Note as this change is
a variable scaling of the original solution from (1), with dependence on the step n. Then, the
transformed difference equation results,

yn+1 = b∗nyn − yn−1. (4)

with n ∈ Z+
n0

, and

b∗n = bn

∏[
n−1−(n0+1)

2
]

i=0 an0+1+2i+r∏[
n−(n0+1)

2
]

i=0 an0+1+2i+r

. (5)

The equation (4) is defined as the (canonical) self-adjoint difference equation associated to
(1). Its equivalent companion matrix formulation is,

(
yn

yn+1

)
=

[
0 1
−1 b∗n

](
yn−1

yn

)
. (6)

18 volume 4 (2011), number 2
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2.2 Closed representation in form of a product

If a new transformation of the Riccati type, zn = yn+1

yn
is introduced in (4), then we have,

zn−1 =
1

b∗n − zn

. (7)

Let now {g(n0+1)
k }∞k=0 be a sequence defined as,

g
(n0+1)
k = 1 − zn0+k+1

b∗n0+k+1

. (8)

From (7) and (8) a new sequence {α(n0+1)
k }∞k=1 is obtained, whose terms are,

α
(n0+1)
k = (1 − g

(n0+1)
k−1 )g

(n0+1)
k =

1

b∗n0+k+1b
∗
n0+k

=
an0+k+1

bn0+k+1bn0+k

. (9)

The following closed expression for the solutions will be the nexus between the chain se-
quences and oscillatory properties of the solution of Eq. (4).

Proposition 2.1 Every solution yn, with n ∈ Z+
n0+1, of equation (4) admits the following closed

representation in terms of the sequence {g(n0+1)
k },

yn = yn0+r

⎛
⎜⎝

[
n−1−(n0+1)

2
]∏

i=0

1 − g
(n0+1)
2i+r

g
(n0+1)
2i+r

⎞
⎟⎠ . (10)

Proof. The expression can be construct inductively. Another equivalent proof follows if we
observe, for the definition of g

(n0+1)
k and the equations (7) and (9), as one relation between

consecutive component solutions can be obtained yn = 1

b∗ng
(0)
n

yn−1 =
1−g

(0)
n−1

g
(0)
n−1

yn−2. If this relation

is iterated down to either yn0 or yn0+1, then the result yields.

For an explicit computation, this representation is not better than the recursive method
itself. Nevertheless, it is useful for the analysis of qualitative properties of the solutions. As a
consequence of Proposition 2.1, we have the following

Corollary 2.2 Every solution xn, with n ∈ Z+
n0+1, of the difference equation (1) admits the

following closed representation

xn = xn0+r

⎛
⎜⎝

[
n−1−(n0+1)

2
]∏

i=0

an0+1+2i+r(1 − g
(n0+1)
2i+r )

g
(n0+1)
2i+r

⎞
⎟⎠ . (11)
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2.3 Basic oscillatory properties

Continued fractions are closely related to second order linear homogeneous difference equations
[5]. A systematic development of chain sequences in the analysis of the continued fractions
can be found in [12]. The chain sequences are here applied on the oscillatory properties of the
solutions from (4) and (1). This tool provides us the obtainment of some results without the
use of continued fractions.

2.3.1 Chain sequences

The definition of chain sequences given in [4] is here detailed for clarity.

Definition 2.3 [4] A sequence {αn}∞n=1 is called a (positive) chain sequence if exists another
sequence {gn}∞n=0 such that:
i) 0 ≤ g0 < 1 ; 0 < gn < 1.
ii) αn = (1 − gn−1)gn.
The sequence {gn} is called the parameter sequence for the chain sequence {αn}, and g0 is
called an initial parameter. A parameter sequence {gn} is called minimal parameter sequence
for the chain sequence {αn} if g0 = 0. In general, the parameter sequence of a particular chain
sequence is not unique.

A sequence {α(n0+1)
n }∞n=1 is a chain sequence if {αn}∞n=n0+2 is also a chain sequence. Analo-

gous with its parameter sequence {g(n0+1)
n }∞n=0. Note as gk = g

(0)
k . It is of interest to know the

behaviour of chain sequences that have all its terms αn ≥ 1
4
. The following corollary obtained

in [4] will be useful later.

Corollary 2.4 [4] Let {αn}∞n=1 be a chain sequence, if αn ≥ 1
4

for n ≥ N , then limn→∞αn = 1
4
.

Hence, if βn ≥ β > 1
4

for n ≥ N , then {βn}∞n=1 is not a chain sequence.

2.3.2 Oscillatory properties

The definition for the oscillatory solution is also given for clarity.

Definition 2.5 [5] A nontrivial solution Y = {yn}∞n=n0
of Eq. (4) is said to be a oscillatory

solution (around zero) if for every positive integer N ≥ n0, there exists n ≥ N such that the
product of two consecutive component solutions verifies ynyn+1 ≤ 0. Otherwise, the solution
Y = {yn}∞n=n0

is said to be a non oscillatory solution.

A first basic result on the oscillatory properties of the solutions from (4) is now introduced.

Theorem 2.6 Every solution Y = {yn}∞n=n0
of (4) is a non oscillatory or strictly alternating

solution if and only if the sequence {g(n0+1)
k }∞k=0 from (8) is a parameter sequence of the chain

sequence {α(n0+1)
k }∞k=1.
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Proof. Suppose that Y = {yn}∞n=n0
of Eq. (4) is a non oscillatory or strictly alternating

solution. In both situations, from (10), all terms
1−g

(n0+1)
k

g
(n0+1)
k

in the product must be positive.

This fact is possible if and only if 0 < g
(n0+1)
k < 1, ∀k ≥ 0. Thus, {g(n0+1)

k }∞k=0 from Eq.(8)

is a parameter sequence for the chain sequence {α(n0+1)
k }∞k=1. Then, we invoking the Sturm

separation theorem [5], because (4) is a self-adjoint second order difference equation, to claim
that every solution is a non oscillatory, or strictly alternating, solution.

Thus if the sequence {α(n0+1)
k }∞k=1 defined in Eq. (9) is not a chain sequence for any n0 ≥ 0,

then every solution Y = {yn}∞n=n0
from (4) is an oscillatory (non alternating) solution. As a

first consequence of Theorem 2.6, other result is given about the sign of the bk coefficients from
(4) in the non oscillatory and strictly alternating situations.

Corollary 2.7 If the solution Y = {yn}∞n=n0
of the self-adjoint difference equation (4) is a non

oscillatory (strictly alternating) solution, then the sequence {b∗n0+1+k}∞k=0 is a positive (negative)
sequence.

Proof. Let Y = {yn}∞n=n0
be a strictly alternating solution of Eq. (4). The sequence

{b∗n0+1+k}∞k=0 can not be a positive sequence [5], and from Theorem 2.6, the sequence must be

negative. Indeed, if for j ≥ 0, b∗n0+1+j > 0 exists and 0 < g
(n0+1)
j < 1, then signum(y(n0+j+1)) =

signum(y(n0+j+2)), which is a contradiction. Thus, {b∗n0+1+k}∞k=0 is a negative sequence. In an
analogous way, it is easy to show that if Y = {yn}∞n=n0

of equation (4) is a non oscillatory
solution, from Theorem 2.6 the sequence {b∗n0+1+k}∞k=0 must be a positive sequence. When

b∗n0+1+j = 0, the sequence {α(n0+1)
k }∞k=1 is not a chain sequence and Theorem 2.6 does not hold.

If a component solution is null, say yn0 = 0, then the Theorem 2.6 remains right. We can

take yn0+1 and yn0+2 as initial values. Besides g
(n0+1)
0 = 0, and if the sequence {α(n0+1)

k }∞k=1 is

a chain sequence, then the sequence {g(n0+1)
k }∞k=0 is its minimal parameter sequence.

Now consider the oscillatory properties of the equation (1) through its solutions in the form
of Eq. (11). Due to Theorem 2.6 the sequence of coefficients {an}∞n=n0

plays a dual character,

according to if the sequence {α(n0+1)
n }∞n=1 is, or is not, a chain sequence. Its analysis will be

intricate because, from equation (9), the sequence {αn} also depends of the sequences {an} and
{bn}. Nevertheless, when (1) is a self-adjoint equation, with {an}∞n=n0

a positive sequence, the
Theorem 2.6 stays right for the solutions of (1).

The chain sequences whose terms are greater than 1
4

have been characterized in [11]. From
this, the Theorem 2.6, and the Corollary 2.4, another corollary is obtained, which introduces
a simple quantitative condition, similar to others known results on oscillation theory [5], and
useful for the applications of the next Section.

Corollary 2.8 Let {an}∞n=n0+1 be a positive sequence, if α
(n0+1)
k =

an0+k+1

bn0+k+1bn0+k
> 1

4
for k ≥ 1,

and limk→∞(α
(n0+1)
k − 1

4
) > 0, then every solution X = {xn}∞n=n0

of Eq. (1) is a oscillatory,
non alternating, solution.
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3 Application to parameterized self-adjoint difference equations

Suppose that the real coefficients an(ε) and bn(ε) can present a parametric dependence. When
the sequence {an(ε)}∞n=n0+1 is positive, associated to Eq. (4), or to Eq. (1), exists a self-adjoint
difference operator which has the parameter ε as main parameter. This can be corresponding
to a major physical property of the system under study. An example is the energy in difference
Schrödinger operators. Could be of interest to find the component functions of Eq. (1) or (4),
as functions of the parameter ε. Also, it is possible to verify the range of parameter values
where this operator presents an absolutely continuous spectrum, and so on. The case of linear
dependence in ε has important applications, as the orthogonal polynomials or the difference
Schrödinger operators. The achievement of similar conditions seems admissible if the results
are checked in other cases of dependency on ε.

3.1 Absolutely continuous spectrum in difference Schrödinger operators

Difference Schrödinger operators are formulated with self-adjoint second order difference equa-
tions related to particular partial differential Schrödinger equations. Difference Schrödinger
operators are obtained through of some physical and accurate approximations. The classical
examples are Harper [8, 10] and Fibonacci [9] equations. The original differential equations
were transformed in particular cases of equation (4). Then Corollary 2.8 can be applied on
these discrete Schrödinger operators, which permits us to obtain an approximation, in some
cases an exact result, on the location of values of ε where the generalized zeros [7] could be dense
and the operator can display absolutely continuous spectrum. When applying the Corollary
2.8 on Eq. (4), the following inequality holds, with n ∈ Z+

0 ,

1

b∗n+1b
∗
n

>
1

4
. (12)

Harper equation [8, 10] is for the energies ε, that also depends on other parameters, λ, θ, ν.
Here, the coefficients are an = 1 and bn = b∗n = (ε − 2λ cos(2πθn + ν)). Fibonacci [9] equation
has the coefficients an = 1 and bn = b∗n = ε − cn. The coefficient cn only takes two constant
values A and B. But these values are introduced with a quasi-periodic sequence, the Fibonacci
sequence.

Harper equation, with θ ∈ Z, is an equation with constant coefficients, and one band of
continuous spectrum σ = [−2 + 2λcos(ν), 2 + 2λcos(ν)]. Its Lebesgue measure is Lσ = 4.
If θ = 1

2
the sequence b∗n is a 2-periodic sequence. In both cases the inequality (12) limits

the range of values of ε where absolutely continuous spectra can appear. The limit points
correspond exactly with the outer boundaries of the continuous spectrum, see Figure 1. For
these cases, this shows the main role of chain sequences in Eq. (4). The application of chain
sequences in orthogonal polynomials can be seen in [4].

When {b∗n} is a q-periodic sequence, with q > 2, the spectrum have q bands. θ = p
q
∈ Q. A

smooth condition is to maintain the inequality (12) for the complete period:
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Figure 1: Harper Equation. Exact continuous spectra (black lines) and borders (black points)
of the location with the approximated condition. θ = 1

q
, with q from 1 to 4, λ = 1, and ν = 0.

q∏
i=1

(
b∗i
2

)2 < 1. (13)

In Harper equation when θ is irrational, and in Fibonacci equation when A �= B, the
sequence {b∗n} is quasi-periodic, q → ∞. The spectrum of Harper equation is a Cantor set [10]
with Lebesgue measure Lσ = 4(1− |λ|) ≥ 0, with 0 ≤ |λ| ≤ 1. Also condition (12) holds in the
Fibonacci equation, but it does not work in Harper. It are not defined for ε values where the
coefficients b∗n = (ε − 2λ cos(2πθn + ν)) = 0.

4 Conclusions and future work

The basic properties of the chain sequences are adequate for a simple categorization of the
oscillatory solutions from equation (4). Also, they have been suitable to initiate an exhaustive
study of oscillatory conditions of the solutions from equation (1). A thorough application of the
chain sequences properties could give rise to an improvement of these results. Chain sequences
{α(n0+1)

n } with terms α
(n0+1)
j > 1

4
are not included in (13), for example some periodic sequences.

This produces in general that the outer bands of the absolutely continuous spectrum are not
covered in this approximation, see Figure 1. An improvement of the condition is necessary in
these situations. Finally, another line of research for a more exact location of the absolutely
continuous spectrum is based in the bounded condition |trace(Tn)| ≤ 2, for the trace map,
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[1, 9], of the fundamental matrix Tn from the equivalent companion matrix representations (2)
or (6).
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1 Notations and definitions

The main references are books [5], [6] for topology and [2], [8] for topological structures on
groups.

Quasi-topological groups are groups with topology where multiplication is separately con-
tinuous (not necessarily continuous) and inversion is continuous.

First recall some definitions of topological structures on groups:

Definition 1.1 Let X be a group with a topology τ . We say that X is a semi-topological group
if the mapping m (multiplication) is separately continuous, which means that it is continuous
for the right and left variable.

We say that X is a quasi-topological group if it is a semi-topological group and the inversion
mapping i : X → X : x �→ x−1 is continuous.

We recall from [5] that a semi-uniformity on a set X is a filter of subsets of X × X having
a base of symmetric sets and the intersection of which contains the diagonal. Every semi-
uniformity U on X induces a closure on X, which need not be topological, namely A =

⋂
U∈U

U [A].

We will use those semi-uniformities inducing topological closures.
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The couple (X,U) is then called a t-semi-uniform space, where the letter t stands for topo-
logical.

There exist several semi-uniformities that induce the topology of a quasi-topological group,
but we will examine only the two-sided semi-uniformities, which are used in the definition of
complete quasi-topological groups. The description is the same as for topological groups, see
e.g. [8]:

Definition 1.2 The semi-uniformity R consisting of sets
RU = {(x, y) ∈ X × X; yx−1 ∈ U}, U ∈ Ue, where Ue is a neighbourhood filter of the unit e in
the topology of a quasi-topological group X, is called the right semi-uniformity on the group
X.

The semi-uniformity L consisting of sets
LU = {(x, y) ∈ X × X; x−1y ∈ U}, U ∈ Ue, is called the left semi-uniformity on the group X.

Supremum L∨R, resp. infimum L∧R, is clearly also a semi-uniformity on X, see e.g. [5],
and it is called the two-sided (or upper), resp. Roelke (or lower), semi-uniformity on X.

Each of the described semi-uniformities is topological (or t-) semi-uniformity. They have
one more property (which is satified generally in uniform but not in semi-uniform spaces):

Definition 1.3 A t-semi-uniformity on a set X is called point open if it has such a base B that
B[x] is an open neighborhood of x, for all x ∈ X,B ∈ B.

The definitions of Cauchy-like properties and completeness come from [3]:

Definition 1.4 Let (X,U) be a t-semi-uniform space.

1. A filter f on a space X is called a classic Cauchy filter on (X,U) if for every U ∈ U there
exists F ∈ f such that F × F ⊂ U .

2. A filter f on a space X is called a Cauchy filter on (X,U) if for every U ∈ U there exists
F ∈ f such that U [x] ∈ f for every x ∈ F .

3. A filter f on a space X is called a weak Cauchy filter on (X,U) if for every U ∈ U and
every F ∈ f there exists x ∈ F such that U [x] ∈ f.

4. A filter f on a space X is called a semi-Cauchy filter on (X,U) if for every U ∈ U there
exists x ∈ X such that U [x] ∈ f.

Definition 1.5 A t-semi-uniform space is called (classically, weakly, semi-) complete if every
(classic, weak, semi-) Cauchy filter converges.

Recall that in topological groups all Cauchy-like properties coincide.

Definition 1.6 A quasi-topological group is called (classically, weakly, semi-) complete if it is
(classically, weakly, semi-) complete in its two-sided semi-uniformity.

Definition 1.7 Let X be a quasi-topological group. A (classically, weakly, semi-) complete
quasi-topological group that contains X as a dense subgroup is a group (classic, weak, semi-)
completion of the group X.
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2 Weak and semi-completion of quasi-topological groups

Every (Hausdorff) topological group is embedded in a (Hausdorff) topological group that is
complete in its two-sided uniformity. In quasi-topological groups the situation is different.

We show examples of T1- and T2-quasi-topological groups that cannot be embedded into
a weakly complete or semi-complete quasi-topological group, and, thus, they are neither weak
complete nor semi-complete.

The following example introduces a T1-quasi-topological group that has not a weak (and
thus not a semi-) completion (in t-semi-uniform spaces), and hence it has not a group weak
(and thus not a semi-) completion:

Example 2.1 Let Z be a quasi-topological group of integers
and take the coarsest T1-topology on Z.

The filter f = {F ⊂ Z; |Z � F | < ω ∧ {a, b} ⊂ F} is a weak Cauchy filter on the two-sided
semi-uniformity on Z, for every couple a, b ∈ Z, a �= b.
In fact, let U be a neighbourhood of the neutral element 0, F ∈ f.
The sets a−U, b−U, F have finite complements, and, thus, a non-empty intersection. Take an
element z from the intersection. Now z ∈ F and a, b ∈ z + U . Then U [z] = z + U ∈ f, and f is
weak Cauchy.

If the space Z has a weak completion Y , then the filter f is weak Cauchy on Y , see [3],
Proposition 1.

As Y is weakly complete, the filter f converges to a point y ∈ Y . That means that every

neighborhood of y belongs to the filter f, and thus it contains the points a, b. Now y ∈ {a}Y
,

which is equivalent to a ∈ {y}Y
, because the space Y must be symmetric. From a ∈ {y}Y

and

y ∈ {b}Y
it follows that a ∈ {b}Y

. But that is a contradiction to T1 property of Z.

We recall two useful assertions from [4]. The first one does not hold in semi-uniform spaces
in general.

Lemma 2.2 In point open t-semi-uniform spaces convergent filters are Cauchy.

Proof. If (X,U) be a point open t-semi-uniform space.
Take f a convergent filter. Let U be a symmetric set from the semi-uformity U .
Take x a limit of f. Then U [x] ∈ f. As the space is point open U [x] is a neighbourhood

of each its point. Now x ∈ U [y] for each y ∈ F = U [x] because U is a symmetric set. And
U [y] ∈ f because it is a neighbourhood of x.

Proposition 2.3 If a point open t-semi-uniform space X has a point open semi-completion,
resp. a point open weak completion, then every
semi-Cauchy, resp. weak Cauchy, filter on X must be Cauchy on X.
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Proof. Let Y be a pointwise open semi-completion of X, f be a semi-Cauchy filter on X. Then
f generates a filter f′ that is semi-Cauchy on Y and thus convergent on Y . Then f′ is Cauchy
on Y and thus Cauchy on X.

The proof for the weak completion is the same.

The next examples show Hausdorff quasi-topological groups that do not have group weak
(and thus semi-) completion.

We will use Proposition 2.3.
First we recall special quasi-topological groups from [1] and [7]. In [1], par. 3, some orbits

are shown to be quasi-topological groups:

Example 2.4 Let (G, +) be an Abelian group, Z a Hausdorff topological space.
If φ : G × Z → Z is an action (i.e., φ(0, z) = z, φ(a, φ(b, z)) = φ(a + b, z) for every

a, b ∈ G, z ∈ Z, and φ(a,−) : Z → Z is a continuous mapping for every a ∈ G), then every
orbit (O(z0) = {φ(a, z0); a ∈ G} ⊂ Z) forms a semi-topological group.

If G is an Abelian group of order 2, the orbits will be quasi-topological groups.

Special orbits are introduced in [7], Theorem 4:

Example 2.5 (Korovin’s orbit.)
Take an Abelian group (G, +) and a Hausdorff topological space X such that |Gω| = |G| ≥
|X| · ω. In Example 2.4 let Z = XG, φ be the shift of G × Z to Z, φ(a, f)(b) = f(a + b).

Denote by A the set of all finite subsets of G, F(A) the set of all mappings of A to X for
A ∈ A, F =

⋃{F(A);A ∈ A}.
Denote by A(f) such a set from A that f ∈ F(A({)), for f ∈ F .

Denote τ = |G| = |A| = |F|.
Take {fα; α ∈ τ} a well-ordering of the set F .

By transfinite induction we pick up gα : α ∈ τ , such that that the family {gα+A(fα) : α ∈ τ}
is disjoint:
Suppose that for an ordinal β ∈ τ we have a subset {gα : α ∈ β} of G such that the family
{gα + A(fα) : α ∈ β} is disjoint.

Take an element gβ ∈ G � H, where H is a minimal subgroup of G containing the set
{A(fα) : α ≤ β} ∪ {gα : α < β}.

G � H �= ∅, because |H| ≤ |β| · ω < τ = |G|.
The family {gα + A(fα) : α ≤ β} is disjoint.

Then take a mapping f ∈ XG such that restrictions f |gα+A(fα) = fα ◦ l−1
gα
|gα+A(fα) for any

α ∈ τ .

The subspace Y = {fg = f ◦ lg; g ∈ G} of the space XG is a semi-topological group, its
elements are functions fg, g ∈ G, where fg(a) = f(g + a), for a ∈ G, with the group operation
fg + fh = fg+h. The neutral element is f0 = f , inverse elements are −fg = f−g. Subbasic
neighbourhoods of the neutral element f = f0 are the sets U f

c = {fg; fg(c) = f(g + c) ∈ U},
where U are neighbourhoods of f(c) in X.
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Subbasic neighbourhoods of an element fg are the sets U
fg
c = {fh; fh(c) = f(h + c) ∈ U} =

{fg+k; fg+k(c) = f(g + k + c) = fk(g + c) ∈ U} = fg + U f
g+c, where U are neighbourhoods of

fg(c) = f(g + c) in X.

If we take for G a group of order 2 then Y is a quasi-topological group. (Here l−1
g = lg.)

We recall a useful Lemma 2 from [4]:

Lemma 2.6 Take G, X, f from Example 2.5. For any finite sets {x0, ..., xm} ⊂ X and
{d0, ..., dm} ⊂ G, where di �= dj for i �= j, i, j = 0, ...,m, there exists a gα ∈ G (picked by
the transfinite induction in Example 2.5) such that fgα(di) = f(gα + di) = xi, i = 0, 1, ...,m.
Moreover gα + di �= 0 for all i = 0, ...,m.

Proof. For the finite mapping h assigning xi to di, i = 0, ...,m, there must exist an α ∈ τ that
h = fα ∈ F and A(fα) = {d0, ..., dm}.

From f |gα+A(fα) = fα ◦ l−1
gα
|gα+A(fα) it follows that fgα(di) = f(gα + di) = xi.

Clearly we can suppose that α �= 0.
Thanks to the construction of the family {gα + A(fα)} in the Korovin’s orbit we have gα

that is not in the minimal subgroup generated by A(fα).

Thus gα, d1 + gα, ..., dm + gα �= 0.

The Korovin’s orbit of the group G of order 2 is a Hausdorff quasi-topological group that
has not a group weak (and semi-) completion:

Example 2.7 Take the Korovin’s orbit Y described in Example 2.5. Let G be a group of order
2 so that Y would be quasi-topological.

Denote by f the filter generated by all the sets Fc0,...,cn = {fg; fg(ci) = f(ci), i = 0, ..., n},
where c0, ..., cn �= 0. We have: Fc0,...,cn ∩ Fd0,...,dm = Fc0,...,cn,d0,...,dm ∈ f and f is in

⋂
f. Thus f is

a filter on Y .
First we show that f is weak Cauchy.

Take an arbitrary set Fc0,...,cn ∈ f and a basic neighbourhood U f
d0,...,dm

= {fg; fg(di) ∈ Ui, i =
0, ...,m} of f0 = f , where Ui are neighbourhoods of f(di) in X, di ∈ G, i = 0, ...,m.

If di �= 0 for all i = 0, ...,m then U f
d0,...,dm

⊃ Fd0,...,dm ∈ f. We have f0 = f ∈ Fc0,...,cn and

f0 + U f
d0,...,dm

= U f
d0,...,dm

∈ f.

Take now d0 = 0. By the previous Lemma we find such an α �= 0 that fgα(ci) = f(ci), i =
0, ..., n (which means that fgα ∈ Fc0,...,cn) and fgα(di) = f(di), i = 0, ...,m and gα, d1+gα, ..., dm+
gα �= 0.

The set Fgα,d1+gα,...,dm+gα = {fg; fg(di+gα) = f(di+gα) = f(di) = fgα(di+gα), i = 0, ...,m} ∈
f.
The last set is a subset of a neighbourhood U

fgα

d0+gα,...,dm+gα
= U f

d0,...,dm
+ fgα of fgα , which finally

must belong to the filter f.
Filter f is weak Cauchy.
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The filter f is not Cauchy.
The function f = f0 is in

⋂
f and if f were Cauchy it would converge to f . It does not because

by the previous lemma for any point x ∈ X � V , where V is a neighbourhood of f(0) in X,
and any Fc0,...,cn , where c0, ..., cn �= 0, we find an α < τ such that f(ci + gα) = f(ci), i = 0, ..., n,
and f(gα) = x.

Thus the neighbourhood V f = {fd; fd(0) ∈ V } of f is not in the filter f because for every
Fc0,...,cn from the base of the filter f there is a function fgα ∈ Fc0,...,cn � V f .

3 Classic completion and completion of Hausdorff quasi-topological groups

Now we introduce an example of a Hausdorff quasi-topological group that does not have a
Hausdorff group classic completion:

Example 3.1 Take the Abelian group R × R.
Denote
e = (0; 0),
an = ( 1

pn
, 1

pn
) ∈ R × R, n ∈ N,

where N is the set of positive integers and {pn}n∈N is a (increasing) sequence of prime numbers.

Denote Bε = {x ∈ R × R; d(x, e) < ε}, where d is the Euclidean metric on R × R.
For all points x ∈ R × R define sets Bx:

for x = e ∈ R × R let Bx = {Bε � {an,−an}n∈N}ε>0,

for x ∈ R × R let Bx = {Ge + x}Ge∈Be .

First we show that the system {Bx}x∈X generates a topology on R × R.
It suffices to show that if y ∈ Gx ∈ Bx then there is a Gy ∈ By that Gy ⊂ Gx, see Proposition

1.2.3 in [6].
In fact, if y ∈ Gx = G�{an +x,−an +x}n∈N, y �= x, where G is a standard open neighborhood
of x in R × R, then there is a standard open neighborhood H of y that H ⊂ G.
As {an + x}n∈N and {−an + x}n∈N converge to x in the standard topology, which is Hausdorff,
we can assume that H contains only finitely many an + x,−an + x, and thus we can take H
without points an + x,−an + x. Now H ⊂ Gx.

Take X = R × R with the the topology τ generated by the neighborhood system {Bx}x∈X .
Clearly, it is a Hausdorff quasi-topological group.

Take the filter f generated by the set {{an; n ≥ n0}, n0 ∈ N}.
We show that f is classic Cauchy on X (with the right (denoted by R), left or two-sided

semi-uniformities, which are the same on Abelian groups).

Take U ∈ Be, RU = {(x, y) ∈ X × X; x − y ∈ U} ∈ R.
We find a set F ∈ f that F × F ⊂ RU , which means that we find a number n0 ∈ N that

(an, am) ∈ RU for all n,m ≥ n0.
As U = G�{an,−an}n∈N for some standard neighborhood G of e and the sequence {an, n ∈ N}
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converges to e, and thus it is Cauchy, in the standard topology, there is an n0 ∈ N that
an − am ∈ G for all n,m ≥ n0.

There is no r ∈ N that an − am = ar.

In fact, it would mean that there is a r ∈ N that

1

pn

− 1

pm

=
pm − pn

pmpn

=
1

pr

,

in other words
pmpn

pm − pn

= pr.

That means that pmpn = pr(pm − pn), which is a contradiction because pm, pn, pr are prime
numbers, and r �= m,n.

Thus an − am ∈ U for all n,m ≥ n0, and f is classic Cauchy, and, of course, it has no limit
in X.

If there is a Hausdorff classic completion Y of the space X the filter f is classic Cauchy on
Y , see [3], Proposition 1, and it converges to a point y ∈ Y , y �= e. We show that e and y
cannot be separated.

Let there be disjoint open sets G,H ⊂ Y such that e ∈ G, y ∈ H.
First remind that every neighborhood G of e intersects every neighborhood of every point

an, n ≥ n0 for some n0 ∈ N.
As f converges to y, and thus the sequence {an, n ∈ N} also converges to y, we can take

such n0 that an ∈ H for all n ≥ n0, and thus H is a neighborhood of all an, n ≥ n0. That is a
contradiction.

The quasi-topological group X has no Hausdorff (classic, weak, semi-) completion containing
X as a subgroup, and, thus, it is not (classically, weakly, semi-) complete.

In [3], Theorem 5, a completion (weak reflection) is constructed for all non-complete semi-
uniform spaces. But this completion is not a quasi-topological group, because it contains the
original space as an open dense subspace.

There still remains an important question:

Question 1 Do quasi-topological groups have (non-Hausdorff) group classic completions or
completions?
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[4] B. BATÍKOVÁ: Completion of quasi-topological groups, Topology and its Applications
156 (2010), 2123-2128.
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148 00 Prague 4,
Czech Republic,
tel. +420 224 09 4243
email: stepkova@vse.cz

32 volume 4 (2011), number 2



 

NEW   CLASSES   OF  DIGRAPHS  WITH  GAUSSIAN   SPECTRA 
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Abstract. In general, the spectrum of a digraph contains both real and complex eigenvalues. A 

digraph is called a Gaussian integral digraph if it has a Gaussian integral spectrum, which 

means that all eigenvalues are Gaussian integers. In the paper the digraphs { }4
( , )n C s w

�

� , 

{ }1,2 4
,

n
K C s w∗

�

, 
2

1,
( )

m n
P K

�

 are defined. The authors determine the characteristic polynomials 

of these digraphs and obtain necessary and sufficient  conditions for these digraphs to be 

Gaussian integral. The discovery of these digraphs is a new contribution to the search of 

Gaussian integral digraphs. 
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1 Introduction 
 

A digraph G
�

 consists of a finite set V  of points 
1 2
, ,...,

n
v v v  and a set of ordered pairs of distinct 

points, written ( ),u v  or briefly uv , called arcs. The adjacency matrix ( )A A G=

�

 of a labeled 

digraph G
�

 is the n n×  matrix 
ij
a⎡ ⎤⎣ ⎦  with 1

ij
a =  if 

i j
v v  is an arc of G

�

, otherwise 0
ij
a = . The 

characteristic polynomial of G
�

 is 

( ) ( ) ( )
0

; det .
n

n i

i

i

P G P G x xI A a x
−

=

= = − =∑
� �

 

The sequence 
0 1 1
, ,...,

n
λ λ λ

−

 of the roots of ( )P G
�

 is called the spectrum of G
�

 and denoted by 

( )Spec G
�

. Contrary to non-directed graphs, whose spectra are real, the spectrum of the digraph G
�

 

contains both real and complex eigenvalues. A complex number a bi+  is called a Gaussian integer 
if both a  and b  are integers. The set of all these numbers is denoted by [ ]Z i . A digraph is called a 

Gaussian integral digraph if it has a Gaussian integral spectrum, which means that all eigenvalues 
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are from [ ]Z i . Of course, if it comes about that all of them are real integers, such digraph will be 

called integral. Some results on Gaussian  integral digraphs can be found in [4, 7]. All Gaussian 
integral digraphs in [4] are constructed from 

4
C
�

 using a generalized coalescence of 4
n  copies of 

( )( )4
,C P u

� �

, where ( )P u

�

 is a dipath of length 0, 1 or 2. In [7] the authors studied which circulant 

digraphs are Gaussian integral. 
Note that from Gaussian integral digraphs 

1
G
�

 and 
2

G
�

 we can produce arbitrarily large families of 

Gaussian integral digraphs by means of well known binary graph operations (see for example  
[4, 6]). Another families of Gaussian integral digraphs can be constructed from Gaussian integral 
digraphs 

1 2
, ,...,

n
G G G
� � �

 using NEPS (see [3]). 

In this paper new classes of Gaussian integral digraphs { }4
( , )n C s w

�

� , { }1,2 4
,

n
K C s w∗

�

 and 
2

1,
( )

m n
P K

�

 are constructed. We determine the characteristic polynomials of these digraphs and  

obtain necessary and sufficient conditions for these digraphs to be Gaussian integral. The discovery 
of these digraphs is a new contribution to the search of digraphs with Gausian spectra. 
 
 
2 Preliminaries 

 

A dipath u v→  in G
�

 is an alternating sequence of distinct points and arcs beginning at u  and 
ending at v . A dicycle is obtained from u v→  dipath by adding the arc ( ),v u . We say that v  is 

reachable from u  if there exists a dipath u v→ . A digraph G
�

 is strongly connected or more briefly 

strong if every two points are mutually reachable. If  both ( ),u v  and ( ),v u  are in G
�

, they form 

a symmetric pair of arcs which is denoted by { },u v . A digraph G
�

 is nonsymmetric if not every arc 

lies in a symmetric pair. Thus G
�

 is nonsymmetric if and only if the matrix ( )A G
�

 is nonsymmetric. 

Two nonisomorphic digraphs 
1

G
�

 and 
2

G
�

 are called cospectral if ( ) ( )1 2
Spec SpecG G=

� �

. 

Let the characteristic polynomial of a digraph G
�

 be ( )
0

;

n

n i

i

i

P G x a x
−

=

=∑
�

. Then by Sach’s theorem 

[2;Theorem 1.2]  the coefficients 
i
a  of ( )

0

;

n

n i

i

i

P G x a x
−

=

=∑
�

 are given by 
( )( )

( )

( 1)
n

c G i

i

G i G

a

⊂

= −∑
�

� �

, where 

the summation extends over all subdigraphs ( )G i
�

 with i  points, whose components are dicycles 

and where the exponent ( )( )c G i
�

 is the number of dicycles in ( )G i
�

. More details on the spectra of 

digraphs can be found in [1]. 

A partition of the vertex set ( )
1

n

i

i

V G V

=

=

�

∪ of a digraph G
�

 is called an equitable partition if there 

exists a square matrix ( )ij
M d=  of order n  such that for every { }, 1, 2,...,i j n∈  and for every 

vertex 
i

x V∈  there are exactly 
ij

d  arcs joining x  to vertices in 
j

V . The digraph D
�

 with the 
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adjacency matrix ( )ij
M d=  is called a front-divisor (divisor) of G

�

. Obviously, the vertices of D
�

 

correspond to the classes 
i

V  of the equitable partition. The more important property of a front-

divisor (divisor) D
�

 of a digraph G
�

 is that the characteristic polynomial ( );P D x
�

 divides the 

characteristic polynomial of G
�

 ([2; Theorem 4.7]), i.e. there exists a polynomial ( );P C x
�

 such that 

( ) ( ) ( ); ; ;P G x P D x P C x= ⋅

� ��

. It is proved in [2] that  ( );P C x
�

 is the characteristic polynomial of an 

integer matrix 
C

M � . The C
�

 is called a co-divisor of G
�

 and ( );P C x
�

 is characteristic polynomial of 

C
�

. More details about the theory of divisors and co-divisors can be found in [2, 5]. 
 
 

3 Strong Nonsymmetric Gaussian Digraphs { }( )4
,n C s w

�

�  

 

The directed cycle 
4

C
�

 is obviously Gaussian with the spectrum ( ) ( )4
Spec 1,C i= ± ±

�

. The digraph 

4
C
�

, which is complementary to the digraph 
4

C
�

, is also Gaussian with 

( ) ( )4
Spec 2,0, 1 , 1C i i= − + − −

�

. 

Let 
4

C
�

 be the digraph with the point set { }4
( ) , , ,V C s w u v=

�

 and the arc set 

( ) { } { }{ }4
, , , , ( , ), ( , ), ( , ), ( , )E C s w u v s v v w w u u s=

�

. Let us construct the digraph { }( )4
,n C s w

�

� , 

created from n  copies of 
4

C
�

 by identifying undirected edge { },s w . The digraph { }( )4
,n C s w

�

�  is 

depicted in Figure 3.1. 
 

 
Figure 3.1: Digraph { }( )4

,n C s w
�

�  

 

The vertex set of { }( )4
,n C s w

�

�  is { }( )( ) { }4
, , , , ; 1, 2,...,

i i
V n C s w s w v u i n= =

�

�  and the arc set of 

{ }( )4
,n C s w

�

�  is { }( )( ) { } { }{ }4
, , , , , ( , ), ( , ), ( , ), ( ); 1, 2,...,

i i i i i i
E n C s w s w v u s v v w w u u s i n= =

�

� .  

From theory of divisors and co-divisors of graphs follows that the divisor D
�

 of the digraph 

{ }( )4
,n C s w

�

�  has the vertex set ( ) [ ] [ ]{ }1 1
, , ,V D s w u v=

�

 and the arc set 
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( ) { } [ ] [ ]{ } [ ] [ ] [ ] [ ]{ }1 1 1 1 1 1
, , , , ( , ) , ( , ) , ( , ), ( , )n n

E D s w u v s v w u v w u s=

�

. The vertices [ ] [ ]1 1
,u v  of the 

divisor correspond to the classes of the equitable partition. The co-divisor consists of 1n −  disjunct 

nondirected edges. Both divisor and co-divisor of the digraph { }( )4
,n C s w

�

�  are depicted in Figure 

3.2. 
 

 
Figure 3.2: Divisor and co-divisor of { }( )4

,n C s w
�

�  

 

The adjacency matrix of the divisor D
�

 of the digraph { }( )4
,n C s w

�

�  is  

( )

0 1 0

1 0 0

1 0 0 1

0 1 1 0

n

n
A D

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

�

 

and its characteristic polynomial is ( ) 4 2 2
; 2 4 1P D x x x nx n= − − + −

�

. The characteristic polynomial 

of the co-divisor of the digraph { }( )4
,n C s w

�

�  is ( ) ( )
1

2
; 1

n

P C x x
−

= −

�

. Thus 

{ }( )( ) ( ) ( ) ( )( )
1

4 2 2 2

4
, ; 2 4 1 1

n

P n C s w x P D P C x x nx n x
−

= ⋅ = − − + − −

� ��

� .  

We get the following theorem. 
 

Theorem 3.1 The digraph { }( )4
,n C s w

�

�  is Gaussian if and only if the zeros of the equation 
4 2 2

2 4 1 0x x nx n− − + − =  belong to [ ]Z i . 

 

Corollary 3.2 The digraph { }( )4
,n C s w

�

�  is Gaussian if and only if 2
n k= . The spectrum of 

{ }( )4
,n C s w

�

�  is { }
2( 1)

1 ,1 , 1 , 1 , 1
k

k k ki ki
−

− + − − − + ± . 

Proof.  

Obviously 4 2 2
2 4 1x x nx n− − + − =  ( ) ( )

2 22
1 2x x n+ − + =  ( )( )2 2

2 1 2 1x x n x x n+ + + − + − =  

( )( ) ( )( )2 2

1 1x n x n= + + − − . The roots of 4 2 2
2 4 1 0x x nx n− − + − =  belong to [ ]Z i  if and only if 
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the roots of ( )( ) ( )( )2 2

1 1 0x n x n+ + − − =  belong to [ ]Z i , which holds only if 2
n k= . Thus 

{ }( )( ) { }
2( 1)

4Spec , 1 ,1 , 1 , 1 , 1
k

n C s w k k ki ki
−

= − + − − − + ±

�

� .                    

 
 
4 Strong Nonsymmetric Gaussian Digraphs { }1,2 4

,
n

K C s w∗

�

 

 
Let { }4

,C s w
�

 be an directed cycle on 4 vertices, where s  and w  is a pair of diagonal vertices that 

are not connected by an arc. { }1,2 4
,

n
K C s w∗

�

 is created from n  copies of { }4
,C s w

�

, where the 

diagonal vertices  ,s w  are connected by nondirected edge to a new vertex y . The digraph 

{ }1,2 4
,

n
K C s w∗

�

 is depicted in Figure 4.1. 

 
 

 
Figure 4.1: Digraph { }1,2 4

,
n

K C s w∗

�

 

 
The following theorem holds.  
Theorem 4.1 The digraph { }1,2 4

,
n

K C s w∗

�

 is Gaussian if and only if the zeros of  

( )( )4 2
2 2 1 0x x nx n− − + =  belong to [ ]Z i . 

Proof.  

The divisor of { }1,2 4
,

n
K C s w∗

�

 has the vertex set ( ) [ ] [ ] [ ] [ ]{ }1 1 1 1
, , , ,V D y s u v w=

�

 and the arc set 

( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( ) [ ] [ ]( ){ }1 1 1 1 1 1 1 1 1 1 1 1
, , , , , , , , , , , , , , ,

n n

E D y s y w s y w y s u u w w v v s=

�

. The 

characteristic polynomial of the divisor is ( ) ( )( )4 2
; 2 2 1P D x x x nx n= − − +

�

. The co-divisor of 

{ }1,2 4
,

n
K C s w∗

�

 consists of 1n −  copies of 
4

C
�

, so its characteristic polynomial ( ) ( )
1

4
; 1

n

P C x x
−

= −

�

 

has only Gaussian zeros. The divisor and co-divisor of { }1,2 4
,

n
K C s w∗

�

 are depicted in Figure 4.2.  
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Figure 4.2: Divisor and co-divisor of { }1,2 4

,
n

K C s w∗

�

 

 

Since { }( ) ( ) ( )1,2 4
, ; ; ;

n
P K C s w x P D x P C x∗ = ⋅

� ��

, the zeros of { }( )1,2 4
, ;

n
P K C s w x∗

�

 are Gaussian if 

and only if the zeros of ( ) ( )( )4 2
; 2 2 1P D x x x nx n= − − +

�

 are Gaussian.                   

 

Corollary 4.2  For every 
0

0

4 ,
k

i

n i k N

=

= ⋅ ∈∑  the digraph { }1,2 4
,

n
K C s w∗

�

 is Gaussian and its 

spectrum is 1

0

0

0, 1 , , 1 8 ;
k

n n

i

i i k N
−

=

⎧ ⎫⎛ ⎞
± ± ± + ⋅ ∈⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
∑ . 

Proof.  
It is sufficient to study whether the zeros of ( )4 2

2 2 1 0x nx n− − + =  are Gaussian. Using 2
x y=  we 

have ( )2
2 2 1 0y ny n− − + = , whose zeros are 2 1n +  and  1− . From 2

1x = −  we get 
1,2
x i= ± , from 

2
2 1x n= +  we get 

0

0

4 ,
k

i

n i k N

=

= ⋅ ∈∑  and 
3,4 0

0

1 8 ;
k

i

x i k N

=

⎛ ⎞
= ± + ⋅ ∈⎜ ⎟

⎝ ⎠
∑ .     

 
 
5 Strong Nonsymmetric Gaussian Digraphs 

2

1,
( )

m n
P K

�

 

 
Now we obtain a family of Gaussian digraphs from a star 

1,n
K . We will construct a digraph 

( )2

1,m n
P K

�

 by joining the endpoints of 
1,n

K  with m  new dipaths of length 2. Furthermore, none of 

these dipaths of length 2 can create a dipath of length more than 2.   
 
Example 5.1 The digraph ( )2

4 1,3
P K

�

 is depicted in Figure 5.1. As the characteristic polynomial of 

( )2

4 1,3
P K

�

 is ( )( ) ( ) ( )( )( )( )2 4 4 2 4

4 1,3
; 3 4 2 2P P K x x x x x x x x i x i= − − = − + − +

�

, the spectrum of 

( )2

4 1,3
P K

�

 is { }42, ,0i± ± . So the digraph ( )2

4 1,3
P K

�

is Gaussian. 
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Figure 5.1: Non-isomorphic cospectral digraphs ( )2

4 1,3
P K

�

 

 

Remark 5.2 If we place four dipaths of length 2 from example 5.1 in different way, we get non-
isomorphic digraph, which is cospectral to the original digraph. There exist five non-isomorphic 
cospectral digraphs ( )2

4 1,3
P K

�

. They are depicted in figure 5.1.       

 
Let us generalize the knowledge from example 5.1. 
 
Theorem 5.3 A digraph ( )2

1,m n
P K

�

 is Gaussian integral if and only if 2 2
,m a b=  2 2

,n a b= −  

1,a b> >  ,a b N∈ . The spectrum of the digraph ( )2

1,m n
P K

�

is { }3, ,0
n m

a bi
+ −

± ± . 

Proof. 

The characteristic polynomial of ( )2

1,m n
P K

�

 is ( )( ) ( )2 3 4 2

1,
;

n m

m n
P P K x x x nx m

+ −

= − −

�

. It follows 

from Sach’s Theorem that 
2

,a n= −  
4
a m= −  and 0

i
a =  for 2,i ≠  4i ≠ . As the digraph  ( )2

1,m n
P K

�

 

is Gaussian if and only if ( ) ( )( )4 2 2 2 2 2
; ,x nx m x a x b a b N− − = − + ∈ , we get 

2 2 2 2
,a b m a b n⋅ = − = , 1,a b> >  ,a b N∈ .  The spectrum of the digraph ( )2

1,m n
P K

�

 is 

{ }3, ,0
n m

a bi
+ −

± ± . So the digraph ( )2

1,m n
P K

�

 is Gaussian integral.      

 
Question 5.4 Let ( ),f m n  denote the number of cospectral Gaussian digraphs ( )2

1,m n
P K

�

. From 

remark 5.2 we have ( )4,3 5f = . Is there any explicit formula for ( ),f m n ? 
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THE QUEST FOR DE-GROOT-LIKE DUAL
OF PRETOPOLOGICAL SYSTEMS

WITH MATHEMATICA AS OF A TOOL OF VISUALIZATION

CHERNIKOVA Elena, (BY), KOVÁR Martin, (CZ)

Abstract. In this paper we study the preframe structure, representing the opens of a
possible pretopological system, and its behavior with respect to the certain de Groot-like
dualization construction. We present some counterexamples, contributing to the discussion
regarding the possibility of obtaining similar results as there are known for the topological
spaces. We also present a Mathematica 7 compatible package, which demonstrates and
visualize the problem for the finite posets of opens.
Key words and phrases. Preframe, pretopological system, de Groot-like dual for pre-
frames and pretopological systems.
Mathematics Subject Classification. Primary 6A12. Secondary 54B99, 54D30, 54E55.

1 Introduction and Status of the Problem

For a given topological space (X, τ), a topology τ d, generated by the family of all compact
saturated sets used as its closed base, is called the de Groot dual of the original topology.
Jimmie Lawson and Michael Mislove stated in [6] a problem, whether the sequence τ d, τ dd,
τ ddd, . . . , containing the iterated duals of τ , is infinite or the process of taking duals terminates
after finitely many steps with topologies that are dual to each other. The problem was solved
by the second author, who in 2001 proved that for any topology it holds τ dd = τ dddd [4] (the
result was first announced and communicated on Toposym, in Prague 2001) and in 2004 the
result was improved (again by the second author) to its final form τ d = (τ ∨τ dd)d [5]. Note that
from the last mentioned equality it follows that for any topology, τ d ⊆ τ ddd. It should be also
noted that the paper [4] pointed out several natural questions regarding the dual topologies.
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Some of them were addressed by the recent paper [8] of Tomoo Yokoyama. However, the second
part of the original question of J. Lawson and M. Mislove stated in [6], which topologies can
arise as duals, still remains open.

The questions of J. Lawson and M. Mislove related to the de Groot dual arise from an
alternate approach to the certain constructions of various semantic models in the theoretical
computer science, where the dual and the patch topologies constitute an important tool of inves-
tigation. However, there is a much wider class of related algebraic and topological structures,
like topological systems, frames, locales, and many other, having even a greater importance
for the topic than the class of topological spaces itself. An interesting direction of research
was introduced by Bernhard Banaschewski [1], who replaced the usual frame structure (for
example, of open sets in a topological space) by a more general, partially ordered structure
called preframe, where the suprema exist for all non-empty up-directed subcollections. B. Ba-
naschewski founded this structure useful for his alternate proof [1] of a relatively familiar result
of P. Johnstone [3] - the localic version of the well-known Tichonov Theorem.

It is natural and potentially useful for applications in the theoretical computer science to
study the preframe structure in connections with a proper modification of the de Groot dual.
Although we do not have an analogue of the results of the second author reached for the
topological spaces yet, some first attempts are already contained in the our paper [2], where
we defined a counterpart of the de Groot dual for a certain class of pretopological systems.
Pretopologial systems form a slight generalization of the familiar notion of the topological
systems (see, for example, [7] for the exact definition), where the frame structure of opens is
replaced by the preframe structure. The pretopological systems, for which our modification of
the de Groot dual is possible, are similar to the localic topological systems; also for them the
abstract points of the system are fully determined by the structure of opens. We call these
pretopological systems them compactly-localic. For the definitions and more detail, the reader
is referred to [2].

In this paper we will concentrate on the preframe structure of the opens of the pretopological
counterpart of the de Groot dual. It has been shown in [2], that under some circumstances,
the opens of the dual may be represented as certain maps from A to the Sierpiński frame 2,
where A is the poset representing the opens of the original pretopological system. If we denote
the poset of such maps by 〈A → 2〉, the sequence of the iterated duals then have the form
of 〈A → 2〉, 〈〈A → 2〉 → 2〉, 〈〈〈A → 2〉 → 2〉 → 2〉, . . . , etc. So far we do not know whether
there exist (and hold) appropriate, full-featured counterparts of the results of the second author
for the pretopological systems and how they should look. But some preliminary results and
counterexamples presented in this paper illustrate the difficulties which should be overwhelmed
in order to reach some final, positive result.

In parallel to the theoretical part of the paper, we present here also a Mathematica 7 com-
patible package IteratedDuals.m which calculates the first three elements of the previously
mentioned sequence representing the iterated duals for a finite poset A. The package also
displays their Hasse diagrams. Although the package itself has no theoretical importance for
our investigation, it can serve as a useful visualization and demonstration tool, conducing to
the reader’s convenience and comfort. Another, alternate reason for presenting of the package
(at the conference Aplimat) is to move the usage of the software Mathematica somewhat to-
wards to the more theoretical disciplines, and demonstrate its utility - even for such theoretical
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disciplines, as topology.

Now, let us recall some notions and make some denotations. We say that a partially ordered
set (briefly a poset) A is a preframe [1], if A is closed under directed joins and finite meets
(including the meet of the empty set), such that the binary meets distribute over the directed
joins. It should be noted that by the usual definition, a directed set is non-empty, so the
preframe need not have the least element - the supremum of the empty set (that is,

∨
∅). On

the other hand, a preframe always has the greatest element
∧

∅. By 2 = {⊥,�} we denote the
Sierpiński frame, consisting of the two elements, � and ⊥. Let A be a set, then each mapping
f : A → 2 can be uniquely identified with its �-kernel, Ker� f = {x|x ∈ A, f(x) = �}.
In this way, we can equip 2A with the partial order, given by the inclusion on the power set
2A. By False and True we denote the constant functions on A identically equal to ⊥ and
�, respectively. Let A, B be posets. We say that a mapping f : A → B is a morphism if
it preserves the (non-empty) directed joins and finite meets (including the meet of the empty
set), whenever they exist. The set of all morphisms f : A → 2 we denote by 〈A → 2〉. We
consider it as a poset, naturally equipped with the order induced from the partially ordered set
2A. Throughout this paper, if not otherwise stated, by the dual of a poset A we mean the set
〈A → 2〉 with this order.

2 Theoretical Results

We will start with the following proposition.

Proposition 2.1 Let A be a poset. Then 〈A → 2〉 forms a preframe of all morphisms of A
to 2.

Proof. We will show that 〈A → 2〉 has the non-empty directed joins, all finite meets (including
the meet of the empty set) and that the meets distribute over the directed joins.

Let Y ⊆ 〈A → 2〉 be non-empty and directed. Let f(a) =
∨

y∈Y y(a) for every a ∈ A. We
will show that f =

∨
Y in 〈A → 2〉. First, we must show that f ∈ 〈A → 2〉. Let B ⊆ A

be non-empty and directed, such that
∨

B exists in A. Then f(
∨

B) =
∨

y∈Y y(
∨

B) =∨
y∈Y

∨
b∈B y(b) =

∨
b∈B

∨
y∈Y y(b) =

∨
b∈B f(b), so f preserves non-empty directed joins. Let

C ⊆ A be non-empty and finite. Suppose that
∧

C exists in A. Then f(
∧

C) =
∨

y∈Y y(
∧

C) =∨
y∈Y

∧
c∈C y(c) = � implies that there exist some y1 ∈ Y , such that for every c ∈ C it

follows y1(c) = �. Then � =
∧

c∈C

∨
y∈Y y(c) =

∧
c∈C f(c) which implies f(

∧
C) ≤ ∧

c∈C f(c).
Conversely, suppose that

∧
c∈C f(c) =

∧
c∈C

∨
y∈Y y(c) = �. Then for every c ∈ C there is

some yc ∈ Y with yc(c) = �. Since Y is directed and C is finite, there exist some y1 ∈ Y
such that y1 ≥ yc for every c ∈ C. Hence, for every c ∈ C it follows y1(c) = �. Then
� =

∨
y∈Y

∧
c∈C y(c) =

∨
y∈Y y(

∧
C) = f(

∧
C) which implies that f(

∧
C) ≥ ∧

c∈C f(c). Now
we have f(

∧
C) =

∧
c∈C f(c), so f preserves also non-empty finite meets. It remains to check

the preservation of the empty meet. Suppose that A has the greatest element
∧

∅ ∈ A. Then
f(

∧
∅) =

∨
y∈Y y(

∧
∅) =

∨
y∈Y � = �. Hence, f is an element of 〈A → 2〉, and, clearly, an

upper bound of Y in 〈A → 2〉. Now, let u ∈ 〈A → 2〉 be another upper bound of Y . Then, for
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every a ∈ A and every y ∈ Y it follows that u(a) ≥ y(a), which gives u(a) ≥ ∨
y∈Y y(a) = f(a)

and, consequently, u ≥ f . So f is a correctly defined supremum of Y in 〈A → 2〉.
Suppose that Z ⊆ 〈A → 2〉 is non-empty and finite. Let g(a) =

∧
z∈Z z(a) for every a ∈ A.

We will show that g =
∧

Z in 〈A → 2〉. First, we must show that g ∈ 〈A → 2〉. Let B ⊆ A
be non-empty and directed, such that

∨
B exists in A. Then g(

∨
B) =

∧
z∈Z z(

∨
B) =∧

z∈Z

∨
b∈B z(b) = � implies that for every z ∈ Z there is bz ∈ B with z(bz) = �. Since Z is finite

and B is directed, there is some b1 ∈ B such that b1 ≥ bz for every z ∈ Z. Then z(b1) = � for
every z ∈ Z, which implies that � =

∨
b∈B

∧
z∈Z z(b) =

∨
b∈B g(b). Hence, g(

∨
B) ≤ ∨

b∈B g(b).
Conversely, suppose that

∨
b∈B g(b) =

∨
b∈B

∧
z∈Z z(b) = �. Then, there exists b1 ∈ B, such

that z(b1) = � for every z ∈ Z. Then � =
∧

z∈Z

∨
b∈B z(b) =

∧
z∈Z z(

∨
B) = g(

∨
B). It follows

that g(
∨

B) ≥ ∨
b∈B g(b) and hence, together with the previously proved (converse) inequality,

we have g(
∨

B) =
∨

b∈B g(b). Now, let C ⊆ A be non-empty and finite, having
∧

C ∈ A. Then
g(

∧
C) =

∧
z∈Z z(

∧
C) =

∧
z∈Z

∧
c∈C z(c) =

∧
c∈C

∧
z∈Z z(c) =

∧
c∈C g(c). Finally, suppose that

A has the greatest element
∧

∅ ∈ A. Then g(
∧

∅) =
∧

z∈Z z(
∧

∅) =
∧

z∈Z � = �. It follows
that g is an element of 〈A → 2〉, and, clearly, a lower bound of Z in 〈A → 2〉. Let l ∈ 〈A → 2〉
be a lower bound of Z. Then, for every a ∈ A and every z ∈ Z we have l(a) ≤ z(a), which gives
l(a) ≤ ∧

z∈Z z(a) = g(a) and, consequently, l ≤ g. Therefore, g is a correctly defined infimum
of Z in 〈A → 2〉. Moreover, the mapping True, constantly equal to �, obviously preserves all
non-empty directed joins and all finite meets, so 〈A → 2〉 also has the greatest element. Note
that True does not preserve the empty join, but it is not required.

Finally, we will show that binary meets distribute over directed joins in 〈A → 2〉. Let
x ∈ 〈A → 2〉 and Y ⊆ 〈A → 2〉 be directed. Then (x ∧ (

∨
Y ))(a) = x(a) ∧ (

∨
Y )(a) =

x(a) ∧ (
∨

y∈Y y(a)) =
∨

y∈Y (x(a) ∧ y(a)) =
∨

y∈Y ((x ∧ y)(a)) = (
∨

y∈Y (x ∧ y))(a) for every
a ∈ A, which implies x ∧ (

∨
Y ) =

∨
y∈Y (x ∧ y). By the definition, 〈A → 2〉 is a preframe.

Note that it may happen that 〈A → 2〉 has the bottom ⊥ =
∨

∅ although the constant
mapping False : A → 2 with the constant value ⊥ need not be an element of 〈A → 2〉. Let A
be a poset. Let us denote by hA : A → 〈〈A → 2〉 → 2〉 a mapping for which hA(a)(x) = x(a)
for every x ∈ 〈A → 2〉.

Proposition 2.2 Let A be a poset. Then hA : A → 〈〈A → 2〉 → 2〉 is a morphism.

Proof. Suppose that there exists the greatest element
∧

∅ ∈ A. It follows that hA(
∧

∅)(x) =
x(

∧
∅) = � for every morphism x ∈ 〈A → 2〉, so hA(

∧
∅) = �.

Let B ⊆ A be non-empty and directed and suppose that there exists
∨

B ∈ A. Let
x ∈ 〈A → 2〉. Then hA(

∨
B)(x) = x(

∨
B) =

∨
b∈B x(b) =

∨
b∈B hA(b)(x) = (

∨
b∈B hA(b))(x),

which implies that hA(
∨

B) =
∨

b∈B hA(b).
Let C ⊆ A be non-empty, finite and assume that there exists

∧
C ∈ A. Let x ∈ 〈A → 2〉. It

follows hA(
∧

C)(x) = x(
∧

C) =
∧

c∈C x(c) =
∧

c∈C hA(c)(x) = (
∧

c∈C hA(c))(x), which implies
that hA(

∧
C) =

∧
c∈C hA(c).

Since hA preserves all non-empty directed joins and all finite meets, it follows that hA is a
morphism.

Example 2.1 There exist a preframe A such that hA is not an epimorphism.
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Construction. Let A = ω + 1 = {1, 2, . . . , ω}, where ω is the first infinite ordinal, with its
natural linear order. Let n′ : A → 2 be a mapping with the �-kernel {n, n + 1, . . . , ω} for every
n ∈ A and (ω + 1)′ be a mapping identically equal to ⊥. The construction is illustrated by the
figure:

ω 1′�
�
�

2′

�
�
�

2

�
�
�

ω′

1 (ω + 1)′

Figure 1.

Since every morphism is an isotone mapping and the constant mapping with the empty
�-kernel, (ω + 1)′ = False, is not a morphism, it is not difficult to check that 〈A → 2〉 =
{ω′, . . . , 2′, 1′}. Notice that 〈A → 2〉 is linearly ordered by the set inclusion of the corresponding
�-kernels of its elements. For every x ∈ 〈A → 2〉 we put

p(x) =

{
�, for x > ω′

⊥, for x = ω′.

Obviously p is a morphism, so p ∈ 〈〈A → 2〉 → 2〉. But for every a ∈ A and every x ∈ 〈A → 2〉
it follows

hA(a)(x) = x(a) =

{
� for x ≥ a′

⊥ for x < a′.

Therefore, there is no a ∈ A such that p = hA(a), which implies that hA is not a surjection.

Example 2.2 There exist a preframe A such that hA is not a monomorphism.

Construction. Let A = {0, 1, . . . , ω} be the distributive lattice with the Hasse diagram given
by the figure:

ω
�

�
�

�
5

�
�
�

4

�
�
�

��������
3

2

��������
1

0

��������
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Figure 2.

That means, 0 is the bottom, ω is the top, 2k has two successors 2k + 1, 2k + 2 and 2k + 1
has a unique successor 2k + 3 for every k ∈ {0, 1, . . . }. Since for every Y ⊆ A infinite it follows∨

Y = ω, the binary meets distribute over all joins. It follows that A is preframe (moreover, a
frame).

Let x ∈ 〈A → 2〉. We will show that x(0) = x(1). If x(0) = �, then also x(1) = x(0 ∨ 1) =
x(0) ∨ x(1) = � ∨ x(1) = �. Suppose that x(2k) = ⊥ for every k ∈ {0, 1, . . . }. The set
S = {2, 4, . . . } infinite and directed. It follows that x(ω) = x(

∨
S) =

∨
s∈S x(s) =

∨
s∈S ⊥ = ⊥.

Then x(1) = x(1 ∧ ω) = x(1) ∧ x(ω) = x(1) ∧ ⊥ = ⊥. Finally, suppose that k is the greatest
number from {0, 1, . . . } such that x(2k) = ⊥. But ⊥ = x(2k) = x((2k + 2) ∧ (2k + 1)) =
x(2k+2)∧x(2k+1) = �∧x(2k+1), which implies x(2k+1) = ⊥. Then x(1) = x(1∧(2k+1)) =
x(1)∧x(2k+1) = x(1)∧⊥ = ⊥. Therefore, hA(0) = hA(1) which implies that hA is not injective.

Proposition 2.3 Let A be a finite preframe. Then hA : A → 〈〈A → 2〉 → 2〉 is an isomor-
phism.

Proof. Let p ∈ 〈〈A → 2〉 → 2〉. We put x1 =
∧

Ker�(p) and a1 =
∧

Ker�(x1), where
Ker� is a denotation for the �-kernel of a mapping with its co-domain equal to a subset
of 2. Since A is finite, also Ker�(p) is a finite set; say Ker�(p) = {y1, y2, . . . yk}. Then
p(x1) = p(y1 ∧ p2 ∧ · · · ∧ pk) = p(y1)∧ p(y2)∧ · · · ∧ p(yk) = �, which means that x1 is the least
element of Ker�(p). Similarly, a1 is the least element of Ker�(x1).

We claim that hA(a1) = p. Indeed, for every y ∈ 〈A → 2〉 it follows p(y) = � ⇔ y ∈
Ker�(p) ⇔ x1 ≤ y ⇔ Ker�(x1) ⊆ Ker�(y) ⇔ a1 ∈ Ker�(y) ⇔ hA(a1)(y) = y(a1) = �. Hence,
hA(a1) = p which means that hA is surjective.

Suppose that there exist a2 ∈ A such that also hA(a2) = p. Then x1(a2) = �, which implies
that a1 ≤ a2. Suppose that a1 �= a2 and let

z(a) =

{
�, for a ≥ a2

⊥, otherwise.

Since A is finite, z obviously preserves all directed joins. Then z(
∧

∅) = � since a1 < a2 ≤
∧

∅.
Let a, b ∈ A. Then z(a ∧ b) = � ⇔ a ∧ b ≥ a2 ⇔ a ≥ a2 and b ≥ a2 ⇔ z(a) = � and z(b) =
� ⇔ z(a) ∧ z(b) = �. Hence, z(a ∧ b) = z(a) ∧ z(b). It follows that z preserves also all finite
meets. Then z ∈ 〈A → 2〉, but hA(a1)(z) = z(a1) = ⊥ �= � = z(a2) = hA(a2)(z), which is a
contradiction. Therefore, a1 = a2, which implies that hA is injective.

The following corollary is an immediate consequence of the previous proposition and Propo-
sition 2.1.

Corollary 2.3 Let A be a finite poset. Then its iterated duals, 〈A → 2〉 and 〈〈〈A → 2〉 → 2〉 → 2〉,
are isomorphic.
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3 Interactions with Mathematica

For a visualization of the problem, we have developed a Mathematica package IteratedDuals.m,
which can display the Hasse diagrams of the original, finite poset and its first three iterated
duals. There are certainly several possibilities how to represent a poset in Mathematica. In our
package, a poset is considered as embedded to a suitable power set, partially ordered by the
inclusion. This representation of posets is well compatible with the approach used in the theo-
retical part of this paper, because the set of all maps from a poset A to the Sierpiński frame 2
is naturally frame-isomorphic with the power set 2A equipped with the inclusion partial order.

In the package IteratedDuals.m, the elements of 〈A → 2〉 are represented in two comple-
mentary formats. In the first one, the map f : A → 2 is represented as a binary relation,
that is, as an element of A × 2. This representation is more suitable for verifying whether
a map f is a morphism; and since all our considered sets are finite, only the preservation of
finite meets (including the meet of the empty set) is necessary to check. In the package, the
“is-morphism-test” is provided by a combination of the following functions:

(* Check if an element is a lower bound of a set *)
IsLowerBound2TF[Element , ElementSet List]:=Module[{n,i, Passed},
n=Length[ElementSet];
Passed=True;
For[i=1, i<=n,i++,If[Element ∩ ElementSet[[i]]!=Element,Passed=False]];
Return[Passed]];

(* Find all lower bounds of a set *)
LowerBounds[ElementSet List, OrderedSet List]:=Module[{n,i, LBounds},
n=Length[OrderedSet];
LBounds={};
For[i=1,i<=n,i++,If[IsLowerBound2TF[OrderedSet[[i]], ElementSet],
LBounds=Append[LBounds, OrderedSet[[i]] ]]];
Return[Union[LBounds]] ];

(* Check whether the infimum of a set in an ordered set exists *)
MeetExists[ElementSet List,OrderedSet List]:=Module[{LBounds,MeetCandidate,ESet, MExists},
MExists=False;
ESet=Union[ElementSet];
LBounds=LowerBounds[ESet, OrderedSet];
MeetCandidate=Union[Flatten[LBounds,1]];
If[ESet ∩ OrderedSet==ESet,If[MemberQ[LBounds,MeetCandidate],MExists=True]];
Return[MExists] ];

(* Calculate the infimum - meet of a set in an ordered set *)
Meet[ElementSet List,OrderedSet List]:=Module[{LBounds,MeetCandidate,ESet},
ESet=Union[ElementSet];
LBounds=LowerBounds[ESet, OrderedSet];
MeetCandidate=Union[Flatten[LBounds,1]];
If[ESet ∩ OrderedSet==ESet,If[MemberQ[LBounds, MeetCandidate],
Return[MeetCandidate]]]];

(* Check if a map is a morphism *)
IsMorphism2TF[Mapping List]:=Module[{X, i, j, n, MeetTemp, Passed},
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X=Domain[Mapping];
n=Length[Mapping];
Passed=True;
For[i=1, i<=n,i++,
For[j=1, j<=n, j++,
If[MeetExists[{Mapping[[i]][[1]],Mapping[[j]][[1]]}, X],
If [!MemberQ[Mapping,{Meet[{Mapping[[i]][[1]],Mapping[[j]][[1]]}, X],
Mapping[[i]][[2]] ∧ Mapping[[j]][[2]] }], Passed=False]] ]];
If[MeetExists[{},X],
If[!MemberQ[Mapping, {Meet[{},X],True}], Passed=False]];
Return[Passed] ];

In the second format, the map f : A → 2 is represented by its �-kernel (which coincides, in
this case, with another notion, in some literature referred as the support of f) – the set of all
elements in A for which the value of f is �. This representation is more suitable and efficient for
working with the partial order on 〈A → 2〉, and displaying the corresponding Hasse diagrams.
For the conversion from the first format to the second one, we use the following functions:

(* Find the support of a map *)
Support[Mapping List]:=Module[{Function,n,i, Supp},
Function=Union[Mapping];
n=Length[Function];
Supp={};
For[i=1, i<=n,i++,If[Function[[i]][[2]]==True, Supp=Append[Supp,
Function[[i]][[1]]]]];
Return[Union[Supp]] ];

(* Convert maps to their supports *)
Maps2Supports[x List]:=Module[{Maps, n, SetofSupports},
Maps=Union[x];
n=Length[Maps];
SetofSupports={};
For[i=1, i<=n,i++, SetofSupports=Append[SetofSupports,Support[Maps[[i]]] ]];
Return[Union[SetofSupports]] ];

For displaying the Hasse diagrams, our package internally uses the functions HasseDiagram
and ShowLabeledGraph, which are included in the standard Mathematica package Combinatorica.
This package is automatically loaded with IteratedDuals. Below there is an example of the
usage:

<< IteratedDuals̀

Poset = {{0, 1}, {1, 2}, {2, 0}, {0}, {}};
ShowDuals[Poset]
Poset and its three iterated duals:
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��

�0�

�0, 1� �1, 2�

�0, 2�

a

b c d

e

f

aa

bb cc

dd ee

ff

aaa

bbb ccc ddd

eee

fff

The Legend:

The elements of the first dual:
a={}
b={{0, 1}}
c={{0, 2}}
d={{1, 2}}
e={{0}, {0, 1}, {0, 2}}
f={{}, {0}, {0, 1}, {0, 2}, {1, 2}}

The elements of the second dual:
aa={{{}, {0}, {0, 1}, {0, 2}, {1, 2}}}
bb={{{1, 2}}, {{}, {0}, {0, 1}, {0, 2}, {1, 2}}}
cc={{{0}, {0, 1}, {0, 2}}, {{}, {0}, {0, 1}, {0, 2}, {1, 2}}}
dd={{{0, 1}}, {{0}, {0, 1}, {0, 2}}, {{}, {0}, {0, 1}, {0, 2}, {1, 2}}}
ee={{{0, 2}}, {{0}, {0, 1}, {0, 2}}, {{}, {0}, {0, 1}, {0, 2}, {1, 2}}}
ff={{}, {{0, 1}}, {{0, 2}}, {{1, 2}}, {{0}, {0, 1}, {0, 2}}, {{}, {0}, {0, 1}, {0, 2}, {1, 2}}}

...

(the output is shortened)

Note that the package IteratedDuals can be installed by the usual way to the appropriate
directory and it is compatible with Mathematica 7.0. The package will be freely available and
included with the Aplimat conference materials.

4 Conclusion

Although for a finite poset A we have an adequate counterpart of the result τ d ⊆ τ ddd proved by
the second author for the topological spaces (as it is shown in Proposition 2.3), the counterex-
amples in Example 2.1 and Example 2.2 demonstrate that a requested general result cannot
be reached in this form. The reason for the negative conclusion possibly could lie in the fact,
that unlike in the topological case, the points of the corresponding pretopological system are
modified in each step of taking the dual. The fact of modifying the underlying set of points we
should take into our considerations and appropriately adjust the way how the posets of dualized
opens are compared. We will concentrate on this topic in more detail in our forthcoming paper.
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Abstract. There is generalized concept of general hyperstructures (A. D. Nezhad,
R. S. Hashemi) onto the case of countable many basic sets (spaces) called general ω-
hyperstructures. This construction is then applied to pseudo-metrizable uniform spaces;
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tolerance spaces with the same carrier set implies uniform equivalence of pseudo-uniform
spaces induced by countable families of tolerances forming bases of uniformities.
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Throughout this paper, the symbol X,Y will denote two non-empty sets, where P ∗(X ∪Y )
denotes the set of all non-empty subsets of X ∪ Y .

A general hyperstructure is formed by two non-empty sets X,Y together with a hyperop-
eration,

∗ : X × Y −→ P ∗(X ∪ Y )

(x, y) �→ x ∗ y ⊆ (X ∪ Y ) � ∅.
Remark. A general hyperoperation ∗ : X × Y −→ P ∗(X ∪ Y ) yields a map of powersets
determined by this hyperoperation.

Thus the map ⊗ : P ∗(X) × P ∗(Y ) −→ P ∗(X ∪ Y ) is defined by A ⊗ B =
⋃

a∈A,b∈B

a ∗ b.

Conversely an general hyperoperation on P ∗(X) × P ∗(Y ) yields a general hyperoperation
on X × Y , defined by x ∗ y = {x} ⊗ {y}.
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In the above definition if A ⊆ X, B ⊆ Y, x ∈ X, y ∈ Y, then we define,

A ∗ y = A ∗ {y} =
⋃
a∈A

a ∗ y,

x ∗ B = {x} ∗ B =
⋃
b∈B

x ∗ b,

A ⊗ B =
⋃

a∈A,b∈B

a ∗ b.

Remark. If X = Y = H, then we obtain the classical hyperstructure theory.
The concept of general hyperstructure with a hyperoperation which is a mapping

∗ : X × Y −→ P ∗(X ∪ Y )

mentioned above (used by A. D. Nezhad and R. S. Hashemi) allows straightforward generaliza-
tion onto case of “hyperoperation of an arbitrary finite arity” in the following way:

Definition 1 [4] Let n ∈ N be an arbitrary positive integer, n ≥ 1. Let {Xk ; k = 1, . . . , n} be
a system of non-empty sets. By a general n-hyperstructure we mean the pair

({Xk ; k = 1, . . . , n}, ∗n),

where ∗n :
n∏

k=1

Xk → P∗
( n⋃

k=1

Xk

)
is a mapping assigning to any n-tuple (x1, . . . , xn) ∈

n∏
k=1

Xk

a non-empty subset ∗n(x1, . . . , xn) ⊂
n⋃

k=1

Xk .

Similarly as above, with this hyperoperation there is associated a mapping of power sets

⊗n :
n∏

k=1

P∗(Xk) → P∗
( n⋃

k=1

Xk

)

defined by

⊗n(A1, . . . , An) =
⋃{

∗n(x1, . . . , xn); (x1, . . . , xn) ∈
n∏

k=1

Ak

}
.

This construction is based on an idea of Nezhad and Hashemi for n = 2. Hyperstructures with
n-ary hyperoperations are investigated among others in [1, 23]. These hyperstructures allow
the below straightforward generalization which, however, is in close connection with various
mathematical structures. Some of below presented results are in a close connections with
[1, 14, 16] and of course [23].

Let us define the ω-general -hyperstructure:

Definition 2 Let ω be the smallest infinite countable ordinal. Let {Xk ; k ∈ ω} be a system of
non-empty sets. By an ω-general -hyperstructure we mean the pair ({Xk ; k ∈ ω}, ∗ω), where

∗ω :
∏
k∈ω

Xk → P∗
( ω⋃

k=1

Xk

)
is a mapping assigning to any sequence {xk}k∈ω ∈ ∏

k∈ω

Xk a non-

empty subset ∗ω({xk}k∈ω) ⊂ ⋃
k∈ω

Xk .
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Similarly as above, with this hyperoperation there is associated a mapping of power sets

⊗ω :
∏
k∈ω

P∗(Xk) → P∗
(⋃

k∈ω

Xk

)

defined by

⊗ω

({Ak}k∈ω

)
=

⋃{
∗ω

({xk}k∈ω

)
;
({xk}k∈ω

) ∈
∏
k∈ω

Ak

}
.

Definition 3 Let G1(ω) =
({Xk ; k ∈ ω}, ∗ω

)
, G2(ω) =

({Yk ; k ∈ ω}, •ω

)
, be a pair of general

ω-hyperstructures. By a good homomorphism H : G1(ω) → G2(ω) we mean any system of
mappings H = {hk : Xk → Yk} such that the following diagram is commutative:

∏
Xk

∗ω−−−→ P∗( ⋃
k∈ω

Xk

)
Q

k∈ω
hk

⏐⏐ ⏐⏐ϕ�

∏
Yk

•ω−−−→ P∗( ⋃
k∈ω

Yk)

(D1)

Here
∏
k∈ω

hk({xk}k∈ω) = {hk(xk)}k∈ω for any sequence {xk}k∈ω and ϕ� : P∗( ⋃
k∈ω

Xk

) → P∗( ⋃
k∈ω

Yk

)
is the lifting of a mapping ϕ :

⋃
k∈ω

Xk → ⋃
k∈ω

Yk defined by the mathematical induction. For

x ∈ X0 we put ϕ(x) = h0(x). Suppose ϕ :
k⋃

j=0

Xj →
k⋃

j=0

Yj is well-defined. Then for any

x ∈ Xk+1\
k⋃

j=0

Xj we put ϕ(x) = hk+1(x). Then using mathematical induction the mapping

ϕ :
⋃

k∈ω

Xk → ⋃
k∈ω

Yk is well-defined.

If all mappings hk ∈ H are bijections (or isomorphism if all Hk, Yk are endowed with some
structures) we call the H the isomorphism of ω- hyperstructures G1(ω), G2(ω).

As a certain generalization of the general n-hyperstructure from [4], Example 3.2, we will
construct the following structure:

Example 4 Consider a countable system of pairwise disjoint ordered sets (Xk ,≤k), k ∈ ω and
for x ∈ Xk let us denote [x)k = {y ∈ Xk ; x ≤k y}, i.e. [x)k is the principal end generated by
the element x within the ordered set (Xk ,≤k). Further, put

∗ω

({xk}k∈ω

)
=

⋃
k∈ω

[xk)k

for any sequence ∗ω

({xk}k∈ω

) ∈ ∏
kω

Xk . Then ∗ω

({xk}k∈ω

) ⊆ ⋃
k∈ω

Xk , thus

G(ω) =
({Xk ; k ∈ ω}, ∗ω

)
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is a general ω-hyperstructure in the sense of the above definition.
If H(ω) =

({Yk ; k = 1, . . . , n}, •n

)
is a general ω-hyperstructure such that (Yk ,k), k ∈ ω are

pairwise disjoint ordered sets and

•ω({yk}k∈ω) =
⋃
k∈ω

[yk)k ⊆
⋃
k∈ω

Yk

for any sequence {yk}k∈ω ∈ ∏
kω

Yk we consider a system hk : (Xk ,≤k) → (Yk ,k), k ∈ ω, of

strongly isotone mappings, i.e. for any x ∈ Xk there holds hk

(
[xk)k

)
=

[
hk(xk)

)
k
. Then

denoting H = {hk : Xk → Yk ; k ∈ ω} we obtain that H is a good homomorphism of the general
ω-hyperstructure; G(n) into the general ω-hyperstructure H(ω). Indeed, consider an arbitrary
sequence {xk}k∈ω ∈ ∏

k∈ω

Xk . As above denote by ϕ : P∗( ⋃
k∈ω

Xk

)→ P∗(
⋃

k∈ω

Yk) the lifting of the

mapping ϕ :
n⋃

k=1

Xk → ⋃
k∈ω

Yk induced by the system {hk : Xk → Yk ; k ∈ ω}—here in such a way

that ϕ|Xk = hk . Then for any sequence {xk}k∈ω ∈ ∏
k∈ω

Xk we have

ϕ
(∗ω({xk}k∈ω)

)
= ϕ

(⋃
k∈ω

[xk)k

)
=

⋃
k∈ω

ϕ
(
[xk)k

)
=

⋃
k∈ω

hk

(
[xk)k

)

=
⋃
k∈ω

[
hk(xk)k

)
= •ω

({hk(xk)}k∈ω

)

= •ω

(∏
k∈ω

hk

({xk}k∈ω

))
,

i.e. ϕ ◦ ∗ω = •ω ◦ ∏
k∈ω

hk , thus the diagram

∏
Xk

∗ω−−−→ P∗
( ⋃

k∈ω

Xk

)
Q

k∈ω
hk

⏐⏐ ⏐⏐ϕ�

∏
Yk

•ω−−−→ P∗
( ⋃

k∈ω

Yk

) (D2)

is commutative.

From the above example there follows immediately the following assertion.

Proposition 5 Let (Xk,≤k), (Yk,k), k ∈ ω, be two countable collections of pairwise dis-
joint ordered sets and G(ω), H(ω) be the corresponding ω-general hyperstructures. Suppose
(Xk ,≤k) ∼= (Yk ,k) for each k ∈ ω and hk : (Xk ,≤k) → (Yk ,k) are corresponding order-
isomorphisms. Then we have G(ω) ∼= H(ω).

It is well–known fact that there are several properties of metric spaces which are not topo-
logical but are closely connected with topological properties. For example, the property of
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being a Cauchy sequence, which is not a topological invariant and with this term connected
concept of a complete metric space, further concept of a uniformly continuous functions and
other notions. Thus the other direction of generalization of metric spaces different from the
concept of a topological space is the uniform spaces theory based on the mathematical construct
employed in studying uniformity properties. Roughly speaking, a uniform space is defined to
be a set X together with a family of subsets of the cartesian square X × X which satisfies
certain natural conditions. The approach used in our contribution is due to André Weil [22].
Compare also the excellent monograph [19]. Recall first the basic notions. A filter F in a set
S is a family of non-void subsets of S such that

i) if A,B ∈ F then A ∩ B ∈ F and

ii) if A ∈ F and A ⊂ B ⊂ S, then B ∈ F .

A uniformity for a set X is a filter U of binary reflexive relations on X such that for any U ∈ U ,
then U−1 ∈ F and if U ∈ U , then there exists a relation V ∈ F such that V ◦ V ⊂ U . Relation
U ∈ U are called entourages or neighbourhoods of the diagonal Δ ⊂ X ×X. The pair (X,U) is
a uniform space. It is not generally true that the union or the intersection of two uniformities
for X is a uniformity. However, the union of a collection of uniformities generates a uniformity
in a rather natural sense. A subfamily B of a uniformity U is a base for U if and only for
each U ∈ U there is a relation V ∈ B such that V ⊂ U . If B is a base for a uniformity U
them B determines U entirely; clearly for a subset U ⊂ X × X we have U ∈ U if and only if
there exists V ∈ B such that V ⊂ U . In the monograph [19] there is a contained the following
characterization theorem (a slightly reformulated by us):

Theorem ([19, Ch. 6, Th.2, p.177]). A family B of subsets X × X is a base for some
uniformity for X if and only if

1. ΔX ⊂ U for each U ∈ B (i.e. any relation U ∈ B is reflexive),

2. if U ∈ B then there exists a relation V ∈ B such that V ∈⊂ U−1,

3. if U ∈ B then there exists a relation V ∈ B such that V ◦ V ⊂ U ,

4. if U, V ∈ B then there exists W ∈ B with the property W ⊂ U ∩ V .

Since the concept of a uniformity generalizes such properties of metric (or pseudo-metric)
spaces which cannot be expressed in terms of topological spaces, one of crucial question in the
theory of uniformity spaces is the metrization problem. So, in [19, Ch. 6, p.184–188] it is shown
that every uniformity is derived from the family of its uniformly continuous pseudo-metrics,
moreover a uniformity can be derived from a single pseudo-metric if and only if the uniformity
has a countable base.

Recall that a function d : X ×X → R is said to be a pseudo-metric on a set X and the pair
(X, d) is said to be a pseudo-metric space if

1. d(x, y) ≥ 0, d(x, x) = 0 for any pair x, y ∈ X,

2. d(x, y) = d(y, x), x, y ∈ X,
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3. the triangle inequality is satisfied, (i.e. d(x, y) + d(y, z) ≥ d(x, z), x, y, z ∈ X).

Each pseudo-metric d for a set X generates a uniformity in the following way:
For each positive number r ∈ R let

Vd,r = {[x, y]; d(x, y) < r}.

Clearly (Vd,r)
−1 = Vd,r, Vd,r ∩ Vd,s = Vd,t, where t = min{r, s} and Vd,r ◦ Vd,r ⊆ Vd,2r. It follows

that the family of all sets of the form Vd,r is a base for a uniformity for the set X.
This uniformity is called the pseudo-metric uniformity or the uniformity generated by d. A

uniform space (X,U) is said to be a pseudo-metrizable (or metrizable) if there is a pseudo-metric
(metric) d, respectively, such that U is the uniformity generated by d.

A mapping f of a uniform space (X,U) into a uniform space (Y,U) is said to be uniformly
continuous if for each relation (V ∈ V) the relation {[x, y]; [f(x), f(y)] ∈ V } is a member of U .
This condition may be rephrased in several ways.

Defining a mapping f ×f : X ×X → Y ×Y by (f ×f)(x, y) =
[
f(x), f(y)

] ∈ Y ×Y (where
f : X → Y is a map) it is easy to see that the following conditions are equivalent:

1. f : (X,U) → (Y,V) is uniformly continuous,

2. for each Y ∈ V there is U ∈ U , such that (f × f)(U) ∈ V ,

3. (f × f)−1(V) ⊂ U , i.e. (f × f)−1(V ) ∈ U , for any entourage V ∈ V,

4. if B ⊂ V is a base for the uniformity V then for each V ∈ B we have (f × f)−1(V ) ∈ U .

Recall that in the case of usual uniformity U on the set R of all real numbers the above
conditions are equivalent to the concept of usually uniformly continuous function: For any ε > 0
there exists a number δ > 0 such that, x, y ∈ R, |x − y| < δ we have |f(x) − f(y)| < ε.

Evidently the composition of two uniformly continuous mapping is again uniformly con-
tinuous. If f is one-to-one map of X onto Y and both f and f−1 are uniformly continuous,
then f is called a uniform isomorphism and spaces (X,U) and (Y,V) are said to be uniformly
equivalent, in [2] and f : (X,U) → (Y,V) is called a uniform homomorphism and spaces (X,U),
(Y,V) are called uniform homeomorphic.

The composition of two uniform homeomorphisms, the inverse of a uniform homeomorphism,
and the identity mapping of a uniform space onto itself are all uniform homeomorphisms, and
consequently the class of all uniform spaces is divided into equivalence subclasses, consisting
of uniform homeomorphic spaces. One of classical result of the uniform spaces theory in the
well-known metrization lemma 12 ([19, p.185] ) which says that if {Un; n ∈ ω} is a sequence of
reflexive binary relations on X such that U0 = X × X and U3

n+1 ⊂ Un for each n, then there
exists a function

d : X × X → R
+
0

(
= {r ∈ R; r ≥ 0})

satisfying the triangle inequality and the condition

Un ⊂ {[x, y]; d(x, y)2−n} ⊂ Un−1
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for each n ∈ ω, n > 0. Moreover if each relation Un is symmetric, then there is a pseudo-
metric satisfying the above condition. Now, if a uniform space (X,U) has a countable base
{Vn; n ∈ ω} then it is possible to construct by induction a family {Un; n ∈ ω} of symmetric
reflective relations Un ⊂ X × X such that U3

n+1 ⊂ Un−1, Un ⊂ Vn for each positive integer n.
(Here, as above U3

n = Un ◦ Un ◦ Un.) The family {Un; n ∈ ω} is then a base for the uniformity
U , and upon applying the above metrization lemma it follows that the uniform space (X,U) is
pseudo-metrizable. Thus, there holds:

Theorem 6 ([19, Metrization theorem 13, p. 186]). A uniform space is pseudo-metrizable if
and only if its uniformity has a countable base.

As a certain application of constructions contained in the first part of our contribution it the
following theorem. Notice, that a tolerance space (X,T ) is a set X endowed with a reflexive
and symmetric binary relation T ⊂ X × X, i.e. a tolerance relation. Algebraic theory of
tolerances is contained e.g. in [3] and in many other papers. Further, by a product

∏
n∈ω

(X,Tn)

of a family of tolerance spaces
{
(X,Tn); n ∈ ω

}
with the same carrier X we mean the direct

product defined by ∏
n∈ω

(X,Tn) = (Xn, T ),

where for a pair of sequences {xn}n∈ω, {yn}n∈ω ∈ Xω we have {xn}n∈ωT{yn}n∈ω whenever
xnTnyn for any n ∈ ω. The union

⋃
n∈ω

(X,Tn) = (X,
⋃

n∈ω

Tn). Notice, that on a set X evidently

arbitrary union of tolerances is a tolerance relation on this set X.

Definition 7 Uniform spaces (X,U), (Y,V) are said to be base-equivalent if for some bases
BU , BV of uniformities U , V, respectively there exists a bijection ξ : X ×X → Y × Y such that
BV = ξ�(BU), where ξ� : P(X × X) → P(Y × Y ) is the lifting of the bijecton ξ.

Theorem 8 Let
{
(X,Tn); n ∈ ω

}
,

{
(Y, Sn); n ∈ ω

}
be sequences of tolerance spaces (with

non-void carrier sets X,Y , respectively) satisfying the conditions T0 = X × X, S0 = Y × Y
and U3

n+1 ⊂ Un−1 for Un ∈ {Tn, Sn}, n ∈ ω, n > 0. Then
{
(X,Tn); n ∈ ω

}
,

{
(Y, Sn); n ∈ ω

}
are bases for the uniformity. If (X,U), (Y,V) are corresponding generated uniform spaces, then
they are pseudo-metrizable. Moreover, if general ω-hyperstructures

G(ω) =
{∏

n∈ω

(X,Tn); ∗ω,P∗
(⋃

n∈ω

(X,Tn)
)}

,

H(ω) =
{∏

n∈ω

(Y, Sn); •ω,P∗
(⋃

n∈ω

(Y, Sn)
)}

with ∗ω

({xk}k∈ω

)
=

⋃
k∈ω

Tk(xk) for any sequence {xk}k∈ω ∈ ∏
n∈ω

(X,Tn) and similarly in the

case •ω :
∏
n∈ω

(Y, Sn) → P∗( ⋃
n∈ω

(Y, Sn)
)
, are isomorphic, i.e. G(ω) ∼= H(ω) (all mappings

hn : (X,Tn) → (Y, Sn), n ∈ ω are tolerance isomorhpism), the uniform spaces (X,U), (Y,V)
are base-equivalent.

volume 4 (2011), number 2 57



Aplimat - Journal of Applied Mathematics

Proof. By the above considerations countable system of tolerance relations {Tn; n ∈ ω},
{Sn; n ∈ ω} on sets X,Y , respectively satisfying in this theorem required conditions are based
of uniformities, say U ⊂ X × X, V ⊂ Y × Y . By the metrization Theorem 6 both uniform
spaces (X,U), (Y,V) are metrizable.

Now suppose general ω-hyperstructures G(ω), H(ω) are isomorphic. Suppose

H = {hn : Xn → Yn; n ∈ ω}

is an isomorphism of G(ω) onto H(ω), where hn : (X,Tn) → (Y, Sn) is an isomorphism of
tolerance spaces for any n ∈ ω. According to the definition of isomorphisms of general ω-
hyperstructures G(ω), H(ω) there exists a bijection ϕ : X → Y satisfying the equality ϕ ◦ ∗ω =
•ω◦

∏
n∈ω

hn. Then the lifting (ϕ×ϕ)� : P∗(X×X) → P∗(Y ×Y ) of the mapping ϕ×ϕ : X×X →
Y ×Y maps one-to-one the base BU = {Tn; n ∈ ω} of the uniformity U onto the base BV of the
uniformity V , consequently uniform spaces (X,U), (Y,V) are base-equivalent.

The problem of existence of a uniform homeomorphism ψ : (X,U) → (Y,V), in particular,
its effective construction will be investigated in a forhtcomming paper.

As it has been mentioned above we use the approach to uniform spaces based on a concept
of a filter of vicinities of a diagonal which was based by André Weil [22]. This aproach is
presented in many monographs—among others let us mention [19, 21]. Horst Herrlich in his
second book of the series [17] presented the covering approach but Weil theory is mentioned,
e.g. in Definition 4.4.12.

Except papers [15, 23] and many other papers devoted to the thema there is a pioneering
paper [18] investigated very general multialgebras already in 1966.
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[7] CHVALINA, J., CHVALINOVÁ, L.: Realizability of the endomorphism monoid of a semi-
cascade formed by solution spaces of linear ordinary n–th order differential equations.
Aplimat–Journal of Appl. Math. III, No. II, pp. 211–223, 2010.
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[18] KARÁSEK, J.:On General Algebras. Archivum mathematicum Brno, T. 2, 157–175, 1966.

[19] KELLEY, J. L.: General Topology. D. Van Nostrand Company, Toronto, New York, Lon-
don, 1955.

[20] NEUMAN, M.: Global Properties of Linear Ordinary Differential Equations. Mathemat-
ics and its Applications, East European Series 52, Kluwer Academic Publishers (with
Academia Praha), Dordrecht–Boston–London, 1991.

[21] PREUSS, G.: Algemeine Topologie. Springer-Ferlag, Berlin-Heidlberg-New York, 1975.

[22] WEIL, A.: Sur les espaces a structure et sur la topologie générale. Actualités Sci. Ind. 551,
Paris, 1937.

[23] PELEA, C.:Identities and multialgebras. Italian J. Pure and Appl. Math. 15, 83–92, 2004.

Current address

Jan Chvalina, (Prof. RNDr., DrSc.),
Brno University of Technology, Faculty of Electrical Engineering and Communication,

volume 4 (2011), number 2 59



Aplimat - Journal of Applied Mathematics

Department of Mathematics, Technická 8, 616 00 Brno, Czech Republic
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SOLVABILITY OF CERTAIN GROUPS
OF SECOND-ORDER LINEAR DIFFERENTIAL OPERATORS
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Abstract. There are investigated groups of ordinary second-order linear differential oper-
ators with respect to the problem of their solvability. In particular, using the stabilization
of the commutant chain of the basic group of operators multiplication of which is moti-
vated by composition of affine transformations of linear spaces we have obtained that the
mentioned group is solvable.
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of linear differential operators, solution spaces of linear ordinary second-order differential
equations, subnormal series of a group, chain of commutants of a group, solvable group.
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There is well-known fact from the literature [4], [15]–[21] that Otakar Bor̊uvka started in the
fifthies of the last century the systematic study of global properties of the ordinary second-order
linear differential equations [4]. Further important results generalizing Bor̊uvka’s approach were
obtained by Frantǐsek Neuman [15]–[21]. The just mentioned school is characteristical by ap-
plications not only analytic methods in those investigations, but also algebraic, topological and
geometric tools. Local methods and results are not sufficient when studying problems of a
global nature, such as boundedness, periodicity, asymptotic and oscillatory behavior, nonvan-
ishing solutions, and consequently the factorization of linear differential operators [4], as well
as many other things [21].

In this contribution we are concern ourselves onto certain algebraic aspects and properties
of systems of ordinary linear differential second-order operators which are left hand sides of
corresponding linear homogeneous differential equations. In particular, in connection with the
theory of series of groups motivated by the Galois theory of solvability of algebraic equations
and the modern theory of extensions of fields we show that the group of linear second-order
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differential operators considered and investigated in our early papers is solvable (in the Galois
sense). It is to be noted that there exists a large and deep Galois theory of linear differential
equations published in many papers as well as in the book [22] (and in other papers of authors
of the mentioned monography), but results obtained here seems to be independent on the
mentioned theory and not contained between these results.

As usually, C
k(J) stands for the commutative ring of all real functions of one variable

defined on an open interval J of real numbers, and having there continuous derivatives up to
order k ≥ 0. Instead of C

0(J) we write only C(J); this symbol denotes the ring of all continuous
functions on J , C+(J) is its subsemiring of all positive continuous functions. In accordance
with [15]–[19] denote by A2(J) the set of ordinary linear homogeneous differential equations of
the second order

y′′ + p(x)y′ + q(x)y = 0 ,

such that p ∈ C+(J), q ∈ C(J). Let us denote by Id the identity operator and D = d
dx

. By
L(p, q) will be denoted the differential operator

L(p, q) = D2 + p(x)D + q(x) Id ;

thus the above equation has the form L(p, q)y = 0. Further, we denote by

LA2(J) =
{
L(p, q) : C

2(J) → C(J); p ∈ C+(J), q ∈ C(J)
}

the set of all such differential operators.
For r ∈ R we denote by χr : J → R the constant function with the value r. In [5] it is

contained the proof of the following assertion.

Proposition 1 Let J ⊆ R be an open interval,

LA1(J) =
{
L(p, q); p ∈ C+(J), q ∈ C(J)

}
.

For any pair of differential operators L(p1, q1), L(p2, q2) ∈ LA2(J) define

L(p1, q1) · L(p2, q2) = L(p1p1, p1q2 + q1) .

Then (LA1(J), ·) is a noncommutative group with the unit element L(χ1, χ0). �

In what follows we write simply L(1, 0) instead of L(χ1, χ0).
Now recall one of basic and important concepts of the group theory, i.e. the concept of a

normal subgroup of a group (called also invariant). So, a subgroup H of a group G is called
normal (or invariant) if for any element a ∈ G there holds a−1 · H · a ⊆ H or equivalently
a−1 · H · a = H. This means that the subgroup H is invariant with respect to inner automor-
phisms of the group G. As usually we write H � G. Denoting

L11A2(J) =
{
L(p, q); L(p, q) ∈ LA2(J), p(x) ≡ 1

}
,

thus
L11A2(J) =

{
L(1, q); q ∈ C(J)

}
we can recall the theorem proved in [3].

62 volume 4 (2011), number 2



Aplimat - Journal of Applied Mathematics

Theorem 1 Let J ⊆ R be an open interval. Then (L11A2(J), ·) is a normal commutation
subgroup of the group (LA2(J), ·), i.e. (L11A2(J), ·)�(LA2(J), ·) and (L11A2(J), ·) ∼= (C(J), +).
�

The above formulated theorem can be extended in this way:
Denote LC1A2(J) = {L(r, q); L(r, q) ∈ LA2(J), r ∈ R, r �= 0}, i.e. L(r, q)y = 0 are second-

order linear differential equations with constant coefficients at the first derivative of functions
y(x), thus equations of the form

y′′ + r · y′ + q(x) · y = 0 , r ∈ R, r �= 0, q ∈ C(J) .

Theorem 2 Let J ⊆ R be an open interval. There holds

(L11A2(J), ·) � (LC1A2(J), ·) � (LA2(J), ·) .

Proof. First of all we show that (LC1A2(J), ·) is a subgroup of the group (LA2(J), ·). Suppose
L(r, q), L(s, u) ∈ LC1A2(J). Then

L(r, q) · L−1(s, u) = L(r, q) · L(
1
s
,−u

s

)
= L

(
r
s
,− r

s
u + q

)
∈ LC1A2(J) , L(1, 0) ∈ LC1A2(J) ,

thus LC1A2(J) is a subgroup of the group LA2J . Now suppose L(1, q) ∈ L11A2(J), L(r1, q1),
L(r2, q2) ∈ LC1A2(J), L(u, v) ∈ LA2(J) are arbitrary differential operators. We have

L(r1, q1) · L(1, p) · L−1(r1, q1) = L(r1, r1p + q1) · L
(

1
r1

,−g1

r1

)
= L(1, r1p) ∈ L11A2(J) ,

thus
L(r1, q1) · L11A2(J) · L−1(r1, q1) ⊆ L11A2(J) .

Further

L(u, v) · L(r1, q1) · L−1(u, v) = L(r1u, v + uq1) · L
(

1
u
,− v

u

)
= L

(
r1, (1 − r1)v + uq1

) ∈ LC1A2(J) ,

hence
L(u, v) · LC1A2(J) · L−1(u, v) ⊆ LC1A2(J)

for any operator L(u, v) ∈ LA2(J). From the above considerations there follows(
L11A2(J), ·) �

(
LC1A2(J), ·) �

(
LA2(J), ·) .

�
Now recall some basic concepts from the theory of group series which will be needed in the

following considerations. For more details see e.g. [11, 12, 13, 14].
A sequence of subgroups Hi (i = 0, 1, . . . , n) of a group G such that

1 = H0 � H1 � · · · � Hn−1 � Hn = G (H)

is said to be a subnormal series of the group G, the corresponding factor-groups Hi/Hi−1

(i = 1, 2, . . . , n) are termed factors of the series (H).
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Definition 3 ([14, 10.22], [13, §57,p.361]) If G is a group then its subnormal series

1 = H0 � H1 � · · · � Hn−1 � Hn = G

is said to be solvable, if all factors Hi/Hi−1 (i = 1, 2, . . . , n) are commutative thus abelian
groups. If a group G possesses at least one solvabel subnormal series then G is called a solvable
group.

Remark 4 Evidently, an arbitrary abelian group is solvable, however there exist solvable groups
which are not abelian.

In the literature one can find well-known results concerning solvable groups. Let us mention
some of them: First of all it is famous Feit-Thompson theorem or odd order theorem which
states that every finite group of odd order is solvable. It was proved by Walter Feit and John
Griggs Thompson (1962, 1963) – [11, 12]. Further, every finite group of order |G| ≤ 100 except
60 is solvable. (For these informations and for other details both authors are very obliged to
Professor Václav Havel.) Any p-group G, i.e. |G| = pn for some prime number p is solvable. If
K�G, then the group G is solvable if and only if both groups K and G/K are solvable. A group
is solvable if and only if it possesses a subnormal series all factors of which are solvable. In
particular a direct product of a finite number of solvable groups is a solvable group. Of course,
any finite group G of the degree 5 and more is not solvable. Other important informations can
be found in the literature [11, 12, 13, 14].

According to the above definition we can prove the solvability of the group G = LA2(J)
in such a way that we construct a subnormal series of the group LA2(J) with abelian factors.
In fact, we are able to construct the so-called underlying or backing chain of groupoids of
fractions of continuous functions f ∈ C(J) without zero points within J — in detail the chain
of non-commutative groupoids

{1} = G0(J) ⊂ G1(J) ⊂ · · · ⊂ Gj(J) ⊂ Gn−1(J) ⊂ C(J)

in which binary operations are defined by the rule
(
f · g)

(x) = f(x)
g(x)

, x ∈ J . Moreover, denoting

by (f)m the usual m-th power of the dimensional f , i.e. (f)m(x) = [f(x)]m, x ∈ J , we can
prove using the mathematical induction that

Gj(J) =
{ j∏

k=1

(fk)
mk ; mk ∈ Z, fk ∈ C(J), fk(x) �= 0, x ∈ J, k = 1, 2, . . . , j

}
.

Further, to any groupoid Gj(J) we assign a subgroup HjA2(J) in such a way that

{L(1, 0)} = H0A2(J) � H1A2(J) � · · · � HnA2(J) = LA2(J)

is a subnormal series of the group LA2(J) which is also subinvariant — this means that all
groups HjA2(J) are normal (i.e. invariant) subgroups of the group LA2(J). However the
just mentioned construction and verifying of the fact that all factors HjA2(J)

/
Hj−1A2(J),

j = 1, 2, . . . , n are abelian needs some effort. Much more simpler way is based on chains of
commutants of the group LA2(J).
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Recall that a subgroup G′ of a group G generated by the set of commutators

[a, b] = a−1b−1ab

of all pairs [a, b] ∈ G × G is called the commutant of the group G. The commutant G′′ of the
group G′ is called the second commutant of the group G. The usual notation is G′ = G(1),
G′′ = G(2), etc. In general G(n+1) =

(
G(n)

)′
The commutant G(n) is also termed as the n-th

derivative of the group G and the chain of commutants of the group G

G = G(0) ⊃ G(1) ⊃ G(2) ⊃ · · ·
is also called a derived chain of the group G.

Theorem 5 ([14, Theorem 10.31, p. 172]) Let G be a group. The following conditions are
equivalent:

(i) The group G is solvable.

(ii) There exists a positive integer n such that G(n) = 1.

(iii) There exists a subnormal series of the group G, which is solvable. �

Now, we are coming to the main result of our contribution.

Theorem 6 Let J ⊆ R be an open interval. Then {L(1, 0)} = 1 = LA2(J)′′ � LA2(J)′ =
L11A2(J) � LA2(J), thus the group (LA2(J), ·) is solvable.

Proof. According to Theorem 1 we have L11A2(J) � LA2(J). Moreover, the commutator[
L(p, q), L(u, v)

]
of an arbitrary pair L(p, q), L(u, v) ∈ LA2(J) satisfies

[
L(p, q), L(u, v)

]
= L−1(p, q) · L−1(u, v) · L(p, q) · L(u, v)

= L
(

1
p
,− q

p

) · L(
1
u
,− v

u

) · L(pu, pv + q)

= L
(

1
pu

,−v+qu
pu

) · L(pu, pv + q) = L
(
1, v(p−1)+q(1−u)

pu

) ∈ L11A2(J) ,

thus the subgroup of LA2(J) generated by the set of commutators [L(p, q), L(u, v)], L(p, q),
L(u, v) ∈ LA2(J), i.e. the commutant LA2(J)′ is exactly the group L11A2(J). Further, for any
pair of operators

L(1, q), L(1, v) ∈ L11A2(J) = LA2(J)′

the commutator

[
L(1, q), L(1, v)

]
= L−1(1, q) · L−1(1, v) · L(1, q) · L(1, v)

= L(1,−q) · L(1,−v) · L(1, v + q)

= L(1,−v − q) · L(1, v + q) = L(1, 0) ,

i.e.
L11A2(J)′ = LA2(J)′′ = {L(1, 0)} = 1 ,
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therefore the theorem holds. �
In accordance with paper [2] let us denote by F the system of all pairs of linearly independent

functions ϕ1, ϕ2 ∈ C
2(J) such that ∣∣∣∣ϕ

′′
1 ϕ′′

2

ϕ1 ϕ1

∣∣∣∣
W [ϕ1, ϕ2]

�= 0 ,

where W [ϕ1, ϕ2] is the Wronski determinant (different from zero). Further, let G(F) be the
system of all two-dimensional vector spaces V (ϕ1, ϕ2) with the base [ϕ1, ϕ2] ∈ F . For any pair
of spaces V (ϕ1, ϕ2) ∈ G(F), V (ψ1, ψ2) ∈ G(F) we define

V (ϕ1, ϕ2) · V (ψ1, ψ2) = V (ω1, ω2) ,

where {ω1, ω2} is the base of the space V (ω1, ω2) such that y = ω1(x), y = ω2(x), x ∈ J is a
fundamental solution system of the second-order differential equation

y′′ +
D[ϕ1, ϕ2] · D[ψ1, ψ2]

W [ϕ1, ϕ2] · W [ψ1, ψ2]
· y′ +

D[ϕ1, ϕ2] · W [ϕ′
1, ϕ

′
2] + W [ϕ′

1, ϕ
′
2] · W [ψ1, ψ2]

W (ϕ1, ϕ2) · W [ψ1, ψ2]
· y = 0

with D[ϕ1, ϕ2] =

∣∣∣∣ϕ
′′
1 ϕ′′

2

ϕ1 ϕ2

∣∣∣∣, D[ψ1, ψ2] =

∣∣∣∣ψ
′′
1 ψ′′

2

ψ1 ψ2

∣∣∣∣. There is proved in paper [2] that (G(F), ·)
is a non-commutative group of vector spaces with the neutral element V (1, e−x). Using the
one-to-one correspondence between groups (G(F), ·), (LA2(J), ·) ([16]) we obtain with respect
to the above results (Theorem 6) that the group (G(F), ·) is solvable. Notice, that this problem
with other details will be investigated in a forthcomming paper.
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[2] BERÁNEK, J., CHVALINA, J.: On a noncommutative group of linear two-dimensional
spaces of smooth functions. Fac. Nat. Sci. Constantine the Philosopher Univ. Nitra, Acta
Math. 10, (2008), 17–23.
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[8] CHVALINA, J., RAČKOVÁ, P.: Join spaces of smooth functions and their actions on
transposition hypergroups of second order linear differential operators. J. Appl. Math. Apli-
mat (STU Bratislava) 1 No. 1 (2008), 55-63.

[9] CHVALINA, J.: On a certain cascade with the phase set formed by solution spaces of
second-order linear homogeneous differential equations. Dynamical System Modelling and
Stability Investigation, Internat. Conf. Thesis of Conf. Reports, Kyiv 2009, 20–21.
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Abstract. Congruence-simple algebras form the basic building block of algebra for 
construction of more complex structures. However, their role in the use of algebraic 
structures in cryptology where they are used primarily for modification of Diffie-
Hellman algorithm is fundamental. It is undoubtedly very interesting in this context that 
in contrast to simple groups and areas that have piqued special interest of 
mathematicians for decades, we only very rarely come across results of studies in 
congruence-simple semirings. The aim of this article is to summarize the results 
achieved in the area of finite congruence-simple semirings over the past decade and to 
pinpoint the open questions that are yet to be answered. 
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1 Introduction 
 

The first reference to semiring (i.e. a universal algebra with two associative binary 
operations, where one of them distributes over the other) as an algebraic structure can be found in 
the article of Vandiver from 1934 ([1]). However, one can come across semirings, even though not  
scientifically defined at that time, also in works of mathematicians published before this date (the 
reader is referred to ( [2], [3], [4] and [5]) for background, basic, and more advanced properties of, 
and comments, historical remarks, and further references on semirings). Before 1934, 
mathematicians worked with semirings of positive real, rational and whole numbers and more 
generally also with semirings of positive elements in ordered rings. We meet semirings in various 
applications in theoretical computer science and algorithm theory. 

 
Congruence-simple algebras form the basic building block of algebra for construction of more 
complex structures. However, their role in the use of algebraic structures in cryptology where they 
are used primarily for modification of Diffie-Hellman algorithm is fundamental. It is undoubtedly 
very interesting in this context that in contrast to simple groups and areas that have piqued special 
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interest of mathematicians for decades, we only very rarely come across results of studies in 
congruence-simple semirings. The aim of this article is to summarize the results achieved in the 
area of finite congruence-simple semirings over the past decade and to pinpoint the open questions 
that are yet to be answered. 
 
 
2 Commutative Finite Congruence-Simple Semirings 

 
Definition 
A set  with two binary operations + and · is called a semiring if  is a commutative 

monoid,  is a semigroup, and the distributive laws  and 
 hold for all . 

 
Definition 
An equivalence relation ∼ on a semiring  is called congruence if  implies 

 , , , for all .  
The semiring R is called congruence-simple if its only congruences are    

and  . 
 
The properties of commutative congruence-simple semirings were published in 2001 ([6]). 

The summary article presents not only the properties of finite congruence-simple semirings but also 
of finitely generated semirings and non-finite semirings. For more details, see the article. What 
follows here is only a brief description of the basic results relevant to the finite case.   

 

 
 

Theorem 1 
 
The following conditions are equivalent for a semiring : 

  is finite and congruence-simple. 
  is finite and ideal-simple. 
  is isomorphic to one of the following semirings: 

 The two-element semirings , , ,  and ; 
 finite fields; 
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 zero-multiplication rings of finite prime order; 
 the semirings (semifields)  (defined below),  being a finite 

abelian group. 
Definition 
 
For a multiplicative abelian group , set . Extend the multiplication of  to 

 by the rule  for all . Define an addition on  by the rules  
,  for  with . 

 
For proof see [6]. 

 
 
2 Additively commutative Finite Congruence-Simple Semirings 

The results relevant to commutative finite congruence-simple semirings were soon taken up 
by Ch. Monico who characterized finite congruence-simple semirings for the case when the additive 
group is commutative ([7]). First he constructed a new class of finite congruence-simple semirings. 

 
Theorem 2.  
 
Let , , and  be an n × m matrix of 1’s and 0’s 

such that no row or column is identically zero, no two rows are identical, and no two columns are 
identical. Let  and define a binary relation on  by 

 if , and  otherwise,  
. 

 
Then S is a congruence-free semigroup of order . Conversely, every finite 

congruence-free semigroup with an absorbing element is isomorphic to one of this kind. 
 
Subsequently he formulated a new classification theorem of a finite, additively 

commutative, congruence-simple semiring: 
 
Theorem 3.  
 
Let  be a finite, additively commutative, congruence-simple semiring. Then one of the 

following holds: 
(1) ; 
(2)  for some finite field  and some ; 
(3)  is a zero multiplication ring of prime order; 
(4)  is additively idempotent; 
(5)  is a semigroup as in Theorem 2 with absorbing element  and . 

 
Simultaneously he showed that there are additively commutative and idempotent finite 

congruence-simple semirings which are not multiplicatively commutative: 
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However, it was an isolated case of this type of semiring and Ch. Monico himself failed to 
construct any other. Moreover, in his dissertation thesis he formulates the following hypothesis on 
the basis of his studies of thousands of semirings: This semiring is additively idempotent with a one. 
However, observe that the element a is `almost' a zero and b is `almost' an infinity. We conjecture 
that, except for some such semirings of order 3, the additively idempotent c-simple semirings are 
those of the form V (G) for finite groups G. This conjecture is based on an admittedly small amount 
of empirical evidence; specically, the random generation of several thousand additively 
commutative semirings with small order (< 15). ([8]) 

 
This hypothesis however turned out to be erroneous and the class of additively idempotent 

finite, additively commutative, congruence-simple semiring is much richer. 
 
 

3. Additively commutative Finite Congruence-Simple Semirings with Zero 
 
In 2008 J. Zumbrägel fully characterized additively commutative finite congruence-simple 

semirings with zero ([9]). 
 
Zumbrägel first shows the relation between congruence simple semirings and dense 

subsemirings of endomorphism rings of finite idempotent commutative monoid, where dense 
subsemiring is defined as follows: 

 
Definition 
 
Let M be an idempotent commutative monoid. A subsemiring S ⊆ End(M) is called dense if 

it contains for all a, b ∈ M the endomorphism ea,b ∈ End(M), defined by ea,b(x) := 0 if x + a = a (x ∈ 
M) and ea,b(x) :=  b otherwise. 

 
Theorem 4. 
 
Let R be a finite semiring with zero which is not a ring. Then the following are equivalent: 
 
(1) R is congruence-simple. 

 
(2) |R| ≤ 2 or R is isomorphic to a dense subsemiring S ⊆ End(M), where (M,+) is a finite 

idempotent commutative monoid. 
 

For proof see ([9]). 
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The smallest lattices together with the corresponding endomorphism semirings 
 
This confirms that the smallest non-trivial congruence simple semiring with zero has 

6 elements. The following table gives its form: 
 

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 1 1 1 1 5

2 2 1 2 3 4 5

3 3 1 3 3 1 5

4 4 1 4 1 4 5

5 5 5 5 5 5 5   

* 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 0 0 2 3

3 0 3 2 3 2 3

4 0 4 0 0 4 5

5 0 5 4 5 4 5  
 
 
4. New Additively commutative Finite Congruence-Simple Semiring 
 

However, this characteristics of additively idempotent finite, additively commutative, 
congruence-simple semiring has turned out to be incomplete. There are other additively 
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commutative finite congruence-simple semirings which do not have 0 and have more than 
3 elements. An example of such a semiring was constructed by J. Jančařík: 

 

    

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 1 2 3 4 5

2 2 2 2 4 4 5

3 3 3 4 3 4 5

4 4 4 4 4 4 5

5 5 5 5 5 5 5   

* 0 1 2 3 4 5

0 0 0 0 3 3 5

1 0 1 2 3 4 5

2 2 2 2 4 4 5

3 0 3 5 3 5 5

4 1 4 5 4 5 5

5 5 5 5 5 5 5  
 
This semiring is additively commutative and idempotent finite congruence-simple semirings 
with infinity. 
 
 
5. Conclusion 
 

Finite Congruence-Simple Semirings have been subject to research for more than 10 years. 
The results presented in this article indicate the way to a detailed classification. The task of finding 
a complete classification of all types of these semirings seems to be extremely difficult. One of the 
subtasks is a full characterization of the additively idempotent finite, additively commutative, 
congruence-simple semiring. The result presented in this paper clearly shows that this subclass has 
not been yet fully characterized and its complete characterization is still an open question.  
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RELATIVELY UNIFORM CONVERGENCE
IN DUALLY RESIDUATED LATTICE ORDERED SEMIGROUPS

JASEM Milan, (SK)

Abstract. In this paper the notion of a relatively uniform convergence in dually residu-
ated lattice ordered semigroups is introduced and basic properties of this convergence are
established.
Key words and phrases. u-uniform convergence, relatively uniform convergence, dually
residuated lattice ordered semigroups.
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Swamy [13, 14, 15] introduced and studied dually residuated lattice ordered semigroups (no-
tation DRl-semigroups) as a common abstraction of Boolean rings and lattice ordered groups.
It was a solution of Birkhoff’s problem No. 115 [1]. DRl-semigroups were also investigated by
Kovař [10, 11] and by the author [8].

Relatively uniform convergence of sequences in vector lattices was studied by Birkhoff [1],
Luxembourg and Zaanen [12]. Such type of convergence under the name convergence with a
regulator has been also investigated by Vulikh [17] and Veksler [16]. Černák [2, 3] and Černák
and Lihova [4] studied u-uniform convergence in lattice ordered groups. Relatively uniform
convergence in lattice ordered groups was dealt with by Černák and Lihová [5] and Černák
and Jakub́ık [7]. Weak relatively uniform convergence in lattice ordered groups was studied by
Černák and Jakub́ık [6]. For the case of Riesz groups, weak relatively uniform convergence has
been dealt with by the author in [9].

The purpose of this paper is to extend the concept of a relatively uniform convergence to
dually residuated lattice ordered semigroups and to study basic properties of this convergence.

We review some notions and notations used in the paper.
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A system A = (A, +, ≤, −) is called a dually residuated lattice ordered semigroup if and
only if
(1) (A, +, ≤) is a commmutative lattice ordered semigroup with zero element 0, i.e. (A, +)
is a commutative semigroup with zero 0 and (A,≤) is a lattice with lattice operations ∧ and ∨
such that a + (b ∨ c) = (a + b) ∨ (a + c) and a + (b ∧ c) = (a + b) ∧ (a + c),
(2) given a, b in A there exists a least x in A such that b+x ≥ a, and this x is denoted by a− b,
(3) (a − b) ∨ 0 + b ≤ a ∨ b for all a, b ∈ A,
(4) (a − a) ≤ 0 for each a ∈ A.

Any DRl-semigroup can be equationally defined as an algebra with the binary operations
+, ∨, ∧,−, by replacing (2) by the equations:
x + (y − x) ≥ y, x − y ≤ (x ∨ z) − y, (x + y) − y ≤ x [13, Theorem 1].

Any abelian lattice ordered group is a DRl-semigroup.

For any a and b in a DRl-semigroup A, we shall write |a − b| = (a − b) ∨ (b − a) (|a − b| is
called the symetric difference of a and b. )
The symetric difference satisfies the following conditions:
(i) |a − b| ≥ 0, |a − b| = 0 if and only if a = b,
(ii) |a − b| = |b − a|,
(iii) |a − c| ≤ |a − b| + |b − c|.

Any DRl-semigroup is an autometrized algebra with the symetric difference [13, Theorem
9].

If a DRl-semigroup A is a lattice ordered group and a, b, c ∈ A, then notations a− b and
|a − b| have the same meaning as in lattice ordered groups.

We denote A+ = {x ∈ A; x ≥ 0} and use N for the set of all positive integers.
A DRl-semigroup is said to be Archimedean if for each x, y ∈ A+, nx ≤ y for each n ∈ N

implies x = 0.

Luxemburg and Zaanen introduced notions of a u-uniform convergence and of a relatively
uniform convergence of sequences in vector lattices in their monograph [12] as follows.

Definition 0.1 Let V be a vector lattice, u ∈ V +. It is said that a sequence (xn) in V converges
u-uniformly to an element x ∈ V, if the following condition is satisfied:
(C1) for each ε ∈ R, ε ≥ 0 there exists n0 ∈ N , such that |xn −x| ≤ εu, for each n ∈ N ,n ≥ n0.

Definition 0.2 Let V be a vector lattice. We say that a sequence (xn) in V relatively uniformly
converges to an element x ∈ V, whenever (xn) converges u-uniformly to x for some u ∈ V +.

Černák and Lihová [5] found out that ε in the Definition 1 can be equivalently replaced by
1
p
, where p ∈ N, and adopted definitions of Luxemburg and Zaanen for lattice ordered groups.

Definition 0.3 Let G be a lattice ordered group, u ∈ G+. We say that a sequence (xn) in G
converges u-uniformly to an element x ∈ G, if the following condition is satisfied:
(C2) for each p ∈ N there exists n0 ∈ N such that p|xn − x| ≤ u for each n ∈ N,n ≥ n0.
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Definition 0.4 Let G be a lattice ordered group. We say that a sequence (xn) in G relatively
uniformly converges to an element x ∈ G, whenever (xn) converges u-uniformly to x for some
u ∈ G+.

We can use definitions of Černák and Lihová of u-uniform convergence and of relatively
uniform convergence above also for DRl-semigroups.

Definition 0.5 Let A be a DRl-semigroup, (xn) a sequence in A, u ∈ A+. It is said that a
sequence (xn) in A converges u-uniformly to an element x ∈ A, written xn

u→ x, if the following
condition is satisfied:
(C3) for each p ∈ N there exists np ∈ N , such that p|xn − x| ≤ u for each n ∈ N, n ≥ np.

Definition 0.6 Let A be a DRl-semigroup. We say that a sequence (xn) in A relatively uni-
formly converges (briefly ru-coverges) to an element x ∈ A, in symbols xn → x, whenever there
exists u ∈ A+ such that xn

u→ x.

If A is a lattice ordered group, our definitions are equivalent to the definitions of Černák
and Lihová.

We shall often need the following assertions from [13].

Let A be a DRl-semigroup, a, b, c ∈ A. Then
(A) a ≤ b implies a − c ≤ b − c and c − b ≤ c − a (Lemma 3),
(B) (a ∨ b) − c = (a − c) ∨ (b − c) (Lemma 4),
(C) a − (b ∧ c) = (a − b) ∨ (a − c) (Lemma 5),
(D) a − (b + c) = (a − b) − c = (a − c) − b (Lemma 6),
(E) (a − b) + (b − c) ≥ (a − c) (Lemma 12),
(F) a − (b − c) ≤ (a − b) + c and (a + b) − c ≤ (a − c) + b (Lemma 13).

Theorem 0.7 Let A be a DRl-semigroup, a, b, c, d ∈ A. Then
(i) (a − b) + (c − d) ≥ (a + c) − (b + d),
(ii) |a − b| + |c − d| ≥ |(a + c) − (b + d)|,
(iii) (a − b) + (c − d) ≥ (c − b) − (d − a)
Proof. (i) According to (D) and (F) we obtain (a−b)+(c−d) ≥ (a+(c−d))−b ≥ ((c−d)+a)−b ≥
((c + a) − d) − b = (c + a) − (b + d) ≥ (a + c) − (b + d).
(ii) In view of (i) we have |a−b|+|c−d| = (a−b)∨(b−a)+(c−d)∨(d−c) = ((a−b)+(c−d))∨
((a−b)+(d−c))∨((b−a)+(c−d))∨((b−a)+(d−c)) ≥ ((a−b)+(c−d))∨((b−a)+(d−c)) ≥
((a + c) − (b + d)) ∨ ((b + d) − (a + c)) = |(a + c) − (b + d)|.
(iii) By (D) and (F) we get (a − b) + (c − d) ≥ (a + (c − d)) − b ≥ ((c − d) + a) − b ≥
(c − (d − a)) − b ≥ (c − b) − (d − a). �

Theorem 0.8 Let A be an Archimedean DRl-semigroup, (xn) a sequence in A, x, y ∈ A. If
xn → x and xn → y, then x = y.
Proof. Since xn → x and xn → y, there exist u, v ∈ A+ such that xn

u→ x, xn
v→ y.

Let p ∈ N. Then there exists np ∈ N such that u ≥ p|xn − x|, v ≥ p|xn − y| for each
n ∈ N,n ≥ np. From this it follows that u+v ≥ p|xn − x|+p|xn −y| = p(|xn − x|+|xn − y|) =
p(|x − xn| + |xn − y|) ≥ p|x − y|.

Then Archimedeanicity of A implies |x − y| = 0. Hence x = y. �
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Since each Archimedean lattice ordered group is abelian, each Archimedean lattice ordered
group is an Archimedean DRl-semigroup. Hence Theorem 2 generalizes Lemma 2.5 from [5].

Theorem 0.9 Let A be an Archimedean DRl-semigroup, (xn) and (yn) sequences in A, x, y ∈
A. Let xn → x and xn → y. Then
(i) xn + yn → x + y,
(ii) xn − yn → x − y,
(iii) xn ∨ yn → x ∨ y,
(iv) xn ∧ yn → x ∧ y.
Proof. Since xn → x and yn → y, there exist u, v ∈ A+, such that xn

u→ x, yn
v→ y.

Let p ∈ N. Then there exists np ∈ N such that u ≥ p|xn − x|, v ≥ p|yn − y| for each
n ∈ N,n ≥ np.
(i) In view of Theorem 1 (ii) we get u + v ≥ p|xn − x|+ p|yn − y| = p(|xn − x|+ |yn − y|) ≥
p|(xn + yn) − (x + y)|. Thus xn + yn

u+v→ x + y and hence xn + yn → x + y.
(ii) In view of Theorem 1 (iii) we have u+v ≥ p|xn − x|+p|yn −y| = p(|xn − x|+ |yn − y|) =
p(((xn − x)∨(x − xn))+((yn − y)∨(y − yn))) = p(((xn − x)+(yn − y))∨((xn − x)+(y − yn))∨
((x − xn)+(yn − y))∨((x − xn)+(y − yn))) ≥ p(((xn − x)+(y − yn))∨((x − xn)+(yn − y))) =
p(((y − yn)+(xn − x))∨((yn − y)+(x− xn))) ≥ p(((xn − yn)−(x− y))∨((x− y)−(xn − yn))) =

p|(xn − yn) − (x − y)|. Therefore xn − yn
u+v→ x − y. Hence xn − yn → x − y.

(iii) In view of (B) we have u + v ≥ p|xn − x| + p|yn − y| = p(|xn − x| + |yn − y|) ≥
p(|xn − x|∨ |yn − y|) = p((xn − x)∨ (x − xn)∨ (yn − y)∨ (y − yn)) = p((xn − x)∨ (yn − y)∨
(x − xn)∨ (y − yn)) ≥ p((xn − (x∨ y))∨ (yn − (x∨ y))∨ (x − ((xn ∨ yn))∨ (y − (xn ∨ yn))) =

p(((xn ∨ yn) − (x∨ y))∨ ((x ∨ y)− (xn ∨ yn))) = p|(xn ∨ yn) − (x∨ y)|. Thus xn ∨ yn
u+v→ x∨ y

and hence xn ∨ yn → x ∨ y.
(iv) According to (C) we obtain u + v ≥ p|xn − x| + p|yn − y| = p(|xn − x| + |yn − y|) ≥
p(|xn − x|∨ |yn − y|) = p((xn − x)∨ (x − xn)∨ (yn − y)∨ (y − yn)) = p((xn − x)∨ (yn − y)∨
(x − xn)∨ (y − yn)) ≥ p((xn ∧ yn) − x)∨ ((xn ∧ yn) − y))∨ ((x∧ y) − xn)∨ ((x∧ y) − yn)) =

p(((xn∧yn) − (x∧y))∨((x∧y) − (xn∧yn))) = p|(xn∧yn) − (x∧y)|. Therefore xn∧yn
u+v→ x∧y.

Hence xn ∧ yn → x ∧ y. �

Theorem 3 generalizes assertions (i), (ii) and (iii) of Lemma 2.8 of Černak and Lihová [5].

Theorem 0.10 Let A be an Archimedean DRl-semigroup, (xn) and (yn) sequences in A. Let
xn → x and xn → y and xn ≤ yn for each n ∈ N. Then x ≤ y.
Proof. Since xn ∨ yn = yn → y, in view of Theorem 3 (iii) we have x ∨ y = y. This yields
x ≤ y. �

Theorem 0.11 Let A be an Archimedean DRl-semigroup, (xn), (yn) and (zn) sequences in A,
a ∈ A. Let xn ≤ yn ≤ zn for each n ∈ N , xn → a, zn → a. Then yn → a.
Proof. Since xn → x and yn → y, there exist u, v ∈ A+, such that xn

u→ x, yn
v→ y.

Let p ∈ N. Then there exists np ∈ N such that u ≥ p|xn − a|, v ≥ p|yn − a| for each
n ∈ N,n ≥ np. This and Theorem 1 (ii) imply u+v ≥ p|xn − a|+p|zn −a| = p(|xn − a|+|zn −
a|) ≥ p(|xn − a|∨|zn − a|) = p((xn − a)∨(a − xn)∨(zn − a)∨(a − zn)) ≥ p((zn − a)∨(a − xn)).

In view of (A) from xn ≤ yn ≤ zn we get yn − a ≤ zn − a, a − yn ≤ a − xn. This yields
(yn − a) ∨ (a − yn) ≤ (zn − a) ∨ (a − xn).
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Therefore u + v ≥ p((zn − a) ∨ (a − xn)) ≥ p((yn − a) ∨ (a − yn)) = p|yn − a| for each

n ∈ N,n ≥ np. Thus yn
u+v→ a. Hence yn → a. �

Theorem 0.12 If a sequence (xn) in an Archimedean DRl-semigroup A is ru-convergent, then
the sequence (xn) is bounded in A.
Proof. Let xn → x. Then xn

u→ x for some u ∈ A+. From this follows that for each p ∈ N
there exists np ∈ N such that u ≥ p|xn − x| for all n ∈ N, n ≥ np. Hence for p = 1 we get that
there exists np1 ∈ N such that u ≥ |xn − x| for all n ∈ N, n ≥ np1. This yields x − xn ≤ u,
xn − x ≤ u. From this we obtain x ≤ (x − xn) + xn ≤ u + xn, xn ≤ (xn − x) + x ≤ u + x. In
view of (F) from x ≤ (x − xn) + xn ≤ u + xn we get x − u ≤ (u + xn) − u ≤ xn. Therefore
x − u ≤ xn ≤ u + x for all n ∈ N, n ≥ np1.

Let a = (x − u) ∧ x1 ∧ x2 ∧ . . . ∧ xnp1−1 and b = (x + u) ∧ x1 ∨ x2 ∨ . . . ∨ xnp1−1. Thus

a ≤ xk ≤ b for each k ∈ N. Therefore the sequence (xn) is bounded in A. �

Definition 0.13 A sequence (xn) in a DRl-semigroup A is called a Cauchy sequence with
respect to the relatively uniform convergence (shortly ru-Cauchy sequence), if for some u ∈ A+

and each p ∈ N there exists np ∈ N such that u ≥ p|xm − xn| for each m, n ∈ N, m, n ≥ np.

Theorem 0.14 Any ru-convergent sequence in an Archimedean DRl-semigroup A is a ru-
Cauchy sequence.

Proof. If xn
u→ x for some u ∈ A+, then for each p ∈ N there exists np ∈ N such

that u ≥ p|xm − x|, u ≥ p|xn − x| for all m,n ∈ N , m,n ≥ np. From this we get 2u ≥
p|xm − x| + p|xn − x| = k(|xm − x| + |x − xn|) ≥ p|xm − xn| for each m, n ∈ N, m, n ≥ np.
Therefore (xn) is an ru-Cauchy sequence.

Let C be the set of all ru-Cauchy sequences in an Archimedean DRl-semigroup A.

Theorem 0.15 Let (xn) and (yn) ∈ C. Then
(i) (xn + yn) ∈ C,
(ii) (xn − yn) ∈ C,
(iii) (xn ∨ yn) ∈ C,
(iv) (xn ∧ yn) ∈ C.
Proof. Let (xn) and (yn) ∈ C. Let u, v be elements from A+ such that for each p ∈ N there
exists np ∈ N such that u ≥ p|xm − xn|, v ≥ p|ym − yn| for each m,n ∈ N,m, n ≥ np.
(i) In view of Theorem 1 (ii) we have u+v ≥ p|xm − xn|+p|ym − yn| = p(|xm − xn|+|ym − yn|) ≥
p|(xm + ym) − (xn + yn)| for each m,n ∈ N, m, n ≥ np. Hence (xn + yn) ∈ C.
(ii) According to Theorem 1 (iii) we get u + v ≥ p|ym − yn| + p|xm − xn| = p(|ym − yn| +
|xn − xm|) ≥ p(((ym − yn)∨ (yn − ym)) + ((xn − xm)∨ (xm − xn))) = p(((ym − yn) + (xn −
xm)) ∨ ((ym − yn) + (xm − xn)) ∨ ((yn − ym) + ((xn − xm)) ∨ ((yn − ym) + (xm − xn))) ≥
p(((ym − yn)+ (xn − xm))∨ ((yn − ym)+ (xm − xn))) ≥ p(((xn − yn)− (xm − ym))∨ ((xm −
ym) − (xn − yn))) = p|(xm − ym) − (xn − yn)| for each m,n ∈ N, m, n ≥ np. Therefore
(xn − yn) ∈ C.
(iii) In view of (B) we have u + v ≥ p|xm − xn| + p|ym − yn| = p(|xm − xn| + |ym − yn|) ≥
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p(|xm − xn|∨ |ym − yn|) = p((xm − xn)∨ (xn − xm)∨ (ym − yn)∨ (yn − ym)) = p((xm − xn)∨
(ym − yn)∨(xn − xm)∨(yn − ym)) ≥ p((xm − (xn∨yn))∨(ym − (xn∨yn))∨(xn − ((xm∨ym))∨
(yn − (xm∨ym))) = p(((xm∨ym) − (xn∨yn))∨((xn ∨ yn)−(xm∨ym))) = p|(xm∨ym) − (xn∨yn)|
for each m,n ∈ N, m, n ≥ np. Thus (xn ∨ yn) ∈ C.
(iv) According to (C) we obtain u+ v ≥ p|xm − xn|+ p|ym − yn| = p(|xm − xn|+ |ym − yn|) ≥
p(|xm − xn|∨ |ym − yn|) = p((xm − xn)∨ (xn − xm)∨ (ym − yn)∨ (yn − ym)) = p((xm − xn)∨
(ym − yn)∨(xn − xm)∨(yn − ym)) ≥ p((xm∧ym) − xn)∨((xm ∧ym) − yn))∨((xn∧yn) − xm)∨
((xn∧yn) − ym)) = p(((xm∧ym) − (xn∧yn))∨((xn∧yn) − (xm∧ym))) = p|((xm∧ym) − (xn∧yn)|
for each m,n ∈ N, m, n ≥ np. Hence (xn ∧ yn) ∈ C. �

Theorem 3 generalizes Lemma 2.16 of Černak and Lihová [5].
Let (xn), (yn) ∈ C. We put (xn) + (yn) = (xn + yn). Further, we set (xn) ≤ (yn) if and only

if if xn ≤ yn for each n ∈ N. If xn = 0 for each n ∈ N , then we denote the sequence (xn) by
(0). Then Theorem 8 implies the following assertion.

Theorem 0.16 (C, +, ≤) is a DRl-semigroup with zero (0) and lattice operations ∨ and ∧
such that (xn) ∨ (yn) = (xn ∨ yn), (xn) ∧ (yn) = (xn ∧ yn) for all (xn), (yn) ∈ C. Further,
(xn) − (yn) = (xn − yn) for all (xn), (yn) ∈ C.
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[3] ČERNÁK, Š.: Convergence with a fixed regulator in lattice ordered groups and applications
to MV-algebras. Soft Computing 12, 2008, 453-462.
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SOMOS SEQUENCES

KURLYANDCHIK Lev, (RU), ZHOUF Jaroslav, (CZ)

Abstract. This article deals with sequences which were considered by Michael Somos
when he investigated specific elliptic curves. There also are considered sequences pub-
lished in the journal Crux and in the collection of problems from Moscow Mathematical
Olympiad.

This article mainly deals with sequences which were considered by Michael Somos when he
investigated specific elliptic curves. But, we were first inspired by a task published in the
journal Crux [4] and in the collection of problems from Moscow Mathematical Olympiad [7].

First, we got acquainted with the problem from Russian Mathematical Olympiad which was
used in the competition in the year 1963. This task run as follows:

The sequence (an) is given recursively:

a1 = a2 = 1, an+2 =
a2

n+1 + 2

an

(n ≥ 1).

Prove that each sequence element is an integer number.

Then we read two similar problems in the journal Crux in the year 1989. There were
published following tasks:

The sequences (an) are given recursively:

a1 = a2 = 1, an+2 =
a2

n+1 + 1

an

(n ≥ 1),

a1 = a2 = a3 = 1, an+3 =
an+2an+1 + 1

an

(n ≥ 1).
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Prove that each sequence element in both cases is an integer number.

These two last sequences belong among so called Somos sequences. Their definition is as
follows [4]:

The sequence (an) given recursively:

a1 = a2 = · · · = ak = 1,

an+k =
a2

n+ k
2

+ 1

an

(n ≥ 1), k = 2,

an+k =
an+ k−1

2
an+ k+1

2
+ 1

an

(n ≥ 1), k = 3,

an+k =
an+k−1an+1 + an+k−2an+2 + · · · + a2

n+ k
2

an

(n ≥ 1), k ≥ 4 is even,

an+k =
an+k−1an+1 + an+k−2an+2 + · · · + an+ k−1

2
an+ k+1

2

an

(n ≥ 1), k ≥ 5 is odd,

is called the Somos sequence of order k.

Now we will introduce our own solving process of above-mentioned tasks.

Problem 1. The sequence (an) is given recursively:

a1 = a2 = 1, an+2 =
a2

n+1 + 1

an

(n ≥ 1).

Prove that each sequence element is an integer number.

Solution. Several first sequence elements are:

a3 = 2, a4 = 5, a5 = 13, a6 = 34, a7 = 89, a8 = 233, a9 = 610, a10 = 1597, . . .

Let us suppose that the sequence elements a1, a2, . . . , an are integers for each integer number
n ≥ 4. We prove that the number an+1 is integer as well.

From the equality

an−1an−3 = a2
n−2 + 1,

it follows

a2
n−2 + 1 ≡ 0 (mod an−1). (1)

From the equality

anan−2 = a2
n−1 + 1,

it follows

anan−2 ≡ 1 (mod an−1). (2)
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Using equalities (1)-(2), we recieve

a2
na

2
n−2 ≡ 1 (mod an−1),

a2
n · (−1) ≡ 1 (mod an−1),

a2
n + 1 ≡ 0 (mod an−1).

It means that the number

an+1 =
a2

n + 1

an−1

is integer.

Note 1. Similarly, each element of the sequence (an) given recursively:

a1 = a2 = 1, an+2 =
a2

n+1 + m

an

(n ≥ 1)

is an integer number for all positive integers m.

The proof is the same as in the problem 1.

The calculator for finding many first elements such sequences for the first 100 numbers m
is on the webpage [7].

Problem 2. The sequence (an) is given recursively:

a1 = a2 = a3 = 1, an+3 =
an+2an+1 + 1

an

(n ≥ 1).

Prove that each sequence element is an integer number.

Solution. Several first sequence elements are:

a4 = 2, a5 = 3, a6 = 7, a7 = 11, a8 = 26, a9 = 41, a10 = 97, . . .

First, we prove that each number γn =
an + an+2

an+1

is integer for each integer number n.

Since a4 = 2, it holds

γ1 =
a1 + a3

a2

= 2, γ2 =
a2 + a4

a3

= 3.

For each n ≥ 3, it holds

γn =
an + an+2

an+1

=

an +
an+1an + 1

an−1

an+1

=
anan−1 + anan+1 + 1

an−1an+1

=

=
an+1an−2 + anan+1

an−1an+1

=
an−2 + an

an−1

= γn−2.

For each integer number k, it holds

γ2k = γ2 = 3, γ2k+1 = γ1 = 2,
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a2k+2 + a2k

a2k+1

= 3,
a2k+3 + a2k+1

a2k+2

= 2,

a2k+2 = 3a2k+1 − a2k, a2k+3 = 2a2k+2 − a2k+1.

It follows that each sequence element an is an integer number.

Note 2. Similarly, each element of the sequence (an) given recursively:

a1 = a2 = a3 = 1, an+3 =
an+2an+1 + m

an

(n ≥ 1)

is an integer number for all positive integers m.
The proof is the same as in the problem 2.

Problem 3. The sequence (an) is given recursively:

a1 = a2 = a3 = a4 = 1, an+4 =
an+3an+1 + a2

n+2

an

(n ≥ 1).

Prove that each sequence element is an integer number.

Solution. First, we calculate the fifth, sixth, seventh, and eighth sequence element:

a5 = 2, a6 = 3, a7 = 7, a8 = 23.

For the greatest common divisor of the first eight sequence elements, it holds

D(am, am−1) = D(am, am−2) = 1, 3 ≤ m ≤ 8.

Let us now suppose that the sequence elements a1, a2, . . . , an are integers for each integer
number n ≥ 8, and for each integer number m, 3 ≤ m ≤ n, it holds that D(am, am−1) =
D(am, am−2) = 1. We prove that the number an+1 is integer as well, and satisfies equalities
D(an+1, an) = D(an+1, an−1) = 1.

From the equality

an−3an−7 = an−4an−6 + a2
n−5,

it follows

an−4an−6 + a2
n−5 ≡ 0 (mod an−3). (3)

From the equality

an−2an−6 = an−3an−5 + a2
n−4,

it follows

an−2an−6 ≡ a2
n−4 (mod an−3). (4)

From the equality

an−1an−5 = an−2an−4 + a2
n−3,

it follows

an−1an−5 ≡ an−2an−4 (mod an−3). (5)
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From the equality

anan−4 = an−1an−3 + a2
n−2,

it follows

anan−4 ≡ a2
n−2 (mod an−3). (6)

Using equalities (3)-(6), we recieve

a2
n−5an−4(anan−2 + a2

n−1) =

= a2
n−5an−2(anan−4) + (an−1an−5)

2an−4 ≡
≡ a2

n−5an−2a
2
n−2 + (an−2an−4)

2an−4 =

= a2
n−5a

3
n−2 + a2

n−2an−4a
2
n−4 ≡

≡ a2
n−5a

3
n−2 + a2

n−2an−4(an−2an−6) =

= a3
n−2(a

2
n−5 + an−4an−6) ≡

≡ a3
n−2 · 0 ≡ 0 (mod an−3).

It is seen that the number a2
n−5an−4(anan−2 + a2

n−1) is divided by the number an−3. Since

D(an−3, an−4) = D(an−3, an−5) = 1,

the number anan−2 + a2
n−1 is divided by the number an−3. It follows from thereof that the

number

an+1 =
anan−2 + a2

n−1

an−3

is integer.

It remains to prove that D(an+1, an) = D(an+1, an−1) = 1. We suppose that D(an+1, an) > 1
and let p be such a prime number for which p | an+1 and p | an. From the equality

an+1an−3 = anan−2 + a2
n−1,

it holds p | an−1. But it is in contradiction with the condition of D(an, an−1) = 1.

Let us assume further that D(an+1, an−1) > 1, and let p be such a prime number for which
p | an+1 and p | an−1. From the equality

an+1an−3 = anan−2 + a2
n−1,

it follows p | an or p | an−2. But it is in contradiction with the condition of D(an, an−1) =
D(an−1, an−2) = 1.

Problem 4. The sequence (an) is given recursively:

a1 = a2 = a3 = a4 = a5 = 1, an+5 =
an+4an+1 + an+2an+3

an

(n ≥ 1).

Prove that each sequence element is an integer number.

Solution. First, we calculate the first ten sequence elements:
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a6 = 2, a7 = 3, a8 = 5, a9 = 11, a10 = 37.

For the greatest common divisor of the first ten sequence elements, it holds

D(am, am−1) = D(am, am−2) = D(am, am−3) = 1, 4 ≤ m ≤ 10.

Let us now suppose that the sequence elements a1, a2, . . . , an are integer for each integer
number n ≥ 10, and for each integer number m, 4 ≤ m ≤ n, it holds that D(am, am−1) =
D(am, am−2) = D(am, am−3) = 1. We prove that the number an+1 is integer as well, and
satisfies equalities D(an+1, an) = D(an+1, an−1) = D(an+1, an−2) = 1.

From the equality

anan−5 = an−1an−4 + an−2an−3,

it follows

anan−5 ≡ an−2an−3 (mod an−4). (7)

From the equality

an−1an−6 = an−2an−5 + an−3an−4,

it follows

an−1an−6 ≡ an−2an−5 (mod an−4). (8)

From the equality

an−2an−7 = an−3an−6 + an−4an−5,

it follows

an−2an−7 ≡ an−3an−6 (mod an−4). (9)

From the equality

an−3an−8 = an−4an−7 + an−5an−6,

it follows

an−3an−8 ≡ an−5an−6 (mod an−4). (10)

From the equality

an−4an−9 = an−5an−8 + an−6an−7,

it follows

an−5an−8 + an−6an−7 ≡ 0 (mod an−4). (11)

Using equalities (7)–(11), we recieve

an−5an−6an−7(anan−3 + an−1an−2) =

= (anan−5)an−6an−7an−3 + an−5an−7an−2(an−1an−6) ≡
≡ an−2an−3an−6an−7an−3 + an−5an−7an−2an−2an−5 =

= an−2(an−6an−7a
2
n−3 + a2

n−5(an−2an−7)) ≡
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≡ an−2(an−6an−7a
2
n−3 + a2

n−5an−3an−6) =

= an−2(an−6an−7a
2
n−3 + (an−5an−6)an−5an−3) ≡

≡ an−2(an−6an−7a
2
n−3 + an−3an−8an−5an−3) =

= an−2a
2
n−3(an−6an−7 + (an−5an−8) ≡

≡ an−2a
2
n−3 · 0 ≡ 0 (mod an−4).

It is seen that the number an−5an−6an−7(anan−3 + an−1an−2) is divided by the number an−4.
Since

D(an−4, an−5) = D(an−4, an−6) = D(an−4, an−7) = 1,

the number anan−3 + an−1an−2 is divided by the number an−4. It follows from thereof that the
number

an+1 =
anan−3 + an−1an−2

an−4

is integer.

It remains to prove that D(an+1, an) = D(an+1, an−1) = D(an+1, an−2) = 1. It is possible to
do so in the same way as in problem 2 using the equality

an+1an−4 = anan−3 + an−1an−2.

Next two problems concern sequences given by the same definition as the first three prob-
lems, only the ”dimension” of the recursion increases. Solutions to the next problems are
analogous to those above.

Problem 5. The sequence (an) is given recursively:

a1 = a2 = a3 = a4 = a5 = a6 = 1, an+6 =
an+5an+1 + an+4an+2 + a2

n+3

an

(n ≥ 1).

Several first sequence elements are

3, 5, 9, 23, 75, 421, 1 103, 5 047, 41 783, 281 527, 2 534 423, . . .

Dean Hickerson proved that each element of this sequence is an integer number.

Problem 6. The sequence (an) is given recursively:

a1 = a2 = a3 = a4 = a5 = a6 = a7 = 1,

an+7 =
an+6an+1 + an+5an+2 + an+4an+3

an

(n ≥ 1).

Several first sequence elements are

3, 5, 9, 17, 41, 137, 769, 1 925, 7 203, 34 081, 227 321, . . .

Raphael Robinson proved that each element of this sequence is an integer number.
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We continue further with the ”dimension” of the recursion of considered sequences by using
two other problems.

Problem 7. The sequence (an) is given recursively:

a1 = a2 = a3 = a4 = a5 = a6 = a7 = a8 = 1,

an+8 =
an+7an+1 + an+6an+2 + an+5an+3 + a2

n+4

an

(n ≥ 1).

Several first sequence elements are

4, 7, 13, 25, 61, 187, 775, 5 827, 14 815, 420 514
7

, . . .

It can be seen that not all sequence elements are integer numbers.

Problem 8. The sequence (an) is given recursively:

a1 = a2 = a3 = a4 = a5 = a6 = a7 = a8 = a9 = 1,

an+9 =
an+8an+1 + an+7an+2 + an+6an+3 + an+5an+4

an

(n ≥ 1).

Several first sequence elements are

4, 7, 13, 25, 49, 115, 355, 1 483, 11 137, 755 098
7

, . . .

Again, it can be seen that not all sequence elements are integer numbers.

We have not investigated sequences of higher ”dimensions”, but, on the basis of previous
results, it is possible to assume that not all sequence elements are integer numbers. Rather,
integer numbers are only on several first positions in these sequences.

More informations can be found, for example, in articles [1], [2] and on webpages [3], [5],
[6].
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INTERVAL SOLUTIONS IN MAX-PLUS ALGEBRA

MYŠKOVÁ Helena, (SR)

Abstract. In this paper, we shall deal with the solvability of interval systems of linear
equations in the max-plus algebra. The max-plus algebra is the algebraic structures in
which classical addition and multiplication are replaced by ⊕ and ⊗, where a ⊕ b =
max{a, b}, a ⊗ b = a + b .
Each system of linear equation we can write in the matrix form A ⊗ x = b, where A and
b are matrix and vector of suitable size. If we replace the matrix elements with matrix
interval A = 〈A, A〉 and vector elements by vector interval b = 〈b, b〉, we get an interval
system of linear equations. Several types of solutions of interval systems have been defined.
If we require a solution to be from a given vector interval x = 〈x, x〉, we can define several
types of interval solutions. In this paper we give necessary and sufficient conditions for
them.
Key words and phrases. Max-plus algebra, max-min algebra, interval system, interval
solution.
Mathematics Subject Classification. 15A06; 65G30.

1 Preliminaries

Let (B,⊕,⊗) be an algebraic structure with two binary operations. (B,⊕,⊗) is called the
max-plus algebra, if

B = R ∪ {ε}, a ⊕ b = max{a, b}, a ⊗ b = a + b,

where ε = −∞.
Let m, n be given positive integers. Denote by M and N the sets of indices {1, 2, . . . , m},

{1, 2, . . . , n}, respectively. The set of all m×n matrices over B is denoted by B(m,n) and the
set of all column n-vectors over B by B(n).

For a given matrix A ∈ B(m,n) and vector x ∈ B(n) we have [A ⊗ x]i =max
j∈N

{aij + xj}.
We shall consider the ordering ≤ on the sets B(m,n) and B(n) defined as follows:
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• for A,B ∈ B(m,n) : A ≤ B if aij ≤ bij for all i ∈ M, j ∈ N ,

• for x, y ∈ B(n) : x ≤ y if xj ≤ yj for all j ∈ N .

It is easy to see that for each A,B ∈ B(m,n) and for each x, y ∈ B(n) holds:

if A ≤ B and x ≤ y, then A ⊗ x ≤ B ⊗ y.

We call this property the monotonicity of the operation ⊗.
For the given matrix interval A = 〈A,A〉 with A,A ∈ B(m,n), A ≤ A and the given vector

interval b = 〈b, b〉 with b, b ∈ B(m), b ≤ b the notation

A ⊗ x = b (1)

represents the set of all systems of linear max-plus equations of the form

A ⊗ x = b (2)

such that A ∈ A, b ∈ b.
The set A ⊗ x = b will be called an interval system of max-plus linear equations. Each

system of the form (2) is said to be a subsystem of system (1), if A ∈ A, b ∈ b.
We shall suppose that bi > ε for each i ∈ M and A does not contain a column with all

entries equal to ε. An important role for solvability of (2) is played by a principal solution
defined as follows:

x∗
j(A, b) = min

i∈M
{bi − aij} (3)

for each j ∈ N .

Theorem 1.1 [3] Let A ∈ B(m,n) and b ∈ B(m) be given. Then the system
A ⊗ x = b is solvable if and only if x∗(A, b) is its solution.

Lemma 1.2 [6] Let A ∈ B(m,n) and b ∈ B(m) be given. Then a vector x ∈ B(n) satisfies the
inequality A ⊗ x ≤ b if and only if x ≤ x∗(A, b).

2 Types of solutions

In [7], there were defined the notions of a possible, tolerance and control solution of interval
system of linear equations in a classical algebra. In [1] the existence of a possible and tolerance
solution in the max-plus algebra has been studied. The necessary and sufficient condition for
a given vector to be a control solution of interval system in the max-plus and max-min algebra
was given in [5].

Definition 2.1 A vector x ∈ B(n) is a possible solution of interval system (1) if there exist
A ∈ A and b ∈ b such that A ⊗ x = b.
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Theorem 2.2 [1] A vector x ∈ B(n) is a possible solution of interval system (1) if and only if

A ⊗ x ≤ b. (4)

A ⊗ x ≥ b, (5)

Definition 2.3 A vector x ∈ B(n) is a tolerance solution of an interval system (1) if A⊗x ∈ b
holds for each A ∈ A.

Theorem 2.4 [1] A vector x ∈ B(n) is a tolerance solution of an interval system (1) if and
only if

A ⊗ x ≤ b. (6)

A ⊗ x ≥ b, (7)

Definition 2.5 A vector x ∈ B(n) is a control solution of interval system (1) if for each b ∈ b
there exists A ∈ A such that A ⊗ x = b.

Theorem 2.6 [5] A vector x ∈ B(n) is a control solution of interval system (1) if and only if
it satisfies the system of inequalities

A ⊗ x ≤ b, (8)

A ⊗ x ≥ b. (9)

Definition 2.7 A vector x ∈ B(n) is an algebraic solution of interval system(1) if

{A ⊗ x; A ∈ A} = b.

Theorem 2.8 [5] A vector x ∈ B(n) is an algebraic solution of interval system (1) if and only
if it satisfies the system of equalities

A ⊗ x = b, (10)

A ⊗ x = b. (11)

Lemma 2.9 A vector x ∈ B(n) is an algebraic solution of (1) if and only if it is a tolerance
solution of (1) and together it is a control solution of (1).

Proof. A vector x ∈ B(n) is an algebraic solution of (1) if and only if {A⊗x; A ∈ A} ⊂ b and
b ⊂ {A⊗x; A ∈ A}, or equivalently, for each A ∈ A there exists b ∈ b such that A⊗x = b and
for each b ∈ b there exists A ∈ A such that A ⊗ x = b. By definitions of a tolerance solution
and a control solution we get the assertion.
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3 Interval solutions

Suppose that a solution of (2) can be not arbitrary, but it is required to be from the given
interval vector x = 〈x, x〉, x, x ∈ B(n), x ≤ x.

We shall define several types of interval solutions and give necessary and sufficient conditions
for them. At first, we introduce some necessary assertions.

For a given matrix A, vector b and interval vector x we denote by x̂(A, b,x) the vector with
entries

x̂(A, b,x)j = min{x∗
j(A, b), xj} (12)

for each j ∈ N . The vector x̂(A, b,x) is called an interval-principal solution.

Theorem 3.1 Let C, D ∈ B(m,n) and c, d ∈ B(n). The system of inequalities

C ⊗ x ≤ c, (13)

D ⊗ x ≥ d, (14)

has a solution x ∈ x if and only if x̂(C, c,x) ≥ x and

D ⊗ x̂(C, c,x) ≥ d. (15)

Proof. The inequality x̂(C, c,x) ≥ x implies x̂(C, c,x) ∈ x. As x̂(C, c,x) ≤ x∗(C, c), from
Lemma 1.2 it follows that the vector x̂(C, c,x) satisfies inequality (13). Inequality (15) means
that x̂(C, c,x) is a solution of (14), so the system of inequalities (13), (14) has a solution from
x.

For the converse implication suppose that the system of inequalities (13), (14) has a solution
x ∈ x. The inequalities x ≤ x∗(C, c) and x ≤ x imply x ≤ x̂(C, c,x). The inequality x ≥ x
implies x̂(C, c,x) ≥ x. We get

D ⊗ x̂(C, c,x) ≥ D ⊗ x ≥ d,

so inequality (15) is fulfilled.

Theorem 3.2 The system of inequalities (13), (14) is fulfilled for each x ∈ x if and only if

C ⊗ x ≤ c, (16)

D ⊗ x ≥ d. (17)

Proof.If C ⊗ x ≤ c, then for each x ∈ x we have C ⊗ x ≤ C ⊗ x ≤ c, so inequality (13) is
fulfilled for each x ∈ x. Similarly, inequality (17) implies that for each x ∈ x inequality (14) is
held. So the system of inequalities (13), (14) is satisfied for each x ∈ x.

The converse implication is trivial.

Definition 3.3 An interval vector x is
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i) a weak possible solution (WPS) of interval system (1) if there exist x ∈ x, A ∈ A and
b ∈ b such that A ⊗ x = b,

ii) a strong possible solution (SPS) of interval system (1) if for each x ∈ x there exist A ∈ A
and b ∈ b such that A ⊗ x = b.

Theorem 3.4 An interval vector x is

i) a weak possible solution of interval system (1) if and only if x̂(A, b,x) ≥ x and
A ⊗ x̂(A, b,x) ≥ b,

ii) a strong possible solution of interval system (1) if and only if A ⊗ x ≥ b, A ⊗ x ≤ b.

Proof.

i) An interval vector x is a weak possible solution of (1) if and only if there exists x ∈ x
such that x is a possible solution of (1), i.e., there exists x ∈ x such that x satisfies the
system of inequalities (5), (4). By Theorem 3.1 the assertion follows.

ii) An interval vector x is a strong possible solution of (1) if and only if each vector x ∈ x
is a possible solution of (1), i.e., for each x ∈ x the system of inequalities (5), (4) is held.
By Theorem 3.2 we get A ⊗ x ≥ b, A ⊗ x ≤ b.

Definition 3.5 An interval vector x is

i) a weak tolerance solution (WTS) of interval system (1) if there exists x ∈ x such that
for each A ∈ A there exists b ∈ b such that A ⊗ x = b,

ii) a strong tolerance solution (STS) of interval system (1) if for each x ∈ x and A ∈ A
there exists b ∈ b such that A ⊗ x = b.

Theorem 3.6 An interval vector x is

i) a weak tolerance solution of interval system (1) if and only if x̂(A, b,x) ≥ x and
A ⊗ x̂(A, b,x) ≥ b,

ii) a strong tolerance solution of interval system (1) if and only if A ⊗ x ≤ b, A ⊗ x ≥ b.

Proof.

i) An interval vector x is a weak tolerance solution of (1) if and only if there exists x ∈ x such
that x is tolerance solution of (1), i.e., there exists x ∈ x such that x satisfies the system
of inequalities (7), (6). Using Theorem 3.1 we get x̂(A, b,x) ≥ x and A ⊗ x̂(A, b,x) ≥ b.

ii) An interval vector x is a strong tolerance solution of (1) if and only if each vector x ∈ x
is tolerance solution of (1), i.e., for each x ∈ x the system of inequalities (7), (6) is held.
Using Theorem 3.2 we get A ⊗ x ≤ b, A ⊗ x ≥ b.
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Definition 3.7 An interval vector x is

i) a weak control solution (WCS) of interval system (1) if there exists x ∈ x such that for
each b ∈ b there exists A ∈ A such that A ⊗ x = b,

ii) a strong control solution (SCS) of interval system (1) if for each x ∈ x and b ∈ b there
exists A ∈ A such that A ⊗ x = b.

Theorem 3.8 An interval vector x is

i) a weak control solution of interval system (1) if and only if x̂(A, b,x) ≥ x and
A ⊗ x̂(A, b,x) ≥ b,

ii) a strong control solution of interval system (1) if and only if A ⊗ x ≤ b, A ⊗ x ≥ b.

Proof.

i) An interval vector x is a weak control solution of (1) if and only if there exists x ∈ x such
that x is control solution of (1), i.e., there exists x ∈ x such that x satisfies the system
of inequalities (8), (9). Using Theorem 3.1 we get the necessary and sufficient condition
x̂(A, b,x) ≥ x and A ⊗ x̂(A, b,x) ≥ b.

ii) An interval vector x is a strong control solution of (1) if and only if each vector x ∈ x
is control solution of (1), i.e., for each x ∈ x the system of inequalities (8), (9) is held.
Using Theorem 3.2 we get A ⊗ x ≤ b, A ⊗ x ≥ b.

Definition 3.9 An interval vector x is an strong algebraic solution (SAS) of interval system
(1) if each vector x ∈ x is an algebraic solution of (1).

Theorem 3.10 An interval vector x is an strong algebraic solution of interval system (1) if
and only if

A ⊗ x = A ⊗ x = b, (18)

A ⊗ x = A ⊗ x = b. (19)

Proof. Equalities (18), (19) imply that equalities (10), (11) hold for each x ∈ x. So for each
x ∈ x the system of equalities (10), (11) is satisfied, which follows the assertion.

The converse implication is trivial.
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4 Relations between various types of interval solutions

Definitions of types of interval solutions imply relations among them.

Theorem 4.1 Let interval system (1) and an interval vector x be given. Then the following
implications hold true

i) If x is a strong algebraic solution of (1), then x is a strong control interval solution and
a strong tolerance interval solution of (1),

ii) If x is a strong control solution of (1), then x is a strong possible interval solution and
weak control interval solution of (1),

iii) If x is a strong tolerance solution of (1), then x is a strong possible interval solution and
weak tolerance interval solution of (1),

iv) If x is a strong possible solution of (1), then x is a weak possible interval solution of (1),

v) If x is a weak tolerance solution of (1), then x is a weak possible interval solution of (1),

vi) If x is a weak control solution of (1), then x is a weak possible interval solution of (1).

Proof. The implications in part i) follow from Lemma 2.9. Others implications follow directly
from the definitions of types of interval solutions.

Remark 4.2 It is easy to show that the converse implications to those in Theorem 4.1 do not
hold true.

Example 4.3 (SCS � WTS) Let us have

A =

( 〈1, 11〉 〈3, 6〉
〈5, 9〉 〈2, 4〉

)
, b =

( 〈10, 13〉
〈11, 12〉

)
, x =

( 〈3, 6〉
〈4, 7〉

)
.

As A ⊗ x = (10, 11)T ≤ b and A ⊗ x = (14, 12)T ≥ b, the given interval vector x is a strong
control solution of (1).

We check, if x is a weak tolerance solution. As x̂(A, b,x) = (2, 7) � x, x is not a weak
tolerance solution.

Example 4.4 (STS � WCS) Let us have

A =

( 〈1, 11〉 〈3, 6〉
〈5, 9〉 〈2, 4〉

)
, b =

( 〈7, 18〉
〈8, 20〉

)
, x =

( 〈3, 6〉
〈4, 7〉

)
.

As A ⊗ x = (7, 8)T ≥ b and A ⊗ x = (17, 15)T ≤ b, the given interval vector x is a strong
tolerance solution of (1).

We check, if x is a weak control solution. As x̂(A, b,x) = (3, 4) ≥ x, A ⊗ x̂(A, b,x) =
(14, 12) � b, x is not a weak control solution.
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Example 4.5 (WCS � STS, WTS � STS) Let us have

A =

( 〈1, 11〉 〈3, 6〉
〈5, 9〉 〈2, 4〉

)
, b =

( 〈7, 14〉
〈8, 12〉

)
, x =

( 〈3, 14〉
〈4, 10〉

)
.

We have x̂(A, b,x) = (3, 4)T ≥ x and A ⊗ x̂(A, b,x) = (14, 12) ≥ b, so x is a weak control
solution.

As x̂(A, b,x) = (3, 8)T ≥ x and A⊗ x̂(A, b,x) = (11, 10) ≥ b, x is a weak tolerance solution.

We check, if x is a strong possible solution. As A ⊗ x = (15, 19)T
� b, x is not a strong

possible solution.

Remark 4.6 The previous three examples show that implications SCS ⇒ WTS, STS ⇒
WCS, WCS ⇒ SPS and WTS ⇒ SPS are not fulfilled. It can be easily proved that if
SCS � WTS, STS � WCS, WCS � SPS and WTS � SPS, then also
SCS � STS, STS � SCS, WCS � WTS, WTS � WCS, SPS � WCS,
SPS � WTS, WTS � SCS, WCS � STS.

E.g., if the implication SCS ⇒ STS holds true, then by STS ⇒ WTS (Theorem 4.1) we
get SCS ⇒ WTS, a contradiction. The proofs of remaining non-implications are analogous.

Let us define on the set T of all above defined types of interval solutions a relation R such that
TiRTj if and only if Tj implies Ti where Ti and Tj are types of interval solutions. The set T
with the relation R is a partially ordered set, since the relation R is reflexive, antisymetric and
transitive. So we can depict the set of all types of interval solutions by Hasse diagram. We use
the previous assertions.
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Figure 1: Hasse diagram of the relations between types of interval solutions
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IMPORTANT ELEMENTS OF EL-HYPERSTRUCTURES

Michal Novák, (CZ)

Abstract. The contribution deals with hyperstructure theory. There exists a way of
creating semi-hypergroups and hypergroups (or rather transposition hypergroups) from
(quasi-) ordered semigroups and groups. Even though it has been widely used by some
authors, properties of hyperstructures created in this way have not yet been comprehen-
sively studied. In this contribution their identities and inverses are studied. The last
section of the article includes application of the new results on some previous results.
It is to be noted that results of this article may be used whenever a hyperstructure is
created from a (quasi-) ordered (semi-) groups, which may be the case of differential or
transformation operators, preference relations used in economics, matrix theory, etc.
Key words and phrases. hyperstructure, identity, inverse, ordered group, quasi-ordered
group
Mathematics Subject Classification. Primary 20N20

1 Motivation

A number of articles and contributions in the hyperstructure theory (especially by Czech au-
thors such as Chvalina, Chvalinová, Hošková, Račková, Moučka or Novák) make use of the
construction first used in [3] as Theorems 1.3 and 1.4 (chapter IV), pp. 146–147. Using these
results known as ”Ends lemma” (or ”Ending lemma”) we can form hyperstructures from or-
dered structures. Even though the lemma has been widely used, its possibilities and limits have
not yet been comprehensively studied.1 Findings on some separate issues have been presented
especially in [13] and [14].

This article aims at answering the following important questions: Are ”Ends lemma”–based
hyperstructures canonical hypergroups? What can be said about identities and inverses of ”Ends

1A concept similar to the ”Ends lemma” – albeit in different context – is discussed by Vougiouklis in [16].
As far as I am aware, this is the only ”Ends lemma”–like idea by a non-Czech author.
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lemma”–based hyperstructures? Some results presented here have already been used in some
other articles (e.g. [13]), yet they were not proved or explicitely included there.2

2 Preliminaries

Recall first some basic definitions and ideas from the hyperstructures theory. A hypergrupoid
is a pair (H, •), where H �= 0 and • : H × H → P∗(H) is a binary hyperoperation on H. The
symbol P∗(H) denotes the system of all nonempty subsets of H. If the associativity axiom
a • (b • c) = (a • b) • c holds for all a, b, c ∈ H, then the pair (H, •) is called a semihypergroup.
If moreover the reproduction axiom: for any element a ∈ H equalities a • H = H = H • a
hold, is satisfied, then the pair (H, •) is called a hypergroup. A hypergroup (H, •) is called a
transposition hypergroup if it satisfies the following transposition axiom: For all a, b, c, d ∈ H
the relation b\a ≈ c/d implies a •d ≈ b • c, where X ≈ Y for X,Y ⊆ H means X ∩Y �= ∅. The
sets b\a = {x ∈ H; a ∈ b • x} and c/d = {x ∈ H; c ∈ x • d} are called left and right extensions,
or fractions, respectively. A commutative transposition hypergroup is called a join space.

An element e ∈ H, where (H, •) is a hyperstructure, is called an identity if for ∀x ∈ H there
holds x • e 
 x ∈ e • x. If for ∀x ∈ H there holds x • e = {x} = e • x, then e ∈ H is called a
scalar identity. A commutative reversible3 hypergroup with a scalar identity such that a every
element has a unique inverse4 is called a canonical hypergroup.

As far as the theory of ordered structures is concerned, we need to recall that by a quasi-
ordered (semi)group we mean a triple (G, ·,≤), where (G, ·) is a (semi)group and ≤ is a reflexive
and transitive binary relation on G such that for any triple x, y, z ∈ G with the property x ≤ y
also x · z ≤ y · z and z · x ≤ z · y hold. Further, [a)≤ = {x ∈ G; a ≤ x} is a principal end
generated by a ∈ G while (a]≤ = {x ∈ G; x ≤ a} is a principal beginning generated by a ∈ G .

We are going to examine the ”Ends lemma”, which has the form of the following Theorems:

Theorem 2.1 ([3], Theorem 1.3, p. 146) Let (S, ·,≤) be an ordered semigroup. Binary hyper-
operation ∗ : S × S → P ′(S) defined by

a ∗ b = [a · b)≤
is associative. The semi-hypergroup (S, ∗) is commutative if and only if the semigroup (S, ·) is
commutative.

Further on the hyperstructure (S, ∗) constructed in this way will be called the associated
hyperstructure to the structure (S, ·) or an EL-hyperstructure.5 Instead of S the carrier set will
be denoted by H.

2In fact, they were part of an article Identities and inverses of ”Ends lemma” based hyperstructures submitted
to Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, which was after rather a long time
withdrawn from publication. Meanwhile, new results built upon the article have been obtained and published.
Some findings of the unpublished article are presented here in the form of this contribution.

3For the sake of this contribution the term reversible need not be defined.
4Cf. Definition 3.7.
5In some earlier articles the term ”Ends lemma”–based hyperstructure is used.
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Theorem 2.2 ([3], Theorem 1.4, p. 147) Let (S, ·,≤) be an ordered semigroup. The following
conditions are equivalent:

10 For any pair a, b ∈ S there exists a pair c, c′ ∈ S such that b · c ≤ a and c′ · b ≤ a

20 The associated semi-hypergroup (S, ∗) is a hypergroup.

Remark 2.3 If (S, ·,≤) is an ordered group, then if we take c = b−1·a and c′ = a·b−1, then con-
dition 10 is valid. Therefore, if (S, ·,≤) is an ordered group, then its associated hyperstructure
is a hypergroup.

Remark 2.4 The wording of the above Theorems is the exact translation of theorems from [3].
The respective proofs, however, do not change in any way, if we regard quasi-ordered structures
instead of ordered ones as the anti-symmetry of the relation ≤ is not needed. The often quoted
version of the ”Ends lemma” is therefore the version assuming quasi–ordered structures.

The following theorem extending the ”Ends lemma” was proved by Račková in her Ph.D.
thesis. The proof can be also found in [15].

Theorem 2.5 (Theorem 4, [15]) Let (H, ·,≤) be a quasi-ordered group and (H, ∗) be the asso-
ciated hypergroupoid. Then (H, ∗) is the transposition hypergroup.

Remark 2.6 Naturally, if (H, ·) is commutative, then (H, ∗) is a join space.

3 New results

The result obtained by Račková means that the ”Ends lemma” can be used in constructions
of join spaces. Even though the ”Ends lemma” was meant to construct semi-hypergroups and
hypergroups from semigroups and groups, given Theorem 2.5 we may ask: Can we go any
further? If ”Ends lemma”–based join spaces had a scalar identity, they would be canonical
hypergroups and could be used in constructions of (Krasner) hyperrings. Unfortunately, the
answer is a negative one.

Theorem 3.1 Let (H, ·,≤) be a non-trivial quasi-ordered group, where the relation ≤ is not
the identity relation, and let (H, ∗) be its associated transposition hypergroup. Then (H, ∗) does
not have a scalar identity.

Proof. Suppose that in (H, ∗) there exists a scalar identity e. This means that for all a ∈ H
there holds [a · e)≤ = {a} = [e · a)≤. Since the relation ≤ is a reflexive one, there is x ∈ [x)≤
for an arbitrary x ∈ H. This (among other implications) means that for all a ∈ H there holds
a · e = a = e · a. However, this implies that e is the identity of (H, ·). As a result [a)≤ = {a}
for all a ∈ H, which means that ≤ is the identity relation, which is a contradiction.
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Corollary 3.2 Let (H, ·,≤) be a non-trivial quasi-ordered group, where relation ≤ is not the
identity relation, and let (H, ∗) be its associated transposition hypergroup. Then – regardless of
commutativity – (H, ∗) cannot be a canonical hypergoup.

Remark 3.3 Notice that the theorem holds for semigroups as well. However, there is little use
in stressing this fact as far as EL–hyperstructures are concerned because it is Corollary 3.2 that
is the main practical use of Theorem 3.1.

Since the definition of (Krasner) hyperring is based on a canonical hypergroup, the ”Ends
lemma” may practically not be used when constructing them. However, thanks to Theorem 2.5
it can be used when constructing weaker structures such as hyperringoids. The respective
sufficient and necessary conditions for the use of the ”Ends lemma” to create ring-like hyper-
structures were discussed in [13]. Let us now see whether EL–hyperstructures have at least any
identities. If they do, what are they?

Theorem 3.4 Let (H, ∗) be the associated semi-hypergroup of a quasi-ordered semigroup (H, ·,≤
) with the identity u. An element e ∈ H is an identity of (H, ∗) if and only if e ≤ u.

Proof. ”⇒”: If e ∈ H is an identity of an EL–semihypergroup (H, ∗), then there holds e ·a ≤ a
and a · e ≤ a for ∀a ∈ H. Specifically, this holds for a = u. In this case we get e ≤ u.
”⇐”: Suppose that e ≤ u. Since (H, ·) is a quasi-ordered semigroup, this is equivalent to
e · a ≤ a for any a ∈ H, which means that for any a ∈ H we have that a ∈ [e · a)≤ = e ∗ a. In
an analogous way we get that a ∈ a ∗ e, i.e. e is an identity of (H, ∗).

Corollary 3.5 Let (H, ∗) be the associated semi-hypergroup of a quasi-ordered semigroup (H, ·,≤
). The identity of (H, ·) is an identity of (H, ∗).

Lemma 3.6 Let (H, ∗) be the associated join space of a quasi-ordered commutative group
(H, ·,≤). If an element e ∈ H is an identity of (H, ∗), then e ≤ e−1.

Proof. If e ∈ H is the identity of (H, ·), the implication is obviously true. Therefore study the
case that e is not the identity of (H, ·). If e is an identity of (H, ∗), then for ∀a ∈ H there holds
that a ∈ a∗e = [a ·e)≤, i.e. a ·e ≤ a. In a similar way there holds e ·a ≤ a, i.e. a ≤ e−1 ·a. This
implies that for ∀a ∈ H there holds a · e ≤ a ≤ e−1 · a, which in a commutative quasi-ordered
group means that e ≤ e−1.

Description of identities is useful when describing inverse elements of hyperstructures. Let
us now therefore focus on the issue of inverse elements of EL–hyperstructures.

Definition 3.7 Let (H, •) be a hypergroup endowed with at least one identity. An element
a′ ∈ H is called an inverse of a ∈ H if there is an identity e ∈ H such that a • a′ 
 e ∈ a′ • a.
A hypergroup (H, •) is called regular if it has at least one identity and each element has at least
one inverse. If H is regular, we denote E the set of its identities and i(a) the set of inverses
of an arbitrary element a ∈ H.
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Theorem 3.8 Let (H, ∗) be the associated transposition hypergroup of a quasi-ordered group
(H, ·,≤). Then (H, ∗) is regular. For an arbitrary a ∈ H denote a−1 its inverse in (H, ·). Then
a−1 is an inverse of a in (H, ∗).

Proof. Denote u the identity of (H, ·). Since a and a−1 are inverse elements in (H, ·), there
holds a · a−1 = a−1 · a = u, i.e. a ∗ a−1 = a−1 ∗ a = [u)≤. Since u ∈ [u)≤, we get that a−1 is the
inverse of a in (H, ∗). Since in a group every element has an inverse, there exists an inverse to
every element in (H, ∗), i.e. the hypergroup (H, ∗) is regular.

Theorem 3.9 Let (H, ∗) be the associated transposition hypergroup of a quasi-ordered group
(H, ·,≤). Then for an arbitrary a ∈ H there holds

i(a) = {a′ ∈ H; a′ ≤ a−1} = (a−1]≤,

where a−1 is an inverse of a in (H, ·).

Proof. Inverse elements to a ∈ H in (H, ∗) are defined as such elements a′ for which there
exists an identity e in (H, ∗) such that e ∈ a ∗ a′ and simultaneously e ∈ a′ ∗ a, i.e. a · a′ ≤ e
and a′ · a ≤ e for EL–hyperstructures. In order to prove the theorem, we have to prove the
following implications:

1. If a′ ≤ a−1, then a′ is the inverse of a in (H, ∗).
Suppose that a′ ≤ a−1. This means that a′ · a ≤ a−1 · a = u, where u is the identity
of (H, ·). It does not matter if we multiply from the left or from the right. Therefore if
for an element a′ ∈ H there holds that a′ ≤ a−1, then there exists an identity in (H, ∗)
with the desired property. This identity is the identity u of the group (H, ·), which is –
according to Corollary 3.5 – an identity of (H, ∗).

2. If a′ ∈ H is an inverse of a in (H, ∗), then a′ ≤ a−1.
Since a, a′ ∈ H are inverses in (H, ∗), there exists an identity e ∈ H such that e ∈
a ∗ a′ ∩ a′ ∗ a. This means that there simultaneously holds a · a′ ≤ e and a′ · a ≤ e.
Denote u the identity of (H, ·). Since from Theorem 3.4 there holds that e ≤ u and due
to transitivity of ≤, we altogether get that a ·a′ ≤ u and a ·a′ ≤ u, which implies a′ ≤ a−1.

Remark 3.10 Theorem 3.4 and Theorem 3.9 suggest that in a general case both E and i(a)
are infinite sets such as for e. g. the associated hypergroup of the group (Q, +). This violates
another defining axiom of a canonical hypergroup. In this respect cf. [9], Proposition 6, the
application of which (in case that card i(a) > 1 for any a ∈ H, where H is an arbitrary EL–
transposition hypergroup) suggests another line of proof of Theorem 3.1. Furthermore, as far
as the concept of a fortified join space is concerned, the theorems suggest that EL–join spaces
will be fortified join spaces only in some special cases. Notice that the concept of a fortified join
space is used in the theory of multiautomata. For its definition cf. [2], p.231.
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4 Examples

The above results may be applied in a number of situations. One of them is the study of
hyperstructures related to linear ordinary differential operators of the second order as e.g. in
the article [4], Proposition 2 by Chvalina, Chvalinová. They can be also applied on e.g. results
of contribution [12], which expands the ideas contained in [6], [7] and [8] (not included below),
or on the study of symmetric matrices.

In paper [4] there are studied homogeneous second order linear differential equations

y′′ + p(x)y′ + q(x)y = 0, (1)

such that p ∈ C+(I), q ∈ C(I), where Ck(I) denotes the commutative ring of all continuous
real functions of one variable defined on an open interval I of reals with continuous derivatives
up to order k ≥ 0 (instead of C0(I) we write only C(I)), and C+(I) denotes its subsemiring of
all positive continuous functions. The set of nonsingular ordinary differential equations (1) is
denoted A2. The pair of functions p, q is denoted [p, q], D = ∂

∂x
and Id is the identity operator.

The notation L(p, q) is reserved for the differential operator L(p, q) = D2 +p(x)D + q(x)Id, i.e.
the notation L(p, q)(y) = 0 is the equation (1). The set

LA2(I) = {L(p, q) : C2(I) → C(I); [p, q] ∈ C+(I) × C(I)}

is the set of all such operators. Finally for an arbitrary r ∈ R the notation χr : I → R stands
for the constant function with value r.

Proposition 1 of [4] states that if we define multiplication of operators by

L(p1, q1) · L(p2, q2) = L(p1p2, p1q2 + q1)

and if we define that L(p1, q1) ≤ L(p2, q2) if

p1(x) = p2(x), q1(x) ≤ q2(x) for any x ∈ I,

then (LA2(I), ·,≤) is a noncommutative ordered group with the unit element (identity) L(χ1, χ0).
Using the ”Ends lemma” we get that if we put

L(p1, q1) ∗ L(p2, q2) = {L(p, q) ∈ LA2(I); L(p1, q1) · L(p2, q2) ≤ L(p, q)} =

= {L(p1p2, q); q ∈ C(I), p1q2 + q1 ≤ q},

then (LA2(I), ∗) is a transposition hypergroup ([4], Theorem 3).

Example 4.1 Using the results of section 3 we may formulate the following results:

1. In the transposition hypergroup (LA2(I), ∗) there does not exist a scalar identity.

2. An operator L(p, q) is an identity of (LA2(I), ∗) if and only if there holds p(x) = 1,
q(x) ≤ 0 for ∀x ∈ I.
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3. For an arbitrary operator L(p, q) ∈ LA2(I) there is

i(L(p, q)) = {L(r, s) ∈ LA2(I); r(x) =
1

p(x)
, s(x) ≤ −q(x)

p(x)
,∀x ∈ I}.

Račková in [15] uses the ”Ends lemma” to construct hyperstructures of symmetric matrices.
She denotes S the set of all n × n symmetric matrices, where n ∈ N, and defines relation ≤ in
the following way: for an arbitrary pair of matrices A,B ∈ S define that A ≤ B if B − A is a
positive semidefinite matrix, i.e. if for an arbitrary x ∈ R

n, x �= 0, there holds xT (B−A)x ≥ 0,
where A,B are n×n matrices. Further she denotes + the usual addition of matrices and shows
that the structure (S, +,≤) is a commutative ordered group. Thus the hyperstructure (S, ∗),
where A ∗ B = {C ∈ S; A + B ≤ C}, is a join space.6

Example 4.2 Using the results of section 3 we may formulate the following results:

1. The join space (S, ∗) is not a canonical hypergroup since there does not exist a scalar
identity.

2. Every symmetric matrix A = (aij) such that matrix B = (bij), where bij = −aij for i �= j
and bij = 1 − aij for i = j, is a positive semidefinite matrix, is an identity of the join
space (S, ∗).

3. The join space (S, ∗) is regular hypergroup. For a symmetric matricx A ∈ S we have

i(A) = {A′ ∈ S; A−1 − A′ is a positive semidefinite matrix}.

Example 4.3 Suppose the commutative linear ordered group (R, +). According to Theorem 3.4
a real number r is an identity of the associated join space (R, ∗), where for an arbitrary a, b ∈ R

we set that a ∗ b = {x ∈ R : a + b ≤ x}, if and only if r ≤ 1. According to Theorem 3.9 the set
i(r) of inverses of r in (R, ∗) is i(r) = {x ∈ R, x ≤ −r}.
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[6] CHVALINA, J., MOUČKA, J., NOVÁK, M.: Actions of centralizer semihypergroups of
certain transformation operators on rings of functions of a complex variable. In XXV
International Colloquium on the Acquisition Process Management, Proc. of Contributions.
University of Defence, Brno, 2007. (CD-ROM)
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[11] HOŠKOVÁ, Š., CHVALINA, J., RAČKOVÁ, P.: Transposition hypergroups of Fredholm
integral operators and related hyperstructures, In Journal of Basic Science 4, (2008), Iran,
pp. 43–54 (part 1), pp. 55-60 (part 2).
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Abstract. Many authors investigated various matrices whose entries are the Fibonacci or the 

Lucas numbers. Some of them used methods leading to obtain certain real or complex 

factorizations of the mentioned numbers. Civciv (2008) computed the determinant of a five – 

diagonal matrix with the Fibonacci numbers as its entries. Some of his results are put more 

precisely, completed and generalized in this contribution. Especially the determinant of a five – 

diagonal matrix with the Gibonacci numbers is determined by using the eigenvalues of this 

matrix. 
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1. Introduction  

 

Determinants of matrices with entries given as the Fibonacci or related numbers have a long history. 

Some application problems are often solved by using graphs or digraphs associated with this type of 

determinants (see more details in [6]). One of the main purpose of the investigation of matrices with 

the Fibonacci  and the Lucas numbers is to derive of various factorizations of these numbers. The well 

– known Fibonacci numbers 
n

F  and Lucas numbers 
n

L  are defined as terms of the sequences given 

by the same recurrence with the different initial terms. Concretely, 1,0,
1012
==+=

++
FFFFF

nnn
 or 

1,0,
1012
==+=

++
LLLLL

nnn
, respectively. 

Cahill et al. [2]  studied certain families of tridiagonal matrices and their correspondence to these 

sequences and derived the following  complex factorizations  
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They proved them by considering in what way these numbers can be connected to Chebyshev 

polynomials by determinants of sequences of suitable tridiagonal matrices.  

Some results on factorization of the Fibonacci – like numbers 
n

U  and their squares are given in [7]. 

These factorizations were found using the circulant matrices, their determinants and eigenvalues. 
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where the numbers 
n

U  satisfy the recurrence, 1,0,
1012
==−=

++
UUqUpUU

nnn
 for arbitrary 

integer parameters p, q. But any similar factorizations for the Lucas – like numbers 
n

V  , which are 

defined by the same recurrence with pVV ==
10

,2 ,  were not derived by the determinant of 

circulant matrices. 

Civciv [4]  investigated the following kk ×  five – diagonal matrix 
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He expressed the determinant of 
k

A   in the form 
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But this result is incorrect because of a small mistake in the end of derivation. The correct relation 

can be expressed in the form 
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which we will prove in the next section.  

 

 

2. The main results 

 

There are many connections between determinants of tridiagonal matrices and the Fibonacci 

numbers and numbers which can be given as their generalization. But also some five-diagonal 

matrices and their determinants have this property.  

First, consider a special case of the above – mentioned matrix 
k

A . 
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Theorem 1 ([4], Problem 1) 

The relation 
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holds for the kk ×  five – diagonal matrix 
k

B , where 3≥k .  

 

Proof.  It is easy to see that the matrix 
k

B  is a special case of 
k

A  setting 2=n . Therefore, we have 

immediately from (1)  
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and the proof is over. 

 

Now, consider so – called the generalized Fibonacci (also shortly Gibonacci) sequence { }
n

G  which 

satisfy the basic recurrence 
nnn

GGG +=
++ 12

 , but its initial terms can be arbitrary integers 
10

,GG . 

We will prove the following theorem by a similar way, as Civciv calculated the determinant of the 

matrix 
k

A . 
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Theorem 2.  

Let 
k

M  is a five-diagonal square matrix of order 3≥k  given as  
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Proof.  

It is easy to see that 
kkk
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QP ,  are the following square matrices of order k 
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It means that det 
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QPM detdet= . As 
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QT ,  are tridiagional matrices for their determinants the 

following recurrences hold ( 3≥k ) 
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We know that the determinant of a square matrix can be expressed as the product of its eigenvalues. 

Then, we can write 
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where I  is the identity matrix of order k. 

As the eigenvalues of the square matrix  E  are the numbers ,,...,2,1,
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which completes the proof. 

 

 

3. Concluding remarks 

 

It is obvious that for 
nn

FG =  we obtain the expression for 
k

Adet  given in the first section. 

Every determinant can be represented by some weighted digraph or undirected graph. When a 

matrix has Fibonacci entries, combinatorial methods can bring deeper understanding to the 

calculation of its determinant. Therefore it is possible to find many situations in which are used 

connections between numbers satisfy the recurrence of the second order, determinants with such 

numbers and corresponding graphs. 

Finally, we can also formulate some open problems. For example, is it possible to find the values n  

for which 
k

Mdet  is a real number? How to calculate the same determinant for the Fibonaci – like 

(or Lucas – like) numbers in place of 
n

G ? 
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SECOND EXPLOSION OF REAL NUMBERS

SZALAY István, (HU)

Abstract. Our universe is imaginable as a big open cube R3 = {(x, y, z) : x; y; z ∈ R},
with the ordered field of real numbers (R; +; •). Let us suppose that the beginning is the
”big bang”. We have no information about ”big bang”, but if we start from an existent
”very small” given open cube, then by a suitable exploder function we have bigger and
bigger cubes. Finally, the last one is R3. An exciting question whether we are able to
explode our universe, the cube R3? For the answer, we have to solve the explosion -
problem of the ordered field (R; +; •). The known solution is the ordered field of exploded

real numbers (
|
R

|
, , ). The next question is the explosion of exploded real

numbers, that is, to construe the ordered field ((
|
R

|
)
|

; , ).

Key words and phrases. exploded numbers, second explosion, super-super operations.

Mathematics Subject Classification. Primary 60A05, 08A72; Secondary 28E10.

1 Introduction

First of all we mention that in the abstract sense the ordered fields (
|
R

|
, , ) and

((
|
R

|
)

|

; , ) were introduced in [1] moreover, the complex model of the ordered field

(
|
R

|
, , ) is given in [2]. In this model the set

|
R

|
of exploded real numbers is a proper

subset of the set of complex numbers C. The most important facts are:

|
x
|
= (sgn x) · area th{|x|} + i(sgn x) · [|x|], x ∈ R, (1)
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where

sgn x =

⎧⎨
⎩

1 if 0 < x,
0 if x = 0,
−1 if x < 0,

[x] is the greatest integer number which is less than or equal to x and {x} = x − [x]. So,

|
R

|
= {u ∈ C : u = Re u + i Im u; Im u ∈ Z, (Re u) · (Im u) ≥ 0, (2)

where Z is the set of integer numbers. We say that u =

|
R

|

v, u, v ∈
|
R

|
if u = v in the set C,

that is Re u = Re v ∧ Im u = Im v. So, instead ”=

|
R

|

” we use ”=”, only, Moreover

u = Im u + th Re u, u ∈
|
R

|
(3)

Definition (1) shows that if x is an element of the open interval (−1; 1), then
|
x
|
∈ R.

The inversion - identities are:
|
(u)

|
= u; u ∈

|
R

|
(4)

and

(
|
x
|
) = x; x ∈ R (5)

The super-addition and super multiplication are:

u v =
|
u + v

|
; u, v ∈

|
R

|
(6)

u v =
|
u · v

|
; u, v ∈

|
R

|
(7)

respectively.

The ordering is defined by the way: For any u, v ∈
|
R

|

u <

|
R

|

v

if and only if
Im u < Im v

or
Im u = Im v and Re u < Re v. (8)

Clearly, if u, v ∈ R, then u <

|
R

|

v ⇐⇒ u < v. So, instead of ”<

|
R

|

” we use ”<”. Moreover,

u < v ⇒ u w < v w; u, v, w ∈
|
R

|
(9)

u < v ⇒ u w < v w; u, v, (0 <)w ∈
|
R

|
(10)
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are valid.

The ordered field (
|
R

|
, ) is isomorphic with the ordered field (R; +; •).

Now we detail the postulates and requirements for the explosion of exploded real numbers:
Postulate of extension:

|
R

|
⊂ (

|
R

|
)

|

, (11)

For any u ∈
|
R

|
there exists one and only one

|
u
|
∈ (

|
R

|
)

|

. (12)

Postulate of unambiguity:

|
u
|
=(

|
R

|
)

|
|
v
|
⇐⇒ u = v; u, v ∈

|
R

|
. (13)

Postulate of ordering:

|
u
|
<(

|
R

|
)

|
|
v
|
⇐⇒ u < v; u, v ∈

|
R

|
(14)

Postulate of super-super addition:

|
u
| |

v
|
= (

|
R

|
)

|

u v
|
; u, v ∈

|
R

|
. (15)

Postulate of super-super multiplication:

|
u
| |

v
|
= (

|
R

|
)

|

u v
|
; u, v ∈

|
R

|
. (16)

Requirement of equality for explodeds of exploded real numbers:

u =(

|
R

|
)

|

v ⇐⇒ u = v; u, v ∈
|
R

|
. (17)

Requirement of ordering for explodeds of exploded real numbers:

u <(

|
R

|
) v ⇐⇒ u < v; u, v ∈

|
R

|
. (18)

Requirement of monotonity of super-super addition:

|
u
|
<(

|
R

|
)

|
|
v
|
⇒

|
u
| |

w
|
<(

|
R

|
)

|
|
v
| |

w
|
;

|
u
|
,

|
v
|
,

|
w

|
∈ (

|
R

|
)

|

. (19)

Requirement of monotonity of super-super multiplication:

|
u
|
<(

|
R

|
)

|
|
v
|
⇒

|
u
| |

w
|
<(

|
R

|
)

|
|
v
| |

w
|
;

|
u
|
,

|
v
|
, (0 <(

|
R

|
)

|

)
|
w

|
∈ (

|
R

|
)

|

. (20)
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2 The explosion of exploded real numbers

Let u and arbitrary exploded real number. Using (1) we construe its exploded by definition

|
u
|
= (

|
Reu

|
, Im u), u ∈

|
R

|
, (21)

which satisfies (12). We can see, that is this model
|
u
|
is an ordered pair, such that

|
Re u

|
∈ C;

Im u ∈ Z. We say that
|
u
|
=(

|
R

|
)

|
|
v
|
if and only if

|
Re u

|
=

|
Re v

|
∧ Im u = Im v.

Expressing that u is an exploded real number, we write u =
|
x
|
; x ∈ R. By (4) we have that

x = u. Moreover by (1) we have

|
Re u

|
=

|
((sgn x) · area th{|x|})

|
=

= (sgn((sgn x) · area th{|x|})) · area th{|(sgn x) · area th{|x|}|}+
+i(sgn((sgn x) · area th{|x|})) · [|(sgn x) · area th{|x|}|] =

= (sgn x) · area th{area th{|x|}} + i(sgn x) · [area th{|x|}]

Considering
|
Re u

|
as an ordered pair of real numbers we can write

|
Re u

|
= ((sgn x) · area th{area th{|x|}}, (sgn x) · [area th{|x|}]).

Having that
Im u = (sgn x) · [|x|],

we may consider
|
u
|
as pair

|
u
|
= ((t, n),m) with (t, n) = t + in

or simply as an ordered trio
|
u
|
(t, n,m) ∈ R3 (22)

of real numbers, such that

t = (sgn x) · area th{area th{|x|}} ∈ R,

n = (sgn x) · [area th{|x|}] ∈ Z (23)

and
m = (sgn x) · [|x|] ∈ Z (24)

and
m = (sgn x) · [|x|] ∈ Z (25)
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Using (22), the equality ”=(

|
R

|
)

|

” is understable as the usual equality ”=R3
”.

By (23), (24) and (25) we observe

t(n + m) ≥ 0; t ∈ R; n,m ∈ Z (26)

and
n · m ≥ 0, n,m ∈ Z. (27)

Now, we prove the following theorem.
Theorem of completeness. If (t, n,m) ∈ R3 with (26) and (27) then

n + th t + im ∈
|
R

|
(28)

and
|
n + th t + im

|
= (t, n,m). (29)

Proof. First, we show that
t · n ≥ 0, t ∈ R; n ∈ Z (30)

In the first case we assume that m = 1, 2, 3, . Hence (27) yields that n = 0, 1, 2, 3, . . .. If n = 0
then (30) is obvious. If n = 1, 2, 3, then 0 < n + m so, (26) yields, that t ≥ 0 and (30) is
fulfilled. In the second case we assume that m = 0. In this case (26) gives (30), immediately. In
the third case we assume that m = −1,−2,−3, . Hence (27) yields that n = 0,−1,−2,−3, . . ..
If n = 0 then (30) is obvious. If n = −1,−2,−3, then n + m < 0 so, (26) yields, that t ≤ 0
and (30) is fulfilled. Collecting the three cases, (30) is proved. By (30) we have

sgn(n + th t) =

{
sgn n if n = ±1,±2,±3, . . . ,
sgn t if n = 0.

(31)

As Im(n + th t + im) = m ∈ N and by (31) and (27) we have that if n 	= 0 then (Re(n + th t +
im)) · (Im(n + th t + im)) = (n + th t) · m ≥ 0. If n = 0, then (26) gives that t · m ≥ 0 which
with (31) yields (Re(n + th t + im)) · (Im(n + th t + im)) = (th t) · m ≥ 0. Hence, by (2) we
have (28).
Now we turn toward (29). Using (21) we obtain

|
n + th t + im

|
= (

|
Re(n + th t + im)

|
, Im(n + th t + im)) = (

|
n + th t

|
; m). (32)

For our aim it is sufficient to prove

|
n + th t

|
= t + in. (33)

As n + th t ∈ R, we may apply definition (1). Using (31) and (30) we have

|n + th t| =

⎧⎨
⎩

n + th t if n = 1, 2, 3, . . .
| th t| ifn = 0,

−n − tht ifn = −1,−2,−3, . . .
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[|n + th t|] =

⎧⎨
⎩

n if n = 1, 2, 3, . . .
0 ifn = 0,
−n ifn = −1,−2,−3, . . .

and

{|n + th t|} =

⎧⎨
⎩

th t if n = 1, 2, 3, . . .
| th t| ifn = 0,
− th t ifn = −1,−2,−3, . . .

Finally, we consider three cases:
First case: n = 1, 2, 3, . . .. Using (31) again, we can write that

|
n + th t

|
= (sgn(n + th t)) · area th{|n + th t|} + i(sgn(n + th t)) · [|n + th t|] =

= area th(th t) + in = t + in.

Second case: n = 0. Using (31) again, we can write that

|
n + th t

|
= (sgn(n + th t) · area th{|n + th t|} + i(sgn(n + th t)) · [|n + th t|] =

= (sgn t) · area th | th t| = t + in.

Third case: n = −1,−2,−3, . . ..
Using (31) again, we can write that

|
n + th t

|
= (sgn(n + th t)) · area th{|n + th t|} + i(sgn(n + th t)) · [|n + th t|] =

= − area th(−tht) − i(−n) = t + in.

Having (33) with (32) the statement (29) is proved. The proof of Theorem of completeness is
finished.

By the facts mentioned above we give the following model of (
|
R

|
)

|

(
|
R

|
)

|

= {
|
u
|
= (t, n,m) ∈ R3 : t · (n + m) ≥ 0; t ∈ R; n,m ∈ Z}. (34)

Considering an x ∈ R, (1) gives that
|
x
|
= area th x ∈ R(⊂

|
R

|
⊂ C). Moreover (23), (24) and

(25) gives that (
|
x
|
)

|

= ((sgn x) · area th{area th |x|}, (sgn x) · [area th |x|], 0) ∈
|
R

|
. If in ( (34))

we fix m = 0 then (2) shows that the set {(t, n, 0) ∈ R3 : t ·n ≥ 0; t ∈ R; n ∈ Z} with u = t+ in

is just the set
|
R

|
. So, we have (11), that is the Postulate of extension is satisfied.
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Remark. The real number x ∈ R is considered x ≡ (1, 0, 0) ∈ (
|
R

|
)

|

, the complex number u ∈
|
R

|

is considered u ≡ (Re u, Im u, 0) ∈ (
|
R

|
)

|

. For example 0 ≡ (0, 0, 0);
|
1
|
≡ (0, 1, 0).

Theorem of unambiguity. If u, v ∈
|
R

|
and

|
u
|
=(

|
R

|
)

|
|
v
|
, then u = v.

Proof. By definition (21) we have that (
|
Re u

|
, Im u) = (

|
Re v

|
, Im v). By the definition of

”=(

|
R

|
)

|

”
|
Re u

|
=

|
Re v

|
and Im u = Im v

are obtained. Applying Th2 of [2] which says that if x, y ∈ R and
|
x
|
=

|
y
|
then x = y, we have

that Re u = Re v. Hence, u = Re u+i Im u = Re v+i Im v = v, that is Theorem of unambiguity
is proved.

Clearly, if u, v ∈
|
R

|
and u = v then

|
u
|

=(

|
R

|
)

|
|
v
|
. Using this fact together Theorem of

unambiguity we have (13), that is Postulate of unambiguity is satisfied.

As we already have to relation (11) we investigate the meaning of the equality u =(

|
R

|
)

|

v

where u, v ∈
|
R

|
. Now, u =

|
x
|
; x ∈ R and v =

|
y
|
; y ∈ R. By (21) u = (

|
Re x

|
, Im x) and

v = (
|
Re y

|
, Im y). Of course, Im x = Im y = 0, x = Re x and y = Re y, by the definition of

”= (

|
R

|
)

|

”

u =
|
x
|
=

|
Re x

|
=

|
Re y

|
=

|
y
|
= v

is obtained. So, (17) shows that the Requirement of equality for explodeds of exploded real

number is fulfilled and we may use ”=” instead of ”=(

|
R

|
)

|

”.
By Theorems completeness and unambiguity, (29) yields the definition of the compressed of
the exploded of exploded real number

(t, n,m) = n + th t + im, (t, n,m) ∈ (
|
R

|
)

|

. (35)

Hence, we get the inversion identity

|
((t, n,m))

|
= (t, n,m), (t, n,m) ∈ (

|
R

|
)

|

. (36)
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We remark, that in the case m = 0, (t, n, 0) = t + in(∈
|
R

|
) and (t, n, 0) = n + th t. So, by (3),

the inversion identity is reduced (4). Writing u = n + th t + im with (26) and (27). Now (28)

shows that u ∈
|
R

|
and by (29) and (35) is given the the second inversion identity

(
|
u
|
) = u, u ∈

|
R

|
, (37)

which is an extension of (5).

Now we turn toward the ordering of the set (
|
R

|
)

|

. Our definition is:

|
u
|
< (

|
R

|
)

|
|
v
|
⇐⇒

⎧⎪⎨
⎪⎩

Im u < Im v
or

Im u = Im vand
|
Re u

|
<

|
Re v

|
.

; u, v ∈
|
R

|
(38)

Considering (1), (2), (8) we already have

|
x
|
<

|
y
|
⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

Im
|
x
|
< Im

|
y
|

or

Im
|
x
|
= Im

|
y
|
and Re

|
x
|
< Re

|
y
|

; x, y ∈ R. (39)

Applying (39) for u =
|
x
|
; v =

|
y
|
; x, y ∈ R with

|
Re u

|
= ((sgn x) · area th{area th{|x|}} + i(sgn x) · [area th{|x|}]

and
|
Re v

|
= ((sgn y) · area th{area th{|y|}} + i(sgn y) · [area th{|y|}],

we obtain
|
Re u

|
<

|
Re v

|
if and only if : (40)

(sgn x) · [area th{|x|}] < (sgn y) · [area th{|y|}]
or

(sgn x) · [area th{|x|}] = (sgn y) · [area th{|y|}]
and

(sgn x) · area th{area th{|x|}} < (sgn y) · area th{area th{|y|}}.

Let be
|
u
|
= (t, n,m) ∈ (

|
R

|
)

|

with (23), (24), (25) and
|
v
|
= (τ, ν, μ) ∈ (

|
R

|
)

|

with

τ = (sgn y) · area th{area th{|y|}} ∈ R (41)

ν = (sgn y) · [area th{|y|}] ∈ Z (42)

μ = (sgn y) · [|y|] ∈ Z. (43)
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Now, (35) gives the exploded numbers

u = n + th t + im and v = ν + th τ + iμ. (44)

Considering (23), (24), (25), (41), (42), (43) and (44) definition (38) and

(t, n,m) <(

|
R

|
)

|

(τ, ν, μ) ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m < μ
or
m = μ and n < ν
or
m = μ; n = ν and t < τ

(45)

are equivalent definitions. We can see that the keywords of this ordering are: ”under-above”,

”before-behind” and ”left-right”. Moreover, the set
|
R

|
is ”very big” open interval in (

|
R

|
)

|

.
Namely

|
R

|
= {

|
u
|
∈ (

|
R

|
)

|

} : (
|
− 1

|
)

|

<
|
u
|
< (

|
1
|
)

|

}. (46)

Theorem of ordering. For any u, v ∈
|
R

|
,

|
u
|
<(

|
R

|
)

|
|
v
|
if and only if u < v.

Proof. Let u = Re u + i Im u; v = Re v + i Im v ∈
|
R

|
, that is, by (2)

(Re u) · (Im u) ≥ 0; Im u ∈ Z

and
(Re v) · (Im v) ≥ 0; Im v ∈ Z

are fulfilled.

Necessity. We prove that (
|
u
|
<(

|
R

|
)

|
|
v
|
) ⇒ (u < v). By definition (38) we distinguish two cases:

Case I.: Im u < Im ν. Now, by (8) u < v is obtained, immediately.

Case II.: Im u = Im v and
|
Re u

|
<

|
Re v

|
. Applying Th13 of [2] which says that if x, y ∈ R and

|
x
|
<

|
y
|
then x < y, we have that Re u < Re v. Now, by (8) we have, that u < v.

Sufficiency. We prove that (u < v) ⇒ (
|
u
|
<(

|
R

|
)

|
|
v
|
). Two cases are distinquished:

Case I.: Im u < Im v. Now, by (38) u <(

|
R

|
)

|

v is obtained, immediately.
Case II.: Im u = Im v and Re u < Re v. Applying Th13 of [2] which says that if x, y ∈ R and

x < y then
|
x
|
<

|
y
|
, we have that

|
Re u

|
<

|
Re v

|
. Now, by (38) we have, that u <(

|
R

|
)

|

v.
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Theorem of ordering says that (14) is valid, so the Postulate of ordering is satisfied. Having

the relation (11) we investigate the meaning of the inequality u <(

|
R

|
)

|

v where u, v ∈
|
R

|
. Now,

u =
|
x
|
; x ∈ R and v =

|
y
|
; y ∈ R. By (21) u = (

|
Re x

|
, Im x) and v = (

|
Re y

|
, Im y). Of course,

Im x = Im y = 0, x = Re x and y = Re y, the definition of (38) says that
|
Re x

|
<

|
Re y

|
. Hence

u =
|
x
|
=

|
Re x

|
<

|
Re y

|
=

|
y
|
= v.

So, (18) shows that the Requirement of ordering for explodes of exploded real number is fulfilled

and we may use ”< ” instead of ”< (

|
R

|
)

|

”.

In the set (
|
R

|
)

|

we define the super-super addition and super-super multiplication

(t, n,m) (τ, ν, μ) = (λ, ρ, κ); (t, n,m), (τ, ν, μ) ∈ (
|
R

|
)

|

(47)

with

λ = (sgn(m + th(n + th t) + μ + th(ν + th τ))) ·
area th {area th{|m + th(n + th t) + μ + th(ν + th τ)|}} (48)

ρ = (sgn(m + th(n + th t) + μ + th(ν + th τ))) ·
[area th {|m + th(n + th t) + μ + th(n + th τ)|}] (49)

κ = (sgn(m + th(n + th t) + μ + th(ν + th τ))) ·
[|m + th(n + th t) + μ + th(v + th τ)|] (50)

and

(t, n,m) (τ, ν, μ) = (λ, ρ, κ); (t, n,m), (τ, ν, μ) ∈ (
|
R

|
)

|

. (51)

with

λ = (sgn((m + th(n + th t)) · (μ + th(ν + th τ)))) ·
area th {area th{|m + th(n + th t)) · (μ + th(ν + th τ))|}} (52)

ρ = (sgn((m + th(n + th t)) · (μ + th(ν + th τ)))) ·
[area th {|(m + th(n + th t)) · (μ + th(ν + th τ))|}] (53)

κ = (sgn((m + th(n + th t)) · (μ + th(ν + th τ)))) ·
[|(m + th(n + th t)) · (μ + th(ν + th τ))|], (54)

respectively.
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Theorem of super-super addition. If u, v ∈
|
R

|
then

|
u
| |

v
|
=

|
u v

|
.

Proof. Denoting
|
u
|

= (t, n,m) ∈ (
|
R

|
)

|

with (23), (24) , (25) and
|
v
|

= (τ, ν, μ) ∈ (
|
R

|
)

|

with
(41), (42), (43) and using (44) u = n + th t + im and v = ν + th τ + iμ are obtained. Moreover,
(3) shows, that u = m + th(n + th t) and v = μ + th(ν + th τ). Denoting

σ = (m + th(n + th t)) + (μ + th(ν + th τ))

by (6), (1), (21), (48), (49) and (50) we can write

|
u v

|
= (

|
(m + th(n + th t)) + (μ + th(ν + th τ))

|
)

|

= (
|
σ
|
)

|

=

=
|
(sign σ) · area th{|σ|} + i(sign σ) · [|σ|]

|
= (

|
(sign σ) · area th{|σ|}

|
, (sgn[|σ|]) =

= ((sgn σ) · area th{area th{|σ|}} + i(sgn σ) · [area th{|σ|}], κ) = (λ + iρ, κ) = (λ, ρ, κ).

Casting a glance at (47), Theorem of super-super addition is proved. By (15) the Postulate of
super-super addition is satisfied.

Theorem of super-super multiplication. If u, v ∈
|
R

|
then

|
u
| |

v
|
=

|
u v

|
.

Proof. Denoting
|
u
|
= (t, n,m) ∈ (

|
R

|
)

|

with (23), (24), (25) and
|
v
|
= (τ, ν, μ) ∈ (

|
R

|
)

|

with (41),
(42), (43) and using (44) u = n + th t + im and v = ν + th τ + iμ are obtained. Moreover, (3)
shows, that u = m + th(n + th t) and v = μ + th(ν + th τ). Denoting

σ = (m + th(n + th t)) · (μ + th(ν + th τ))

by (7), (1), (21), (52), (53) and (54) we can write

|
u v

|
= (

|
(m + th(n + th t)) · (μ + th(ν + th τ))

|
)

|

= (
|
σ
|
)

|

=

=
|
(sign σ) · area th{|σ|} + i(sign σ) · [|σ|]

|
= (

|
(sign σ) · area th{|σ|}

|
, (sgn σ) · [|σ|) =

= ((sgn σ) area th{area th{|σ|}} + i(sgn σ) · [area th{|σ|}], κ) = (λ + iρ, κ) = (λ, ρ, κ).

Casting a glance at (51), Theorem of super-super multiplication is proved. By (16) the Postulate
of super-super multiplication is satisfied.

By (15) and (16) we have that (
|
R

|
|

, , ) is isomorphic with the field (
|
R

|
, , ).

So, (
|
R

|
|

, , ) is a field. The unit-element of super-super addition is (
|
0
|
)

|

= (0, 0, 0). This

means, that for any (t, n,m) ∈ (
|
R

|
)

|

t, n,m) (
|
0
|
)

|

= (t, n,m). (55)
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By (34) we can see that if (t, n,m) ∈ (
|
R

|
)

|

then (−t,−n,−m) ∈ (
|
R

|
)

|

, too. Moreover, (47)
shows

(t, n,m) (−t,−n,−m) = (
|
0
|
)

|

, (t, n,m) ∈ (
|
R

|
)

|

. (56)

By (56) we introduce

−(t, n,m) = (−t,−n,−m), (t, n,m) ∈ (
|
R

|
)

|

. (57)

Moreover, the super-super extraction

(t, n,m) (τ, ν, μ) = (t, n,m) (−(τ, ν, μ)), (t, n,m); (τ, ν, μ) ∈ (
|
R

|
)

|

. (58)

The unit-element of super-super multiplication is (
|
1
|
)

|

= (0, 0, 1). Really by (16), (34), (37)
and (36)

(t, n,m) (
|
1
|
)

|

= (t, n,m)
|
1
|
|

=
|
((t, n,m))

|
= (t, n,m), (t, n,m) ∈ (

|
R

|
)

|

, (59)

is obtained.

It is easy to see that if (t, n,m) 	= (0, 0, 0) and (t, n,m) ∈ (
|
R

|
)

|

then m + th(n + th t) 	= 0.
Considering (τ, ν, μ) such that

τ =
(

sgn
1

m + th(n + th t)

)
· area th

{
area th

{∣∣∣ 1

m + th(n + th t)

∣∣∣}}
, (60)

ν =
(

sgn
1

m + th(n + th t)

)
·
[
area th

{∣∣∣ 1

m + th(n + th t)

∣∣∣}]
(61)

and

μ =
(

sgn
1

m + th(n + th t)

)
·
[∣∣∣ 1

m + th(n + th t)

∣∣∣], (62)

we have (τ, ν, μ) ∈ (
|
R

|
)

|

. Hence,

μ + th(ν + th τ) = μ + th
(
ν +

(
sgn

1

m + th(n + th t)

)
·
{

area th
{∣∣∣ 1

m + th(n + th t)

∣∣∣}})
=

= μ + th
((

sgn
1

m + th(n + th t)

)
area th

{∣∣∣ 1

m + th(n + th t

∣∣∣})
=

= μ +
(

sgn
1

m + th(n + th t)

)
·
{∣∣∣ 1

m + th(n + th t)

∣∣∣} =
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=
(

sgn
1

m + th(n + th t)

)∣∣∣ 1

m + th(n + th t)

∣∣∣ =
1

m + th(n + th t)
.

So, (m + th(n + th t)) · (μ + th(ν + th τ)) = 1 and by (51), (52), (53) and (54) we have

(t, n,m) (τ, ν, μ) = (
|
1
|
)

|

. (63)

Collecting these items, we have

Reciprocal theorem for explodes of exploded real numbers. For any (t, n,m) ∈ (
|
R

|
)

|

which differs

from (
|
0
|
)

|

there exists one and only one reciprocal partner (τ, ν, μ) ∈ (
|
R

|
)

|

, with (60), (61) and
(62) such that (63) is valid.

Clearly, (
|
1
|
)

|

is own reciprocal partner. Similarly, (
|
− 1

|
)

|

is own reciprocal partner.
Using the reciprocal theorem for explodeds of exploded real numbers by (51) we define the
super-super division:

(t, n,m) (τ, ν, μ) = (λ, ρ, κ); (t, n,m), (τ, ν, μ) 	= (
|
0
|
)

|

∈ (
|
R

|
)

|

. (64)

with

λ =
(

sgn
m + th(n + th t)

μ + th(ν + th τ)

)
· area th

{
area th

{∣∣∣m + th(n + th t)

μ + th(ν + th τ)

∣∣∣}}
(65)

ρ =
(

sgn
m + th(n + th t)

μ + th(ν + th τ)

)
·
[
area th

{∣∣∣m + th(n + th t)

μ + th(ν + th τ)

∣∣∣}]
(66)

κ =
(

sgn
m + th(n + th t)

μ + th(ν + th τ)

)
·
[∣∣∣m + th(n + th t)

μ + th(ν + th τ)

∣∣∣]. (67)

In the special case (t, n,m) = (
|
1
|
)

|

, (m = 1, n = 0, t = 0) (64), (65), (66), (67), (60), (61) and
(62) show that

(
|
1
|
)

|

(τ, ν, μ)

is the reciprocal partner of (τ, ν, μ) 	= (
|
0
|
)

|

.
Finally, we turn towards the requirements of monotonities.

Theorem of monotonity of super-super addition. If (t, n,m), (τ, ν, μ), (λ, ρ, κ) ∈ (
|
R

|
)

|

and

(t, n,m) < (τ, ν, μ) (68)
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then
(t, n,m) (λ, ρ, κ) < τ, ν, μ) (λ, ρ, κ) (69)

is valid too.

Proof. Denoting
|
u
|
= (t, n,m),

|
v
|
= (τ, ν, μ),

|
w

|
= (λ, ρ, κ), by (37) we have that u = (t, n,m),

v = (τ, ν, μ), w = (λ, ρ, κ). Condition (68) says that
|
u
|
<

|
v
|
. Hence (14) gives, that u < v.

(See the Theorem of ordering.) By (9) u w < v w is obtained. Applying the Theorem

of ordering again, we have that
|
u w

|
<

|
v w

|
. Hence (15) gives (69). (See Theorem of

super-super addition.)

Theorem of monotonity of super-super multiplication. If (t, n,m), (τ, ν, μ), (λ, ρ, κ) ∈ (
|
R

|
)

|

and
(2,48) fulfills, moreover 0 < (λ, ρ, κ) then

(t, n,m) (λ, ρ, κ) < (τ, ν, μ) (λ, ρ, κ) (70)

is valid, too.

Proof. Denoting
|
u
|
= (t, n,m),

|
v
|
= (τ, ν, μ),

|
w

|
= (λ, ρ, κ), by (37) we have that u = (t, n,m),

v = (τ, ν, μ), w = (λ, ρ, κ). Condition (68) says that
|
u
|
<

|
v
|
. Hence (14) gives, that u < v.

(See the Theorem of ordering.) Similarly, we have 0 < w. By (10) u w < v w is

obtained. Applying the Theorem of ordering again, we have that
|
u w

|
<

|
v w

|
. Hence

(15) gives (70). (See Theorem of super-super multiplication.)

The construction of ordered field ((
|
R

|
)

|

, , ) is finished.
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GOLDEN SECTION QUASIGROUPS, FINITE EXAMPLES

VANŽUROVÁ Alena, (CZ)

Abstract. GS-quasigroups (golden section quasigroups, a particular class of idempotent
medial quasigroups) were introduced by V. Volenec in [11], and their relation to geometric
configurations was examined. The identity (x·(xy ·z))·z = y characterizing the class might
appear to be useful in cryptography or coding theory. For this purpose, we investigate
existence of finite examples; next step should be analyzing of their non-associativity. In
[1] examples of GS-quasigroups in low orders (4, 5, 9, 11, 19, 29) were found by “paper
and pencil” from finite fields by the method suggested in [11], [3]. With the computer aid,
we found examples over Zp up to prime order p = 991.

Key words and phrases. quasigroup, medial law, idempotent law, golden section quasi-
group, field.
Mathematics Subject Classification. Primary 20N05; Secondary 05B15, 12E20.
Kĺıčová slova. kvazigrupa, medialita, idempotentnost, GS kvazigrupa, těleso.

1 Introduction

Recall some terminology and notation. If (Q, ·) is a groupoid we say that an element q ∈ Q is
idempotent if q · q = q. The groupoid is idempotent if all its elements are idempotent, i.e. the
identity x · x = x holds, and is said to be medial, or entropic if the following identity holds:

(x · y) · (u · v) = (x · u) · (y · v). (1)

To save brackets we suppose that juxtaposition is preferred to composition where the product
is explicitly written, i.e. we write mediality as xy ·uv = xu · yv etc. Denote by Lu, Ru : Q → Q,
Lu : x �→ ux, Ru : x �→ xu the left and right translation by u ∈ Q in (Q, ·), respectively.

A groupoid (Q, ∗) is dual to the groupoid (Q, ·) if the operations are related by a ∗ b = ba
for all a, b ∈ Q.
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Under the isotopy of a groupoid (Q, ·) onto (Q′, ·′) we mean a triplet of bijections
(α, β, γ) : Q → Q′ such that α(a)·′β(b) = γ(a · b) for all a, b ∈ Q, or equivalently, a′·′b′ =
γ(α−1(a′)·β−1(b′)) for all a′, b′ ∈ Q′, [6]. In the case of coinciding bijections α = β = γ : Q → Q′,
we speak about isomorphism.

Quasigroups can be characterized in two ways. Either equationally, as algebras with three
binary operation ·, / and \ (called multplication, right and left division) which are connected
by the identities

xy/y = y\yx = (x/y)y = y(y\x) = x,

or as qroupoids in which the equations ay = b, xa = b admit unique solution, denoted a\b or
b/a, respectively, for which the above identities can be verified.

Let us follow the second view-point here. Recall that a group can be introduced as a
quasigroup which is at the same time a semigroup [5] (i.e. associative). While any group
isotopic to the given group is isomorphic with it, for quasigroups, isotopism plays the central
role.

Under a pointed groupoid or pointed quasigroup we mean the algebraic structure together
with a distinguished element from the underlying set (support); we use the notation (Q, ·; q)
etc. In the case of a pointed group, we agree to distinguish just the identity element.

If G is a group let Aut(G) denote its automorphism group.

2 Pointed medial quasigroups

First let us recall and modify some techniques from the original Toyoda’s paper [8] where the
following was proved: A necessary and sufficient condition that a set G forms an abelian set is
that the product x · y of G is of the form

x · y = Γ1(x) ∗ Γ1(y) for any elements x and y

where y = Γ1(x) and y = Γ2(x) denote the automorphic transformations of the abelian group G
with respect to the product x ∗ y and moreover these operators are mutually permutable. Note
that the original results were proved for the so-called abelian sets. According to [8], an abelian
set is in fact a medial quasigroup with at least one idempotent element, although the up-to-date
quasigroup terminology was not used in the original paper; if an abelian set is idempotent it is
called a mean set in [8]. Also for means sets and commutative means sets, analogous theorems
were proved in [8].

Lemma 2.1 In a medial quasigroup (Q, ·) the following cross-rule is satisfied:

if ua = bv and za = bw then uw = zv. (2)

Proof. Due to the assumptions and mediality, uw · ab = ua ·wb = bv ·wb = bw · vb = za · vb =
zv · ab, and we use right cancellation to get uw = zv.

If (Q, ·) is a quasigroup and q ∈ Q a fixed element, let us introduce a “conjugation” Q → Q,
a �→ a′, with respect to q as a unary operation a′ = L−1

q Rq(a) = q\(aq); that is, a′ is the unique
element satisfying aq = qa′. If we apply the cross-rule to aq = qa′ and bq = qb′ we get:
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Lemma 2.2 If (Q, ·) is a medial quasigroup, q ∈ Q a fixed element and a′, b′ are conjugates of
a, b with respect to q then ab′ = ba′.

Lemma 2.3 Let (Q, ·; q) be a pointed medial quasigroup. Then the binary operation +q defined
on Q by

x +q y = R−1
q (x) · L−1

q (y) = (x/q) · (q\y) for x, y ∈ Q (3)

is associative and commutative.

Proof. Let a, b, c ∈ Q. Due to unique solvability of equations, there are d1, d2 in Q such that
(a/q)·(b/q)′ = d1q = qd′

1 = (b/q)·(a/q)′, (b/q)·(c/q)′ = d2q = qd′
2 = (b/q)·(c/q)′. Using Lemma

2.1 for d1q = (b/q) · (a/q)′ and d2q = (b/q) · (c/q)′ we obtain d1(c/q)
′ = d2(a/q)′ = (a/q) · d′

2.
Now

(a +q b) +q c = ((a/q)) · (b/q)′) +q c
= d1 · (c/q)′ = (a/q) · d′

2 = a +q ((b/q) · (c/q)′) = a +q (b +q c).

If we use a = (a/q) · q = q · (a/q)′ and similarly for b, we get

a +q b = ((a/q) · q) +q (q · (b/q)′) = (a/q) · (q · (b/q)′).

From Lemma 2.2, a +q b = (b/q) · (a/q)′ = b +q a.

3 Modification of the Toyoda’s Theorem

Theorem 3.1 Let (Q, ·; q) be a pointed medial quasigroup with q idempotent. Define a binary
operation on Q by (3). Then (Q, +q) is a commutative group with the identity element q.

Proof. By Lemma 2.3, (Q, +q) is a semigroup. Check that (Q, +q) is a quasigroup: (Rq, Lq, idQ)
is a principal isotopy of (Q, ·) onto (Q, +q) since we can write (3) equivalently as

xy = Rq(x) +q Lq(y) = xq +q qy for all x, y ∈ Q.

Moreover, for all x ∈ Q, xq = xq +q qq = xq +q q holds, and qx = qq +q qx = q +q qx, hence q
is the identity element (and (Q, +q) is an LP -isotope). Commutativity was already checked.

Lemma 3.2 Let (Q, ·; q) be a pointed medial quasigroup with q idempotent. Then for any
x, y, z, w ∈ Q,

xy +q zw = (x +q z) · (y +q w).

Proof. Let us write x = aq = qa′ (i.e. a = x/q) and similarly (b = y/q etc.) y = bq = qb′,
z = cq = qc′, w = dq = qd′. Then due to mediality, xy = (aq) · (bq) = (a · b) · (q · q) = ab · q,
and similarly zw = cq · dq = qq · c′d′ = q · c′d′. Finally, xy +q zw = ab · c′d′ = ac′ · bd′ =
(aq +q qc′) · (bq +q qd′) = (x +q z) · (y +q w) which proves the entropicity, “mixed mediality”.
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Lemma 3.3 If G = (Q, +q; q) is a commutative group which arises from a pointed medial
quasigroup (Q, ·; q) and its idempotent element q by the construction (3) then the translations
Rq and Lq are commuting automorphisms of the group G.

Proof. First check that Rq, Lq ∈ Aut(G). We have Rq(x) +q Rq(y) = xq +q yq = (x +q y) ·
(q +q q) = (x +q y) · q = Rq(x +q y), analogously for Lq. For any x ∈ Q, RqLq(x) = qx · qq =
qq · xq = LqRq(x), hence Rq and Lq commute.

Theorem 3.4 Let Q = (Q, ·; e) be a pointed medial quasigroup with e idempotent. Then there
is a commutative group G = (Q, +) and commuting automorphisms α, β ∈ Aut(G) such that

x · y = α(x) + β(y) for all x ∈ Q.

Proof. It is sufficient to take α = Re, β = Le and + = +e (e is then the identity of the group).

Theorem 3.5 Let G = (Q, +; e) be a commutative group and let α, β ∈ Aut(G) be commuting
automorphisms of the group. Let Q = (Q, ·) be a groupoid with the operation

x · y = α(x) + β(y) for all x ∈ Q. (4)

Then Q is a medial quasigroup with the idempotent element e and the automorphisms are
translations of the quasigroup, namely, α = R·

e and β = L·
e.

Proof. Let the assumptions be satisfied. Then (α, β, id) is a principal isotopy of the groupoid
Q onto the group G, hence Q is a quasigroup. Moreover, since G is the LP -isotope (with the
identity element e) we can write α = R·

v, β = R·
u for convenient elements u, v ∈ Q. As α, β are

group automorphisms we get α(e) = ev = e, β(e) = ue = e, and e · e = α(e)+β(e) = ev +ue =
e + e = e which proves idempotency of e. Moreover, using (left and right) cancellation in Q
we get v = e = u. So we have xy = xe + ey. It remains to check mediality. Using the defining
relation (4) and the properties of automorphisms, ab·cd = (ae+eb)·(ce+ed) = ((ae+eb)·e)+(e·
(ce+ed)) = (ae·e+eb·e)+(e·ce+e·ed). On the other hand, ac·bd = (ae·e)+(e·ce)+(e·be)+(e·de).
Now let us apply the equality e · xe = Le(Rex) = Re(Lex) = ex · e for x = c and x = b to the
right hand side. We obtain the same expression as above, hence mediality is checked.

We get as a consequence:

Corollary 3.6 A pointed groupoid (Q, ·; e) is a medial quasigroup with an idempotent element
e if and only if there is a commutative group G = (Q, +; e) and a pair of commuting automor-
phisms α, β ∈ Aut(G) such that

x · y = α(x) + β(y).

If this is the case, then α = R·
e and β = L·

e.
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Let (Q, +; e) be a group with the identity element e and f : Q → Q. It is a convention to
call the map f linear if f(x + y) = f(x) + f(y), and affine if f(x + y) = f(x) + f(y) − f(e)
for all x, y ∈ Q. Let us adopt here the following convention. If G = (Q, +; e) is a commutative
group and ϕ ∈ Aut(G) is a fixed non-trivial1 automorphism of G, and “·” a binary operation
on Q introduced by

x · y = x + ϕ(y − x) for x, y ∈ Q, (5)

we say that the groupoid (Q, ·) is linear over the commutative group G under the automorphism
ϕ.

Note that if ϕ = idQ then xy = y, and (Q, ·) is a doubly homogeneous groupoid, [7], but
not a quasigroup.

Theorem 3.7 Let G = (Q, +; e) be a commutative group, ϕ ∈ Aut(G) a non-trivial automor-
phism of G. Let Q = (Q, ·) be a groupoid linear over G with the automorphism ϕ. Then Q is
an idempotent medial quasigroup and ϕ = L·

e.

Proof. We check easily that also the map ψ = idQ − ϕ is the group automorphism. Indeed,
ψ(x + y) = x + y − ϕ(x + y) = (x − ϕ(x)) + (y − ϕ(y)) = ψ(x) + ψ(y). The automorphisms
commute, ψϕ(x) = ϕ(x) − ϕ2(x) = ϕψ(x). The rest follows from Theorem 3.5 for the choice
ψ = α = R·

e and ϕ = β = L·
e.

Theorem 3.8 Let (Q, ·) be a non-trivial2 idempotent medial quasigroup. Then for any choice
of a fixed element e ∈ Q there is a commutative group G = (Q, +; e) such that xy = xe+ey such
that the translations Re, Le are commuting automorphisms of G and for all x ∈ Q, x+ e ·x = x
holds. Moreover, (Q, ·) is linear over G with the automorphism ϕ = L·

e. Various choices of
e ∈ Q give mutually isomorphic groups (Q, +e; e).

Proof. If (Q, ·) satisfies the assumption and e ∈ Q is fixed we get x = xx = xe +e ex and
xy = xe+e ey = xe+e ex−e ex+e ey = x+e Le(y−e x) for all x, y ∈ Q, where Le �= idQ

3. Hence
(Q, ·) is linear over G with the automorphism ϕ = Le. From Lemma 3.3, Le, Re are commuting
automorphisms of the group. Since each of the groups (Q, +e), e ∈ Q, is isotopic to (Q, ·) they
are necessarily pairwise isotopic, and therefore isomorphic.

4 Golden section quasigroups

Let t denote the term t(x, y, z) = (x · y) · z where “·” is a binary operation. In the class of
groupoids, consider the identity

t(x, t(x, y, z), z) = y, left golden section identity .

1ϕ �= idQ.
2That is, card(Q) ≥ 1.
3The assumption Le = idQ would imply ex=x=xx, hence x = e by cancellation, and Q = {e}, i.e. the trivial

case.
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In what follows let us investigate also its dual, right golden section identity t̂(x, t(x, y, z), z) = y,
where t̂(x, y, z) = x · (y · z).

A groupoid (Q, ·) is said to be a golden section groupoid, [3] if it is idempotent and satisfies
the following two conditions (left and right golden section identity):

(x · (xy · z)) · z = y, (6)

x · ((x · yz) · z) = y. (7)

Obviously, (Q, ·) satisfies (6), or (7), respectively, if and only if its dual groupoid satisfies the
dual identity.

In a cancellative groupoid Q = (Q, ·), (6) and (7) are equivalent, [11]. In fact, putting bc
for b, (6) reads (a · ((a · bc) · c)) · c = bc. Accordingly, (7) follows by right cancellation. Similarly
for the converse implication.

Lemma 4.1 Any groupoid satisfying both (6) and (7) is a medial quasigroup.

Proof. Indeed, (6) guarantees solvability in Q of equations of the form xc = b for b, c ∈ Q.
To verify uniqueness, let ax1 = ax2. Then, according to (6), x1 = (a · (ax1 · a)) · a = (a · (ax2 ·
a)) · a = x2. Hence x1 = x2, and Q is left cancellative. Similarly, solvability of equations of
the form cy = b and right cancellation are consequences of (7). Let us check the mediality:
ac · (ab · cd)d = a(ab · (ab · cd)d) · (ab · cd)d = b = ac · (ac · bd)d, and it is sufficient to use
cancellation.

Recall that mediality together with idempotency imply elasticity xy · x = x · yx as well as
left and right distributivities, x · yz = xy · xz, xy · z = xz · yz.

It follows from the discussion above that we can accept a definition of a golden section
quasigroup, briefly a GS-quasigroup, as an idempotent quasigroup satisfying (6) (or equivalently,
(7)).4 Let us recall examples that bring a motivation and justify the terminology used, [11]:

Example 4.2 Let (F, +, ·) be a field in which the equation

x2 − x − 1 = 0 (8)

has a solution q ∈ F , and let ◦ be a binary operation on F defined by

a ◦ b = (1 − q)a + qb = a + q(b − a) for all a, b ∈ F. (9)

The mapping ϕ = Lq : F → F , ϕ(x) = Lq(x) = q · x is an (additive) automorphism of
the additive group of the field, ϕ = Lq ∈ Aut(F, +), the equality (9) may be written as
a ◦ b = a + ϕ(b − a), i.e. (F, ◦) is linear over (F, +) with the automorphism ϕ, and

ϕ2 − ϕ − idQ = 0 (10)

holds (since q is a root), (ϕ2 − ϕ − id)(x) = (q2 − q − 1) · x = 0. The Theorem 4.5 below
guarantees that (F, ◦) is a GS-quasigroup.

4Remark that the identity (7) has been discussed also in [2].
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Example 4.3 (A particular case, the motivation from the Gaussian plane)
Consider the field of complex numbers (C, +, ·). Take one of the roots of the equation x2−x−1 =
0, t = 1

2
(1±√

5). Then the corresponding groupoid (C, ◦) is a GS-quasigroup. In the Gaussian
plane, the equality (9) with a �= b may be written as a◦b−a

b−a
= q, which means that the point a◦b

divides the segment between a and b in the ratio q. If q = 1
2
(1 +

√
5) then the golden section

of the pair (a, a ◦ b) is b, if q = 1
2
(1 −√

5) then the golden section of the pair (b, a ◦ b) is a.

We can specialize the Toyoda-like Theorem 3.7 for GS-quasigroups as follows.

Theorem 4.4 For any GS-quasigroup Q = (Q, ·) there is a commutative group G = (Q, +; e)
and an automorphism ϕ ∈ Aut(G) such that (Q, ·) is linear over the group G with the (non-
trivial) automorphism ϕ, i.e. (5) holds, and the following is satisfied:

ϕ2 − ϕ − idQ = e. (11)

The following theorem justifies our construction of examples ([3], [11]).

Theorem 4.5 Let Q = (Q, ·) be a groupoid linear over a commutative group G = (Q, +; e)
with an automorphism ϕ ∈ Aut(G). If ϕ satisfies ϕ2 −ϕ− idQ = e then Q is a GS-quasigroup.

Let us construct finite GS-quasigroups using the method suggested above in Example 4.2
and Theorem 4.5 from an abelian group of a finite field and a convenient element q �= 0, 1
satisfying q2 = q+1. Note that such examples are rather specific ones (namely, the constructed
quasigroups are doubly homogeneous in the sence of Stein, [7], [3]), the full automorphism
group of the structure acts doubly transitively on the underlying set, and should not exploite
the class of finite examples of GS-quasigroups.

Obviously, there is no such element for GF (2), and for GF (3) either (indeed, a = 1 + 1 is
the only element distinct from 0, 1, but a2 = 1 �= 0 = a + 1).

Example 4.6 In GF (22), both elements a, b distinct from 0, 1 solve the equation (8). The
corresponding quasigroups are dual to each other, and isomorphic under α = (ab) (one of the
operations, ◦, is given below).

◦ 0 1 a b
0 0 b 1 a
1 a 1 b 0
a b 0 a 1
b 1 a 0 b

∗3 0 1 2 3 4
0 0 3 1 4 2
1 3 1 4 2 0
2 1 4 2 0 3
3 4 2 0 3 1
4 2 0 3 1 4

• 0 1 2 a b c d e f
0 0 b f 1 c d 2 a e
1 d 1 c e 2 a f 0 b
2 a e 2 b f 0 c d 1
a c d 1 a e 2 b f 0
b 2 a e 0 b f 1 c d
c f 0 b d 1 c e 2 a
d e 2 a f 0 b d 1 c
e b f 0 c d 1 a e 2
f 1 c d 2 a e 0 b f
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Example 4.7 In GF (5), the elements of which are labeled by 0, 1, . . . , 4 and viewed as the
rest classes mod 5, the equation (8) has the unique double root q = 3, the corresponding
multiplication ∗3 is given above, the quasigroup is self-dual. It seems that it is the only self-
dual example of prime order we have met yet.

Example 4.8 In GF (32), the elements are F = {0, 1, 2, a, 1 + a, 2 + a, 1 + 2a, 2 + 2a}. Denote
b = 1 + a, c = 2 + a, d = 2a = a + a, e = 1 + 2a, f = 2 + 2a. The equation (8) has distinct
roots b, d. Multiplication • corresponding to q = b is given above, the quasigroup is self-dual.

The polynomial x2 − (x + 1) is irreducible over Fp for the prime modulus p ∈ {7, 13, 17, 23}.
Also, there are no roots of (8) in GF (8).

On the other hand, in Z11, we get a pair q = 4, q = 8 of distinct roots, in Z19, (8) has
distinct roots q = 5, q = 15; in Z29, the solutions are 6 and 24. Accordingly, in orders 11, 19,
29, we get the corresponding pairs of GS-quasigroups, dual to each other, [1].

Recently, J. Doležalová (UP Olomouc) tried to find roots of x2 − (x + 1) by a computer
search, and constructed prime-order examples up to order 991 (by means of Maple).
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Abstract. In this paper we pay attention to a particular case of almost geodesic mappings
of the first type between (differentiable) manifolds with affine connection. We use here
classical tensor methods and the apparatus of partial differential equations.
We prove that under the mappings under consideration, the invariant geometric object is
just the (Riemannian) curvature tensor of the connection. We present the basic equations
of the class of mappings under consideration in an equivalent form of the Cauchy system
in covariant derivatives.
Key words and phrases. almost geodesic mappings, invariant geometric object, mani-
folds with affine connection.
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1 Introduction

Many monographs and papers are devoted to the theory of geodesic and holomorphically pro-
jective mappings, see [1]-[23]. We continue here a research project on geodesic and almost
geodesic mappings of spaces with affine connection, or pseudo-Rimannian spaces, respectively.

In this paper we pay attention to a particular case of almost geodesic mappings of the
first type between (differentiable) manifolds endowed affine connection. We prove that under
such maps, the invariant geometric object is just the (Riemannian) curvature tensor of the
connection. We present the basic equations of the class of mappings under consideration in an
equivalent form of the Cauchy system in covariant derivatives.

As the main tool, we use here classical tensor methods and the apparatus of partial differ-
ential equations.
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2 Almost geodesic mappings of manifolds with affine connection

Let us recall the basic concepts of the theory of almost geodesic mappings of manifolds with
affine connection introduced in [16, 17, 18]. A (differentiable) curve defined in a manifold
with affine connection An is called almost geodesic if there is a (differentiable) two-dimensional
parallel distribution along the curve such that the tangent vectors of the curve, being parallely
transported along the curve, still belong to the distribution.

A diffeomorphism f : An → Ān of manifolds with affine connection is called almost geodesic
if all geodesics in An are mapped onto almost geodesic curves of Ān.

A map of An onto Ān is almost geodesic if and only if in a common coordinate system
(x1, . . . , xn) (with respect to the diffeomorphism f , [15, p. 85]), the deformation tensor of the
connections ([15, p. 86]) P h

ij(x) = Γ̄h
ij(x) − Γh

ij(x) satisfies

Ah
αβγλ

αλβλγ ≡ aP h
αβλαλβ + bλh

where Ah
ijk ≡ P h

ij,k + Pα
ijP

h
αk, Γh

ij (Γ̄h
ij, respectively) are components of the connection in the

manifold An (Ān, respectively), λh is an arbitrary vector, and a, b are some functions of the
variables xh, λh. Here and in what follows, “ , ” denotes the covariant derivative with respect
to the connection of An.

N.S. Sinyukov distinguished in [12, 16, 17, 18] three types of almost geodesic mappings
denoted by π1, π2 and π3. We proved in [1, 12] that for dimensions n > 5, there are no
others. Almost geodesic mappings (in short, AGM) of type π1 are characterized by the following
conditions for the deformation tensor

Ah
(ijk) = δh

(iajk) + b(iP
h
jk)

where aij is a symmetric tensor, bi is a covector, δh
i is the Kronecker tensor, and (ijk) means

symmetrization (without division) with respect to the listed indices.

3 A particular subclass of the first type AGM

Let then following conditions are satisfied under the diffeomorphism of manifolds with affine
connection:

P h
ij,k = −Pα

ijP
h
αk + δh

(kaij) (1)

Such mappings belong, as a particular case, to AGM of the first type. The Riemannian tensors
Rh

ijk and R̄h
ijk of the manifolds An and Ān, respectively, are related by [17]

R̄h
ijk = Rh

ijk + P h
i[k,j] + Pα

i[kP
h
j]α (2)

where [kj] denotes alternation with respect to the distinguished indices. According to (1)
and (2), the following holds:

Theorem 3.1 The Riemannian tensor Rh
ijk is an invariant object of manifolds with affine

connection under almost geodesic mappings satisfying (1).
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Since the Riemmanian tensor vanishes in affine spaces, we deduce that the affine spaces
form a class closed under AGM satisfying (1):

Theorem 3.2 If an affine space An admits an almost geodesic mapping onto Ān that satis-
fies (1), then Ān is an affine space.

Regarding (1) as a system of Cauchy type with respect to the components of the deformation
tensor P h

ij we find the corresponding integrability conditions. For this purpose, let us calculate
covariant derivatives of (1) with respect to xm, and let us alternate in k and m. Accounting
the Ricci identity we get

δh
i aj[k,m] + δh

j ai[k,m] + δh
[k|aij,|m]) = −Pα

ijR
h
αkm + P h

α(jR
α
i)km + aj[mP h

k]i + ai[mP h
k]j. (3)

Now contracting the integrability conditions in h and m we get

ajk,i +aik,j −(n+1)aij,k = −Pα
ijRαk +P β

αjR
α
ikβ +P β

αiR
α
jkβ +ajαPα

ki−ajkP
α
αi +aiαPα

jk−aikP
α
jα. (4)

Further, alternating (4) over k and j we obtain

aij,k = aik,j + 1
n + 2(Pα

ijRαk − Pα
ikRαj − P β

αjR
α
ikβ − P β

αiR
α
jkβ

+P β
αkR

α
ijβ + P β

αiR
α
kjβ − ajαPα

ki + akαPα
ij + aikP

α
jα − aijP

α
kα).

(5)

In (5), let us interchange the indices k and i,

akj,i = aik,j + 1
n + 2(Pα

kjRαi − Pα
kiRαj − P β

αjR
α
kiβ − P β

αkR
α
jiβ + P β

αiR
α
kjβ + P β

αkR
α
ijβ

−ajαPα
ik + aiαPα

kj + akiP
α
jα − akjP

α
iα).

(6)

Plugging (5) and (6) to (4) we find

aik,j = 1
(n − 1)(n + 2)

[n(Pα
ikRαj − P β

α(kR
α
i)jβ) + Rα(kP

α
i)j − P β

αjR
α
(ik)β − P β

α(iR
α
|j|k)β

+(n + 1)(aj(iP
α
k)α − aα(iP

α
k)j + 2(aikP

α
jα − ajαPα

ik)].
(7)

Obviously, the equations (1) and (7) in the given space An respresent a Cauchy system
in the functions P h

ij(x) and aij(x) which, naturally, must satisfy also the following system of
conditions of an algebraic character

P h
ij(x) = P h

ji(x), aij(x) = aji(x). (8)

Hence we have proved:

Theorem 3.3 A manifold with affine connection An admits almost geodesic mappings, satis-
fying the equation (1), onto a manifold with affine connection Ān if and only if there exists, in
An, a solution of the mixed system of Cauchy type (1), (7) and (8) in the functions P h

ij and aij.

It is proved that the number of relevant parameters on which the solution of a system under
consideration depends has the upper boundary

r ≤ 1

2
n(n + 1)2.
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4 An example of a particular subclass of the first type AGM

It the tensor aij vanishes identically the equation (1) reads

P h
ij,k = −Pα

ijP
h
αk. (9)

The equations (9) are completely integrable in a manifolds with affine connection. That is,
the system is solvable for any initial conditions P h

ij(x0). If we choose initial values satisfying
P h

ij(X0) �= δh
(iψj)(x0) then the obtained solution determines an almost geodesic map of the first

type of an affine space An onto an affine space Ān that is not a geodesic one. Hence we have
as a consequence

Theorem 4.1 There exists an almost geodesic map of the first type of the affine space onto
itself under which all straight lines are mapped onto plane curves not all of which are straight
lines.

Let (x1, . . . , xn) and (x̄1, . . . , x̄n) be affine coordinates in affine spaces An and Ān, respec-
tively. We give here a particular example of an almost geodesic map of the first type of a flat
space An onto a flat space Ān as follows. Pointwise, the map is given in coordinates by

x̄h =
1

2
Ch

α (xα − Cα)2 + xh
0 , (10)

where Ch
i , Ch, xh

0 are constants such that xh �= Ch, det(Ch
i ) �= 0. It can be checked directly

that the only non-zero components of the deformation tensor are

P i
ii =

1

xi − Ci
, i = 1, . . . , n.

It can be verified that the tensor P h
ij with such components satisfies (9). At the same time,

we realize that the map just constructed belongs neither to the type π2 nor π3. Under this
mapping, straight lines of the space An, given by parametrizations xh = ah + bht where t is a
parameter, are mapped onto parabolas in Ān given by the equations

x̄h = Dh + Eht + F ht2

where Dh = 1
2
Ch

α(aα −Cα)2, Eh = 1
2
Ch

α(aα −Cα)bα, and F h = 1
2
Ch

α(bα)2. The only exceptions
come for those straight lines for which the vectors Eh and F h happen to be collinear: if this is
the case the image of such a line is a straight line again.

Finally let us note that the equations (10) generate a system of almost geodesic maps of
type π1 of a flat space if we consider the coefficients Ch

i , Ch and xh
0 to be continuous parameters.
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[13] MIKEŠ, J.; BEREZOVSKIJ, V.: Geodesic mappings of affine-connected spaces onto Rie-
mannian spaces. Diff. geometry and its appl. Proc. of a colloquium, held in Eger, Hungary,
August 20-25, 1989, organized by the Jnos Bolyai Mathematical Society. Amsterdam:
North-Holland Publishing Company. Colloq. Math. Soc. Jnos Bolyai. 56, pp. 491-494,
1992.

volume 4 (2011), number 2 149



Aplimat - Journal of Applied Mathematics
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17. listopadu 12, 779 00 Olomouc, Czech Rep.,
Dept. of Math., Faculty of Civil Engineering, Brno University of Technology
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SYMBOLIC ALGORITHM FOR COMPUTING APPROXIMATE
PARAMETERIZATIONS OVER RATIONALS
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Abstract. It is well known that an irreducible algebraic curve is rational if and only if
its genus is zero. In this paper, we provide a simple symbolic algorithm to parameterize
approximately affine rational plane curves by means of linear systems of adjoint curves
and one chosen rational point with the guaranty that the coefficients of the obtained
parameterization are rational. The designed technique is suitable especially for curves not
containing rational points and for curves for which it is too difficult to find these points.
Key words and phrases. Rational curves, simple points, polynomials over rationals,
exact and approximate parameterization algorithm.
Mathematics Subject Classification. Primary 60A05, 08A72; Secondary 28E10.

1 Introduction

The introduction of real algebraic curves and surfaces e.g. into industrial applications based on
CAD representation depends on efficient algorithms for computing rational parametric curve
and surface representations. However, parameterizing general algebraic surfaces is a difficult
and challenging problem and moreover in many cases no such rational parameterization ex-
ists. Thus computational techniques for approximate rational parameterization of curves and
surfaces have to be studied, developed and implemented.

In this paper we consider the approximate parametrization problem for affine plane algebraic
curves given by the defining polynomial of degree d over rationals. The problem reads as follows:
we are given a rational curve and we want to find not only its rational parametrization but a
parameterization possessing solely rational coefficients. Nevertheless, the rationality of a curve
does not guarantee the existence of rational points on it. So we have to use a certain approximate
technique and parameterize a suitable curve near to the given one. This requirement originated
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from practical applications which need algorithms implemented in exact arithmetic, i.e., if the
input is given by rational numbers, then the used technique produces output given again by
numbers from this field.

The symbolic approximate algorithm designed in this paper uses a modification of the
exact algorithm for the rational parameterization presented in [4]. We construct a near curve
with the same size and shape, having the same singularities as the original curve and going
through one chosen rational point. Then we parameterize the new curve by the exact rational
parameterization algorithm and compute its exact parameterization. The functionality of the
designed algorithm is proved on several examples.

2 Preliminaries

We start with short recalling the theory of rational curves and the so called Sturm’s sequence.
More details can be found e.g. in [5, 6, 7, 8, 12, 15, 16].

2.1 Rational curves

Let K be an algebraically closed field of characteristic zero. The affine or projective space of
the dimension n over K will be denoted by A

n or P
n. An affine plane algebraic curve Ca in A

2

is the set of zeros of a square-free defining polynomial f(x, y) ∈ K[x, y]. The algebraic degree
d of f is called the degree of Ca. If f is irreducible then Ca is called an irreducible curve .

Analogously, a projective plane algebraic curve C in P
2 is the set of zeros of a homogenous

defining polynomial F (x, y, z) ∈ K[x, y, z]. Clearly, for the defining polynomial f(x, y) of some
affine algebraic curve Ca we can construct the associated homogenous polynomial F (x, y, z)
describing the associated projective curve C by multiplying each term of degree k by zd−k.

Let C be a curve in P
2 defined by the homogenous polynomial F (x, y, z) and let P be a

point on C. This point is called simple or regular on C iff at least one of the partial derivatives
∂F
∂x

(P ), ∂F
∂y

(P ), ∂F
∂z

(P ) does not vanish at P .

If P is not simple then it is a singular point (or a singularity) on C. Its multiplicity on C is
defined as a number mP such that for all i + j + k < mP the partial derivatives

∂i+j+kF

∂xi∂yj∂zk
(P ) (1)

vanish at P but at least one of the partial derivatives of order mP does not vanish at P . All
projective singular points of C can be computed by solving the system of equations ∂F/∂x = 0,
∂F/∂y = 0, ∂F/∂z = 0. In particular, an mP -fold singular point P on C is called ordinary iff all
the tangent lines of C at P are distinct. Otherwise, i.e., if at least two of them are coincident,
the singularity is called non-ordinary.

One of the most important invariants associated with a singular point P is its delta invariant.
It is a number of double points concentrated at this point given by δP = 1

2
(μP + rP − 1), where

μP is the Milnor number and rP is the branching number of P ∈ C, cf. [5].

Definition 2.1 Let C ∈ P
2 be an irreducible curve of degree d with singular points P1, ..., Pn

152 volume 4 (2011), number 2



Aplimat - Journal of Applied Mathematics

possessing the delta invariants δP1 , ..., δPn, respectively. Then the genus of C is defined as

genus(C) =
1

2
(d − 1)(d − 2) −

n∑
i=1

δPi
. (2)

The genus of the affine curve Ca is equal to the genus of its associated projective curve C.

The main difficulty in computing genera of algebraic curves consists in determining delta
invariants of all singular points. Nevertheless, the situation becomes considerably simpler in the
case of ordinary singularities for which it holds δP = mP (mP −1)/2. In the case of non-ordinary
singularities, it is convenient to determine firstly the so called neighbouring tree.

The neighbouring tree of any singularity consists of its neighbouring points which are com-
puted by a birational transformation T (a composition of suitable projective transformations
and quadratic transformations (x : y : z) �→ (yz : xz : xy) – see [4, 16] for more details). In
particular, the neighbouring point of any simple point is again a simple point and the first neigh-
bourhood of an ordinary m-fold point contains m simple points. The union of the neighbouring
trees of all singular points of C is called the neighbouring graph of C. Hence, we have:

Corollary 2.2 Let C be an irreducible algebraic curve of degree d, N its neighbourhood graph.
We denote mP the multiplicities of points P ∈ N . Then it holds

genus(C) =
1

2

(
(d − 1)(d − 2) −

∑
P∈N

mP (mP − 1)

)
. (3)

An irreducible affine curve Ca is called rational if there exist rational functions φ(t),χ(t) ∈
K(t) such that (i) for almost all t0 ∈ K, (φ(t0), χ(t0)) is a point on Ca, and (ii) for almost
all (x0, y0) on Ca there exists t0 ∈ K such that (x0, y0) = (φ(t0), χ(t0)). Then, (φ, χ)(t) is
called a rational parameterization of Ca. Similarly we speak about a rational parameterization
(φ, χ, ψ)(t) of a projective curve C, where φ(t), χ(t), ψ(t) are now polynomials from K[t].

Theorem 2.3 An algebraic curve C is rationally parameterizable if and only if its genus is
equal to zero.

2.2 Intersection points of two curves

Consider the problem of intersection of two algebraic curves C, defined implicitly by f(x, y) = 0,
and K, given parametrically by (x(t), y(t)). Substituting the rational parameterization of K
into the defining polynomial of C we obtain the polynomial f(t). For determining whether f(t)
has a real root in an interval (a, b) we can use Sturm’s theorem, see e.g. [6].

Let f be a polynomial from K[t]. We define a polynomial g possessing the same roots as
the polynomial f but not having multiple roots

g(t) =
f(t)

gcd(f(t), f ′(t))
, (4)
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where f ′ denotes the first derivative of f with respect to t. Next, we construct polynomials
Pi as follows: P0 = f , P1 = f ′ and Pi+1 is the negative of the remainder of the Euclidean
division of Pi−1 by Pi. We stop just before we get 0. The sequence P0, P1, ..., Pn is called
the Sturm sequence of g. Next, we denote υf (a) the number of sign changes in the sequence
P0(a), P1(a), ..., Pn(a) for any a ∈ R, not a root of g. Then in holds ([6, p. 5]):

Theorem 2.4 Let a < b in R, neither a nor b being a root of g. The number of roots of g in
the interval (a, b) is equal to υg(a) − υg(b).

3 Exact parameterization algorithm

In this section, we recall the algorithm for computing exact rational parameterizations of al-
gebraic curves, which is based on the theory from [15] and then studied in more detail and
modified in [3, 4, 11, 12, 13, 14]. In the next section we will use this classical algorithm for
finding an approximate parameterization of a given rational curve.

Definition 3.1 Let C be a curve of degree d. We consider a linear system of curves Ln of
degree n such that:

(1) Every curve from the system Ln is of the degree n ∈ {d − 2, d − 1, d}.
(2) Every m-fold singular point of C is (m − 1)-fold point Ln.

(3) Every s-fold neighbouring point of C is an (s − 1)-fold neighbouring point of each curve
from Ln.

(4) All curves from Ln do not have common component with C.

Then, Ln is called a system of adjoint curves of degree n to the given curve C. In addition, the
system is called a 1-parameter system of adjoint curves of degree n to C (denoted by Ln(t)) if
also the following condition is fulfilled:

(5) There exist nd − (d − 1)(d − 2) − 1 simple points of C being simple points of each curve
from Ln.

The coefficients of Ln(t) are polynomials in one variable t. Almost every curve from this
system intersects C in one additional point and for almost every simple point on C, which is not
among fixed points (condition (5)), there exists a curve from Ln(t), which is passing through
this point. The technique for parameterizing rational curves with arbitrary singularities is
summarized in Algorithm 1, cf. [12] and references therein for further details.

4 Improvement of the exact parameterization method

One of the main computational drawbacks of Algorithm 1 is the necessity of determining a high
number of simple points on C. Generally, we have to determine nd − (d − 1)(d − 2) − 1 simple
points to parameterize a given curve of degree d using a 1-parameter system of adjoint curves
of degree n ∈ {d − 2, d − 1, d}. In [12], this limitation was significantly overcome by proving
that it is enough to find only one, two, or three point(s) for a 1-parameter system of adjoint
curves of degree d, d − 1, or d − 2, respectively.
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Algorithm 1 Exact parameterization of irreducible plane curves

1. INPUT: A curve C defined by a polynomial F (x, y, z).

2. Find all singular points P1, ..., Ps ∈ C having multiplicities mP1 , ...,mPn .

3. Find the neighbouring graph N of C with respect to a sequence of transformations T .

4. If genus(C) = 0 then C is rational. Otherwise a rational parameterization does not exist.

5. Choose n ∈ {d − 2, d − 1, d} and construct the system of adjoint curves Ln to C.

6. Find nd − (d − 1)(d − 2) − 1 simple points and guarantee that the curves from Ln are
passing through those simple points – hence, obtain 1-parameter system Ln(t).

7. Compute the coordinates of the intersection point R = (x(t), y(t)) of Ca and Ln
a(t), where

Ca and Ln
a(t) are the affine versions of C and Ln(t), respectively.

8. OUTPUT: Pair of functions (x(t), y(t)) represents the rational parameterization of Ca.

Recently, it has been proved in [4] that only one simple point for determining a 1-parameter
system of adjoint curves of any degree n ∈ {d − 2, d − 1, d} is always sufficient. This novel
approach is based on the construction of a special family of nd − (d − 1)(d − 2) − 1 points by
using only one particular simple point on C. In this section, we shortly repeat this method –
we refer to [4] for more details.

Consider a simple point P = (p1 : p2 : p3) on an algebraic curve C of degree d given by a
polynomial F . We guarantee that all curves from the system of adjoint curves Ln (of degree
n ∈ {d − 2, d − 1, d}) are passing through P – such a system is denoted by Ln

∗ . Then, we
choose one particular curve M from Ln

∗ , given by H(x, y, z), and compute a system of simple
intersections of Ma and Ca. Such system contains nd− (d− 1)(d− 2) simple points for p3 �= 0
and nd − (d − 1)(d − 2) − 1 for p3 = 0 (by Bezout’s theorem and the rationality of C).

First, we construct a polynomial A(x) whose roots are exactly the x-coordinates of simple
intersection points of Ca and Ma. Next, we introduce the polynomial g to guarantee that the
intersection of Ca and Ma does not contain the point P

g(x) =

{
A(x)

x−p1/p3
, for p3 �= 0,

A(x), for p3 = 0.

Now, we want to find the corresponding y-coordinates. By using some elimination technique
(e.g. Gröbner basis) we arrive at a family of nd − (d − 1)(d − 2) − 1 simple points on Ca

F =

{(
α :

a(α)

b(α)
: 1

)
g(α)=0

}
, (5)

where a(α), b(α), g(α) ∈ K[α]. Finally, using Theorem 4.1 (whose proof can be be found in [12])
we ensure that every point from F is lying on each curve from Ln. Hence we arrive at Ln(t).

Theorem 4.1 Let F =
{
(m1(α) : m2(α) : m3(α))p(α)=0

}
be a family of conjugate points, where

m1,m2,m3, p ∈ K[x] and F (x, y, z) ∈ K[x, y, z]. Then F (x, y, z) vanishes at all points of the
set F if and only if p(α) divides F (m1(α),m2(α),m3(α)).
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5 Approximate parameterization algorithm

In [4] we have shown that only one simple point is sufficient for parameterizing rational curves
– see Section 3. Thus, the only remaining problem is to find a certain simple point. Of course,
the most suitable simple points are those with rational coordinates. However, such points do
not have to exist or it might be very difficult to find them, cf. [13, 14].

In what follows we consider K = Q only (i.e., we will work only with polynomials over ra-
tionals). Sometimes one wants have a parameterization with only rational coefficients although
a given curve does not contain rational points (or it is not easy to find them). In such cases,
it is useful to apply an approximation method, cf. [1, 2, 9, 10]. In this section we present a
simple method how a rational simple point close enough to a given curve can be found and
consequently used for the approximate parameterization process.

Let C be an irreducible rational curve of degree d. The main idea of our approach is to
choose one simple rational point P close enough to C and construct a system of curves Md going
through all singular points of C with appropriate multiplicities (including the neighbouring

ones). Next, we obtain the system of curves M̃d by forcing all curves from Md to go through

P and choose a particular curve K from M̃d such that K would be as close as possible to C.
Finally, we parameterize K using the chosen rational point P , cf. Sections 2 and 3.

First, we introduce a technique for finding a rational point close enough to C. We start
with bounding C. If C is a closed curve, we select the minimum a and the maximum b from the
roots of the polynomial g1(x) and and the minimum c and the maximum d from the roots of
the polynomial g2(y), where

g1(x) = Resy

(
f(x, y),

∂f

∂y
(x, y)

)
, g2(y) = Resx

(
f(x, y),

∂f

∂x
(x, y)

)
. (6)

Then, C is contained in the box 〈a + ε, b + ε〉 × 〈c + ε, d + ε〉, for any ε > 0. If C is not closed
(in a particular direction), we can bound it by some chosen (arbitrary but fixed) constant.

Now, we have determined an area of our interest and continue with subdividing it. Each
box is divided into four smaller equal boxes. In what follows we use only those “subboxes”
which have at least one side intersecting C (this can be easily managed by Sturm’s theorem, see
Section 2.2.) – the five iteration steps of this process are demonstrated in Figure 1. When the
subdivision stops we obtain a certain discrete approximation of C, i.e., an area of our interest.
We consider all rational points in this area with the denominator less than a chosen particular
positive integer constant. Next, we measure the distances of all such rational points from C.
In particular, for a point P the distance is computed as (see [9])

f2(P )

‖∇f(P )‖2
, (7)

where f is the defining polynomial of C. Finally, we choose the rational point P with a minimal
distance from C.

We construct a system of curves Md with the same singular points as C (including the

neighbouring ones). Next, we arrive at the system M̃d by forcing all curves from Md to go
through the chosen rational simple point P . However, this is not always possible because in
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Figure 1: The subdivision process demonstrated on cardioid.

some cases the particular curve is already determined only by its singularities (i.e., the system
Md contains only one curve). For instance this occurs for rational curves of the degree bigger
than 5 possessing only double points (e.g. the asteroid).

If other cases the system M̃d depends on some parameters, say λ1, ..., λk. Its defining
polynomial has the form

h(x, y, λ1, ..., λk) =
k∑

i=1

λihi(x, y). (8)

For the polynomial f we can write

f(x, y) =
k∑

i=1

cihi(x, y). (9)

Then, we determine λ1, ..., λk by minimizing the objective function

Φ =
k∑

i=1

wi|ci − λi|, (10)

where λi are the coefficients of (8), ci are the coefficients of (9), and wi denotes a certain
weight. We suggest the weight wi to be selected according to the total degree of the term hi

in h with the coefficient λi. Thus, we have the particular curve K from M̃d, close enough to
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C, and one simple rational point P lying on it. Hence, we can parameterize K by a method
for the exact rational parameterization requiring only one input simple point. We obtain an
exact parameterization of K which is simultaneously an approximate parameterization of C.
The final step is computing the deviance of C and K using the following integral

∫ +∞

−∞

f 2((x(t), y(t)))

‖∇f((x(t), y(t)))‖2
, (11)

where f is the defining polynomial of C and (x(t), y(t)) is the computed parameterization of K.

6 Computed examples

Example 6.1 We would like to parameterize an ellipse C with the equation

f(x, y) = 2x2 + 7y2 + 3y − 5 = 0. (12)

This curve does not contain any rational point (by Legendre’s theorem – cf. [17]). In order
to obtain a parameterization of C with rational coefficients we have to use an approximate
technique. First, we find a rational point, closest to C with the denominator less than 10, i.e.,
the point P =

(−4
3
, 2

7

)
. Now, we construct a system of curves K of degree 2 going through P

h(x, y, λ1, λ2, λ3, λ4, λ5) = 441x2λ2 + 441xyλ4 + 441xλ1 + 441y2λ5 + 441yλ3 + 588λ1

−784λ2 − 126λ3 + 168λ4 − 36λ5.

To obtain the final form of h we have to minimize a function

F = 8820 |λ1| + 30 |441λ2 − 2| + 20 |441λ3 − 3| + 13230 |λ4|
+10 |588λ1 − 784λ2 − 126λ3 + 168λ4 − 36λ5 + 5| + 30 |441λ5 − 7| .

The solution is λ1 = 0, λ2 = 2
441

, λ3 = 1
147

, λ4 = 0 and λ5 = 1
63

. Thus, K in its final form is
defined by

h(x, y) = 126x2 + 441y2 + 189y − 314. (13)

By parameterizing K with the help of the point P we arrive at

K(t) =

(−28t2 + 21t + 8

3 (7t2 + 2)
,
−105t2 − 112t + 12

147t2 + 42

)
, t ∈ R. (14)

In this case, the total deviation of Ca and Ka (computed by (11)) is less then 2.8 · 10−4.

Example 6.2 We parameterize the curve C with the defining polynomial

f(x, y) = −3x4 + 6x3 − 6x2y2 − x2y − 5x2 + 6xy2 − 5xy − 3y4 − y3 + 9y2. (15)

C contains three double points: P1 = (0 : 0 : 1), P2 = (i : 1 : 0) and P3 = (−i : 1 : 0). We
determine a rational point which is closest to C and has the denominator less than 10, i.e., we
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obtain P =
(−3

8
,−4

3

)
. Now, we construct the system K of degree 4 having three double points

P1, P2 and P3 and one simple rational point P .

h(x, y, λ1, λ2, λ3, λ4, λ5) = 46656x4λ5 + 46656x3λ3 + 93312x2y2λ5 + 46656x2yλ4

−165888x2λ1 − 589824x2λ2 + 238680x2λ3 + 848640x2λ4

−1221025x2λ5 + 46656xy2λ3 + 46656xyλ1 + 46656y4λ5

+46656y3λ4 + 46656y2λ2.

Next, we minimize a function

F = 3 |46656λ1 + 5| + 3 |46656λ2 − 9| + 8 |46656λ3 − 6| + 8 |46656λ4 + 1|
+3 |−165888λ1 − 589824λ2 + 238680λ3 + 848640λ4 − 1221025λ5 + 5|
+10 |46656λ5 + 3| + 5 |93312λ5 + 6| .

The solution is λ1 = − 5
46656

, λ2 = 589915
3057647616

, λ3 = 1
7776

, λ4 = − 1
46656

, λ5 = − 1
15552

and thus the
defining polynomial of the curve K has the form

h(x, y) = 196608x4 − 393216x3 + 393216x2y2 + 65536x2y + 327680x2

−393216xy2 + 327680xy + 196608y4 + 65536y3 − 589915y2.

Finally, the exact parameterization of K being an approximate parameterization of C obtained
by our method has the form

x(t) =
415044t4 − 3106611t3 − 13856475t2 − 6152075t + 10635625

954720t4 + 2272752t3 + 9720438t2 + 28466940t + 24691350
,

y(t) =
64 (11529t4 + 41058t3 + 38640t2 − 3150t − 27625)

3 (159120t4 + 378792t3 + 1620073t2 + 4744490t + 4115225)
,

where t ∈ R. The total deviation of Ca and Ka (computed by (11)) is in this case less then
4.02 · 10−5.

Example 6.3 We consider the cardioid C defined by the polynomial f(x, y)

f(x, y) = x4 + 10x3 + 2x2y2 + 10xy2 + y4 − 25y2. (16)

This curve has again three double points: P1 = (0 : 0 : 1), P2 = (i : 1 : 0) and P3 = (−i : 1 : 0).
By the subdivision process we have found the rational point P = (−10, 0) lying exactly on C.
Hence, K = C and we obtain an exact parametric expression

K(t) = C(t) =

(
250 (t2 − 25)

(t2 + 25)2 ,− 2500t

(t2 + 25)2

)
, t ∈ R. (17)
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7 Conclusion

In this paper, we presented a simple and quick algorithm for approximate parameterization of
rational curves with rational coefficients. Our method is universal for all curves with zero genus
which are not determined only by its singularities. The designed technique is suitable especially
for curves which do not contain any rational points or for curves for which it is difficult to find
these rational points.

The method uses a modification of the classical exact algorithm for the rational parame-
terization presented in [4] based on only one simple point. Thus, the approximate algorithm
also needs only one rational point close enough to a given curve. We construct a new curve
with the same size and shape, having the same singularities as the original curve but passing
through a (suitably) chosen rational point. Then we parameterize the new curve by the exact
rational parameterization algorithm and obtain its exact parameterization which is simultane-
ously an approximate parameterization of the original curve. The functionality of the designed
algorithm was presented on several examples.
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[5] BRIESKORN, E., KNÖRER, H.: Plane Algebraic Curves. Birkhäuser, 1986.
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tel. ++420 377 632619,
e-mail: lavicka@kma.zcu.cz

volume 4 (2011), number 2 161



Aplimat - Journal of Applied Mathematics

162 volume 4 (2011), number 2



VISIBILITY CRITERION
FOR FOUR-DIMENSIONAL GEOMETRIC SOLIDS

FERDIANOVA Vera, (CZ)

Abstract Mathematics have many methods and structures for working in n-dimensional
space. We know formal properties of geometric solids and we know theirs special prop-
erties. But we want to know how four-dimensional geometric solids are visible in three-
dimensional projection. The present paper immediately follows the paper [1]. We use
geometric algebra approach for representation of geometric solids and we apply criterion
of visibility for convex polyhedra in four-dimensional space.
Key words and phrases. visibility, geometric algebra

Mathematics Subject Classification. Primary 15A66, 65D17; Secondary 68U99.

1 Introduction

Many papers about geometric algebra are constrained to three-dimensional space only. Paper [2]
contains basic information about relations in three-dimensional space. We try to look into the
four-dimensional space from the geometric algebra point of view and we derive basic relations
and properties.

2 Geometric Algebra

Consider vector space over the field of real numbers V (R) with three special operations.

• The inner product a · b, also known as the dot or scalar product, of two vectors a and b,
is a scalar with magnitude |a||b| cos φ, where |a| and |b| are the lengths of a and b, and φ

is the angle between them. Here |a| ≡ (a ·a)
1
2 , so that the expression for a · b is effectively

an algebraic definition of cos φ.
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• The outer product a ∧ b has magnitude |a||b| sin φ and it has the following properties -
anticommutative, linearity and distributivity

∀a, b, c ∈ V (R), α ∈ R

a ∧ b = −b ∧ a

(αa) ∧ b = α(a ∧ b)

α(a ∧ b) = (a ∧ b)α

a ∧ (b + c) = a ∧ b + a ∧ c

a ∧ a = 0

Outer product is anticommutative so eij = −eji, i, j ∈ N ⇒ eii = 0 and from this property
we obtain ei ∧ ei = 0

• The geometric product is defined by ab = a · b + a ∧ b [3].

We will not use the geometric product in our paper.
The term k-blade is introduced e.g. in [2] as

eij = ei ∧ ej, j > i ∈ N 2-blades (bivector),

eijk = ei ∧ ej ∧ ek, k > j > i ∈ N 3-blades (trivector). (1)

Using the operation ∧ we construct 3-blades (trivector) represented by

eijk = ei ∧ ej ∧ ek

We assume associativity in this construction. It follows that the result of the operation ∧ is
an element of V (R). We also obtain that eij cannot be represented as a linear combination of
ei, ej.

eij = αei + βej

eij ∧ ei = ei ∧ ej ∧ ei = ej ∧ ei ∧ ei = 0

αeii + βeji = 0 ⇒ β = 0 (2)

eij ∧ ej = ei ∧ ej ∧ ej = 0

αei + βejj = 0 ⇒ α = 0

We can use four-dimensional vector space over the field of real numbers with operations of
geometric algebra G4. For outer product a ∧ b, where a = a1e1 + a2e2 + a3e3 + a4e4,
b = b1e1 + b2e2 + b3e3 + b4e4 we obtain

a ∧ b = (a1e1 + a2e2 + a3e3 + a4e4) ∧ (b1e1 + b2e2 + b3e3 + b4e4). (3)

Using distributive and associative rules and (1), we may rewrite (3) to obtain

a ∧ b = (a1b2 − a2b1)e12 + (a1b3 − a3b1)e13 + (a1b4 − a4b1)e14

+ (a2b3 − a3b2)e23 + (a2b4 − a4b2)e24 + (a3b4 − a4b3)e34 (4)
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a ∧ b = e12

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ +e13

∣∣∣∣a1 a3

b1 b3

∣∣∣∣ +e14

∣∣∣∣a1 a4

b1 b4

∣∣∣∣
+e23

∣∣∣∣a2 a3

b2 b3

∣∣∣∣ +e24

∣∣∣∣a2 a4

b2 b4

∣∣∣∣ +e34

∣∣∣∣a3 a4

b3 b4

∣∣∣∣
(5)

The outer product of three vectors a, b, c in four-dimensional space is defined by

a ∧ b ∧ c = (a ∧ b) ∧ c = (a ∧ b) ∧ c1e1 + (a ∧ b) ∧ c2e2 + (a ∧ b) ∧ c3e3 + (a ∧ b) ∧ c4e4 (6)

a ∧ b ∧ c = e231c1

∣∣∣∣a2 a3

b2 b3

∣∣∣∣ +e241c1

∣∣∣∣a2 a4

b2 b4

∣∣∣∣ +e341c1

∣∣∣∣a3 a4

b3 b4

∣∣∣∣
+e132c2

∣∣∣∣a1 a3

b1 b3

∣∣∣∣ +e142c2

∣∣∣∣a1 a4

b1 b4

∣∣∣∣ +e342c2

∣∣∣∣a3 a4

b3 b4

∣∣∣∣
+e123c3

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ +e143c3

∣∣∣∣a1 a4

b1 b4

∣∣∣∣ +e243c3

∣∣∣∣a2 a4

b2 b4

∣∣∣∣
+e124c4

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ +e134c4

∣∣∣∣a1 a3

b1 b3

∣∣∣∣ +e234c4

∣∣∣∣a2 a3

b2 b3

∣∣∣∣

(7)

a ∧ b ∧ c = ((a1b2c3 + c1a2b3 + c2a1b3) − (a2b1c3 + c1a2b3 + c2a1b3))e123

+ ((a2b4c1 + c2a4b1 + a1b2c4) − (a4b2c1 + a1b4c2 + a2b1c4))e124

+ ((a3b4c1 + a4b1c3 + a1b3c4) − (a4b3c1 + a1b4c3 + a3b1c4))e134

+ ((a3b4c2 + a4b2c3 + a2b3c4) − (a4b3c2 + a2b4c3 + a3b2c4))e234. (8)

We can formulate now as

a ∧ b ∧ c =

∣∣∣∣∣∣∣∣

e234 e143 e124 e132

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

∣∣∣∣∣∣∣∣
. (9)

We use this result to introduce right-orientation in four-dimensional space which is analogous
to the right-hand rule in three-dimensional space, see Fig.(1).

Figure 1: Right-hand orientation
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3 Visibility

The aim of visibility algorithms is to found objects and their parts, which are visible from a
particular place. Every algorithm is determined for special representation of geometric solids.
We have two basic kinds of visibility algorithms:

• Raster algorithm

Main idea of this kind of algorithm is that the nearest face for each pixel found. The
disadvantage of this algorithm is that the result image has constant size.

• Vector algorithm

The output of this kind of algorithm is a set of geometric elements (e.g. point, line),
which represent visible or invisible parts of displayed solids. Some algorithms returns
only line (Hidden Line Elimination) or plane (Hidden Surface Elimination). There are
some disadvantages, if the choice of visible edge is wrong. We can affect all solids.

We use visibility criterion for convex polyhedra, which it is based on BVCA [1].

Theorem 3.1 2D-face is visible ⇔ face is intersection of visible and invisible (n-1)-D projec-
tions of body.

We apply only special version this theorem, because we use only four-dimensional space.

Theorem 3.2 Face is visible ⇔ face is intersection of visible and invisible 3D-projections of
body.

Theorems 3.1 and 3.2 were presented in paper [1]. Here we will find projection of a body from
4D to 3D and in the next step we choose the view vector so that it marks visible or invisible
3D bodies. We use geometric algebra and their features.

4 Geometric Solids

We want to use visibility criterion for convex polyhedra, but we need to know the difference
between external and internal side of geometric solids. Consider four-dimensional vector space
over the field of real numbers with operations of geometric algebra G4. This space is generated
by the set of blades [2]

G4 = {1; e1; e2; e3; e4; e12; e13; e14; e23; e24; e34; e123; e124; e134; e234; e1234}.
The orientation of ordered quadruplet of base vectors G4 is based on (9), so

e132 = e1 ∧ e3 ∧ −e2

e134 = e1 ∧ e3 ∧ e4 (10)

e142 = e1 ∧ e4 ∧ −e2

e234 = e2 ∧ e3 ∧ e4
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We can see advantage of geometric algebra, because we can use negative vector as invisible
edge of solution.

First we present a projection of tesseract (4D cube). This representation is simple, because
we use basis vectors (e1; e2; e3; e4). We can create trivector by right-oriented vector, because
directed area is a cube. It means that its volume is equal to the volume of a cube. It is
basic feature of trivectors in geometry algebra. But we must split 4D cube in two parts: top
and bottom section. The result of 3D projection for general point 0 = [0, 0, 0, 0] are cubes
C0i; i ∈ {1..4} and cubes C1i; i ∈ {1..4} are for general point 1 = [1, 1, 1, 1].

Typical property of 4D cubes is different rotation of top and bottom sections. 3D projection
preserves this property, because individual cubes are point symmetrical. For example trivector
e132 represents the cube C14 and their point symmetrical cube is C04 with trivector −e132 =
−e1 ∧ e3 ∧ e2 = e1 ∧ e2 ∧ e3.

Figure 2: 3D projection of the oriented 4D cube

Let us choose the view vector so that C04, C02 are visible and C03, C01 are invisible. Cubes
C1i is mutually opposite to cubes C0i. Intersection in geometric algebra is defined on some
blades A,B,

A ∩ B = A∗ · B,

where A∗ is the normal vector to the dual of bivector A. If we apply Theorem 3.2, the fi-
nal projection will have 12-contour faces. So, result of the 3D projection of the 4D cube is
dodacehedron, see Fig.(3).

Figure 3: Result of the 3D projection of the oriented 4D cube
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Consider 4D simplex, defined by the vectors a1; a2; a3; a4 in space G4, such that trivectors
generate volume of tetrahedron. If we create 3D projections of this body, we obtain tetrahedrons
S1, S2, S3, S4 with orientation (9).

Figure 4: 3D projection of the oriented pentachoron

Let us choose the view trivector so that S4, S2 are visible and S3, S1 are invisible. We apply
Theorem 3.2, final projection will have 6-contour faces. So, the final 3D projection of the
pentachoron is a pyramid Fig.(5).

Figure 5: General final 3D projection of the pentachoron

5 Conclusions

Geometric algebra facilitates representation of solids. We can found visible contour of this solid,
by the help of projection of 4D solid to three-dimensional space and by application of visibility
criterion.
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A   SUPER-ELLIPSE 

 

FÜLÖP Zsolt, (HU) 
 
 
1. Introduction 
 

The concept of exploded real numbers and the super-operations form the basis of our calculations.  

The postulates and requirements of the concept of exploded real numbers were given in [1]. We 
may satisfy them in the following way: 

The exploded of the Ru∈  is given by  

( )
{ }
{ }

11
sgn ln

2 1

u
u u i u

u

⎛ ⎞+
= + ⎡ ⎤⎜ ⎟⎣ ⎦⎜ ⎟−⎝ ⎠

, 

where [ ]x  is the greatest integer number which is less than or equal Rx∈  and { } [ ]xxx −= . So, the 

set of exploded numbers R  is a proper subset of complex numbers. This model of exploded 
numbers was introduced by Szalay in [3]. 
If u  is an element of the open interval (-1,1) then: 

   
u

u
uthareau

−

+
⋅==

1

1
ln

2

1
  (1.1) 

Of course, any real number x  is exploded real number, too, given by the formula: 

  xthx =  Rx∈  
xx

xx

ee

ee
xth

−

−

+

−
=  (1.2) 

For any exploded real number u  we define its compressed u  by the first inversion identity: 

     ( ) uu =  Ru∈  (1.3) 

Denoting ux =  , (1.3) shows that ux = , and we have the second inversion identity: 

    
( ) xx =

 Rx∈  (1.4) 
Using the above mentioned identities, the (1.2) gives: 
    xthx = ,           for any Rx∈  (1.5) 
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The set of super-operation used to treat the problem of the super-ellipse are: 

vuvu
s

+=+  Rvu ∈,  (super-addition), (1.6) 

vuvu
s

−=−  Rvu ∈,  (super-substraction), (1.7) 

vuvu
s

⋅=�  Rvu ∈,  (super-multiplication), (1.8) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

v

u

vu
s

/  Rvu ∈,  (super-division), (1.9) 

uu

s

=  Ru∈  (super-square root). (1.10) 

An ordered algebraic structure for the set R  by the super-operations was given in [3]. 

 

We also use the following operations based on (1.6) and (1.8), introduced by Szalay in [1], for any 

elements of  3
R  , ( )

321
,, uuuU =  and ( )

321
,, vvvV = , and Rc∈ : 

( )
332211

,, vuvuvuVU
ssss

+++=+  (super-addition) (1.11) 

332211
vuvuvuVU

ssssss

���� ++=  (super-inner product) (1.12) 

( )
321

,, ucucucUc
ssss

���� =  (super-multiplication) (1.13) 

( )VUVU
sss

�1−+=−  (super-difference) (1.14) 

The familiar three dimensional space 

 ( ){ },11;11;11:,,
3

<<−<<−<<−== wvuwvuR  (1.15) 

with the rectangular coordinate system wvu ,,  is an open cube in the exploded three dimensional 

space 

     ( ){ }RwvuwvuR ∈= ,,:,,
3  (1.16) 

Considering a set  3
RH ⊆  , the subset 

     3
RHH

box
∩=   (1.17) 

is called the box-phenomenon of H . It is possible that a box-phenomenon is empty. Clearly, 
33

RR box = . Moreover, if 3
RH ⊆  then HH

box
= . 

The definition of the super-norm of  super-Euklidean space k
R was introduced by Szalay in [1], 

using the concept of the super-inner product. By the definition, for any 3
RU ∈ , its super-norm is  

     UUU
s

s

R
�=3  (1.18) 

and yields the identity 

     33
RR

UU =

3
RU ∈  (1.19) 

 
 
2.  The concept of the super-plane, super-cylinder and super-cone 

 

The exploded set of a plane of the space 3
R  is called a super-plane. 

It is known that a plane of the space 3
R  is characterized by the equation  



 

 

 

Aplimat – Journal of Applied Mathematics 
 

volume 4 (2011), number 2  

 
 

173

     ( ) 0
0

=⋅− NXX  (2.1) 

where 3

0
, RNX ∈  such that 1|||| 3 =

R
N . Denoting by S  the set of X  given by the equation (2.1) 

and considering the property of the super-operations (1.11)-(1.14) we have for the points of super-
plane S   

     ( ) 0
0

=− NXX
ss

�  (2.2) 

So, denoting 
00

, UXUX ==  and MN = we have the equation of super-plane  

     ( ) 0
0

=− MUU
ss

�  (2.3) 

Where by the definition of  super-norm ( see [1] ) we have that 

1||||
3
=

R

M  

Applying (1) with )0,0,0(
0
=X  and  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

3

1
,

3

1
,

3

1
N  we have the plane  

    RyxRzyxXS ∈∈== ,:),,({ 3   and  yxz += } (2.4) 

Using zwyvxu === ,,  and applying the super-operations 1.6-1.8, definition (2.2) say that 

    },:),,({ 3
vuwandRvuRwvuUS

s

+=∈∈==  (2.5) 

is a super-plane.  
 

Having a parameter µ  such that 10 << µ  we can define the super-cylinder surface in the following 

way: 

    ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ ∈=+∈=Ω RwvvuuRwvu

s

sss

;:,,
3

µ��  (2.6) 

We can see µµ ≤≤ vu ;  , so u  and  v  are real numbers. This implies that 3
R⊂Ω  if  w  is real 

number too, this implies that 1<w . 

The concept of the super-cone was given in [2]. 

We can define the super-cone surface, using a second parameter R∈γ  

  ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

<∈⎟
⎠

⎞
⎜
⎝

⎛ +−=∈=Λ γγγ 0;;/1:,,
3

RvvuuwRwvu
s

s

ssss

��  ( 2.7 ) 

 
 
3.  The concept of the super-ellipse  

 

Definition 1. For any pair ( )
1111

,, wvuP , ( ) 3

2222
,, RwvuP ∈ , their super-distance is the exploded 

number 

     ( ) ( )
2121

,, 33
PPdPPd

RR

=  (3.1) 

where  ( )
1111

,, wvuP , ( ) 3

2222
,, RwvuP ∈  and ( )

21
,3 PPd

R
 is the Euklidean distance of  

1
P  and  

2
P . 
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Definition 2.  If  σ  is a plane in 3
R  and  ( )

llll
wvuF ,, , ( )

rrrr
wvuF ,, σ∈ , and  Ra∈  , satisfying 

the inequation ( ) aFFd
s

rl
R

�2,
3

< , the super-ellipse is the set of  σ∈P  points, which satisfy the 

equation  

    ( ) ( ) aFPdFPd
s

r
R

s

l
R

�2,,
33

=+  (3.2) 

Theorem 1. For any point σ∈P  if and only if σ∈P  , (3.3) 

and  

 ( ) ( ) aFPdFPd
s

r
R

l
R

�2,,
33

=+  if and only if  ( ) ( ) aFPdFPd
rRlR

⋅=+ 2,, 33  (3.4) 

is valid. 
Proof. Applying Definition 1. ,the concept of super-operations and the familiar properties of 
traditional distance, the (3.3) is trivial. For the (3.4) by (3.1) and  (3.2) , we can write 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) aFPdFPdaFPdFPd

aFPdFPdaFPdFPd

rRlRrRlR

s

rR

s

lR

s

r
R

s

l
R

⋅=+⇔⋅=+⇔

⇔=+⇔=+

2,,2,,

2,,2,,

3333

3333
��

 

Theorem 1. means that the super-ellipse is the exploded of the traditional ellipse.  
 
 
4.  The section between the super-plane and a super-cylinder surface  

 
Now we investigate the super-ellipse, as the section between the super-plane defined by ( 2.5 ) and 
the super-cylinder surface defined by (2.6).  

Now we fix 8.0=µ . Using (1.1), (1.6), (1.8) and (1.10) we have that the super-cylinder surface Ω  

has the equation 

   ( ) ( ) 8.0
22

=⎟
⎠
⎞⎜

⎝
⎛ + vthuthareath  Rw∈  (4.1) 

Using vyux == ,  and  wz =  we have the equation of a traditional cylinder-surface: 

    ( )8.022 thyx =+  ,    Rz∈  (4.2) 

We can say that the traditional cylinder surface defined by 

    ( ){ }RzthyxRzyx ∈=+∈=Ω ;8.0:,,
223  (4.3) 

is the compresed of the super-cylinder surface Ω , and on the other hand, Ω  is the exploded of Ω . 

The section between Ω  and S  given by the equations (2.5) and (2.6) respectively is a super-ellipse, 
and the section between Ω  and S  is a traditional ellipse. Using Theorem 1 we can see that the 
super-ellipse mentined above is the exploded of the traditional ellipse.  
For the begining we calculate the coordinates of the points of the traditional ellipse, and their 
exploded ones are the points of the super-ellipse.  
The end points of the axes are 

1
P  , 

2
P  and   

3
P  , 

4
P  , respectively. The end points of the big axis 

1
P  and 

2
P  satisfy the equation yx =  and applying the equations (2.4) and (4.3)  we have: 
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 ⎟
⎠

⎞
⎜
⎝

⎛
⋅ 8.02;

2

8.0
;

2

8.0
1

th
thth

P  ⎟
⎠

⎞
⎜
⎝

⎛
⋅−−− 8.02;

2

8.0
;

2

8.0
2

th
thth

P  (4.4) 

The length of the big axis is the Euklidean distance: 

    ( ) athPPd
R

⋅=⋅⋅= 28.032,
213

 (4.5) 

The centre of the super-ellipse is the point ( )0;0;0O , and the straight line, which holds the 
3
P  

and
4

P  has the parametric equation: 

    tx =  0=z  ty −=  (4.6) 

Considering 
3
P  and

4
P are the common points of the cylindre surface defined by ( 4.3 ) and the 

plane defined by (2.4), we can find the 
3
P  and

4
P  coordinates: 

  ⎟
⎠

⎞
⎜
⎝

⎛
− 0;

2

8.0
;

2

8.0
3

thth
P  ⎟

⎠

⎞
⎜
⎝

⎛
− 0;

2

8.0
;

2

8.0
4

thth
P  (4.7) 

and the Euklidean distance: 
    ( ) bthPPd

R

⋅=⋅= 28.02,
433

 (4.8) 

The linear eccentricity of the ellipse is: 

     28.0
22

⋅=−= thbac  (4.9) 

We calculate the  coordinates of focus-points
r

F  and  
l

F , using ceFO
r

⋅=  and  

ceFO
l

⋅−=  , where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

6

2
;

6

1
;

6

1
e  is the unit vector pointing in the big axis direction. 

Hence 
r

F  and  
l

F  have the coordinates: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

3

8.0
2;

3

8.0
;

3

8.0 ththth
F
r

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−−

3

8.0
2;

3

8.0
;

3

8.0 ththth
F
l

 (4.10) 

The points 
r

FPPPP ,,,,
4321

 and 
l

F  are the exploded of 
r

FPPPP ,,,,
4321

 and  
l

F  respectively, and 

their coordinates are:  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

3

8.0
2;

3

8.0
;

3

8.0

3

8.0
2;

3

8.0
;

3

8.0

0;
2

8.0
;

2

8.0
0;

2

8.0
;

2

8.0

8.02;
2

8.0
;

2

8.0
8.02;

2

8.0
;

2

8.0

43

21

ththth
F

ththth
F

thth
P

thth
P

th
thth

Pth
thth

P

rr

 (4.11) 

An important question is the super-ellipse is a plane-curve or a space-curve? It is obvious, that if we 
choose four points of the super-ellipse and they are not on the same plane, the super-ellipse is a 
space-curve. Easy to see that four points are on the same plane, the determinant  

    ( ) 0

1

1

1

1

,,det

444

333

222

111

4,321
==

zyx

zyx

zyx

zyx

PPPP  (4.12) 
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 where ( ) 4..1;; =izyxP
iiii

 are the chosen points. 

In the case of the super-cylinder the end-points of the axis of the super-ellipse are on the same 
plane, but the super-ellipse is a space-curve. To prove this we choose the points satisfying the 
condition 0;8.0 === vuw  (

5
P  point ), 0;8.0 === uwv  (

6
P point ) or the condition 

0;8.0 =−== vwu  (
7
P  point ). The determinant has the following values: 

    

( )

( )

( )

( )

( ) 9104818956.0,,,det

4552409472.0,,,det

0,,,det

9104818948.0,,,det

0,,,det

6571

6513

6543

6521

4321

=

−=

=

=

=

PPPP

PPPP

PPPP

PPPP

PPPP

 (4.13) 

The results shows that in the case of the super-cylinder surface the super-ellipse is symmetrical to 
the )0;0;0(O point, but its points are not on the same plane, therefore the super-ellipse is a space-

curve. 
The form of the super-ellipse can be seen in Figure 1 and Figure 2.  

 

   Figure 1.  Figure 2. 

The base of the super-cylindre surface is a super-circle and it can be seen in Figure 3. 

 
Figure 3. 

An other question is how to fix the parameter µ , as  
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     EE
box

=  (4.14) 

where 3
RE ⊆  is the super-ellipse, and 3

REE
box

∩=  is the box phenomenon of E . We can see 

that the third coordinate of 
1
P  is ( )µthareath ⋅2  and the condition (4.14) is satisfyed if  

     12 <⋅ µth  (4.15) 

and therefore: 

     881.0

2

1
≈⎟

⎠

⎞
⎜
⎝

⎛
< areathµ  (4.16) 

 
 
5.  The section between the super - plane and a super-cone surface 

 
Similarly we can treat the problem of the super-ellipse in the case of  a super-cone surface. The 
section between a super-plane and a super-cone surface can be seen in Figure 4. and Figure 5. 

 
   Figure 4.  Figure 5. 

 
Now we consider a section between a traditional cone surface defined by 

  ( ) ( ) },;;0;/10:,,{ 223
CyxRcccyxzRzyx ∈∈<+−≤≤∈=Λ  (5.1) 

and a traditional plane, defined by the equation (2.4). 
If  
    ϕα <                 (5.2) 

the section-line is a traditional ellipse.  
We fix 3.0=γ  and we introduce the notation ( )3.0thc =  and therefore the condition (5.2) is 

satisfied. The P  points, which satisfy the equations 

cyxz /1
22

+−≤  and yxz +=  

are situated on a traditional ellipse. These points form the compressed of the super-ellipse or we can 
say that the exploded of the ellipse mentioned above is a super-ellipse.  
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The end points of the axes are 
1
P  , 

2
P   and   

3
P  ,  

4
P  , respectively. The end points of the big axis 

1
P  and 

2
P  satisfy the equation yx =  and similarly with the super-cylinder calculations, we have: 

   
( )

( )

( )

( )

( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+⋅
⋅

+⋅+⋅ 23.02

3.0
2,

23.02

3.0
,

23.02

3.0
1

th

th

th

th

th

th
P               (5.3) 

   
( )

( )

( )

( )

( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−⋅
⋅

−⋅−⋅ 23.02

3.0
2,

23.02

3.0
,

23.02

3.0
2

th

th

th

th

th

th
P      (5.4) 

The length of the big axis is the Euklidean distance  

  ( ) ( )
( )( )

a
th

thPPd
R

⋅=

⋅−

⋅

⋅= 2
3.021

32
3.0,

2213  (5.5) 

and  

   ( )
( )( )23.021

3
3.0

th
tha

⋅−

⋅=  (5.6) 

The centre-point C  of the ellipse has the coordinates: 

  
( )
( )

( )
( )

( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−⋅

⋅

−⋅−⋅ 13.02

3.02
;

13.02

3.0
;

13.02

3.0
2

2

2

2

2

2

th

th

th

th

th

th
C  (5.7) 

We can find the end-points 
3
P  and 

4
P as the common points of the straight line f  which holds the 

axis
43

PP , and the cone-surface defined by ( 5.1 ). The equation of the line f  has the parametric 

form: 

     

( )
( )

( )
( )

( )
( ) 13.02

3.0
2

13.02

3.0

13.02

3.0

2

2

2

2

2

2

−⋅

⋅=

−

−⋅

=

+

−⋅

=

th

th
z

t
th

th
y

t
th

th
x

 ( 5.8 ) 

We introduce the notation: 

     
( )
( ) 13.02

3.0

2

2

−⋅

=

th

th
k  ( 5.9 ) 

Using the parametric equation ( 5.8 ) and the equation of the traditional plane we find  

     
2

k
t −±=  ( 5.10 ) 

And the coordinates of the 
3
P  and 

4
P : 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−+−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−−−+ k

k
k

k
kPk

k
k

k
kP 2;

2
;

2
2;

2
;

2
43

 ( 5.11 ) 

The length of the axis
43
PP is the Euklidean distance: 

    ( ) bkPPd
R

⋅=−⋅= 22,
213  ( 5.12 ) 
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Using ( )
( )( ) ( )3.0

3

3.021

3
3.0

2
th

k

th
tha

⋅

−=

⋅−

⋅=  and  kb −=  we can find the linear eccentricity of 

the ellipse : 

    
( )

( )( )222

3.03
3.0

th
th

k
bac −⋅=−=  ( 5.13 ) 

An interesting question is the calculus of the focus points 
r

F  and 
l

F   of the super-ellipse as the 

exploded points of 
r

F  and  
l

F , respectively. Easy to see that 
vr
ecFC ⋅=  and  

vl
ecFC ⋅−=  

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

6

2
;

6

1
;

6

1
v
e  is the unit vector pointing in the direction of the big axis. Applying 

( )kkkC ⋅2,,  we can find the focus-points coordinates: 

 

   ⎟
⎠

⎞
⎜
⎝

⎛ ⋅
−⋅−−⎟

⎠

⎞
⎜
⎝

⎛ ⋅
+⋅++

6

2
2;

6
;

66

2
2;

6
;

6

c
k

c
k

c
kF

c
k

c
k

c
kF

lr
 ( 5.14 ) 

 
The points 

r
FPPPP ,,,,

4321
 and 

l
F  have the coordinates: 
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⎠
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,
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 ( 5.15 ) 

 
In the case of the super-cone surface, the determinant mentioned in ( 4.12 ) has the following 
values: 

    

( )

( )

( )

( )

( ) 0,,,det

60147890577.0,,,det

40019069391.0,,,det

20168735917.0,,,det

70352478570.0,,,det
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2651

4315

4325

4321

=

−=

=

−=

−=

PPPP

PPPP

PPPP

PPPP

PPPP

 (5.16) 

where 
5
P  and 

6
P  are the points of the super-ellipse situated on the xOy  plane, having the 

coordinates: 

   
( ) ( ) ( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
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2
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;

2
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The results show the only points situated on the same plane are 
543

,, PPP  and  
6
P . Otherwise we 

can see the super-ellipse is not a plane-curve in the traditional sense, most of it, the straight lines 
which hold the end-points of its axes are not situated on the same plane.  

 
In the case of the super-cone surface we can answer the question how to fix the parameter γ , as 

EE
box

= . We can see that the third coordinate of  
2

P  is 
22

2

−⋅

⋅

γ

γ

th

th
 , and has to satisfy the 

condition: 

     1

22

2 −>

−⋅

⋅

γ

γ

th

th
 ( 5.18 ) 

and therefore: 

     369.0
4

2
≈⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
<areathγ  ( 5.19 ) 
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SPECIAL VECTOR FIELDS
ON SPACES WITH AFFINE CONNECTION

HINTERLEITNER Irena, (CZ)

Abstract. In this paper we study special vector fields on spaces with affine connection,
which satisfy ∇ϕ = � Id + σA + ω ϕ. These vector fields are denoted as ϕ(A) - vector
field. We investigate the properties of these fields. We give an example of a special case.
We also present a result about ϕ(A) - vector fields and geodesic mappings. These vector
fields are preserved under geodesic mappings.
Key words and phrases. space with affine connection, special vector field, geodesic
mapping.
Mathematics Subject Classification. Primary 53B05, 53B30.

1 Introduction

Assume a symmetric affine connection ∇ on an n dimensional manifold and moreover an affine
structure A in the form of a tensor of type

(
1
1

)
. Such manifolds are called spaces with affine

connection, denoted by An.

Definition 1.1 A ϕ(A) - vector field is a vector field ϕ on An which satisfies the condition

∇ϕ = ρ Id + σA + ω ϕ, (1)

where Id is the identity operator, ρ, σ are functions, and ω is a linear operator on An. If ω ≡ 0
then ϕ is canonical.

ϕ(A) - vector fields represent a generalisation of the ϕ(Ric) - vector fields introduced and
studied in detail in [3, 4, 5].
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We note that ϕ(Id ) - vector fields are the well known torse-forming vector fields [11, 14, 15,
19, 20, 23, 25], and canonical ϕ(Id ) - vector fields are the concircular (especially – recurrent,
convergent vector fields) [9, 11, 14, 15, 19, 20, 22, 23, 24].

Many geometrical problems are connected with the existence of the vector fields (1). For
example, there are conformal mappings onto Einstein spaces [1, 12, 14, 18]. In this case tensor
A is the Ricci operator, i.e. the Ricci tensor of type (1,1).

Equation (1) can be written in the following form

∇Xϕ = ρX + σA(X) + ω(X) ϕ,

for all tangent vectors X ∈ TAn.
In a local coordinate system x = (x1, . . . , xn) we can express this as

ϕh
,i = ρ δh

i + σAh
i + ϕh ωj, (2)

where ϕh, δh
i , Ah

i , ωi are components of ϕ, Id ,A, ω, and the comma “ , ” denotes the covariant
derivative of ∇.

2 On canonical ϕ(A) - vector fields

It is known that a vector field ϕ̃ is collinear to ϕ if ϕ̃ = α · ϕ, where α is a function on An.
Evidently, if ϕ is a ϕ(A) - vector field on An, then ϕ̃ is ϕ̃(A) - vector field on An, too. In

this case for α �= 0 holds

∇ϕ̃ = (α ρ) Id + (α σ)A + ϕ̃ (ω + ∇α/α).

It is clear that if ω + ∇α/α = 0, then ϕ̃ is canonical.
If the linear form ω is gradient-like (locally gradient-like) then a function α exists so that

ϕ̃ is canonical (respective locally canonical).

In the following we study canonical ϕ(A) - vector fields, which satisfy

∇ϕ = ρ Id + σA. (3)

Theorem 2.1 Let An be a space with an affine connection ∇ and let A be an affine structure
on An for which

Rank ‖A − α Id ‖ > 1. (4)

Canonical ϕ(A) - vector fields on An depend on no more then n + 2 real parameters.

This theorem follows from the next one.

Theorem 2.2 Let An be a space with an affine connection ∇ and let A be an affine structure
on An for which (4) holds.
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The canonical ϕ(A) - vector fields on An are generated in a coordinate neighbourhood U(x) ⊂
An by the set of functions ϕh(x), ρ(x) and σ(x) which satisfy the following system of linear
equations of Cauchy type

ϕh
, i = ρ δh

i + σ Ah
i , (5)

ρ, i = σ
1

T
i
+ ϕα

2

T
αi

, (6)

σ, i = σ
3

T
i
+ ϕα

4

T
αi

, (7)

where
a

T are tensor fields which are defined on An and depend only on the connection ∇ and
the affinor structure A.

Proof. In the coordinate neighbourhood U(x) ⊂ An equation (3) is written as (5). It is known
that the Ricci identities for a vector field ϕ have the form

ϕh
,jk − ϕh

,kj = −ϕα Rh
αjk, (8)

where Rh
ijk are components of the curvature tensor on An.

The integrability conditions of (5) follow from (8) and have the form

−ϕαRh
αjk = δh

j ρk − δh
kρj + Ah

j σk − Ah
kσj + Ah

jk σ, (9)

where ρi = ρ, i, σi = σ, i, and Ah
jk = Ah

j,k − Ah
k,j.

By analyzing (9) under the condition (4) we can make sure (6) and (7).

As we can easily see, it follows from the theory of partial differential equations that in a
space An the equations (5), (6), and (7) can have a unique solution for arbitrary n + 2 initial
conditions

ϕh(x0) =
0
ϕh, ρ(x0) =

0
ρ, σ(x0) =

0
σ,

which are satisfied in the point x0 ∈ An.

3 A simple example of a ϕ(Ric) - vector field.

Special ϕ(A) - vector fields with ρ = 0, ω = 0 and A = Ric were introduced in [3, 4] and de-
noted as ϕ(Ric) - vector fields. Our example is a non-isotropic generalization of an equidistant
space, motivated by the Kasner vacuum metric in general relativity [10]. For simplicity we
have restricted ourselves to a 2 + 1 dimensional Riemannian space with diagonal metric in the
coordinates x1, x2, x3,

ds2 = −(dx1)2 + f(x1)(dx2)2 + g(x1)(dx3)2, (10)

where f and g are C2 functions of only the first coordinate.
We assume a presumptive ϕ(Ric) - vector field in the x1 direction,

ϕi = (ϕ1(x1), 0, 0),
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depending only on the coordinate x1, too.
After some calculations based on ∇ϕ = Ric, we obtain a one-parameter family of solutions

for the metric components

f(x1) = (x1) 2 cos θ, g(x1) = (x1) 2 sin θ, (11)

with the parameter θ conveniently restricted by θ ∈ 〈0, 2π〉.
The non-vanishing components of the Ricci tensor are

R11 = (1 − cos θ − sin θ) (x1)−2, R22 = cos θ (1 − cos θ − sin θ) (x1)−2(1−cos θ),

R33 = (1 − cos θ) (sin θ − 1 − cos θ) (x1)−2(1−sin θ)

and the scalar curvature is

R = −2(1 − cos θ) (1 − sin θ) (x1)−2. (12)

In this space the ϕ(Ric) - vector field is given by the component

ϕ1 = (1 − cos θ − sin θ)(x1)−1. (13)

The Riemannian space with the above metric (10) with components (11) provides a nontrivial
example of a space with a ϕ(Ric) - vector field, which is neither equidistant, nor an Einstein
space, nor a space with constant curvature. The functional form (11) of the components is of
Kasner type, but, of course, the metric is not a vacuum solution.

The vector field ϕ �= 0 if and only if θ �= 0, π/2. As special cases for θ = π/4, 5π/4 the
spaces are equidistant. From the expression (12) we see that in the generic case the metric
(10), (11) displays a curvature singularity at x1 = 0, like the Kasner metric.

4 ϕ(A) - vector fields and geodesic mappings

We recall that the diffeomorphism f between spaces with afinne connection An and Ān is called
a geodesic mapping of An onto Ān if f maps any geodesic curve in An onto a geodesic curve in
Ān, see [2, 6, 16, 17, 18, 22].

Let f : An → Ān be a geodesic mapping. We suppose that An = (Mn,∇) and Ān = (Mn, ∇̄),
so f is a mapping from M to M . Then for the afinne connections ∇ and ∇̄ holds the Levi-Civita
equation

∇̄XX = ∇XX + 2ψ(X) · X, (14)

for all tangent vectors X, ψ is a 1-form on the manifolds Mn.
Equation (14) is equivalent to the form

∇̄XY = ∇XY + ψ(X) · Y + ψ(Y ) · X. (15)

It is well known that under geodesic mappings Killing vectors, and also concircular vector
fields are preserved.

Similar properties hold also for ϕ(A) - vector fields:
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Theorem 4.1 Assume the vector field ϕ is a ϕ(A) - vector field on the manifold with affine
connection An = (Mn,∇). The mapping f : An → Ān = (Mn, ∇̄) is a geodesic mapping between
An and Ān.

Then ϕ is a ϕ(A) - vector field with respect to the connection ∇̄.

Proof. Evidently by application of equation (15) we get

∇̄Xϕ = ∇Xϕ + ψ(X) · ϕ + ψ(ϕ) · X. (16)

After substitution from the formula (1) we get the relation

∇̄Xϕ = (ρ + ψ(ϕ)) · X + σA + (ω(X) + ψ(X)) · ϕ. (17)

This equation can briefly be written in the shape:

∇̄ϕ = ρ̄ Id + σ̄A + ω̄ ϕ,

where ρ̄ = ρ + ψ(ϕ), σ̄ = σ, and ω̄ = ω + ψ.
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[13] MIKEŠ, J., HINTERLEITNER, I., KIOSAK, V.A.: On the Theory of Geodesic Mappings
of Einstein Spaces and their Generalizations. AIP Conf. Proc., Vol. 861, pp. 428-435, 2006.
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[15] MIKEŠ, J., ŠKODOVÁ, M.: Concircular vector fields on compact spaces. Publ. de la
RSME, Vol. 11, pp. 302-307, 2007.
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PRESERVING THE EINSTEIN TENSOR
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Abstract. In this paper there are discussed the holomorphically projective mappings
which preserved the Einstein tensor. We proved that the tensor of h-concircular curvature
is invariant under Einstein tensor-preserving holomorphically projective mappings.
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1 Introduction

From the very beginning, the theory of holomorphically projective mappings attracted attention
by a wide scale of possibilities for applications, not only in geometry itself, but also as a useful
tool of modeling various processes in mechanics and physics [1]–[24].

If we distinguish some class of mappings between spaces from a fixed class, a natural ques-
tions arises, what objects and properties of spaces are preserved, invariant, under all mappings
under consideration.

As far as invariant objects under holomorphically projective mappings are concerned, let us
mention generalized Thomas’ parameters and the tensor of holomorphically projective curva-
ture. To mention some invariant properties, note that the class of spaces of constant curvature
and the class of Einstein spaces are closed under holomorphically projective mappings.

In this paper, we examine nontrivial holomorphically projective mappings of pseudo-Kähler
spaces preserving the Einstein tensor. We prove that the tensor of h-concircular curvature
is an invariant of holomorphically projective mappings. Further, we examine some geometric
properties of such spaces.
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2 Basic concepts

A (pseudo-) Riemannian space Kn is called a Kähler space if it is endowed, besides a metric
tensor g, with an affinor structure F satisfying the following relations [16, 18, 19, 20]

F 2 = −Id , g(X,FX) = 0 , ∇F = 0 .

Here X are all tangent vectors of TKn and ∇ is a connection of Kn. The structure F is a
complex structure.

It is known, that the diffeomorphism f between Kähler spaces Kn and K̄n is called a holo-
morphically projective mapping, if f maps any analytical planar curve of Kn onto a analytical
planar curve of K̄n. Due to the diffeomorphism f , we can suppose that M̄ = M , where M is
“common” manifolds on which the metrics g and ḡ and the complex structure F on Kn and
K̄n are defined.

A holomorphically projective mapping f from Kn onto K̄n preserves the structures and is
characterized by the following condition

(∇̄ − ∇)(X,Y ) = ψ(X)Y + ψ(Y )X − ψ(FX)FY − ψ(FY )FX (1)

for any vector fields X,Y , where ∇̄ and ∇ are affine connections of Kn and K̄n ψ is a linear
form.

The mapping from Kn onto K̄n is holomorphically projective if the equations hold

∇Z ḡ(X,Y ) = 2ψ(Z)ḡ(X,Y ) + ψ(X)ḡ(Y, Z) + ψ(Y )ḡ(X,Z)

+ψ̄(X)F̄ (Y, Z) + ψ̄(Y )F̄ (X,Z),
(2)

where ∇ is Levi-Civita connection of Kn, ψ is a linear form and X,Y, Z are tangent vectors,
ψ̄(X) = eψ(FX), F̄ (X,Z) = ḡ(X,FZ). If ψ = 0, then a holomorphically projective mapping
is called trivial or affine. The equations (2) we rewrite in local coordinates:

ḡij,k = 2ψkḡij + ψiḡjk + ψj ḡik − ψ̄iF̄jk − ψ̄jF̄ik, (3)

where ḡij(x) ψ̄k(x) and F̄ij are components of ḡ, ψ, F̄ and “ , ” is a covariant derivative on
Kn, x = (x1, x2, . . . , xn) is a point of coordinate neighbourhood U ⊂ M . Equations (2) and (3)
hold when Kn and K̄n ∈ C1, i.e. gij(x) and ḡij(x) ∈ C1 in any coordinate neighbourhood U .

The following conditions are necessary for a holomorphically projective mapping:

R̄h
ijk = Rh

ijk + ψijδ
h
k − ψikδ

h
j + ψiαFα

j F h
k − ψiαFα

k F h
j + 2 ψjαFα

k F h
i , (4)

R̄ij = Rij + (n − 1)ψij. (5)

Here Rh
ijk is the Riemannian curvature tensor, Rij is the Ricci tensor, and

ψij = ψi,j − ψiψj + ψ̄iψ̄j.
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On the other hand, necessary and sufficient condition for existence of non-trivial holomor-
phically projective mappings of the given pseudo-Kähler space onto pseudo-Kähler spaces is
existence of a solution for the system of equations [7, 13, 16, 18, 19]

aij,k = λigjk + λjgik + λ̄iFjk + λ̄jFik, (6)

nλi,j = μgij + aαiR
α
j − aαβRα· ij ·β, (7)

(n − 1)μ,k = 2(n + 1)λαRα
k + aαβ(2Rα· k,·β − Rαβ· · ,k) (8)

with respect to a regular symmetric tensor aij, a co-vector λi �= 0 and a function μ. Here
Ri

j = Rαjg
αi; Rk· ij

h· = Rαijβgαkgβh; Rij· · ,k = Rαβ,kg
αigβj; Ri·j,k· = Rαj,βgαigβk; Fij = Fα

i gαj;

and gij are elements of the matrix inverse to gij.
According to the known solutions of the above system of differential equations the metrics

of the resulting image spaces under holomorphically projective mappings can be determined
from the equations [13, 19]:

aij = e2ψḡαβgαigβj; (9)

λi = −e2ψψαḡαβgβi. (10)

The important invariants under holomorphically projective mappings are the generalized Thomas’
parameters

T̄ h
ij = T h

ij; T h
ij = Γh

ij −
1

n + 2
(δh

i Γα
jα + δh

j Γα
iα − F h

i F β
j Γα

βα − F h
j F β

i Γα
βα) (11)

and the tensor of holomorphically projective curvature

P̄ h
ijk = P h

ijk; P h
ijk = Rh

ijk −
1

n + 2
(δh

kRji − δh
j Rki − F h

k Fα
j Rαi + F h

j Fα
k Rαi + 2F h

i Fα
j Rαk). (12)

3 Basic equations for Einstein tensor-preserving geodesic mappings

We call a holomorphically projective mapping Einstein tensor-preserving if it satisfies:

Ēij = Eij, (13)

where

Eij = Rij − R

n
gij (14)

is the Einstein tensor and R = Rαβgαβ is the scalar curvature.
If this is the case, the deformation tensor for the Ricci tensor takes the form:

Tij = R̄ij − Rij =
R̄

n
ḡij − R

n
gij. (15)

On the other hand, accounting (5) we obtain

Tij = R̄ij − Rij = (n − 1)ψij. (16)
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Comparing we get:

ψij =
R̄

n(n − 1)
ḡij − R

n(n − 1)
gij. (17)

Substituting the last expression into (4) and using the notation

Y h
ijk = Rh

ijk −
R

n(n − 1)
(δh

kgij − δh
j gik + F h

k Fα
i gαj − F h

j Fα
i gαk + 2 F h

i Fα
j gαk) (18)

(and similarly with bar) we find
Ȳ h

ijk = Y h
ijk. (19)

Here Y h
ijk are components of the tensor of h-concircular curvature, where Y is an analog of the

tensor of concircular curvature [13, 17, 18, 19, 24].
Hence we have proved:

Theorem 3.1 The tensor of h-concircular curvature is invariant under Einstein tensor-preserving
holomorphically projective mappings.

Let us apply covariant differentiation to the formula (10):

λi,j = −e2ψψα,j ḡ
αβgβi + e2ψψαψβ ḡαβgji + e2ψψjψαḡαβgβi. (20)

By (9) and (17), we get

λi,j = μgij +
R

n(n − 1)
aij, (21)

where

μ = e2ψ

(
ψαψβ ḡαβ − R̄

n(n − 1)

)
. (22)

Obviously using (9), (10), from (20) and (21) we get (17), and consequently also (13), hence
we have proved:

Theorem 3.2 A pseudo-Riemannian space admits an Einstein tensor-preserving holomorphi-
cally projective mapping if and only if the conditions (6), (21) and (22) are satisfied.

We say that a Kähler space Kn belongs to the class Kn[B] if it admits a geodesic mapping
and the corresponding vector satisfies [12, 14, 18]

λi,j = μgij + Baij (23)

for some function B.
So we have actually proved that a Kähler space Kn admitting Einstein tensor-preserving

holomorphically projective mappings belongs to the class Kn[B] where B = − R
n(n−1)

.
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[10] JUKL, M., LAKOMÁ, L.: The Decomposition of Tensors Spaces with Almost Complex
Structure. Suppl. ai Rend. del Circ. Matematico di Palermo, Serie II, No 72, pp. 145-150,
2004.

[11] KURBATOVA, I.N.: HP-mappings of H-spaces. (Russian) Ukr. Geom. Sb. 27, pp. 75-83,
1984.
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ON HOLOMORPHICALLY PROJECTIVE MAPPINGS
ONTO ALMOST HERMITIAN SPACES
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Abstract. In this paper we consider holomorphically projective mappings f from
(pseudo-) Riemannian spaces Vn onto non-Kähler almost Hermitian spaces H̄n.
If in the point xo it satisfies the following initial condition ḡ(f(xo)) = k · g(xo), where
g and ḡ are the metrics of Vn and H̄n, then f is homothetic.

Key words and phrases. holomorphically projective mapping, equiaffine space, affine-
connected space, (pseudo-) Riemannian space, almost Hermitian space.
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1 Introduction

Diffeomorphisms and automorphisms of geometrically generalized spaces constitute one of the
current main directions in differential geometry. A large number of papers are devoted to
geodesic, quasigeodesic, almost geodesic, holomorphically projective and other mappings (see
[1]–[6], [12]–[27]). On the other hand, one line of thought is now the most important one,
namely, the investigation of special affine-connected, Riemannian, Kählerian and Hermitian
spaces.

In this paper, we present some new results obtained for holomorphically projective mappings
from equiaffine spaces An onto almost Hermitian spaces H̄n, which is not Kählerian.

By a Hermitian space Hn we mean a (pseudo-) Riemannian manifold together with an affinor
structure F h

i satisfying the conditions

F h
αFα

i = −δh
i , gα(iF

α
j) = 0 (1)
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hold. Here gij is the metric tensor on Hn, δh
i is the Kronecker symbol and (i, j) denotes a

symmetrization without normalization.

A natural classification containg 16 types of Hermitian spaces has been done by A. Gray
and L.M. Hervella [7]. Kählerian spaces Kn are special cases of Hermitian spaces, which have
a covariantly constant structure F h

i .

In many papers holomorphically projective mappings and transformations of Hermitian
spaces Hn → H̄n are studied (for example see [?], [12], [14], [17], [22], [24], [27]). These are
special cases of F1-planar mappings. In [15], [17], F1-planar mappings from the space An with
affine connection onto a Riemannian space V̄n are defined and studied. These are characterized
w.r.t. a common coordinate system x by the following equations

a) Γ̄h
ij(x) = Γh

ij(x) + δh
(iψj) + F h

(iϕj),

b) ḡα(iF
α
j) = 0,

(2)

where Γh
ij and Γ̄h

ij are the objects of affine connection on An and V̄n, respectively, ḡij is the
metric tensor of V̄n, ψi(x), ϕi(x) are covectors, and F h

i (x) (Rank‖F h
i − ρδh

i ‖ > 1) is the affinor
structure on An and V̄n.

Equations (2) are equivalent to the equations

a) ḡij,k = 2ψkḡij + ψ(iḡj)k + ϕ(iF̄j)k,

b) ḡα(iF
α
j) = 0,

(3)

where F̄ij
def
= ḡiαFα

j . Here and in what follows, comma denotes covariant derivative on An.

In [15] it is proved that a general solution of the system (3) for a given space An and a given
structure F h

i depends on finitely many parameters.

An F1-planar mapping is called F2-planar if the covector ψi is a gradient, i.e. ψi = dψ/dxi,
and F3-planar if ψi = ϕαFα

i . If An is an equiaffine space, then an F3-planar mapping is
F2-planar. The following Theorem holds [15]:

Theorem 1.1 An equiaffine space An admits F3-planar mappings onto V̄n if and only if a
regular symmetric tensor aij and a vector ξi satisfie the following equations:

a) aij
,k = ξαF

(i
α δ

j)
k + ξ(iF

j)
k ,

b) aα(iF
j)
α = 0.

(4)

Solutions of (3) and (4) are connected by relations

aij = e−2ψḡij,

ξi = −e−2ψḡiαϕα,
(5)

where ‖ḡij‖ = ‖ḡij‖−1.
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2 Holomorphically projective mappings

An F3-planar mapping from a space An with an affine connection onto a Hermitian space H̄n,
for which formulas (2) are satisfied and F h

i is the almost complex structure of H̄n, is called a
holomorphically projective mapping.

For this mapping it holds:
F h

i,j = F h
i|j, (6)

where “ , ” and “ | ” are the covariant derivatives in An and H̄n respectively.
In the following we will study holomorphically projective mappings from an equiaffine space

An onto a non Kählerian space H̄n, in which F h
i|j �= 0. In this case (6) implies

F h
i,j �= 0. (7)

Study the second differential prolongation of the conditions (4b) was proved following Theorem
[19]:

Theorem 2.1 Let An be an equiaffine space with an affine connection, F be a covariantly non
constant almost complex structure (i.e., an affinor F h

i such that F h
αFα

i = −δh
i and F h

i,j �= 0).
Then An admits a holomorphically projective mapping onto a non-Kählerian Hermitian space H̄n,
if and only if the following system of linear differential equations of Cauchy type is solvable with
respect to the unknown functions aij:

aij
,k = ξαF (i

α δ
j)
k + ξ(iF

j)
k , (8)

where ξi = aαβT i
αβ. Further, the matrix (aij) satisfies det‖aij‖ �= 0 and the algebraic conditions

aij = aji;

aij = aαβF i
αF j

β .
(9)

Here T i
αβ is tensor which are explicitly expressed using the objects defined in An, i.e. affine

connection An and affinor F h
i .

This Theorem is a generalization of the results in [?], [12]–[17], [24]–[26].

The system (8) does not have more than one solution for the initial Cauchy conditions
aij(xo) = aij

o under the conditions (9). Therefore the general solution of (8) does not depend
on more than No = n2/4 parameters. The question of existence of a solution of (8) leads to the
study of integrability conditions, which are linear equations w.r. to the unknowns variables aij

with objects from the space An.

3 Holomorphically projective mappings with initial conditions

It is known, that Riemannian manifolds have equiaffine connection, hence the Theorem 2.1
holds also in the case if An is (pseudo-) Riemannian manifolds with the metric tensor g.

We proved following:
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Theorem 3.1 Let Vn be a (pseudo-) Riemannian space, F be a covariantly non constant almost
complex structure, and let f be a holomorphically projective mapping from the (pseudo-) Rie-
mannian space Vn onto a non-Kählerian Hermitian space H̄n with the condition ḡ(x̄o) = k·g(xo),
where g and ḡ are metrics of Vn and H̄n, x̄o = f(xo), k ∈ R.

Then f is a homothetic mapping, i.e.

ḡ = k · g, k = const. (10)

Proof. Let us suppose that the assumptions of Theorem 3.1 hold on neighbourhood U . Equa-
tions (3) and (4) hold and we get from them the system of Cauchy type (8).

This set is the closed system of partial differential equations of the Cauchy type with respect
to unknown functions aij(x).

For the initial condition for xo ∈ U

ḡij(xo) = k · gij(xo), (11)

which is firstly equivalent to

ḡij(xo) = k∗ · gij(xo), (12)

where gij are components of the inverse matrix of metric tensor g,
and, moreower, accepted the formula (9), this initial condition is equivalent to

aij(xo) = k∗ · gij(xo), (13)

there is no more that one unique solution of equation (8).

On the other hand,

aij = k∗ · gij, k∗ = const,

is a trivial solution of equations (8) and the initial conditions of (13) is satisfied. This solution,
accepted the formula (9) is equivalent to

ḡ = k · g,

where k is a function on Vn, this means, f is conformal mapping between Vn and H̄n.

We substitute into the formula (3a) and after analysis we determine, that k is a constant.
It means that a mapping f is homothetic.

This Theorem is a generalization of the results in [2], [3], [?].
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ON HOLOMORPHICALLY PROJECTIVE MAPPINGS
WITH CERTAIN INITIAL CONDITIONS

CHUDÁ Hana, (CZ), CHODOROVÁ Marie, (CZ),
MIKEŠ Josef, (CZ)

Abstract. In this paper we studied holomorphically projective mapping f between
(pseudo -) Kähler spaces Kn and K̄n with the folowing initial condition ḡ(f(xo)) = k·g(xo),
where g and ḡ are the metrics of Kn and K̄n. We proved if in the point xo ∈ Vn the
tensor of the holomorphically projective curvature does not vanish, then f is homothetic.
This statement holds as well as for hyperbolical Kähler spaces.

Key words and phrases. holomorphically projective mapping, initial conditions, Kähler
space, hyperbolical Kähler spaces.

Mathematics Subject Classification. Primary 53B35, 53C24, 53C55.

1 Introduction

Many monographs and papers are devoted to the theory of geodesic and holomorphically pro-
jective mappings, see [1] - [19]. Geodesic and holomorphically projective mappings were studied
with a complementary condition for proportional metrics displayed spaces, in a certain subset
of the points [1, 2, 3], see [8, 9, 11, 12]. It turns out that, even under this weaker conditions,
the mapping is homothetic, i.e. ḡ = const · g.

We prove that under certain circumstances a condition for proportional metrics holds only
for a single pair of points xo �→ f(xo).

We suppose that the metrics studied on Kähler spaces Kn have generally signature metrics,
i.e. Kähler space in our sense, is classical Kähler or (pseudo-) Kähler. We talk about classical
Kähler spaces or (pseudo-) Kähler spaces, as well as hyperbolical Kähler spaces.
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2 Main properties of holomorphically projective mappings

A Riemannian space Kn is called a Kähler space if it is endowed, besides a metric tensor g,
with an affinor structure F satisfying the following relations [9, 12, 13, 14]

F 2 = e Id , e = ±1 , g(X,FX) = 0 , ∇F = 0 .

Here X are all tangent vectors of TKn and ∇ is a connection of Kn. The structure F is a
complex structure. If e = −1 then Kn is a classical Kähler space or a (pseudo-) Kähler spaces.
If e = 1 then Kn is a hyperbolical Kähler space.

It is known, that the diffeomorphism f between Kähler spaces Kn and K̄n is called a holo-
morphically projective mapping, if f maps any analytical planar curve of Kn onto a analytical
planar curve of K̄n. Due to the diffeomorphism f , we can suppose that M̄ = M , where M is
“common” manifolds on which the metrics g and ḡ and the complex structure F on Kn and
K̄n are defined.

A holomorphically projective mapping f from Kn onto K̄n preserves the structures and is
characterized by the following condition

(∇̄ − ∇)(X,Y ) = ψ(X)Y + ψ(Y )X + eψ(FX)FY + eψ(FY )FX (1)

for any vector fields X,Y , where ∇̄ and ∇ are affine connections of Kn and K̄n ψ is an 1-form.

If ψ = 0, then a holomorphically projective mapping is called trivial or affine.

The mapping from Kn onto K̄n is holomorphically projective if the equations hold

∇Z ḡ(X,Y ) = 2ψ(Z)ḡ(X,Y ) + ψ(X)ḡ(Y, Z) + ψ(Y )ḡ(X,Z)

+ψ̄(X)F̄ (Y, Z) + ψ̄(Y )F̄ (X,Z),
(2)

where X,Y, Z are tangent vectors, ψ̄(X) = eψ(FX), F̄ (X,Z) = ḡ(X,FZ). The equations (2)
we rewrite in local coordinates:

ḡij,k = 2ψkḡij + ψiḡjk + ψj ḡik + e ψ̄iF̄jk + e ψ̄jF̄ik, (3)

where ḡij(x), ψk(x), ψ̄k(x) and Fij are components of ḡ, ψ, ψ̄, F and “ , ” is a covariant
derivative on Kn, x = (x1, x2, . . . , xn) is a point of coordinate neighbourhood U ⊂ M . Equa-
tions (2) and (3) hold when Kn and K̄n ∈ C1, i.e. gij(x) and ḡij(x) ∈ C1 in any coordinate
neighbourhood U .

The tensor of holomorphically projective curvature of the Kähler space Kn has a following
invariant form:

P (X,Y, Z) = R(X,Y )Z − 1
n+2

(Ric (X,Y ) · Z − Ric (X,Z) · Y
+ eRic (X,FY ) · FX − eRic (X,FZ) · FY − 2eRic (FY, Z) · FX),

(4)
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or locally

P h
ijk = Rh

ijk − 1
n+2

(δh
kRji − δh

j Rki + eFα
j Rαi − eFα

k Rαi − 2eFα
j Rαk), (5)

where Rh
ijk and Rij = Rα

ijα are components of Riemannian and Ricci tensors, respectively. The
tensor of the holomorphically projective curvature is invariant under holomorphically projective
mappings Kn → K̄n, i.e. P = P̄ .

3 Fundamental equations of holomorphically projective mapping

Domashev and Mikeš [4] for (elliptical) Kähler spaces, and Kurbatova [6] for hyperbolical Kähler
spaces, proved that the equation (3) is equivalent to (see [9, 12, 13, 14])

aij,k = λigjk + λjgik − eλαFα
i F β

j gβk − eλαFα
j F β

i gβk (6)

whereas
aij = e2ψ ḡαβgαi gβj, λi = e2Ψ ḡαβψαgβj,

ḡij is the inverse matrix to ḡij and Ψ is a function which generates a gradient like a vector
ψ(X) = XΨ.

In paper [7, 6], see [9, 12, 13, 14], from equation (6) it follows that a Kähler space Kn admits
holomorphically projective mappings onto K̄n if only if the following system of differential
equations with covariant derivatives of Cauchy type has a solution with respect to the symmetric
tensor aij(x), det(aij �= 0), the covector λi(x) and the function μ(x):

a) aij,k = λigjk + λjgik − eλαFα
i F β

j gβk − eλαFα
j F β

i gβk

b) nλi,j = μgij + aiαRα
j − aαβRα β

.ij.

c) μ,i = 2λαRα
i .

(7)

where Rhk
.ij. = Rh

ijαgαh, Rh
i = Riαgαh, Rh

ijk and Rij are components of the Riemannian and Ricci
tensors.

The system (7) has no more than one solution for initial conditions in the point xo:

aij(xo) = ao
ij, λi(xo) = λo

i , μ(xo) = μo. (8)

Evidently for

aij(xo) = k∗ · gij(xo), λi(xo) = 0, μ(xo) = 0, (9)

the initial condition corresponds to a trivial solution a = k∗ · g, k∗ = const on all Kn.
It means, that Kn and K̄n are homothetic, i.e. ḡ = k · g, k = const.

In the work by al Lamy, Škodová, Mikeš [15] there was proved in the neighbourhood on
which the tensor P is non vanishing it is possible to express the vector field λi as a linear
function of components aij with coefficients which are defined by the objects of the space Kn.
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In principle this result follows as well as from the study of a degree of holomorphically projective
mapping [6, 8, 14].

It means that in the neighbourhood U ⊂ Kn where P (x) �= 0 equations of Cauchy type
with respect only to unknown functions aij(x) hold

aij,k = λigjk + λjgik + eλαFα
i F β

j gβk + eλαFα
j F β

i gβk (10)

where λi = Ωαβ
i (x)aαβ, Ωαβ

i (x) are objects of Kn. It is evident that the solution

ḡij = k · gij, k = const (11)

is equivalent to

aij = k∗ · gij, k∗ = const (12)

4 Holomorphically projective mapping with the condition ḡ(x0) = k · g(x0)

We proved following:

Lemma 4.1 Let Kn = (M, g, F ) and K̄n = (M, ḡ, F ), are Kähler spaces of the class C3, n ≥ 3,
and let in coordinate neighbourhood U ⊂ M , the tensor of holomorphically projective curvature
P (x) �≡ 0, ∀x ∈ U .

If in the point xo ∈ U it satisfies a = k ·g, and spaces Kn and K̄n have the same analytical
planar curves then metrics g and ḡ on U are homothetics, i.e. ḡ(x) = k · g(x), for all x ∈ U.

Proof. Let us suppose that the assumptions of Lemma 4.1 hold on neighbourhood U . Equa-
tions (3) and (6) hold and we get from them the system of Cauchy type (7).

This set is the closed system of partial differential equations of the Cauchy type with respect
to unknown functions aij(x).

For the initial condition for xo ∈ U

ḡij(xo) = k · gij(xo), (13)

which is equivalent to
aij(x) = k∗ · gij(x), (14)

there is no more that one unique solution.
On the other hand, a = k∗ · g, k∗ = const, is a trivial solution of equations (7) and the

initial conditons of (9) is satisfied. The solution of a = k∗ · g, is equivalent to ḡ = k · g.

The Lemma implies:

Theorem 4.2 Let f be a holomorphically projective mapping between Kähler spaces Kn and K̄n

with the condition ḡ(x̄o) = k·g(xo), where g and ḡ are metrics of Kn and K̄n, x̄o = f(xo), k ∈ R.
If the tensor of holomorphically projective curvature does not vanish in the point xo ∈ Kn then
f is a homothetic mapping, i.e.

ḡ = k · g, k = const. (15)
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Proof. Let f be a holomorphically projective mapping between (pseudo-)Kähler spaces Kn

and K̄n. We suppose Kn, K̄n ∈ C3 and ḡ(f(x0) = k ·g(x0)) Because P (xo) �= 0, then there exists
neighbourhood U at the point xo, so that P (x) �≡ 0, for all points x ∈ U . It follows from 4.1 that
there is only one solution of Levi-Civita equation in the form ḡ(x) = k · g(x), ∀x ∈ U, k = const,
and also

a(x) = k∗ · g(x), ∀x ∈ U, k∗ = const. (16)

It means, that in the neighbourhood U , the set of equations (7) has the solution:

aij(x) = k · gij(x), λi(x) = 0, μ(x) = 0, for x ∈ U. (17)

These conditions guarantee that the system of equations in the point x0 has the initial condition
(9). If equations (7) fulfil the initial condition (9) in the point x0 ∈ U then the Kähler spaces
Kn and K̄n are homothetic. It follows from this that the initial conditions globally generate
only trivial solutions ḡ = k · g, k = const. These equations characterize homothetic mappings.
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[3] CHUDÁ, H., MIKEŠ, J.: On geodesic mappings with certain initial conditions. Acta Math.
Acad. Paed. Nyiregyhaziensis (AMAPN) 26(2), pp. 337-341, 2010.
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[16] STANKOVIĆ, M.S., MINČIČ, S.M., VELIMIROVIĆ, L.S.: On equitorsion holomorphi-
cally projective mappings of generalized Kählerian spaces. Czech. Math. J. 54, No. 3, 701-
715 (2004).

[17] STEPANOV, S.E.: New methods of the Bochner technique and their applications. J. Math.
Sci., New York 113, No. 3, 514-536 (2003).
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ON RINGS OF ENDOMORPHISMS
OF CERTAIN FREE MODULES

JUKL Marek, (CZ)

Abstract. This article deals with ring of endomorphisms of free finite dimensional mod-
ules over a local algebra A (s.c. A-spaces). The correspondences between a set of sub-
modules of given A-space and the set of rigt (left) anihilators of the ring of endomorfisms
are studied. The criterion for sumbodules to be a direct summand of given A-space (s.c.
A-subspace) is obtained in the article.

Key words and phrases. local ring, free module, A-space, A-subspace,ring of endomor-
phisms, ideal, anihilator, projection
Mathematics Subject Classification. Primary 51C10; Secondary 13C10.

1 Introduction

Geometry of subspaces of vector spaces has fundamental importance for projective geometry.
In this case it is well known that there exists isomorphism, resp. antiisomorphism, between
an ordered set of subspaces of given vector spaces and the ordered set of left, resp. right,
anihilators of the ring of endomorphisms of given vector spaces. The structure of subspaces
of such vectore space is fully determined by the structure of ideals of the associated ring of
endomormphisms (see e. g. [1]).

In this article we replace the vector space by a free module. It will be shown that the struc-
ture of submodules of a free modules is more ”fruitful” because besides free submodules there
may exists submodules with no bases. Therefore it is actual to find criteria for a submodule of
M to be a free submodule, i.e. an A-subspace1. We will consider modules over local algebras
of special types, plural algberas and Weil algebras. This structures are widely applicable e. g.
in statistics or differential geometry (for example [6], [10], [11], [13], [17]) and also in dynamics

1one of them is found e.g. in [8]
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or robotics ([2], [5], [15] or [16]).

Let a local ring A be given. In what follows we will denote by M an A-space in the following
sense of B. R. McDonald [14]:

Definition 1.1 Let A be a local ring. Let M be a finitely generated A-module. Then M is an
A-space of finite dimension if there exist e1, . . . ,en ∈ M with

(a) M = Ae1 ⊕ · · · ⊕ Aen,

(b) the map A → Aei defined by 1 �→ ei is an isomorphism for i, i = 1, ..., n.

The set {e1, . . . ,en} ⊆ M will be called an A-basis of M . A submodule K⊆⊆M will be
called an A-subspace of M if it is a direct summand of M .

Clearly, every A-space in the sense of this definition is a free finite dimensional module over
a local ring A and vice versa.

Thorough the following we shall consider the linear algebra A having as a vector space over
an arbitrary commutative field T a basis

{1, η, η2, . . . , ηm−1} with ηm = 0. (1)

It means that any element β of A may be uniquely written by the following form

β =
m−1∑
i=0

biη
i.

It is easy to see that A is a local ring with maximal ideal a=(η) and a, . . . ,am−1 are just all
nontrivial proper ideal in A. By M the A-spaces just over such algebras will be denoted.

The algebra A, s.c. plural algebra of order m in the sense of [4], is isomorphic to the factor
ring of polynomials T [x]/(xm). Therefore, in the case T = R, algebra A may be considered as
a Weil algebra of the order m and width 1.

Remark 1.2 Let M be an A-space over A. It is well known corollary of Nakayama lemma
that all bases of M have the same number of elements (called dimension of M) and from every
set of generators a basis of M may be selected. It is also known that every A-subspace is a free
submodule of M (see [14]).

Moreover in our case the A-space M has the following properties (proved in [7]):

1. Any linearly independent system can be completed to a basis of M ,

2. A submodule of M is a free submodule if and only if it is a direct summand of M .
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3. An intersection of two A-subspaces of M is an A-subspace of M if and only if the sum of
them is a A-subspace of M .2

It follows from this that in our case A-subspaces of M are just all free submodules of M3.

Let us define an endomorphism η ∈ End(M) induced by a very natural way:

∀x ∈ M : η(x) = ηx. (2)

The properties of sets of generators of arbitrary A-submodule of M are brought by the
following proposition.

Theorem 1.3 Let K be a nontrivial submodule of A-space M. Then there exists a system
B0, . . . ,Br of subsets on M such that

1. B0 ∪ · · · ∪ Br−1 ∪ Br is a basis of M,

2. ηm−rB0 ∪ ηm−r+1B1 ∪ · · · ∪ ηm−1Br−1 is a set of generators of K.

In this case r, 1 ≤ r ≤ m, is an integer with K ⊆ Ker ηr ∧ K �⊂ Ker ηr−1.

Proof. Let us denote ϑ = η|K,ϑ ∈ End(K).
Since M is a free module, it follows from [9] that ηjM= Ker ηm−j, 0≤j≤m. It implies

K ∩ ηjM = Ker ϑm−j, 0 ≤ j ≤ m. (3)

Let us denote r∈N, 1≤r≤m, such that K⊆Ker ηr∧K �⊂Ker ηr−1. Respecting the fact K is a
vector space over A/(η) = T we have ϑ is a nilpotent endomorphism of K and therefore we
obtain elements u1, . . . ,us0 ,us0+1, . . . ,us1 ,us1+1, . . . ,us2 , . . . ,usr−2+1, . . . ,usr−1 of K such that

ηr−ku1, . . . , η
r−kus0 , η

r−k−1us0+1, . . . , η
r−k−1us1 , . . . ,usr−k−1+1, . . . ,usr−k

form a T -basis Kerϑk mod Kerϑk−1, 1 < k < r − 1.
It follows from {u1, . . . ,us0} ⊆ Ker ϑr ⊆ ηm−rM (see (3)) that there exist v1, . . . ,vs0 ∈ M with

ui = ηm−rvi, 1 ≤ i ≤ s0. (4)

By the same way, {usr−k−1+1, . . . ,usr−k
} ⊆ Kerϑk implies the existence of elements

vsr−k−1+1, . . . ,vsr−k
∈ M with

ui = ηm−kvi, sr−k−1 + 1 ≤ i ≤ sr−k, for k = 1, . . . , r − 1. (5)

Let us denote B0 = {v1, . . . ,vs0} and Br−k = {vsr−k−1+1, . . . ,vsr−k
}, k = r − 1, . . . , 1

2this is a criterion of transversality of two A-subspaces; Two A-subspaces are called transversal A-subspaces
in the sense of Veldkamp if both their intersection and their sum are A-subspaces, too (see e.g. [18])

3generally, it is not true over an arbitrary local ring A, see e.g. [18]
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a) Let us show the linear independence of the set B0 ∪ . · · · ∪ Br−1. Supposing

sr−1∑
i=1

ξivi = o,

and denoting (according to the (1)) ξi =
∑m−1

j=0 xijη
j, 1 ≤ i ≤ sr−1, where xij ∈ T , we obtain:

m−1∑
j=0

ηj

sr−1∑
i=1

xijvi = o. (6)

Multiplying this equality by ηm−1 and using (4), (5) we may write:

s0∑
i=1

xi0(η
r−1ui) +

s1∑
i=s0+1

xi0(η
r−2ui) + · · · +

sr−1∑
i=sr−2+1

xi0ui = o.

It is a linear combination of elements of a T -basis of submodule K (with coefficients from T )
which implies xi0 = 0, for i = 1, . . . , sr−1. Therefore (6) may be written in the form

m−1∑
j=1

ηj

sr−1∑
i=1

xijvi = o.

Multiplying this equality by ηm−2 and using again (4), (5), we obtain xi1 = 0, i = 1, . . . , sr−1.
Then (6) may be written by

m−1∑
j=2

ηj

sr−1∑
i=1

xijvi = o.

Let us (6) multiply by ηm−3, . . . , η, consecutively. This gives that all xij are zero and ξ1 = ξ2 =
· · · = ξsr−1 = 0, consequently.

Since B0∪ . · · ·∪Br−1 is linearly independent, it may be completed (by a set Br) to a A-basis
of M (according to the Remark 1.2).

b) Let us show ηm−rB0 ∪ ηm−r+1B1 ∪ · · · ∪ ηm−1Br−1 generates (over A) the module K.
Respecting (4) a (5) we may write:

x =
∑

1≤i≤s0
0≤j≤r−1

xij(η
jui) +

∑
s0<i≤s1
0≤j≤r−2

xij(η
jui) + · · · +

∑
sr−3<i≤sr−2

0≤j≤1

xij(η
jui) +

∑
sr−2<i≤sr−1

xijui =

=
∑

1≤i≤s0
0≤j≤r−1

xij(η
j+m−rvi) +

∑
s0<i≤s1
0≤j≤r−2

xij(η
j+m−r+1vi) + · · · +

∑
sr−3<i≤sr−2

0≤j≤1

xij(η
j+m−2vi)+

+
∑

sr−2<i≤sr−1

xijη
m−1vi =
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=
∑

1≤i≤s0
0≤k≤m−1

(xikη
k)(ηm−rvi) +

∑
s0<i≤s1

0≤k≤m−1

(xikη
k)(ηm−r+1vi) + · · · +

∑
sr−3<i≤sr−2

0≤k≤m−1

(xikη
k)(ηm−2vi)+

+
∑

sr−2<i≤sr−1
0≤k≤m−1

(xikη
k)(ηm−1vi) =

=
∑

1≤i≤s0

ξi(η
m−rvi) +

∑
s0<i≤s1

ξi(η
m−r+1vi) + · · · +

∑
sr−3<i≤sr−2

ξi(η
m−2vi)+

+
∑

sr−2<i≤sr−1

ξi(η
m−1vi).

If an element x of M may be expressed as a linear combination (over T ) of elements of a T -basis
of submodule K then it may be also expressed as a linear combination of elements of the set
ηm−rB0 ∪ ηm−r+1B1 ∪ · · · ∪ ηm−1Br−1 with coefficients from A and vice versa.

2 Ring of endomorphisms of A-space

Theorem 2.1 Let K be a submodule of A-space M . Then there exist endomorphisms f, g ∈
End(M) such that 4:

Ker f = K, Im g = K.

Proof. Evidently, this theorem is true for the trivial submodule. Now, let us consider a
nontrivial submodule K.
Let B0, . . . ,Br, be a system of subsets according to the theorem 1.3. Denotig for every j, 0 ≤
j ≤ r, by Mj the A-subspace with the basis Bj we have:

M0 ⊕ M1 ⊕ · · · ⊕ Mr = M, (7)

ηm−rM0 + ηm−r+1M1 + · · · + ηm−r+jMj + · · · + ηm−1Mr−1 = K. (8)

Let us define an endomorphism f of M by:

f |Mj = ηr−j, 0 ≤ j ≤ r. (9)

Clearly, K ⊆ Ker f (see (8)).
Now, considering x∈Ker f, x=

∑r
j=0 xj, xj∈Mj we have (see 9):

o = f(x) =
r∑

j=0

f(xj) =
r∑

j=0

(ηr−jxj).

4Let us remark that this proposition is not true for modules over arbitrary ring (for example, let us consider
a (free) module Z. The submodule of even numbers is kernel of no endomorphism of Z)
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Since ηr−jxj ∈ Mj, using (7) we have: ηr−jxj = o, 0 ≤ j ≤ r. Respecting that all Mj are
A-spaces we get (see (3)): Ker(η|Mj)

k = ηm−kMj, 0 ≤ k ≤ m, 0 ≤ j ≤ r. It means that
xj ∈ ηm−r+jMj and (with respect to the (8)) xj ∈ K, 0 ≤ j ≤ r. This implies x ∈ K.
We have Ker f = K.

Let us define an endomorphism g of M by:

g|Mj = ηm−r+j, 0 ≤ j ≤ r. (10)

Evidently, (7) and (8) give Im g ⊆ K.
If x ∈ K then (with respect to (8) and (10)) we may write (yj ∈ Mj):

x =
r∑

j=0

ηm−r+jyj =
r∑

j=0

g(yj) = g(y),y ∈ M,

therefore x ∈ Im g. We see Im g = K.

Now, let us generalize Galois triangle theorem, which is known for vectore space (see [1]).
We will show that the ring of endomorphisms of A-space M and the structure of its ideals
reflect ”fully” the structure of A-spaces, its submodules and subspaces.

Denotation 2.1

1. By P we will denote the ring of endomorphisms the of A-space M ; the composition of
endomorphisms f, g ∈ P will be define by (fg)(x) = g(f(x)).

2. For every J ⊆ P we will by L(J) denote a left anihilator of a subset J , i.e.

L(J) = {f ∈ P ;∀g ∈ J : fg = o}.
By R(J) we will denote the right anihilator of J , i.e.

R(J) = {f ∈ P ;∀g ∈ J : gf = o}.

3. By L(P ) and R(P ) we will denote the set of all left and right anihilators of ring P ,
respectivelly.

4. By L0(P ) and R0(P ) we will denote the set of all left and right principle ideals of P
generated by an idempotent element of P , respectivelly.

5. By U(M) we will denote the set of all A-submodules of A-space M .

6. By U0(M) we will denote the set of all A-subspaces of A-space M .

7. For any submodule S ∈ U(M) we will denote

N(S) = {f ∈ P ;∀x ∈ S : f(x) = o}, Q(S) = {f ∈ P ;∀x ∈ M : f(x) ∈ S}.
(Equivalently, N(S) = {f ∈ P ; S ⊆ Ker f},Q(S) = {f ∈ P ; Im f ⊆ S}.)
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8. For any subset J ⊆ P we will denote

K(J) = {x ∈ M ;∀f ∈ J : f(x) = o},

M(J) = {x ∈ M ;∃f ∈ J,∃y ∈ M : x = f(y)}.
(Equivalently, K(J) =

⋂
f∈J

Ker f, M(J) =
⋃
f∈J

Im f.)

Remark 2.2 It is clear to see that for all J ⊆ P , S ⊆ U(M) the sets L(J) and Q(S) are left
ideals of P as well as R(J) and N(S) are right ideals of the ring P .

The following properties follow from the definition above for all U, S ∈ U(P ), J,H ⊆ P :

J ⊆ H ⇒ K(J) ⊇ K(H),M(J) ⊆ M(H),R(J) ⊇ R(H),L(J) ⊇ L(H),

U ⊆ S ⇒ N(U) ⊇ N(S),Q(U) ⊆ Q(S).

The proof of followig lemma is based on the theorem 2.1.

Lemma 2.3 For any submodule S of M it holds:

K(N(S)) = S,M(Q(S)) = S.

The following lemma may be proved analogously as in the case of vectore spaces (see [1]).

Lemma 2.4 For any subset J ⊆ P it holds:

N(M(J)) = R(J),Q(K(J)) = L(J).

Two following lemmas follow from lemmas 2.3 and 2.4:

Lemma 2.5 For any submodule S of M it holds:

N(S) = R(Q(S)),Q(S) = L(N(S)).

Lemma 2.6 For any right anihilator H ∈ R(P) and any left anihilator J ∈ L(P ) it holds:

N(K(H)) = H, Q(M(J)) = J.

Remark 2.7 It follows from lemma 2.5: N(S) belongs to R(P ) and Q(S) belongs to L(P);
for any S ∈ U(M).

From the lemmas above the first main theorem of this section follows. It may be called
Galois theorem I.
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Theorem 2.8

1. Operators N and K are mutually inverse antiisomorphisms of ordered sets (U(M),⊆) a
(R(P ),⊆).

2. Operators Q and M are mutually inverse isomorphisms of ordered sets (U(M),⊆) a
(L(P ),⊆).

3. Operators L a R are mutually inverse antiisomorphisms of ordered sets (R(P ),⊆) a
(L(P ),⊆).

4. The following diagram is commutative.

�

�

�
�

�
�

�
�� �

�
�

�
�

�� �
�

�
�

�
�� �

�
�

�
�

�	

L R(P )

Q K

M N

R

U(M)

L(P )

Now let us study the proper subset U0(M) ⊂ U(M) of all A-subspaces of module M . Since
in our case A-subspaces are just all direct summands of M , it will be useful to use the properties
of projections of M .

The notion a projection of A-space M we will use in the usual sense - as an idempotent
endomorphism of M . Using the known properties of projections (see e.g. [3]) and remark 1.2 we
obtain that in our case kernel and image of any idempotent endomorphism form A-subspaces
of M .

Lemma 2.9 For any A-subspace S of M it holds:

1. N(S) ∈ R0(P ),

2. Q(S) ∈ L0(P ).

Proof. Ad (a): Let S ∈ U0(M). The definition of the operator N implies that N(S) is a right
ideal of P . Since S ∈ U0(M), it is a direct summand of M . Therefore there exists a T ⊆⊆ M
with M = S ⊕ T. It gives that we may construct a projection f M onto T parallely S = Ker f.
It is easy to see, for any endomorphisms f, g ∈ P where f is a projection, it holds:

Ker f ⊆ Ker g ⇔ fg = g.

Considering an arbitrary endomorphism g ∈ N(S) we have g = fg and N(S) ⊆ fP, conse-
quently. The inverse inclusion is clear, therefore N(S) ∈ R0(P ).

The part (b) may be proved analogously.
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Lemma 2.10 If J ∈ R0(P ), then K(J) ∈ U0(M).

Proof. Let f be an idempotent generator of an ideal J, J = fP. Using the definition of operator
K we have: x ∈ K(J) iff (fp)(x) = o, for certain p ∈ P. This is equivalent to f(x) = o, which
means Ker f = K(J). As f is a projection, its kernel belongs to U0(M).

Lemma 2.11 If J ∈ L0(P ), then M(J) ∈ U0(M).

Proof. Denoting f an idempotent generator of an ideal J and putting S = Im f, we see
S ∈ U0(M). For arbitrary x ∈ M(J) we may write: x ∈ M(J) iff x = pf(y) = f(p(y)) for
certain p ∈ P . It gives x ∈ Im f . We have M(J) = S.

Now we may formulated a theorem on 1-1 correspondences between ordered sets L0(P ),
R0(P ) and U0(M). This theorem (Galois theorem II) with the theorem 2.8 forms a Galois
triangle theory for A-spaces.

The structure of ideals of ring of endomorphisms of an A-space is ”wealthier” than in the
case of vectore spaces (e.g. [1]) or totally reducible modules (see [12]).

Theorem 2.12

1. Operators N|U0(M) and K|R0(P ) are mutually inverse antiisomorphisms of ordered sets
(U0(M),⊆) and (R0(P ),⊆).

2. Operators Q|U0(M) and M|L0(P ) are mutually inverse isomorphisms of ordered sets
(U0(M),⊆) and (L0(P ),⊆).

3. Operators L|R0(P ) and R|L0(P ) are mutually inverse antiisomorphisms of ordered sets
(R0(P ),⊆) and (L0(P ),⊆).

4. The following diagram is commutative. By indices 0 the corresponding restrictions of the
operators are denoted.

�

�

�
�

�
�

��� �
�

�
�

��� �
�

�
�

��� �
�

�
�

��	

L0 R0(P )

Q0 K0

M0 N0

R0

U0(M)

L0(P )
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Finally, the criterion for A-submodule to be an A-subspace follows from the both Galois
theorems 2.8 and 2.12.

Theorem 2.13 Let a submodule K of an A-space M be given. Then the following conditions
are equivalent.

1. K is an A-subspace of M ,

2. the set of endomorphisms the images of which are contained in K forms a left principle
ideal of P generated by an idempotent element of P ,

3. the set of endomorphisms the kernels of which contain K forms a left principle ideal of
P generated by an idempotent element of P .
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[2] BAYRO-CORROCHANO, E., KÄHLER, D.: Kinematics of Robot Manipulators in the
Motor Algebra. In Sommer, G. (ed.) Geometric Computing with Clifford Algebras.
Springer-Verlag, Berlin - Heidelberg, 2001, 471–488

[3] BOURBAKI, N.: Algebre (Russian), Nauka, Moskva, 1966
[4] BURGETOVÁ, R., KLUCKÝ, D.: The spectrum of a Cartesian product of plural algebras.
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ON AN APPLICATION OF THE A-SPACES
OVER PLURAL ALGEBRAS IN PHYSICS

JUKL Marek, (CZ)

Abstract. This article deals with A-spaces over local rings of a special types, s.c. plural
algebras. The A-spaces representation of physical phenomenons are studied. Especially,
a concrete representation of electromagnetic fields and Maxwell equations is offer in this
article. It is shown that the A-space formalism may be simpler that usual representation
by Euclidean spaces.
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maxwell equations, electromagnetic field
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1 A-spaces over plural algebras

The 3-dimensional Euklidean space E = R
3 is a space which is in physics the most often used

to the description of physical phenomenons. Vector physical quantities are usually represented
by vector fields in this Euclidean space.

It will be show further, that any Euclidean space may be isomorphically embedded into a
certain free module over local rings (A-space) of the same dimension. Therefore it is useful to
show a representation of certain physical quantities by fields of elements of such A-space. As
an example of this formalism the representation of (physical quantities of) the electromagnetic
field will be presented.

Let us construct a special linear algebra A (s. c. plural algebra, see e.g. [2]). Plural algebra
of order m is any linear algebra A having as a vector space over a commutative field T a basis

{1, η, η2, . . . , ηm−1} with ηm = 01.

1the generator of the algebra A is usually denoted by ε. In this article it will be denoted by η because in
electromagnetism there is by ε the permitivity denoted
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It means that any element β of A may be uniquely written by the following form

β =
m−1∑
i=0

biη
i.

It is easy to see that A is a local ring with maximal ideal a= (η) and a, . . . ,am−1 are just all
nontrivial proper ideal in A.

The plural algebra A of order m is isomorphic to the factor ring of polynomials T [x]/(xm).
Therefore, in the case T = R, algebra A may be considered as a Weil algebra of the order m
and width 1 (see e.g. [10]).

Let us remark that in the case T=R and m=2 we obtain well known dual numbers intro-
duced by Clifford [3] more than a hundred years ago.

Let us denote M = An. In [7] and in [8] this A-modules M and their submodules are studied.
M is an n-dimensional A-space in the sense of B. R. McDonald [12] such that A-subspaces of
M are just all direct summand of M . Let us register a fact

M = T n ⊕ ηT n ⊕ · · · ⊕ ηm−1T n. (1)

Moreover, it is shown in [7] that properties of such A-spaces are very ”near” to properties of
vectore spaces over A/a. This fact predetermines this modules for representation of physical
phenomenons.

Let E be an n-dimensional Euclidean space and let A be a plural algebra of an arbitrary
order m over T=R. Let us construct the A-space M of the same dimension. Then the mapping
ι:E → M defined by

ι : (x1, x2, . . . xn) �→ (x1, x2, . . . xn)

is an isomorphic embedding E into M2.

The relation (1) presents a possibility how to express arbitrary m vectors of an Euclidean
space E by one element of the A-space M . This is described by a mapping α : Em → M
defined by

α : (x0,x1, . . . ,xm) �→ x0 + ηx1 + . . . ηm−1xm. (2)

This is a way how to simplify a mathematical representations of some physical phenomenons
which are desribed by a set of real vectors. Formally, it may seem analogous to the description
of a m-touple of ”real” 3-dimensional vectors by the 3m-touple of their coordinates, i. e. by
one vector of E ′ = R

3m. It is important to say that a dimension of the A-space M is the same
as dimension of E, which inter alia means that every transformation of the A-space M is still
given by a matrix of the type 3× 3 (represented by 9m real numbers), but any transformations
of the real vector space E ′ will be given by a matrix of the type 3m× 3m (represented by 9m2

real numbers).

2it follows from this that for example orthogonal product on E induced such product on M
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This fact is a motivation for concrete using of dual numbers mentioned above for example
for representation rigid body dynamics or for representation of movement of robots etc. It is
well known that the first dual numbers formalisms in mechanics were introduced by Kotelnikov3

and Study [17] in the early 20th century. But this topic is still actual - we may mentioned today
papers - e.g. [1], [5], [14] or [16].

Let us remark that in these mentioned papers the structure of the set of ”motors”, i.e. ele-
ments in the form x = x0 + ηx1, where x0,x1∈E, is not studied systematically, and therefore
it is not identified as an A-space (free finite dimensional module over local ring).

Let us, very briefly, introduce an example of dual numbers representation. Brodsky and
Shoham [16] introduced for motion of rigid body composed of translational motion (linear mo-
menum p) and of rotational motion (angular momentum b) only one quantity b̂, dual momentum
of the body, defined by

b̂ = p + ηb.

Defining dual force momentum N̂ (with respect to a point B) by

N̂B = F + ηNB,

where F is a total force acting on a body and NB is a total momentum of force (with respect
to a point B) acting on a body, then we have the dynamic equation in the form

N̂B =
db̂B

dt
.

It means that the motion of the rigid body is possible to describe by only one physical quantity
which fulfils only one dynamic equation (instead two dynamic equations in real coordinates).

Plural numbers formalisms may be also widely applicated in differential geometry (for ex-
ample [6], [10], [11], [13], [19] or [20]). The first application of dual numbers in geometry was
done by Segre [15].

In the following section of this paper we will offer a proposal of plural numbers formalism
for a representation of electromagnetic field.

2 Maxwell equations in A-spaces representation

In this section we will by A denote the plural algebra over real numbers of order 2 (set of dual
numbers) and by M we will denote 3-dimensional A-space, i.e. M = A3.
The electomagnetic field is represented by four vector fields - by the vector field of electric field
intensity E, by the vector field of magnetic induction B, by the vector field of electric induction
D and by the vector field of magnetic field intensity H . It is known that this four fields are
not independent, they are fixed by the following two relations:

D = εE, B = μH , (3)

3the paper of P. A. Kotelnikov, published in Annals of Imperial University (Kazan, 1895), has been destroyed
during Russian revolution
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where ε is a permitivity and μ is a permeability of the medium. Therefore the electromagnetic
field may be fully described by a couple of vector fields, for example by E and H .

The quantities representing electromagnetic fields satisfy to the well known Maxwell equa-
tions which form the foundation of classical electrodynamics. The differential form of them is
(see e.g. [4]):

rotH = j +
∂D

∂t
, (4)

rotE = −∂B

∂t
, (5)

divD = ρ, (6)

divB = 0, (7)

where j is an electric current density and ρ is a charge density.

Beeing inspired by in previous section mentioned representation of dynamics we offer a
proposal of representation of electromagnetic field by a field of one element V̂ instead two real
vector fields E, H of the 3-dimensional A-space M . It may be called plural electromagnetic
field intensity. We will defined it by

V̂ = E + ηH . (8)

Physical sense of plural quantity V̂ is given by the circulation of it along a closed curve
L. If E is electromotive voltage and M is magnetomotive potential difference along a choosen
curve, then we may write

∮
L

V̂ dl =

∮
L

Edl + η

∮
L

Hdl = E + ηM

which justifies the definition of plural quantity Ê by

Ê = E + ηM.

For circulation of electromagnetic field intensity we obtain
∮

L

V̂ dl = Ê . (9)

Now, let us introduce beside V̂ the second plural quantity Ŵ , called plural induction, by

Ŵ = ηD − B. (10)

Let us derive the sense of the product Ŵ×V̂ . With respect to the (8), (10) and (3) we
have:

Ŵ×V̂ = (−B×E) + η(D×E − B×H) = E×B,

which means
Ŵ×V̂ = μP , (11)
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where P is a Poynting vector4. The product Ŵ×V̂ is equal to the vector which determines
the direction of electromagnetic field propagation. The norm of it is equal to the density of
electromagnetic power flow multiplyied by the permeability of a medium. This fact represents
fysical justification of the definition of Ŵ by (10).

Naturally, both plural quantities V̂ , Ŵ are fixed by a relation which may be derived from
constitutive relations (3):

Ŵ = ε̂V̂ . (12)

where ε̂ is an operator of plural permitivity defined on M by5

ε̂ = (ηε − μ
d

dη
).

Now we may formulated the Maxwell equations (4)− (7) by elements V̂ and Ŵ of A-space
M . Respecting (3) we get the following relations for a curl operation and divergence of plural
quantity V̂ :

rotV̂ = −∂B

∂t
+ η

∂D

∂t
+ ηj

divV̂ = divE + ηdivH .

The four Maxwell equations (4)–(7) in real coordinates may be with respet to (10) equivalently
written as a following couple of equations:

rotV̂ =
∂Ŵ

∂t
+ ηj, (13)

divV̂ =
ρ

ε
. (14)

In the free space we may Maxwell equations write by

rotV̂ =
∂Ŵ

∂t
,

divV̂ = 0.

We have shown that electromagnetic field may be instead of two (or four) real vector field fully
described by one (or two) field od elements of the A-space M . The plural quantities have not
only formal sense but they also have a concrete physical interpretation. Four Maxwell equations
may be equivalently expressed by a couple of equation (13), (14) of plural quantities.
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dη (x0 + ηx1) = x1.
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[9] KLUCKÝ, D.: A contribution to the theory of modules over finite dimensional linear
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APPLICATION OF DUAL QUATERNIONS ALGORITHM
FOR GEODETIC DATUM TRANSFORMATION

PROŠKOVÁ Jitka, (CZ)

Abstract. The paper briefly introduces the theory of quaternions and dual quaternions.
Consequently, dual quaternions are used to represent rotation and translation parameters
and the formulae is derived for computation of rotation, translation and scale parameters
in the Bursa–Wolf geodetic datum transformation model from two set of co–located 3D co-
ordinates. The following part is devoted to some practical applications of dual quaternions
with a numerical case study to demonstrate the application of the derived formulae.

Key words and phrases. Quaternions, dual quaternions, geodetic datum transforma-
tion.
Mathematics Subject Classification. Primary 51N25, 20G20; Secondary 53C22.

1 Introduction

Different types of coordinate systems and cartographic projections have been widely used in
geodesy, cartography, mapping or geographic information systems. For example, we need to
process coordination data from a different state territory, as well as we need to transform
coordinates from a digitizer to the world geodetic coordinate system or, conversely, we have to
compute with coordinates obtained by GPS (Global Positioning System).

As we have mentioned, different states or groups of states use local coordinate systems by
selecting the reference area and the type of a projection, which conform best to their area.
In recent years a trend has been to introduce a global coordinate system, enabling an easier
cooperation between neighboring countries to exchange their information. These include for
example UTM (Universal Transverse Mercator) and WGS 841 (World Geodetic System).

1Dating from 1984 and last revised in 2004.
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In the datum transformation case, we need generally to compute seven transformation
parameters, namely three rotations, three translation and one scaling. In several papers, a
scale parameter is associated with the transformation between coordinates and not with the
transformation between coordinate systems. We can find this alternative approach without
using scale parameters in [12]. This technique can be also provided by the dual quaternions
which we will presented here.

William Kingdon Clifford (1845–1879) invented dual quaternions in the nineteenth cen-
tury [3] to represent rigid transformations. There is a close connection to a classical result of
spatial kinematics known as Chasles theorem, see [7] for more details. Chasles theorem states
that any rigid transformation can be described by a screw, i.e., a rotation about an axis followed
by a translation in the direction of this axis. So, dual quaternions are convenient to describe a
composition of rotations and translations.

In this paper we will show how to represent datum transformation by using dual quaternions.
The main contribution is simplification of the original solution of datum transformation.

2 Preliminaries

Dual quaternions can be considered as standard quaternions whose elements are the dual num-
bers. Their structure is convenient for instance for describing rigid transformations, which are
compositions of rotations and translations. Let us therefore start our discussion with recalling
some fundamental facts, see e.g. [4].

2.1 Quaternions and rotations

A quaternion Q can be defined as follows

Q = 1q0 + i q1 + j q2 + k q3, (1)

where 1, i, j, k are basis elements called quaternion units satisfying the relations i2 = k2 = j2 =
ij k = −1, ij = k, j i = −k and q0, q1, q2, q3 are real numbers. Otherwise, it can be written as
comprising scalar and vector parts q0 and q = q1i + q2j + q3k. Hence we write Q = (q0,q).
A Pure quaternion is a quaternion with zero scalar part, i.e., Q = (0,q). The corresponding
conjugate quaternion is denoted as

Q∗ = q0 − i q1 − j q2 − k q3. (2)

The norm of a quaternion is defined as

‖Q‖=
√

q2
0 + q2

1 + q2
2 + q2

3 =
√QQ∗. (3)

The product of two quaternions Q and P is defined by

QP = [q0p0 − q · p,q × p + q0p + p0q], (4)
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where the symbols · and × are dot product and cross product in R
3. A quaternion is called

the unit quaternion if ‖Q‖= 1. If Q is the unit quaternion then there exists a unit vector n,
an angle θ ∈ 〈−π, π〉 such that

Q = (cos θ,n sin θ). (5)

The special orthogonal group is defined as

SO(3) = {A ∈ GL(3, R) |ATA = I ∧ detA = 1}. (6)

The matrix A represents a rotation in R
3 about the origin if and only if A ∈ SO(3), see [8] and

the references given there. In the following statement we can easily see how unit quaternions
can represent rotations.

A unit quaternion Q = (cos θ,n sin θ) represents the rotation of a vector p by the angle 2θ
along the axis given by n. The vector p is represented by pure quaternion P = (0,p). Rotated
vector, represented as a pure quaternion, is

P̂ = QPQ∗. (7)

We can find an elegant proof of this in [4]. First, it is shown how a vector p is rotated by θ
along n, using sine, cosine and the scalar and the vector products. Then is shown that the
same result is obtained through a rotation described by quaternions. Each element in SO(3)
can be expressed using quaternions as (7), see [5] for instance.

2.2 Matrix representation of quaternions

A quaternion Q can be expressed by a 4 × 4 matrix, see [11]

Q = q0 + iq1 + jq2 + kq3 =

⎡
⎢⎢⎣

q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0

⎤
⎥⎥⎦. (8)

The quaternion product S = QQ̂ is described in the matrix form as

S =

⎡
⎢⎢⎣

s0

s1

s2

s3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

q̂0

q̂1

q̂2

q̂3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

q̂0 −q̂1 −q̂2 −q̂3

q̂1 q̂0 q̂3 −q̂2

q̂2 −q̂3 q̂0 q̂1

q̂3 q̂2 −q̂1 q̂0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

q0

q1

q2

q3

⎤
⎥⎥⎦. (9)

Now we have a basic idea of matrix representation of the quaternions. Let us try to apply
this formulae for the quaternion representation of rotations. Equation (7) can be expressed in
matrix form as

P̂ = QPQ∗ =

⎡
⎢⎢⎣

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 −p1 −p2 −p3

p1 0 −p3 p2

p2 p3 0 −p1

p3 −p2 p1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

q0

−q1

−q2

−q3

⎤
⎥⎥⎦. (10)
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3 Dual numbers and dual quaternions

This section provides a brief introduction to the theory of dual numbers and dual quaternions.
We focus only on the basics of this algebra. More details can be found in [2], [3] or [10].

3.1 Dual numbers and dual quaternions

Dual numbers were invented by Clifford in 1873, see [2] for more details. They are similar to
complex numbers because any dual number zd can be written as

zd = a + εaε, (11)

where a is the non-dual part, aε the dual part and ε is a basis element called dual unit. The
defining condition for the dual unit is ε2 = 0. The dual conjugate is analogous to the complex
conjugate, i.e.,

zd = a − εaε. (12)

The multiplication of two dual numbers is given as

zdẑd = aâ + ε(aâε + aεâ). (13)

Finally, note that pure dual numbers, i.e., dual numbers with a = 0, do not have an inverse.
This is a fundamental difference from complex numbers because every non-zero complex number
has the inverse.

A dual quaternion Qd can be written as the sum of two standard quaternions

Qd = Q + εQε, (14)

where
Q = q0 + q1i + q2j + q3k and Qε = q0ε + q1εi + q2εj + q3εk, (15)

are real quaternions and 1, i, j,k are usual quaternion units. The dual unit ε commutes with
quaternion units, for example i ε = εi. A dual quaternion can also be considered as an 8–tuple
of real numbers, or as

Qd = q0d + q1di + q2dj + q3dk

= (q0 + εq0ε) + (q1 + εq1ε)i + (q2 + εq2ε)j + (q3 + εq3ε)k, (16)

where q0d is the scalar part (a dual number), (q1d, q2d, q3d) is the vector part (a dual vector),

see [10]. The product of two dual quaternions Qd and Q̂d is defined as

QdQ̂d = Q̂ + ε(QQ̂ε + QεQ̂).

Multiplication of dual quaternions is associative, distributive, but not commutative. The con-
jugation of a dual quaternion is defined using the classical quaternion conjugation

Qd
∗ = Q∗ + εQ∗

ε. (17)
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However, the dual number conjugation (12) can be applied to dual quaternion conjugation and
we get dual conjugate dual quaternion

Q∗
d = Q∗ − εQ∗

ε. (18)

The norm of a dual quaternion is a dual scalar and is defined as

‖Qd‖=
√

(q0 + εq0ε)2 + (q1 + εq1ε)2 + (q2 + εq2ε)2 + (q3 + εq3ε)2 =
√Q∗

dQd. (19)

Dual quaternion is called unit dual quaternion if ‖Qd‖= 1. Note that a dual quaternion Qd is
unit if and only if

‖Q‖= 1 ∧ Q · Qε = 0. (20)

If we have a vector p = (p1, p2, p3), we define the associated unit dual quaternion as

Pd = 1 + ε(p1i + p2j + p3k), (21)

which satisfy the previous statement.
A new method to represent rigid transformations is based on using dual quaternions. Dual

quaternions capture in their inner structure the basic information about this transformations–
namely the axis of rotation and the rotation angle about the axis and the translation along it.
Composition of this transformations corresponds to multiplication of dual quaternions.

Suppose that p = (p1, p2, p3) is a position vector of a point P , t = (t1, t2, t3) is a translation
vector and Q = (cos θ,n sin θ) is a unit quaternion. Then we can express the image of the point
P after this translation and this rotation as

P̂d = Qd Pd Q∗
d, (22)

where Pd, Qd are the unit dual quaternions and T is the pure quaternion fulfilling

Qd = Q + εQε = Q + ε
T Q
2

, T = t1i + t2j + t3k and Pd = 1 + ε(p1i + p2j + p3k). (23)

To sum up, unit dual quaternions naturally represent rotation when the dual part Qε = 0,
see (7).

3.2 Matrix representation of dual quaternions

We can represent a dual quaternion Qd = Q + εQε by a 8 × 8 matrix, see [11] for more
information,

Qd =

[ Q Qε

0 Q
]
, (24)

where Q and Qε are the matrix forms of the type (8). The dual conjugate dual quaternion in
8 × 8 matrix representation is defined as

Q∗
d = Q∗ − εQ∗

ε =

[ Q∗ −Q∗
ε

0 Q∗

]
. (25)
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This representation is often used in computer processing, see [1]. In this matrix form are
included well–known relations for quaternion units or dual unit. Now we re–write (22) to 8× 8
matrix form. The unit dual quaternions Qd and Q∗

d are expressed as (24) and (25). If we

multiply the unit dual quaternions P̂d = Qd Pd Q∗
d in 8 × 8 matrix form, we get 8 × 8 matrix

form again, i.e.,

P̂d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 p̂1 p̂2 p̂3

0 1 0 0 −p̂1 0 −p̂3 p̂2

0 0 1 0 −p̂2 p̂3 0 −p̂1

0 0 0 1 −p̂3 −p̂2 p̂1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (26)

where

p̂1 = q2
0 + q2

1 − q2
2 − q2

3 + 2[q1(p2q2 + p3q3) − q1q0ε + q0(p3q2 − p2q3) + q0q1ε − (27)

q3q2ε + q2q3ε],

p̂2 = p2(q
2
0 − q2

1 + q2
2 − q2

3) + 2[q1q2 + p3(q2q3 − q0q1) − q2q0ε + q3(q0 + q1ε) + (28)

q0q2ε − q1q3ε],

p̂3 = p3(q
2
0 − q2

1 − q2
2 + q2

3) + 2[p2(q0q1 + q2q3) − q3q1ε − q2(q0 + q2ε) + (29)

q1(q3 + q2ε) + q0q3ε].

This unit dual quaternion can be written as P̂d = 1 + ε(p̂1i + p̂2j + p̂3k), i.e., the point P
with the position vector p = (p1, p2, p3) is rotated and then translated to the point P̂ with the
position vector p̂ = (p̂1, p̂2, p̂3).

4 Dual quaternion datum transformation model

This section brings the main contribution of the paper. We use dual quaternions for description
of datum transformation, where matrix representations of dual quaternions help us to simplify
manipulations of equations.

Datum transformation models contain seven or six parameters which depends on the fact
whether we want to know the scale parameter. Our goal is to estimated all required parameters
from co–located coordinates on two different datums. Bursa–Wolf similarity transformation
model can be written as

si = t + kRpi, (30)

where si = (s1i, s2i, s3i)
T ∈ R

3,pi = (p1i, p2i, p3i)
T ∈ R

3, i = 1 . . . n are two sets of the co–located
coordinates in the two different systems, t = (t1, t2, t3)

T ∈ R
3 denotes the three translation

parameters, k denotes the scale parameter and R ∈ SO(3) is the rotation matrix containing
three rotation parameters. In order to determine the mentioned parameters, the number of the
co–located coordinates si,pi must be greater than or equal to three. We will proceed similar
way to optimization problem as in [9].
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First define centrobaric coordinates �si = (�s1i,�s2i,�s3i)
T ,�pi = (�p1i,�p2i,�p3i)

T ,
i = 1 . . . n for the sets of the co–located coordinates as

�si = si − 1

n

n∑
i=1

si, and �pi = pi −
1

n

n∑
i=1

pi. (31)

If we substitute (31) into (30), we obtain

�si = t + kR

(
�pi +

1

n

n∑
i=1

pi

)
− 1

n

n∑
i=1

si (32)

= �t + kR�pi, where �t = t + kR
1

n

n∑
i=1

pi −
1

n

n∑
i=1

si. (33)

Equation (32) is over–determined therefore we denote the residual vector vi ∈ R
3, i = 1 . . . n

as
vi = �si −�t − kR�pi. (34)

Now we get the following optimization problem to solve required parameters

min
k,�t,R

n∑
i=1

vT
i vi = min

k,�t,R

n∑
i=1

(�si −�t − kR�pi)
T (�si −�t − kR�pi). (35)

It is possible to express residual vector vi in the form of dual quaternions. First we modify (34).
The scale parameter k ∈ R is a constant therefore

vi = �si −�t − kR�pi

= �si −�t − Rk�pi

= −(�li + R�ri), where �li = �t −�si and �ri = k�pi. (36)

Equation (36) expresses a rotation of the vector �ri and then a translation given by the
translation vector �li. We can express this equation according to (22) using dual quaternions
in the form

Vdi
= −Qdi

Rdi
Q∗

di
, (37)

where Rdi
is a unit dual quaternion

Rdi
= 1 + ε(�r1ii + �r2ij + �r3ik) = 1 + kε(�p1ii + �p2ij + �p3ik), (38)

and Qdi
is a unit dual quaternion

Qdi
= Q + εQε = Q + ε

LiQ
2

, where Q = q0 + q1i + q2j + q3k (39)

and Li = (�t1 −�s1i)i + (�t2 −�s2i)j + (�t3 −�s3i)k. (40)

The quaternion Q is a unit quaternion and L is a pure quaternion. Since Qdi
is a unit dual

quaternion, we must apply the conditions (20), i.e.,

‖Q‖= 1 ∧ Q · Qε = 0, (41)
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From equation (37) we get the unit dual quaternion of the form Vdi
= 1+ε(v1ii+v2ij+v3ik), see

Section 3.2, corresponding to the vector vi = (v1i, v21, v3i)
T , where terms v1i, v21, v3i contains

seven parameters to be solved, i.e., q0, · · · , q3,�t1, · · · ,�t3, k. Further, the transformation
parameters can be determined by solving this optimization problem

min
q0,··· ,q3,�t1,··· ,�t3,k

n∑
i=1

vT
i vi = (v1i, v21, v3i)

T (v1i, v21, v3i), (42)

‖Q‖ = 1 ∧ Q · Qε = 0. (43)

We can use nonlinear method to solve this minimization problem, i.e., Lagrange multipliers.
This method can also accommodate multiple constraints. Therefore, the rotation matrix R is

R =
[
q2
0 − (q1, q2, q3)

T (q1, q2, q3)
]
I + 2[(q1, q2, q3)(q1, q2, q3)

T + q0C(q1, q2, q3)], (44)

where I denotes the 3× 3 identity matrix and C(q1, q2, q3) =

⎡
⎣ 0 −q3 q2

q3 0 −q1

−q2 q1 0

⎤
⎦. The rotation

angles can be computed by using

θx = arctan
r23

r33

, θy = arcsin(−r13), θz = arctan
r12

r11

, (45)

where rij is the element of the rotation matrix R in the i–th row and j–th column and θx, θy, θz

are the rotation angles around corresponding axes. Finally, translation vector t can be deter-
mined by using (33) as

t = �t − kR
1

n

n∑
i=1

pi +
1

n

n∑
i=1

si. (46)

The dual quaternion transformation algorithm can be summarized in the following steps:

Algorithm 1 Dual quaternion transformation algorithm

INPUT: Cartesian coordinates of n stations given in a local and a global reference system.

1. Compute centrobaric coordinates �si = (�s1i,�s2i,�s3i)
T , �pi = (�p1i,�p2i,�p3i)

T

using (31).

2. Express the unit dual quaternion Vdi
with the parameters q0, · · · , q3,�t1, · · · ,�t3, k using

(37) and determine corresponding vector vi = (v1i, v2i, v3i)
T .

3. Compute required parameters q0, · · · , q3,�t1, · · · ,�t3, k by (42) determined by condi-
tions (43).

4. Compute rotation matrix R using (44) and then rotation angles θx, θy, θz using (45).

5. Compute translation vector t using (46).

OUTPUT:Three rotation parameters θx, θy, θz, three translation parameters t1, t2, t3 and the
scale parameter k.
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5 Computed example

Numerical example is presented to demonstrate the functionality of the designed method. We
consider the Cartesian coordinates of seven stations given in a local and a global reference
system (WGS 84) as shown in Table 1, adopted from [6].

Table 1: Coordinates for local system (system A), coordinates for WGS–84 (system B).

System A System B
Station name X(m) Y (m) Z(m) X(m) Y (m) Z(m)
Solitude 4157870.237 664818.678 4775416.524 4157222.543 664789.307 4774952.099
Buoch Zeil 4149691.049 688865.785 4779096.588 4149043.336 688836.443 4778632.188
Hohenneuffen 4173451.354 690369.375 4758594.075 4172803.511 690340.078 4758129.701
Kuehlenberg 4177796.064 643026.700 4761228.899 4177148.376 642997.635 4760764.800
Ex Mergelaec 4137659.549 671837.337 4791592.531 4137012.190 671808.029 4791128.215
Ex Hof Asperg 4146940.228 666982.151 4784324.099 4146292.729 666952.887 4783859.856
Ex Kaisersbach 4139407.506 702700.227 4786016.645 4138759.902 702670.738 4785552.196

Now we compute the transformation parameters θx, θy, θz, t1, t2, t3, k from the local geodetic
system to WGS–84. We use the CAS system Mathematica to find the transformation parame-
ters, where it is convenient express dual quaternions in the 8×8 matrix form. The optimization
problem was solved using Lagrange multipliers.

Table 2: Quaternion and translation parameters.

Quaternion Q Translation �t
q0 −0.9999999987474 �t1 −6.649 × 10−10

q1 −0.0000024204319 �t2 −3 × 10−13

q2 0.0000021663738 �t3 2.658 × 10−10

q3 0.0000024073178

The quaternion Q and the translation �t are shown in Table 2. The rotation matrix R
computed from (44) is expressed in (47). The final list of results given from (45), (46) and
Lagrange multipliers are listed in Table 3.

R =

⎡
⎣ 0.9999999974902 4.8146252 × 10−6 −4.3327593 × 10−6

−4.8146461 × 10−6 0.9999999974879 −4.8408533 × 10−6

4.3327360 × 10−6 4.8408742 × 10−6 0.9999999974901

⎤
⎦ (47)

Table 3: Final results of dual quaternion transformation algorithm.

Rotation angles Translation t Scale k
θx −0.99850′′ t1 641.8908m
θy 0.89370′′ t2 68.6570m k 1.0000055825199
θz 0.99309′′ t3 416.4101m

In addition to this transformation, we compute the error matrix E, i.e., the difference
between coordinates of the system A and the new coordinates of the system A′. The coordinates
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of the system A′ are determined using the computed transformation parameters R, t, k and the
substitution (30). The transformation parameters and transformed coordinates are equal to
the parameters described by [6] and [9].

Table 4: Residual matrix of transformation parameters.

Residual matrix E(m)
Station name X(m) Y (m) Z(m)
Solitude 0.0940 0.1351 0.1402
Buoch Zeil 0.0588 −0.0497 0.0137
Hohenneuffen −0.0399 −0.0879 −0.0081
Kuehlenberg 0.0203 −0.0221 −0.0875
Ex Mergelaec 0.0919 0.0139 −0.0055
Ex Hof Asperg −0.0118 0.0065 −0.0546
Ex Kaisersbach −0.0294 0.0041 0.0017

6 Conclusion

There is a strong motivation for dealing with the problem of finding parameters of transforma-
tion of two coordinate systems, the local and the world one. Datum transformation is widely
used in geodesy. This paper describes one of the methods for determination of the datum
transformation parameters. We use a nonlinear transformation model. In this model we can
easily use a description by the dual quaternions. The dual quaternions allow us to describe
any rigid transformation, i.e., a composition of rotations and translations. Main advantages
of this approach are the simplification of the original solution of the datum transformation.
The maximal error of the method can be estimated by the error matrix and is similar to other
methods based on e.g. quaternions. This paper presents one numerical example to demonstrate
the introduced formula describing the datum transformation. Another advantage of the novel
approach lies in the fact that there is not need a linearization of the nonlinear transformation
model.
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ON SECOND ORDER COTANGENT BUNDLE
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Abstract. In the present paper starting from the notions of conformal almost symplectic
N-linear connection and conformal almost symplectic structure we define the notions of:
conformal almost symplectic N-linear connection and general conformal almost symplectic
N-linear connection. We determine the set of all general conformal almost symplectic N-
linear connections in the case when the nonlinear connection is arbitrary and we find
important particular cases.
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Mathematics Subject Classification. 53B40,58B20,53C05,53C20,53C60

1 Introduction

The differential geometry of the second order cotangent bundle
(
T ∗2M,π∗2

,M
)

was introduced

and studied by R. Miron in [3] , R. Miron, D. Hrimiuc, H. Shimada, V.S. Sabău in [5], Gh.
Atanasiu and M. Târnoveanu in [1], etc.

In the present section we keep the general setting from R. Miron, D. Hrimiuc, H. Shimada,
V.S. Sabău, [5] and subsequently we recall only some needed notions. For more details see [5] .

Let M be a real n−dimensional manifold and let
(
T ∗2

M,π∗2
,M

)
be the dual of the

2−tangent bundle, or 2−cotangent bundle. A point u ∈ T ∗2
M can be written in the form

u = (x, y, p) , having the local coordinates (xi, yi, pi) , (i = 1, 2, ..., n) .
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A change of local coordinates on the 3n dimensional manifold T ∗2
M is

⎧⎪⎨
⎪⎩

x̄i = x̄i (x1, ..., xn) , det
(

∂x̄i

∂xj

)
�= 0,

ȳi = ∂x̄i

∂xj · yj,

p̄i = ∂xj

∂x̄i · pj, (i, j = 1, 2, ..., n) .

(1.1)

We denote by
∼

T ∗2
M= T ∗2

M − {0} where 0 : M −→ T ∗2
M is the null section of the

projection π∗2
.

Let us consider the tangent bundle of the differentiable manifold T ∗2
M,

(
TT ∗2

M, τ ∗2
, T ∗2

M
)

,

where τ ∗2
is the canonical projection and the vertical distribution

V : u ∈ T ∗2
M −→ V (u) ⊂ TuT

∗2
M, locally generated by the vector fields

{
∂

∂yi

∣∣∣
u
, ∂

∂pi

∣∣∣
u

}
,

∀u ∈ T ∗2
M.

We denote with N a nonlinear connection on the manifold T ∗2M, with the local coefficients
(N j

i (x, y, p) , Nij (x, y, p)) , (i, j = 1, 2, ..., n) .
Hence, the tangent space of T ∗2M in the point u ∈ T ∗2M is given by the direct sum of

vector spaces:
TuT

∗2M = N (u) ⊕ W1 (u) ⊕ W2 (u) ,∀u ∈ T ∗2M. (1.2)

A local adapted basis to the direct decomposition (1.2) is given by:

{
δ

δxi
,

∂

∂yi
,

∂

∂pi

}
, (i = 1, 2, ..., n) , (1.3)

where:
δ

δxi
=

∂

∂xi
− N j

i
∂

∂yj
+ Nij

∂

∂pj

. (1.4)

With respect to the coordinates transformations (1.1) , we have the rules:

δ

δxi
=

∂x̄j

∂xi

δ

δx̄j
;

∂

∂yi
=

∂x̄j

∂xi
· ∂

∂ȳj
;

∂

∂pi

=
∂xi

∂x̄j
· ∂

∂p̄j

. (1.4)’

The dual basis of the adapted basis (1.3) is given by:

{
δxi, δyi, δpi

}
, (1.5)

where:
δxi = dxi, δyi = dyi + N i

jdxj, δpi = dpi − Njidxj. (1.5)’

With respect to (1.1) , the covector fields (1.5) are transformed by the rules:

δx̄i =
∂x̄i

∂xj
δxj, δȳi =

∂x̄i

∂xj
δyj, δp̄i =

∂xj

∂x̄i
δpj. (1.5)”

Let D be an N−linear connection on T ∗2M, with the local coefficients in the adapted basis:

DΓ (N) =
(
H i

jk, C
i
jk, Ci

jk
)

.
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An N-linear connection: DΓ (N) =
(
H i

jk, C
i
jk, Ci

jk
)
. determines the h−, w1−, w2− co-

variant derivatives in the tensor algebra of d-tensor fields.

We consider on
∼

T ∗2
M an almost symplectic structure A given only by a nonsingular and

skewsymmetric d-tensor field aij, of the type (0, 2) :

A(x, y, p) = 1
2
aij(x, y, p)dxi ∧ dxj + 1

2
aij(x, y, p)dyi ∧ dyj + 1

2
aij(x, y, p)δpi ∧ δpj, (1.6)

The contravariant tensor field aij is obtained from the equations:

aija
jk = δk

i .

Definition 1.1 An N−linear connection D is called almost symplectic if:

aij|k = 0, aij|k = 0, aij|k = 0, (1.7)

where k, k and
k

denote the h−, w1− and w2− covariant derivatives with respect to D.

We associate to the lift A the operators of Obata’s type given by:

Φij
hk = 1

2

(
δi
hδ

j
k − ahka

ij
)
, Φ∗ij

hk = 1
2

(
δi
hδ

j
k + ahka

ij
)
. (1.8)

Obata’s operators have the same properties as the ones associated with a Finsler space [4].

Let A2(T
∗2

M) be the set of all skewsymmetric d-tensor fields, of the type (0, 2) on
∼

T ∗2
M .

As is easily shown, the relation on A2(
∼

T ∗2
M) defined by (1.9):

(aij ∼ bij) ⇔ ((∃)λ(x, y, p) ∈ F(
∼

T ∗2
M), aij(x, y, p) = e2λ(x,y,p)bij(x, y, p), ) (1.9)

is an equivalence relation on A2(
∼

T ∗2
M).

Definition 1.2 The equivalent class Â of A2(
∼

T ∗2
M)/∼ to which A belongs, is called conformal

almost symplectic structure on T ∗2
M .

Thus:

Â = {A′|a′
ij(x, y, p) = e2λ(x,y,p)aij(x, y, p), λ(x, y, p) ∈ F(

∼
T ∗2

M)}. (1.10)

2 General conformal almost symplectic N-linear connections on
∼

T ∗2
M

Definition 2.1 An N-linear connection, D, with local coefficients: DΓ (N) =
=

(
H i

jk, C
i
jk, Ci

jk
)
, is called general conformal almost symplectic N-linear connection with

respect to Â if:
aij|k = Kijk, aij|k = Qijk, aij|k = Q̇ k

ij , (2.1)
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where k, k and
k

denote the h−, w1− and w2− covariant derivatives with respect to D and
Kijk, Qijk, Q̇

k
ij are arbitrary tensor fields of the types (0,3), (0,3) and (2,1) respectively, with

the properties:

Kijk = −Kjik, Qijk = −Qjik, Q̇
k

ij = −̇Q k
ji . (2.2)

Particularly we have:

Definition 2.2 An N-linear connection, D, with local coefficients: DΓ (N) = (H i
jk, C

i
jk,

Ci
jk

)
, for which there exists the 1-form ω, ω = ωidxi + ω̇iδy

i + ω̈iδpi, such that:

aij|k = 2ωkaij, aij|k = 2ω̇kaij, aij|k = 2ω̈kaij, (2.3)

where k, k and
k

denote the h−, w1− and w2− covariant derivatives with respect to D is
called conformal almost symplectic N-linear connection, with respect to the conformal almost
symplectic structure Â, corresponding to the 1-form ω and is denoted by: DΓ(N,ω).

For any representative A′ ∈ Â,
A′ = 1

2
a′

ij(x, y, p)dxi ∧ dxj + 1
2
a′

ij(x, y, p)dyi ∧ dyj + 1
2
aij(x, y, p)δpi ∧ δpj, we have:

Theorem 2.1 For a′
ij = e2λaij, a conformal almost symplectic N-linear connection, with re-

spect to the conformal almost symplectic structure Â, corresponding to the 1-form ω, DΓ(N,ω)
satisfies:

a′
ij|k = 2ω′

ka
′
ij, a′

ij|k = 2ω̇′
ka

′
ij, a′

ij|k = 2ω̈′ka′
ij, (2.4)

where ω′ = ω + dλ.

Since in Theorem 2.1. ω′ = 0 is equivalent to ω = d(−λ) we have:

Theorem 2.2 A conformal almost symplectic N-linear connection, with respect to the confor-
mal almost symplectic structure Â, corresponding to the 1-form ω, denoted by: DΓ(N,ω), is
almost symplectic with respect to A′ ∈ Â, i.e. a′

ij|k = a′
ij|k = a′

ij|k = 0 if and only if ω is exact.

We shall determine the set of all general conformal almost symplectic N-linear connections,
with respect to Â.

Let
0

D Γ(
0

N) =

(
0

H i
jk,

0

Ci
jk ,

0

Ci
jk

)
be the local coefficients of a fixed

0

N - linear connection

0

D, where (
0

N j
i(x, y, p),

0

N ij(x, y, p)), (i, j = 1, 2, ..., n) are the local coefficients of the nonlinear

connection
0

N .

Then any N-linear connection, D, with the local coefficients DΓ(N) =
(
H i

jk, C
i
jk , C jk

i

)
,

where (N j
i(x, y, p), N ij(x, y, p)), (i, j = 1, 2, ..., n) are the local coefficients of the nonlinear
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connection N , can be expressed in the form ([7]):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N i
j =

0

N i
j − Ai

j,

Nij =
0

N ij − Aij,

H i
jk =

0

H i
jk + Al

k

0

Ci
jl − Akl

0

Cj
il − Bi

jk,

Ci
jk =

0

Ci
jk − Di

jk,

C jk
i =

0

Ci
jk − D jk

i , (i, j, k = 1, 2, ..., n),

(2.5)

with

Ak

i
0

|j
= 0, A

ik
0

|j
= 0(i, j, k = 1, 2, ..., n), (2.6)

where
0

denotes the h-covariant derivative with respect to
0

D and (Ai
j, Aij, B

i
jk, D

i
jk, D

jk
i ) are

the components of the difference tensor fields of D from
0

D ([2] for Finsler connections).
Using the relations (2.1), (2.5), (1.4) and the Theorem 1 given by R.Miron in [4] for the

case of Finsler connections we obtain:

Theorem 2.3 Let
0

D be a given
0

N -linear connection, with local coefficients
0

D Γ(
0

N) =

=

(
0

H i
jk,

0

Ci
jk ,

0

Ci
jk

)
. The set of all general conformal almost symplectic N-linear connections,

with respect to Â, with local coefficients DΓ(N) =
(
H i

jk, C
i
jk , C jk

i

)
is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N i
j =

0

N i
j − X i

j,

Nij =
0

N ij − Xij,

H i
jk =

0

H i
jk + X l

k

0

Ci
jl − Xkl

0

Cj
il + 1

2
gim(g

mj
0

|k
− Kmjk + gmj

0

|l X l
k−

−gmj

0

|l Xkl) + Φir
sjX

s
rk,

Ci
jk =

0

Ci
jk + 1

2
gim(gmj

0

|k − Qmjk) + Φir
sjY

s
rk,

C jk
i =

0

Ci
jk + 1

2
gmj(gmj

0

|k − Q̇ k
mi ) + Φjr

siZ
sk

r ,

(2.7)

with:
Xk

i
0

|j
= 0, X

ik
0

|j
= 0, (i, j, k = 1, 2, ..., n), (2.8)

where
0

k,
0

k and

0
k

denote the h−, w1− and w2− covariant derivatives with respect to
0

D,
X i

j, Xij, X
i
jk, Y

i
jk, Z

jk
i are arbitrary d-tensor fields, Kijk, Qijk, Q̇

k
mi are arbitrary d-tensor fields

of the types (0,3), (0,3) and (2,1) respectively, with the properties (2.2) and Φ is the operator
of Obata’s type gven by (1.8).
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Particular cases:

1. If we take Kijk = 2ωkaij, Qijk = 2ω̇kaij, Q̇
k

ij = 2ω̈kaij in Theorem 2.3 we obtain:

Theorem 2.4 Let
0

D be a given
0

N -linear connection, with local coefficients
0

D Γ(
0

N) =

=

(
0

H i
jk,

0

Ci
jk ,

0

Ci
jk

)
. The set of all conformal almost symplectic N-linear connections with re-

spect to Â, corresponding to the 1-form ω, with local coefficients DΓ(N,ω) =
(
H i

jk, C
i
jk , C jk

i

)
is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N i
j =

0

N i
j − X i

j, Nij =
0

N ij − Xij,

H i
jk =

0

H i
jk + X l

k

0

Ci
jl − Xkl

0

Cj
il+

+1
2
gim(g

mj
0

|k
− 2ωkgmj + gmj

0

|l X l
k−

−gmj

0

|l Xkl) + Φir
sjX

s
rk,

Ci
jk =

0

Ci
jk + 1

2
gim(gmj

0

|k − 2ω̇kgmj)+
+Φir

sjY
s
rk,

C jk
i =

0

Ci
jk + 1

2
gmj(gmi

0

|k − 2ω̈kgmi)+

+Φrj
siZ

sk
r , (i, j, k = 1, 2, ..., n),

(2.9)

with:
Xk

i
0

|j
= 0, X

ik
0

|j
= 0, (i, j, k = 1, 2, ..., n), (2.10)

where
0

k,
0

k and

0
k

denote the h−, w1− and w2− covariant derivatives with respect to
0

D,
X i

j, Xij, X
i
jk, Y

i
jk, Z

jk
i are arbitrary d-tensor fields, ω = ωidxi + ω̇iδy

i + ω̈iδpi is an arbitrary
1-form and Φ is the operator of Obata’s type given by (1.8).

2. If X i
j = Xij = X i

jk = Y i
jk = Z jk

i = 0, in Theorem 2.3 we have:

Theorem 2.5 Let
0

D be a given
0

N -linear connection, with local coefficients
0

D Γ(
0

N) =

(
0

H i
jk,

0

Ci
jk ,

0

Ci
jk

)
. Then the following N-linear conection K, with local coefficients

KΓ(N) =
(
H i

jk, C
i
jk , C jk

i

)
given by (2.11) is general conformal almost symplectic with respect
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to Â: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H i
jk =

0

H i
jk + 1

2
gim(g

mj
0

|k
− Kmjk),

Ci
jk =

0

Ci
jk + 1

2
gim(gmj

0

|k − Qmjk),

C jk
i =

0

Ci
jk + 1

2
gjm(gmi

0

|k − Q̇ k
mi ),

(2.11)

where
0

k,
0

k and

0
k

denote the h−, w1− and w2− covariant derivatives with respect to
0

D, and
Kijk, Qijk, Q̇

k
mi are arbitrary d-tensor fields of the types (0,3), (0,3) and (2,1) respectively, with

the properties (2.2).

3. If we take a general conformal almost symplectic N-linear connection with respect to Â as
0

D, in Theorem 2.3. we have:

Theorem 2.6 Let
0

D be on T ∗2
M a fixed general conformal almost symplectic N-linear con-

nection with respect to Â, with the local coefficients
0

D Γ(
0

N) =

(
0

H i
jk,

0

Ci
jk ,

0

Ci
jk

)
. The set

of all general conformal almost symplectic N-linear connections, with respect to Â, with local

coefficients DΓ(N) =
(
H i

jk, C
i
jk , C jk

i

)
is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N i
j =

0

N i
j − X i

j,

Nij =
0

N ij − Xij,

H i
jk =

0

H i
jk +

(
0

Ci
jl + 1

2
gimQmjl

)
X l

k −
(

0

Cj
il + 1

2
gimQ̇ l

mj

)
Xkl + Φir

sjX
s
rk,

Ci
jk =

0

Ci
jk + Φir

sjY
s
rk,

C jk
i =

0

Ci
jk + Φjr

siZ
sk

r , (i, j, k = 1, 2, ..., n),

(2.12)

with

Xk

i
0

|j
= 0, X

ik
0

|j
= 0, (i, j, k = 1, 2, ..., n), (2.13)

where
0

k,
0

k and

0
k

denote the h−, w1− and w2− covariant derivatives with respect to
0

D,
Kijk, Qijk, Q̇

k
mi are arbitrary d-tensor fields of the types (0,3), (0,3) and (2,1) respectively, with

the properties (2.2), X i
j, Xij, X

i
jk, Y

i
jk, Z

jk
i are arbitrary d-tensor fields and Φ is the operator

of Obata’s type given by (1.8).

4. If we take Kijk = Qijk = Q̇ k
ij = 0 and X i

j = Xij = 0 in Theorem 2.3 we obtain the

set of all almost symplectic
0

N -linear connections in the case when the nonlinear connection is
fixed:
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Theorem 2.7 Let
0

D be a given
0

N-linear connection, where
0

N is a fixed nonlinear connection,

with local coefficients
0

D Γ(
0

N) = (
0

H i
jk,

0

Ci
jk,

0

C jk
i ). The set of all

0

N-linear connections, with

respect to Â with local coefficients DΓ(
0

N) = (H i
jk, C

i
jk, C

jk
i ) is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N i
j =

0

N i
j,

Nij =
0

N ij,

H i
jk =

0

H i
jk + Φir

sjX
s
rk,

Ci
jk =

0

Ci
jk + Φir

sjY
s
rk,

C jk
i =

0

Ci
jk + Φjr

siZ
sk

r , (i, j, k = 1, 2, ..., n),

(2.14)

where X i
jk, Y

i
jk, Z

jk
i are arbitrary d-tensor fields and Φ is the operator of Obata’s type given

by (1.8).

5. If we take Kijk = Qijk = Q̇ k
ij = 0 in Theorem 2.3 we obtain the set of all almost symplectic

N-linear connections in the case when the nonlinear connection is arbitrary:

Theorem 2.8 Let
0

D be a given
0

N -linear connection, with local coefficients
0

D Γ(
0

N) =

(
0

H i
jk,

0

Ci
jk ,

0

Ci
jk

)
. The set of all almost symplectic N-linear connections, with local

coefficients DΓ(N) =
(
H i

jk, C
i
jk , C jk

i

)
is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N i
j =

0

N i
j − X i

j,

Nij =
0

N ij − Xij,

H i
jk =

0

H i
jk + X l

k

0

Ci
jl − Xkl

0

Cj
il + 1

2
gim(g

mj
0

|k
+ gmj

0

|l X l
k − gmj

0

|l Xkl) + Φir
sjX

s
rk,

Ci
jk =

0

Ci
jk + 1

2
gimgmj

0

|k + Φir
sjY

s
rk,

C jk
i =

0

Ci
jk + 1

2
gmjgmj

0

|k + Φjr
siZ

sk
r ,

(2.15)

with:
Xk

i
0

|j
= 0, X

ik
0

|j
= 0, (i, j, k = 1, 2, ..., n), (2.16)

where
0

k,
0

k and

0
k

denote the h−, w1− and w2− covariant derivatives with respect to
0

D,
X i

j, Xij, X
i
jk, Y

i
jk, Z

jk
i are arbitrary d-tensor fields and Φ is the operator of Obata’s type given

by (1.8).
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ON THE INTEGRABILITY OF A STRUCTURE
IN THE GEOMETRY OF THE 2-OSCULATOR BUNDLE

P
¯
URCARU Monica A.P., (RO), PĂUN Marius, (RO)

Abstract. In the paper herein we consider the group
ms
T N of transformations of semi-

symmetric metrical N-linear connections corresponding to the same nonlinear connection
N on the 2-osculator bundle and we give its invariants, which are d-tensor fields. We study
the 2-forms on T (Osc2M) and we define the integrability of a 2-form. We give a result
about the integrability of a d-metric structure. All this integrability relies only on the
geometry of the 2-osculator bundle (Osc2M, π, M).

Key words and phrases. 2-osculator bundle, d-metric structure, integrability, invari-
ants, semi-symmetric metrical N-linear connection, transformations group.
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1 Introduction

The literature on the higher order Lagrange spaces geometry highlights the teoretical and
practical importance of these spaces, (see eg.[9]-[12]).

A lot of mathematical models from Lagrangian Mechanics, Theoretical Physics and Varia-
tional Calculus utilize multivariate Lagrangians of higher order acceleration,
L(x, dx

dt
(t), ..., 1

k!
dkx
dtk

(t)), (see. E.Cartan, [1] for k=2, etc.).
From here one can see the reason of construction of the geometry of the total space of the

hihger order accelerations (or the osculator bundle of hihger order) in local coordinates.
This construction is made by R.Miron and Gh. Atanasiu in the papers [11], [12], [13].
In the present section we recall the basic notions which are needed. For more detailes see

[11],[12].
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Let M be a real C∞-manifold with n dimensions and (Osc2M,π,M) its 2-osculator bundle,
or the bundle of accelerations. The local coordinates on the 3n-dimensional manifold Osc2M
are denoted by (xi, y(1)i, y(2)i) = (x, y(1), y(2)) = u, (i = 1, 2, ...n).

Let { ∂
∂xi ,

∂
∂y(1)i ,

∂
∂y(2)i} be the natural basis of the tangent space, T (Osc2M), at the point

u ∈ Osc2M.
We set: E = Osc2M, Ẽ = Osc2M \ {0} = {(x, y(1), y(2)) ∈ Osc2M, rank‖y(1)i‖ = 1}.
Let us consider the natural 2-tangent structure on E, J : χ(E) → χ(E) given by:

J( ∂
∂xi ) = ∂

∂y(1)i , J( ∂
∂y(1)i ) = ∂

∂y(2)i , J( ∂
∂y(2)i ) = 0. (1.1)

We denote with N a nonlinear connection on E with the local coefficients (N i
(1) j,N

i
(2) j),

(i, j = 1, 2, ..., n).
Hence, the tangent space of E in the point u ∈ E is given by the direct sum of the linear

vector spaces:
TuE = N0(u) ⊕ N1(u) ⊕ V2(u), ∀u ∈ E. (1.2)

An adapted basis to the direct decomposition (1.2) is given by:

{ δ
δxi ,

δ
δy(1)i ,

δ
δy(2)i}, (i = 1, 2, ..., n), (1.3)

where:
δ

δxi = ∂
∂xi − N j

(1) i
∂

∂y(1)j − N j
(2) i

∂
∂y(2)j ,

δ
δy(1)i = ∂

∂y(1)i − N j
(1) i

∂
∂y(2)j ,

δ
δy(2)i = ∂

∂y(2)i .
(1.4)

Let us consider the dual basis (cobasis) of (1.3):

{dxi, δy(1)i, δy(2)i}, (i = 1, 2, ..., n), (1.5)

where
δxi = dxi, δy(1)i = dy(1)i + N i

(1) jdxj,

δy(2)i = dy(2)i + N i
(1) jdy(1)j + (N i

(2) j + N i
(1) mN m

(1) j)dxj.
(1.6)

Definition 1.1 A linear connection D on E, D : χ(E) × χ(E) → χ(E) is called an N-linear
connection on E if it preserves by parallelism the horizontal distribution N on E and the
2-tangent structure J is absolute parallel with respect to D.

An N-linear connection D on E is characterized by its coefficients in the adapted basis (1.3)
in the form:

D δ

δxk

δ
δy(α)j = Li

jk
δ

δy(α)i ,

D δ

δy(β)k

δ
δy(α)j = C i

(β) jk
δ

δy(α)i , (β = 1, 2; α = 0, 1, 2; y(0)i = xi).
(1.7)

The system of three functions:

DΓ(N) = (Li
jk,C

i
(1) jk, C

i
(2) jk), (1.8)
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are called the coefficients of the N-linear connection D.
The d-tensors of torsion of an N-linear connection D in the adapted basis (1.3) have the

following expressions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R i
(01) jk =

δN i
(1) j

δxk − δN i
(1) k

δxj ,

R i
(02) jk = N i

(1) mR m
(01) jk +

δN i
(2) j

δxk − δN i
(2) k

δxj ,

B i
(11) jk =

δN i
(1) j

δy(1)k , B i
(12) jk = N i

(1) mB m
(11) jk +

δN i
(2) j

δy(1)k − δN i
(2) k

δy(1)j ,

B i
(21) jk =

∂N i
(1) j

∂y(2)k , B i
(22) jk = N i

(1) mB m
(21) jk +

∂N i
(2) j

∂y(2)k ,

R i
(12) jk =

δN i
(1) j

δy(1)k − δN i
(1) k

δy(1)j .

(1.9)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T i
(0) jk = Li

jk − Li
kj; P

i
(11) jk = B i

(11) jk − Li
kj; P

i
(12) jk = B i

(12) jk,

P i
(21) jk = B i

(21) jk; P
i

(22) jk = B i
(22) jk − Li

kj; Q
i

(12) jk = C i
(2) jk,

Q i
(22) jk = B i

(21) jk − C i
(1) kj; Q

i
(11) jk = S i

(1) jk = C i
(1) jk − C i

(1) kj,

Q i
(21) jk = R i

(12) jk; S
i

(2) jk = C i
(2) jk − C i

(2) kj.

(1.10)

Definition 1.2 A covariant d-tensor field gij on Ẽ, symmetric, rank||gij|| = n, and with
constant signature is called a d-metric structure on Ẽ.

The Obata’s operators asociated to the d-metric structure gij are:

Ωir
sj = 1

2
(δi

jδ
r
j − gsjg

ir), Ω∗ir
sj = 1

2
(δi

jδ
r
j + gsjg

ir). (1.11)

Obata’s operators have the same properties as the ones associated with a Finsler space [14].

Definition 1.3 An N-linear connection D on E, with local coefficients:
DΓ(N) = (Li

jk, C
i

(1) jk, C
i

(2) jk) having the property:

gij|k = 0, gij

(α)

| k= 0, (α = 1, 2), (1.12)

where gij is a d-metric structure on Ẽ and ,

(α)

denote the h-and vα-covariant derivatives,
(α = 1, 2) with respect to D, is said to be a metrical N-linear connection.

Definition 1.4 An N−linear connection, D, on E is called semi-symmetric if the torsion ten-
sor fields T i

(0) jk, S
i

(α) jk, (α = 1, 2) have the form:

⎧⎨
⎩

T i
(0) jk = 1

n−1
(T(0)jδ

i
k − T(0)kδ

i
j) = 1

n−1
Ajk{T(0)jδ

i
k},

S i
(α) jk = 1

n−1
(S(α)jδ

i
k − S(α)kδ

i
j) = 1

n−1
Ajk{S(α)jδ

i
k}, (α = 1, 2),

(1.13)

where T(0)j = T i
(0) ji, S(α)j = S i

(α) ji, are called h− and vα-torsion vector fields (α = 1, 2).
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2 The group of transformations of semi-symmetric metrical N-linear connections

Let us consider the transformations t(σj, τ(1)j, τ(2)j) : DΓ(N) → DΓ̄(N), of semi-symmetric
metrical N-linear connections on E, corresponding to the same nonlinear connection N. Owing
to [15] they are given by:

{
L̄i

jk = Li
jk + σjδ

i
k − gjkg

isσs,
C̄ i

(α) jk = C i
(α) jk + τ(α)jδ

i
k − gjkg

isτ(α)s, (α = 1, 2),
(2.1)

where σj =
T(0)j

n−1
, τ(α)j =

S(α)j

n−1
and T(0)j = T i

(0) ji, S(α)j = S i
(α) ji, (α = 1, 2).

There is inferred:

Theorem 2.1 [16] The set
ms

T N of all transformations t(σj, τ(1)j, τ(2)j) :
DΓ(N) → D̄Γ(N) of semi-symmetric metrical N-linear connections, on E, corresponding to
the same nonlinear connection N, given by (2.1), together with the mapping product:

t(σ̄j, τ̄(1)j, τ̄(2)j) ◦ t(σj, τ(1)j, τ(2)j) = t(σj + σ̄j, τ(1)j + τ̄(1)j, τ(2)j + τ̄(2)j)

is an Abelian group. This group acts on the set of all semi-symmetric metrical N-linear con-
nections corresponding to the same nonlinear connection N, transitively.

In order to determine invariants of the group
ms

T N , we denote with:

t i
(α) jk = Ajk{ δN i

(α) j

δy(α)k }, (α = 1, 2), (2.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ∗
(α) ijk = Sijk{gimt m

(α) jk},
T ∗

(0) ijk = Sijk{gimT m
(0) jk},

R ∗
(0α) ijk = Sijk{gimR m

(0α) jk}, (α = 1, 2),

S ∗
(α) ijk = Sijk{gimS m

(α) jk}, (α = 1, 2),

C ∗
(1) ijk = Sijk{gimC m

(1) jk},
Q ∗

(22) ijk = Sijk{gimQ m
(22) jk},

Q ∗
(21) ijk = R ∗

(12) ijk = Sijk{gimR m
(12) jk} = Sijk{gimQ m

(21) jk},
P ∗

(12) ijk = Sijk{gimP m
(12) jk},

P ∗
(21) ijk = Sijk{gimP m

(21) jk} = R ∗
(12) ijk,

P ∗
(αα) ijk = Sijk{gimP m

(αα) jk}, (α = 1, 2),

Q ∗
(12) ijk = Sijk{gimQ m

(12) jk} = C ∗
(2) ijk,

(2.3)
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where Sijk{...} denotes the cyclic summation: Sijk{Aijk} =Aijk+Ajki+Akij and with:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

K(αα)ijk= −gkmT m
(0) ij + Aij{gimP m

(αα) jk},
2

K(α)ijk= gimS m
(α) jk −Ajk{gkmC m

(α) ij},
3

K(αβ)ijk= Ajk{gkmP m
(αβ) ij}, (α = 1, 2 , β = 1, 2),

4

K(α)ijk= gmjC
m

(α) ik + gimC m
(α) jk, (α = 1, 2),

1

S ijk= −gjmP m
(22) ik − gmkP

m
(11) ij,

2

S(22)ijk= −gkmS m
(1) ij + Aij{gimQ m

(22) jk},
3

S(αβ)ijk= Aij{gimP m
(αβ) jk}, (α = 1, 2 , β = 1, 2, α �= β),

4

S(21)ijk= Ajk{gmjQ
m

(21)} ik} = Ajk{gmjR
m

(12) ik}.

(2.4)

Remark 2.1 It is noted that: t ∗
(α) ijk, T

∗
(0) ijk, R

∗
(0α) ijk, S

∗
(α) ijk,R

∗
(12) ijk, (α = 1, 2) are alternate

1

K(αα)ijk,
2

S(22)ijk,
3

S(αβ)ijk, (α = 1, 2; β = 1, 2; α �= β), are alternate, with respect to: i,j and
2

K(α)ijk,
3

K(αβ)ijk,
4

S(21)ijk, (α = 1, 2; β = 1, 2), are alternate with respect to: j,k.

Theorem 2.2 [16] The tensor fields: t i
(α) jk, R

i
(0α) jk, P

i
(12) jk, P

i
(21) jk, t ∗

(α) ijk, T ∗
(0) ijk,R

∗
(0α) ijk,

S ∗
(α) ijk,R

∗
(12) ijk, C ∗

(α) ijk, P
∗

(αβ) ijk, Q
∗

(21) ijk, Q ∗
(22) ijk, P ∗

(αα) ijk,
1

K(αα)ijk,
2

K(α)ijk,
3

K(αβ)ijk,
4

K(α)ijk,
1

S ijk,
2

S(22)ijk,
3

S(12)ijk,
3

S(21)ijk,
4

S(21)ijk, (α = 1, 2; β = 1, 2; α �= β), are invariants of the group
ms

TN .

3 2-forms on T (Osc2M)

In the following we shall study the 2-forms on T (Osc2M) and we shall define the integrability
of a 2-form.

Let Λk(T (Osc2M)) be the F -module of all k-forms on the tangent bundle T (Osc2M), where
F(T (Osc2M)) is the ring of all differentiable functions on T (Osc2M). If N is a nonlinear
connection given on T (Osc2M), then {dxi, δy(1)i, δy(2)i} makes a local basis of Λ1(T (Osc2M)),
which is dual to { δ

δxi ,
δ

δy(1)i ,
δ

δy(2)i}.
If f ∈ F(T (Osc2M)), then the 1-form df is written as:

df = δf
δxi dxi + δf

δy(1)i δy
(1)i + ∂f

∂y(2)i δy
(2)i
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and the exterior differentials of δxi, δy(1)i, δy(2)i are given by [11]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d(dxi) = 0,
d(δy(1)i) = 1

2
R i

(01) jmdxm ∧ dxj + B i
(11) jmδy(1)m ∧ dxj+

+B i
(21) jmδy(2)m ∧ dxj,

d(δy(2)i) = 1
2
R i

(02) jmdxm ∧ dxj + B i
(12) jmδy(1)m ∧ dxj+

+B i
(22) jmδy(2)m ∧ dxj + 1

2
R i

(12) jmδy(1)m ∧ δy(1)j+

+B i
(21) jmδy(2)m ∧ δy(1)j.

(3.2)

If we express ω ∈ Λ1(T (Osc2M)), in the form:

dω = ω̃idxi+
.
ω(1)i δy(1)i+

.
ω(2)i δy(2)i, (3.3)

the exterior differential dω is given by:

dω = 1
2
ω̃ijdxj ∧ dxi+

(10)
ω ij δy(1)j ∧ dxi+

(20)
ω ij δy(2)j ∧ dxi+

+1
2

.
ω(1)ij δy(1)j ∧ δy(1)i+

(21)
ω ij δy(2)j ∧ δy(1)i + 1

2

.
ω(2)ij δy(2)j ∧ δy(2)i,

(3.4)

where: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̃ij = δω̃i

δxj − δω̃j

δxi + R m
(01) ij

.
ω(1)m +R m

(02) ij

.
ω(2)m,

(10)
ω ij=

δω̃i

δy(1)j − δ
.
ω(1)j

δxi + B m
(11) ij

.
ω(1)m +B m

(12) ij

.
ω(2)m,

(20)
ω ij=

∂ω̃i

∂y(2)j − δ
.
ω(2)j

δxi + B m
(21) ij

.
ω(1)m +B m

(22) ij

.
ω(2)m,

.
ω(1)ij=

δ
.
ω(1)i

δy(1)j − δ
.
ω(1)j

δy(1)i + R m
(12) ij

.
ω(2)m,

.
ω(2)ij=

∂
.
ω(2)i

∂y(2)j − ∂
.
ω(2)j

∂y(2)i ,
(21)
ω ij=

∂
.
ω(1)i

∂y(2)j − δ
.
ω(2)i

δy(1)j + B m
(21) ij

.
ω(2)m,

(3.5)

are tensor fields.
In fact, written as tensorial expressions we have:

Proposition 3.1 If an N-linear connection D, with local coefficients:

DΓ(N) = (Li
jk, C

i
(1)jk, C

i
(2)jk), is given on E, then the coefficients ω̃ij,

(10)
ω ij,

(20)
ω ij,

.
ω(1)ij,

(21)
ω ij,

.
ω(2)ij have the following expressions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̃ij = ω̃i|j − ω̃j|i + T m
(0) ijω̃m + R m

(01) ij

.
ω(1)m +R m

(02) ij

.
ω(2)m,

(10)
ω ij= ω̃i

(1)

| j −
.
ω(1)j|i +C m

(1)ijω̃m + P m
(11) ij

.
ω(1)m +B m

(12) ij

.
ω(2)m,

(20)
ω ij= ω̃i

(2)

| j −
.
ω(2)j|i +C m

(2)ijω̃m + B m
(21) ij

.
ω(1)m +P m

(22) ij

.
ω(2)m,

.
ω(1)ij=

.
ω(1)i

(1)

| j −
.
ω(1)j

(1)

| i +S m
(1) ij

.
ω(1)m +R m

(12) ij

.
ω(2)m,

(21)
ω ij=

.
ω(1)i

(2)

| j −
.
ω(2)j

(1)

| i +C m
(2)ij

.
ω(1)m +Q m

(22) ij

.
ω(2)m,

.
ω(2)ij=

.
ω(2)i

(2)

| j −
.
ω(2)j

(2)

| i +S m
(2) ij

.
ω(2)m .

(3.5’)
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Generally, ω ∈ Λ2(T (Osc2M)) is written in the form:

ω = 1
2
ãijdxi ∧ dxj + b̃ijdxi ∧ δy(1)j + c̃ijdxi ∧ δy(2)j+

+1
2
d̃ijδy

(1)i ∧ δy(1)j + ẽijδy
(1)i ∧ δy(2)j + 1

2
f̃ijδy

(2)i ∧ δy(2)j,
(3.6)

where ãij = −ãji, f̃ij = −f̃ji, d̃ij = −d̃ji.

The exterior differential dω is given by:

dω = 1
6

1
ωijk dxi ∧ dxj ∧ dxk + 1

2

2
ωijk dxi ∧ dxj ∧ δy(1)k+

+1
2

3
ωijk dxi ∧ dxj ∧ δy(2)k + 1

2

4
ωijk dxi ∧ δy(1)j ∧ δy(1)k+

+
5
ωijk dxi ∧ δy(1)j ∧ δy(2)k + 1

2

6
ωijk dxi ∧ δy(2)j ∧ δy(2)k+

+1
6

7
ωijk δy(1)i ∧ δy(1)j ∧ δy(1)k + 1

2

8
ωijk δy(1)i ∧ δy(1)j ∧ δy(2)k+

+1
2

9
ωijk δy(1)i ∧ δy(2)j ∧ δy(2)k + 1

6

10
ωijk δy(2)i ∧ δy(2)j ∧ δy(2)k,

(3.7)

where:

1
ωijk= Sijk{ δãij

δxk + b̃imR m
(01) jk + c̃imR m

(02) jk},
2
ωijk=

δãij

δy(1)k + d̃kmR m
(01) ij + ẽkmR m

(02) ij + Aij{ δb̃jk

δxi + b̃imB m
(11) jk + c̃imB m

(12) jk},
3
ωijk=

∂ãij

∂y(2)k − ẽmkR
m

(01) ij + f̃kmR m
(02) ij + Aij{ δc̃jk

δxi + b̃imB m
(21) jk + c̃imB m

(22) jk},
4
ωijk=

δd̃jk

δxi + c̃imR m
(12) jk + Ajk{ δb̃ij

δy(1)k + d̃kmB m
(11) ij + ẽkmB m

(12) ij},
5
ωijk=

∂b̃ij

∂y(2)k − δc̃ik

δy(1)j +
δẽjk

δxi + c̃imB m
(21) jk − d̃jmB m

(21) ik − ẽjmB m
(22) ik−

−ẽmkB
m

(11) ij + f̃kmB m
(12) ij,

6
ωijk=

δf̃jk

δxi + Ajk{ ∂c̃ij

∂y(2)k − ẽmkB
m

(21) ij + f̃kmB m
(22) ij},

7
ωijk= Sijk{ δd̃ij

δy(1)k + ẽimR m
(12) jk},

8
ωijk=

∂d̃ij

∂y(2)k + f̃kmR m
(12) ij + Aij{ δẽjk

δy(1)i + ẽimB m
(21) jk},

9
ωijk=

δf̃jk

δy(1)i + Ajk{ ∂ẽij

∂y(2)k + f̃kmB m
(21) ij},

10
ωijk= Sijk{ ∂f̃ij

∂y(2)k }.

(3.8)

Proposition 3.2 If an N-linear connection D, with the local coefficients:

DΓ(N) = (Li
jk, C

i
(1)jk, C

i
(2)jk), is given on E, then the coefficients

α
ωijk, (α = 1, 2, ..., 10) have the

following expressions:
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1
ωijk= Sijk{ãij|k + ãimT m

(0) jk + b̃imR m
(01) jk + c̃imR m

(02) jk},
2
ωijk= ãij

(1)

| k +b̃mkT
m

(0) ji + d̃kmR m
(01) ij + ẽkmR m

(02) ij + Aij{b̃jk|i + ãimC m
(1)jk+

+b̃imP m
(11) jk + c̃imP m

(12) jk},
3
ωijk= ãij

(2)

| k +c̃mkT
m

(0) ji + ẽmkR
m

(01) ji + f̃kmR m
(02) ij + Aij{c̃jk|i + ãimC m

(2)jk+

+b̃imP m
(21) jk + c̃imP m

(22) jk},
4
ωijk= d̃jk|i + b̃imS m

(1) jk + c̃imR m
(12) jk + Ajk{b̃mj

(1)

| k +b̃mjC
m

(1)ik+

+d̃mjP
m

(11) ik + ẽjmP m
(12) ik},

5
ωijk= b̃ij

(2)

| k −c̃ik

(1)

| j +ẽjk|i + b̃mjC
m

(2)ik + b̃imC m
(2)jk + c̃imQ m

(22) jk−

(3.8’)

−d̃jmP m
(21) ik − ẽjmP m

(22) ik − c̃mkC
m

(1)ij + f̃kmP m
(12) ij − ẽmkP

m
(11) ij,

6
ωijk= f̃jk|i + c̃imS m

(2) jk + Aij{c̃ij

(2)

| k +c̃mjC
m

(2)ik + ẽmjP
m

(21) ik + f̃mjP
m

(22) ik},
7
ωijk= Sijk{d̃ij

(1)

| k +d̃imS m
(1) ik + ẽimR m

(12) jk},
8
ωijk= d̃ij

(2)

| k +ẽmkS
m

(1) ji + f̃kmR m
(12) ij + Aij{ẽjk

(1)

| i +d̃imC m
(2)jk + ẽimQ m

(22) jk},
9
ωijk= f̃jk

(1)

| i +ẽimS m
(2) jk + Ajk{ẽij

(2)

| k +ẽmjC
m

(2)ik + f̃mjQ
m

(22) ik},
10
ωijk= Sijk{f̃ij

(2)

| k +f̃imS m
(2) jk}.

For ω ∈ Λ2(T (Osc2M)) written in the form (3.6) we put:

A =

⎛
⎝ ãij b̃ij c̃ij

−b̃ji d̃ij ẽij

−c̃ji −ẽji f̃ij

⎞
⎠

Definition 3.1 A 2-form ω ∈ Λ2(T (Osc2M)), written in the form (3.6), for which the matrix
A is non-degenerate, is called integrable if: dω=0.

Theorem 3.1 A 2-form ω ∈ Λ2(T (Osc2M)), for which the matrix A is non-degenerate, is

integrable if and only if the tensor fields
α
ωijk, (α = 1, 2, ..., 10) vanish, where

α
ωijk,

(α = 1, 2, ..., 10) are given in (3.8’).

4 About the integrability of a d-metric structure on the 2-osculator bundle

We shall give a result about the integrability of a d-metric structure on the 2-osculator
bundle.

Assuming that a nonlinear connection N is given on E, then a d-metric structure gij on
the base manifold Osc2M is lifted to a 2-form ω having the form (3.6), on T (Osc2M) in
various ways. We consider the following ω of three single types: II,III,V and combined types
II + III, II + V, III + V, II + III + V, αII + βIII + γV, α, β, γ ∈ R (4.1),
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where:
ãij b̃ij c̃ij d̃ij ẽij f̃ij

II 0 gij 0 0 0 0
III 0 0 gij 0 0 0
V 0 0 0 0 gij 0

II+III 0 gij gij 0 0 0
II+V 0 gij 0 0 gij 0
III+V 0 0 gij 0 gij 0

II+III+V 0 gij gij 0 gij 0
αII+βIII+γV 0 αgij βgij 0 γgij 0

(4.1)

Proposition 4.1 The coefficients
α
ωijk, (α = 1, 2, ..., 10), given in (4.1) of the exterior differ-

entials of the 2-forms ω written at (3.7) are invariants of the group
ms

T N .

Proof. Calculating directly from Proposition 3.2. and using the notations (2.3) and (2.4) we
have for the type II+III+V, the coefficients given in the following table:

II+III+V
1
ωijk R ∗

(01) ijk + R ∗
(02) ijk

2
ωijk

1

k(11)ijk +
2

S(12)ijk +gkmR m
(02) ij

3
ωijk

2

S(21)ijk +
1

k(22)ijk +gkmR m
(01) ij

4
ωijk

2

k(11)ijk +gimR m
(12) jk+

3

k(12)ijk

5
ωijk

4

k(2)ijk +gimP m
(21) jk+

5

k(1)ijk +
1

Sijk

6
ωijk

2

k(2)ijk +
3

k(21)ijk
7
ωijk R ∗

(12) ijk

8
ωijk

1

N (22)ijk

9
ωijk

2

k(2)ijk
10
ωijk 0

(4.2)

etc. Corresponding to Definition 3.1. we have:

Definition 4.1 A d-metric structure gij on a differentiable manifold Osc2M is called integrable
of the types given in (4.1), with respect to the nonlinear connection N if the corresponding lifted
2-forms on T (Osc2M) are integrable.

Remark 4.1 The 2-forms ω of the types considerated in (4.1) doesn’t define a metrical structure
on Osc2M , because the coefficients ãij, d̃ij and f̃ij are alternate and b̃ij, c̃ij, ẽij cannot be the
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coefficients of the metrical structure gij(x, y(1), y(2)), because the corresponding 2-forms ω are
degenerate: for II+V we obtain ω = gijdxi ∧ δy(1)j + gijδy

(1)i ∧ δy(2)j. It follows that

A =

⎛
⎝ 0 gij 0

−gji 0 gij

0 −gji 0

⎞
⎠with detA = 0, etc.

Therefore it isn’t possible to consider the problem of the integrability of a d-metric structure
on Osc2M .
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et appliqués, 15, pp. 42-69, 1936.

[2] CRAMPIN, M., SARLET, W., CATRIJN, F., Higher-order Differential Equations and
Higher-order Lagrangian mechanics, Math. Proc. Camb. Phil. Soc., 99, pp. 565-587, 1986.

[3] EHRESMANN, CH., Les prolongements d’une variété différentiable, Atti IV Congreso
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Transilvania University of Braşov,
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HOLOMORPHICALLY PROJECTIVE MAPPINGS
ONTO RIEMANNIAN TANGENT-PRODUCT SPACES

SHEHA, Mohsen (SYR), JUKLOVÁ Lenka, (CZ), MIKEŠ Josef, (CZ)

Abstract. We state the theorem which specifies fundamental equations of holomorphi-
cally projective mappings of a space with an affine connection and with an almost-product
structure onto a Riemannian tangent-product spaces.
Key words and phrases. holomorphically projective mapping, tangent product space
fundamental equations.
Mathematics Subject Classification. Primary 53B30, 53B35.

1 Introduction

Several results concerning holomorphically projective mappings and its generalizations were
described in [1]–[19]. One of the topics studied here are holomorphically projective mappings
of special Riemannian spaces with almost complex and almost product structures.

In the present work we study some properties of holomorphically projective mappings from
spaces with affine connection and with almost-tangent structure onto Riemannian almost-
tangent spaces.

First we give the definitions of a Riemannian almost-tangent structure.

Definition 1.1 An almost-tangent structure on a differentiable manifold M is an affinor F
(�= Id) which satisfies F 2 = 0.

Definition 1.2 A Riemannian almost-tangent structure on a manifold M is an almost-tangent
structure F on M such that

g(FX, Y ) + g(X,FY ) = 0 , (1)
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where g is a metric tensor field on M and X,Y are any tangent vector fields of TM . A manifold
M with a Riemannian almost-tangent structure F is called a Riemannian almost-tangent space
and denoted by Vn(g, F ).

The classification of Riemannian almost-product spaces is described by A.M. Naveira in [13].
This is the analogue of the classification of almost Hermitian spaces by A. Gray and L. Hervella
in [4]. The question of tangent and almost tangent structure is devoted by Vishnevsky [18].

Definition 1.3 Let An be a manifold with an affine connection ∇ and an almost-tangent
structure F . A diffeomorphism f from An onto a Riemannian almost-tangent space V̄n(ḡ, F̄ )
is called a holomorphically projective mapping if there exist a linear operator ϕ such that the
following conditions hold

∇̄(X,Y ) = ∇(X,Y ) + Xψ(Y ) + Y ψ(X) + FXϕ(Y ) + FY ϕ(X) , (2)

F̄ (X) = F (X) , (3)

where ∇ and ∇̄ are affine connections of An and V̄n, X,Y are any tangent vector fields from TAn

and their images in T V̄n, and ψ(X) = ϕ(FX).

The condition (3) means that the holomorphically projective mapping preserves an almost-
tangent structure. Hence, in the following we suppose F̄ = F .

It is known that holomorphically projective mappings preserve F -planar curves. Here a
F -planar curve is a curve γ(t) such that any tangent vector dγ

dt
(t1), when subjected to a parallel

transport τt1,t2 , remains in the tangent plane spanned by the vectors dγ
dt

(t2) and F (dγ
dt

(t2)).
Hence, this type of holomorphically projective mappings could be defined by a more nat-

ural way, as mappings which preserve F -planar curves and satisfie the condition ∇̄XF (Y ) =
∇XF (Y ), for all X,Y .

It follows from the equations (2) that holomorphically projective mappings are analogous
to F1- and F2-mappings studied in [7, 10, 11].

2 Study of fundamental equations of holomorphically projective mappings
of An(∇, F ) onto Riemannian almost-tangent spaces

Let An be a manifold with an affine connection ∇ and almost-tangent structure F . We shall
study the problem of finding all Riemannian almost-tangent spaces V̄n(ḡ, F̄ ) such that there
exists a holomorphically projective mapping of An onto V̄n.

Originally, similar problems were solved for geodesic mappings of Riemannian spaces, holo-
morphically projective mappings of Kählerian spaces, hyperbolic and parabolic Kählerian spaces
[9, 10, 16] and F -planar mappings onto Riemannian spaces [7].

In the following we use the local tensor notation which is traditionaly used in this field.
By a direct calculation we check that the equation (2) is equivalent to

ḡij,k = 2ψkḡij + ψ(iḡj)k + ϕ(iF
α
j) ḡαk , (4)
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where ḡij, F h
i , ϕ, ψi (= ϕαFα

i ) are local components of the metric tensor ḡ, the almost-tangent
structure F , and the operators ϕ and ψ. We shall use the notation “ , ” for the covariant
derivative on An, and (ij) denotes a symmetrization of indices.

We introduce the following notation:

T . . . ī . . . ≡ T . . . α . . . F
α
i , T . . . ī . . . ≡ T . . . α . . . F i

α .

The solution ḡij of the equations (4) in the space An(∇, F ) which fulfills the conditions

(a) ḡīj + ḡij̄ = 0 , (b) |ḡij| �= 0 , (5)

determines the metric of a Riemannian almost-tangent space V̄n(ḡ, F ), and for the inverse
matrix ḡij (‖ḡij‖ = ‖ḡij‖−1) yields following conditions

(a) ḡīj + ḡij̄ = 0 , (b) |ḡij| �= 0 . (6)

The equations (4) are the equations with unknown functions ḡij and ψi.
Because holomorphically projective mappings are a special case of F -planar mappings, the

equations (4) can be reduced to a Cauchy system of differential equations [8, 11]. In the following
main theorem we show that there is a further simplification for some type of almost-tangent
structures.

Theorem 2.1 Let An be a manifold with an affine connection ∇ and an almost-tangent struc-
ture F satisfying

F 2 = 0, F �= Id, (7)

and Fα
l F j

α,k cannot be expressed in the form

Fα
l F j

α,k = F jalk + F j
kb

l + F j
l bk (8)

for any tensors F j, F j
k , alk and bk.

Then An admits a holomorphically projective mapping onto a Riemannian almost-tangent
space V̄n if and only if the system of equations (4) of Cauchy type is solvable with respect to the
unknown functions ḡij, where

ϕi = ḡαβT γ
αβ ḡγi . (9)

Here T γ
αβ (see (21)) are the components of a tensor T which can be expressed in terms of the

affine connection ∇ and the almost-tangent structure F .

Proof. We apply covariant differentiation to the formula ḡiαḡαj = δj
i : ḡiα,kḡ

αj + ḡiαḡαj
,k = 0.

We get ḡij
,k = −ḡαβ,kḡ

αiḡβj. Applying (4) we check that

ḡij
,k = −2ψkḡ

ij − ψ(iδ
j)
k − 2ψk̄ḡ

ij̄ − ψ(̄iδ
j̄)
k , (10)

where ψi ≡ ψαḡαi.
The conditions (5a) are equivalent to

ḡiαF j
α + ḡjαF i

α = 0. (11)
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By covariant differentiation of (11) in An and applying (10) we have

ḡiαF j
α,k + ḡjαF i

α,k = 0. (12)

By further differentiation and simplification we obtain

ψiF j
l,k + ψjF i

l,k + δi
lψ

αF j
α,k + δj

l ψ
αF i

α,k

+ ϕiFα
l F j

α,k + ϕjFα
l F i

α,k + F i
l ϕ

αF j
α,k + F j

l ϕαF i
α,k

= ḡiαF j
α,kl + ḡjαF i

α,kl .

(13)

Contracting equations (13) for the indices i and l we obtain

ψαF j
α,k =

1

n + 2
(ḡαβF j

α,kβ − ḡjβF γ
α,kγ). (14)

We used an evident formula

Fα
α = 0, Fα

β F β
α = 0, Fα

β F β
α,k = 0, F h

ī,k = −F h̄
i,k

which is true for almost-tangent structures.
By the aid of (14) we get from (13)

ψiF j
l,k + ψjF i

l,k + ϕiFα
l F j

α,k + ϕjFα
l F i

α,k + F i
l ϕ

αF j
α,k + F j

l ϕαF i
α,k = ḡαβ

1

T
ij

αβkl
(15)

where
1

T
ij

αβkl
≡ −δ(i

α F
j)
β,kl −

1

n + 2
(δ

(i
l F

j)
α,kβ + δ

(i
l δj)

α F γ
β,kγ).

Contracting (15) with F l
m we check that

ψiF l
mF j

l,k + ψjF l
mF i

l,k = ḡαβ
1

T
ij

αβkl
F l

m , (16)

Under the condition (6) (⇒ F l
mF j

l,k �= 0) we check easily, that there exist vectors εm, ηk

and θj such that εmηkθjF
l
mF j

l,k = 1. Contracting (16) with εmηkθiθj we obtain

ψiθi =
1

2
ḡαβ

1

T
ij

αβkl
F l

m εmηkθiθj, (17)

and contracting (16) with εmηkθj we find

ψi = ḡαβ
2

T
i

αβ
, (18)

where
2

T
i

αβ
= ḡαβ

1

T
ij

αβkl
F l

m εmηkθj − 1

2
ḡαβ(

1

T
γj

αβkl
F l

m εmηkθγθj) (F l
mF i

l,kε
mηk).
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Applying (18) to (13) we have

ϕiFα
l F j

α,k + ϕjFα
l F i

α,k + F i
l ϕ

αF j
α,k + F j

l ϕαF i
α,k = ḡαβ

3

T
ij

αβkl
, (19)

where
3

T
ij

αβkl
=

1

T
ij

αβkl
− F i

l,k

2

T
j

αβkl
− F j

l,k

2

T
i

αβkl
.

Because F �= 0 there exist vectors ξi and σi such that ξlσiF
i
l = 1. Contracting (19) with

ξlσiσj we check that

σiϕ
αF i

α,k = αFk +
1

2
ḡαβ

3

T
ij

αβkl
ξlσiσj

where α = −ϕiσi and Fk = Fα
l F i

α,kξ
lσi, and after contracting (19) with ξlσj we find

ϕαF i
α,k = ϕi Fk + αF i

k + ḡαβ
4

T
i

αβkl
(20)

where the tensor
4

T
i

αβkl
has similarly form and F i

k = ξl(Fα
l F i

α,k − F i
l Fk).

Applying (20) to (15) we have

ϕi(Fα
l F j

α,k + F j
l Fk) + ϕj(Fα

l F i
α,k + F i

l Fk) + α (F i
l F j

k + F j
l F i

k) = ḡαβ
5

T
ij

αβkl
, (21)

The bracket on the left-hand side of (20) must be nonvanishing, otherwise there it is in
contradiction with (7). From (21) applying analogically process we have that

ϕi = αF i + ḡαβ
6

T
i

αβ
. (22)

And after substitution (22) to (21) we obtained

α(F i(Fα
l F j

α,k + F j
l Fk) + F j(Fα

l F i
α,k + F i

l Fk) + F i
l F j

k + F j
l F i

k) = ḡαβ
7

T
ij

αβkl
, (23)

If F i �= 0 then the bracket on the left-hand side of (19) must be nonvanishing, otherwise
there would be Fα

l F j
α,k = F jalk + F j

kb
l + F j

l bk, which is in contradiction with (8). So there

exists a tensor field Qkl
ij satisfying

Qkl
ij (F i(Fα

l F j
α,k + F j

l Fk) + F j(Fα
l F i

α,k + F i
l Fk) + F i

l F j
k + F j

l F i
k) = 1.

Hence from (23) it follows that α = ḡαβ
7

T
ij

αβkl
Qkl

ij and further the formula (9).

This finishes the proof.
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THE INVERSE PROBLEM RELATED
TO A SECOND ORDER DYNAMICAL FORM

SMETANOVÁ Dana, (CZ)

Abstract. The paper is devoted to a geometrical formulation of the inverse problem
related to a second order dynamical form in field theory on the fibered manifolds. The
geometric condition for a locally variational second order form is found. The Lepage
equivalents of the second order Euler–Lagrange form are studied. The results of the paper
are applicable to physical theories.
Key words and phrases. Dynamical form, Euler–Lagrange form, inverse problem,
Lepage equivalents, locally variational form.
Mathematics Subject Classification. 35R30, 58E30, 70S05.

1 Introduction

The purpose of this paper is to announce some recent results in a geometrical formulation of the
inverse problem in the calculus of variations. We study the case of a second order dynamical
form in field theory on the fibered manifold.

In the second half of the 19th century the question when a system of ordinary or partial
differential equations of order r (r ≥ 1) identifies with Euler–Lagrange equations (i.e., equa-
tions for extremals of a variational functional) was intensively studied. As the first in 1887
Helmholtz solved this problem for a system of second order ordinary differential equations. He
found necessary conditions for variationality, now called Helmholtz conditions [2]. Later the
Helmholtz conditions was generalized to the higher order equations and to the partial differ-
ential equations. Around 1980 the inverse variational problem began to study by methods of
differential geometry and global analysis. The inverse problem was extended to study problems
of a global Lagrangian and relations between properties of differential equations and differential
forms. Nowadays relations between variationality and geometry of differential forms are inten-
sively studied and explored (see e.g. [1, 6]). For ordinary variational equations (in physical
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terminology “higher-order mechanics”), the theory of Lepage (n + 1)-forms is well-established
(see book [5]). In the calculus of variations, Lepage (n + 1)-forms are closed differential forms,
representing Euler–Lagrange equations. They are fundamental for investigation of variational
equations by means of exterior differential systems methods, with important applications in
Hamilton and Hamilton–Jacobi theory and theory of integration of variational equations. For
partial variational equations (in physical terminology “field theory”), the theory of Lepage
(n + 1)-forms is studied.

In [7], Lepage equivalents of a second-order Euler–Lagrange quasi-linear PDE’s are char-
acterised explicitly. A closed (n + 1)-form uniquely determined by the Euler–Lagrange form
is constructed and used to find a geometric solution of the inverse problem of the calculus of
variations. In this paper we generalize part of the paper [7]. We study case of an arbitrary
second-order dynamical form. A principal part of a closed (n+1)-form uniquely determined by
the dynamical form is constructed, and a geometric formulation (as a property of the principal
part of a closed (n + 1)-form) of the inverse problem of the calculus of variations is found.

Every closed (n + 1)-form such that the 1-contact part is a second order dynamical form
admits a noninvariant decomposition α = αE +φ, where form αE depends on the coefficients of
a dynamical form and φ does not depend on the coefficients of a dynamical form. The principal
part α̂E (at most 2-contact part) of such (n + 1)-form is described. An intrinsic expression of
the variationality conditions is the global defined property p2dαE = p2dα̂E = 0. Finally, the
meaning of the Lepage equivalents α and αE of a locally variational form E is demonstrated.

Throughout the paper all manifolds and mappings are smooth and summation convention
is used. We consider a fibered manifold (i.e., surjective submersion) π : Y → X, dim X = n,
dim Y = n + m, its r-jet prolongation πr : JrY → X, r ≥ 1 and canonical jet projections
πr,k : JrY → JkY , 0 ≤ k ≤ r (with an obvious notations J0Y = Y ). A fibered chart on Y
(resp. associated fibered chart on JrY ) is denoted by (V, ψ), ψ = (xi, yσ), where 1 ≤ i ≤ n,
1 ≤ σ ≤ m (resp. (Vr, ψr), ψr = (xi, yσ, yσ

i , . . . , yσ
i1...ir)).

A vector field ξ on JrY is called πr-vertical if it projects onto the zero vector field on X. A
q-form η on JrY is called πr-horizontal if iξη = 0 for every πr-vertical vector field ξ on JrY .

The fibered structure of Y induces a morphism h, of exterior algebras, defined by the
condition Jrγ∗η = Jr+1γ∗hη for every section γ of π, and called horizontalization. Apparently,
horizontalization is an R-linear wedge product preserving mapping such that applied to a
function f and to the elements of the canonical basis of 1-forms (dxi, dyσ, dyσ

i , . . . , dyσ
i1...ir) on

JrY gives

hf = f ◦ πr+1,r, hdxi = dxi, hdyσ = yσ
l dxl, . . . , hdyσ

i1...ir = yσ
i1...irldxl.

A q-form η on JrY is called contact if hη = 0. A contact q-form η on JrY is called 1-contact
if for every πr-vertical vector field ξ on JrY the (q−1)-form iξη is horizontal. A contact q-form
η on JrY is called i-contact if for every πr-vertical vector field ξ on JrY the (q − 1)-form iξη is
(i − 1)-contact.

Recall that every q-form η on JrY admits a unique (canonical) decomposition into a sum
of q-forms on Jr+1Y as follows:

π∗
r+1,rη = hη +

q∑
k=1

pkη, (1)
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where hη is a horizontal form, called the horizontal part of η, and pkη, 1 ≤ k ≤ q, is a k-contact
part of η (see [3]).

We use the following notations:

ω0 = dx1 ∧ dx2 ∧ · · · ∧ dxn, ωi = i∂/∂xiω0, ωij = i∂/∂xjωi,

ωσ = dyσ − yσ
j dxj, . . . , ωσ

i1i2...ik
= dyσ

i1i2...ik
− yσ

i1i2...ikjdxj,

and

di =
∂

∂xi
+ yσ

i

∂

∂yσ
+ yσ

j1i

∂

∂yσ
j1

+ · · · + yσ
j1...jri

∂

∂yσ
j1...jr

.

For more details on fibered manifolds and the corresponding geometric structures we refer
e.g. to [8].

A Lagrangian λ of order r is a horizontal n-form on JrY . Its expression in fibered chart is
the following λ = Lω0, where L = L(xi, yσ, yσ

i , . . . , yσ
i1...ir) is a Lagrange function.

A dynamical form E of order r is a 1-contact (n + 1)-form on JrY , horizontal with respect
to the projection onto Y . In fibered coordinates,

E = Eσω
σ ∧ ω0,

where Eσ are local functions on JrY .
Let ψ be a (n + 1)-form on JrY . (n + 1)-form ψ̂ = p1ψ + p2ψ on Jr+1Y is then called the

principal part of the form ψ.
A differential n-form η is called Lepage equivalent of the Lagrangian λ (see [3]) if in the

decomposition (1), hη = λ, and p1dη is a dynamical form; the (n + 1)-form Eλ = p1dη is then
called the Euler–Lagrange form of λ.

Consider a dynamical form E on J2Y . E is said to be locally variational if to every point
in J2Y exists a neighbourhood U , and a Lagrangian λ on U , such that E|U = Eλ. It is known
that E is locally variational if and only if the components of E satisfy the following identities:

∂Eσ

∂yν
jk

− ∂Eν

∂yσ
jk

= 0,

∂Eσ

∂yν
j

+
∂Eν

∂yσ
j

− 2dk
∂Eν

∂yσ
jk

= 0,

∂Eσ

∂yν
− ∂Eν

∂yσ
+ dj

∂Eν

∂yσ
j

− djdk
∂Eν

∂yσ
jk

= 0.

(2)

We recall a fundamental theorem, Krupka [4], relating locally variational forms with closed
forms:

Theorem 1.1 A dynamical form E is locally variational if and only if to every point in the
domain of E there exists a neighbourhood W and an at least 2-contact form FW on W such
that the form αW = E + FW is closed.
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A (n + 1)-form α is called a Lepage equivalent of E if p1α = E and dα = 0. One can see
immediately that if α is a Lepage equivalent of E then, around every point, α = dη where η is
a Lepage equivalent of a local Lagrangian for E.

The above theorem guarantees a local existence of Lepage equivalents; it does not provide
us with explicit formulas for αW by means of the components of E.

In the next chapter the explicit formula for the principal part of the form αW is found for
a second order dynamical form.

2 The inverse problem

We shall consider a second order dynamical form E = Eν ων ∧ ω0 which coefficients Eν can be
non-affine in the second derivatives, i.e., its satisfy for some ν, σ, κ, k, l, p, q

∂2Eν

∂yσ
kl∂yκ

pq

�= 0,

1 ≤ k, l, p, q ≤ n, 1 ≤ σ, ν, κ ≤ m.
The problem is to find the geometrical property of a closed (n + 1)-forms α. This means

that a dynamical form (1-contact part of α) is locally variational, i.e. the the conditions (2)
are satisfied.

We study a second order closed (n + 1)-form α such that p1α = E which is arbitrary
second order dynamical form. The closedness condition on α means that at least some of the
components of the higher-degree contact parts of α depend upon the coefficient of dynamical
form Eσ, 1 ≤ σ ≤ m. This means that α splits into a (not necessarily invariant) sum (different
from sum (1))

α = αE + φ, (3)

where αE is determined only by the coefficients of the dynamical form, while φ does not depend
upon E. We can easily that the principal part α̂ of α admits decompositions α̂ = p1α + p2α =
α̂E + φ̂, where α̂E = p1αE + p2αE is the principal part of the form αE and φ̂ = p1φ + p2φ is the
principal part of the form φ. In the proof of the following Theorem 2.1 the explicit formulas
for the principal parts α̂E and φ̂ are found. The form α̂E (resp. αE) has unique expression
which depends on the coefficient of the dynamical form. The form φ̂ (resp. φ) is non-unique
(c.f. proof of the following theorem). We can find different forms α̂ (resp. α) whose depend on
choice of the form φ̂ (resp. φ).

Hence, the first step to solve the inverse problem is to find the principal part α̂E = p1αE +
p2αE of the form αE.

Theorem 2.1 Let α be a closed (n + 1)-form on J2Y such that p1α = E where E is a second
order dynamical form. Let αE be the form in the sum (3). Then the principal part α̂E =
p1αE + p2αE takes the form

α̂E = Eσ ωσ ∧ ω0 +
1

2

∂Eσ

∂yν
j

ωσ ∧ ων ∧ ωj +
∂Eσ

∂yν
jp

ωσ ∧ ων
p ∧ ωj. (4)
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Proof. If α is a second order (n + 1)-form such that p1α = E then in fibered coordinates the
principal part α̂ takes the form

α̂ = Eσ ωσ ∧ ω0 + Aj
σν ωσ ∧ ων ∧ ωj + Bpj

σν ωσ ∧ ων
p ∧ ωj + Cklj

σν ωσ ∧ ων
kl ∧ ωj

+ Dklj
σν ωσ

k ∧ ων
l ∧ ωj + F pklj

σν ωσ
p ∧ ων

kl ∧ ωj + Gklpqj
σν ωσ

kl ∧ ων
pq ∧ ωj,

(5)

where the functions Aj
σν , Cklj

σν , Dklj
σν , F pklj

σν , Gklpqj
σν satisfy the identities

(Aj
σν)Sym(σν) = 0,

(
Cklj

σν

)
Alt(kl)

= 0,
(
Dklj

σν

)
Sym([σk][νl])

= 0,
(
F pklj

σν

)
Alt(kl)

= 0 and Gklpqj
σν = Glkpqj

σν =

Gklqpj
σν = −Gpqklj

νσ .
Above and in what follows, Sym() and Alt() means complete symmetrisation and skew-

symmetrisation in the indicated indices [pairs of indices], respectively.
Using the facts dπ∗

3,2α = π∗
3,2dα, the decomposition (1) and dα = 0 we can easily see that

p2dα = p2dα̂ = 0. The explicit computation of p2dα̂ reads

p2dα̂ =

(
∂Eν

∂yσ
+ diA

j
σν

)
Alt(σν)

ωσ ∧ ων ∧ ω0

+

(
−∂Eσ

∂yν
k

+ 2Ak
σν + diB

ki
σν

)
ωσ ∧ ων

k ∧ ω0

+

(
−∂Eσ

∂yν
kl

+ Bkl
σν + diC

kli
σν

)
Sym(kl)

ωσ ∧ ων
kl ∧ ω0

+
(
Cjkl

σν

)
Sym(jkl)

ωσ ∧ ων
jkl ∧ ω0 +

(
F ijkl

σν

)
Sym(jkl)

ωσ
i ∧ ων

jkl ∧ ω0

+
(
Blk

σν + diD
kli
σν

)
Alt([σi] [νk])

ωσ
k ∧ ων

l ∧ ω0

+
(
Cjkl

σν + 2 Djkl
σν + diF

jkli
σν

)
Sym(kl)

ωσ
j ∧ ων

kl ∧ ω0

+
(
F ijkl

σν + dpG
iljkp
σν

)
Sym(il), Sym(jk), Alt([σil] [νjk])

ωσ
il ∧ ων

jk ∧ ω0

+ 2
(
Gijklp

σν

)
Sym(klp)

ωσ
ij ∧ ων

klp ∧ ω0 = 0.

(6)

Hence, the functions Cjkl
σν , Djkl

σν , F ijkl
σν , Gijklp

σν do not depend on coefficients of the dynamical
form and

Aj
σν =

1

2

∂Eσ

∂yν
j

+ aj
σν , Bpj

σν =
∂Eσ

∂yν
jp

+ bpj
σν , (7)

where the functions aj
σν , bpj

σν do not depend on the coefficients of the dynamical form and
(bpj

σν)Sym(pj) = 0.
This means that principal part α̂ of α splits into a sum

α̂ = α̂E + φ̂, (8)

where

α̂E = Eσ ωσ ∧ ω0 +
1

2

∂Eσ

∂yν
j

ωσ ∧ ων ∧ ωj +
∂Eσ

∂yν
jp

ωσ ∧ ων
p ∧ ωj. (9)

is the principal part of αE in (3) and it is completely determined by the coefficients of the
dynamical form and

φ̂ = aj
σν ωσ ∧ ων ∧ ωj + bpj

σν ωσ ∧ ων
p ∧ ωj + Cklj

σν ωσ ∧ ων
kl ∧ ωj

+ Dklj
σν ωσ

k ∧ ων
l ∧ ωj + F pklj

σν ωσ
p ∧ ων

kl ∧ ωj + Gklpqj
σν ωσ

kl ∧ ων
pq ∧ ωj,

(10)
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is the principal part of φ in (3) and it does not depend on E. �

By a similar way as in the proof of the Theorem 2.1 we can find higher order contact parts
of form αE but explicit calculation is more complicated. We note that (p + 1)-contact part of
αE depends on pth partial derivatives of coefficient of the dynamical form Eσ.

The full structure of the form αE for second order dynamical form which is affine (quasi-
linear) in second derivatives one can find in [7] (see the following remark).

Remark 2.2 Transformation properties.
Let (V, ψ), ψ = (xi, yσ), and (V̄ , ψ̄), ψ̄ = (x̄i, ȳσ) be two overlapping fibered charts on Y .

Using in the expression for αE and α̂E transformation formulas

ω̄ji...jk
= det

(∂x̄

∂x

)∂xp1

∂x̄j1
· · · ∂xpk

∂x̄jk
ωp1...pk

, ω̄σ =
∂yσ

∂yν
ων , ω̄σ

j =
∂yσ

j

∂yν
ων +

∂yσ
j

∂yν
p

ων
p ,

ȳσ
j =

∂xk

∂x̄j

(∂ȳσ

∂xk
+

∂ȳσ

∂yρ
yρ

k

)
, ȳσ

ji =
∂xk

∂x̄i

(∂ȳσ
j

∂xk
+

∂ȳσ
j

∂yρ
yρ

k +
∂ȳσ

j

∂yρ
p
yρ

pk

)
,

Ēσ = det
(∂x

∂x̄

)∂yν

∂ȳσ
Eν ,

and the relation
∂yσ

j

∂ȳν
k

∂ȳν
k

∂yρ
= −∂yσ

j

∂ȳν

∂ȳν

∂yρ
,

we obtain the following result:
The principal part of αE (4 )

α̂E = Eσ ωσ ∧ ω0 +
1

2

∂Eσ

∂yν
j

ωσ ∧ ων ∧ ωj +
∂Eσ

∂yν
jp

ωσ ∧ ων
p ∧ ωj.

is invariant with respect to fibered coordinate transformations. This means that the above for-
mula defines a global differential form. However, the form α̂E is in general not closed.

Lemma 2.3 Let E be a second order dynamical form. Let α̂E be the form (4). Then α̂E is
invariant with respect to fibered coordinate transformations (i.e. the formula (4) defines a global
differential form).

Proof. Proof of the Lemma 2.3 follows from the above remark, from transformation properties
of the form α̂E. �

The following theorem describes the local variationality of the second order dynamical form
as a property of the form αE.

Theorem 2.4 Let E be a dynamical form on J2Y . The following conditions are equivalent:

(1) E is locally variational.

(2) p2dαE = 0.
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(3) Components Eσ of E satisfy conditions (2).

Proof. (2) ⇒ (3) The condition p2dαE = 0 reads

∂Eσ

∂yν
− ∂Eν

∂yσ
− 1

2
dl

(∂Eσ

∂yν
l

− ∂Eν

∂yσ
l

)
= 0,

∂Eσ

∂yν
j

+
∂Eν

∂yσ
j

− 2dl
∂Eσ

∂yν
jl

= 0,
∂Eσ

∂yν
jp

− ∂Eν

∂yσ
jp

= 0,
(11)

The above conditions are equivalent with the conditions (2).
(3) ⇒ (1) was proved in [4]: one has to show that if Eσ satisfy (2) then λ = Lω0, where

L = yσ

∫ 1

0

Eσ(xi, uyν , uyν
k , uyν

kl) du

is a local Lagrangian for E. This is done by a direct computation showing that the Euler–
Lagrange expressions of L are equal to the given functions Eσ.

Finally, (1) ⇒ (2). If E is locally variational then E is the Euler–Lagrange form with
coefficients satisfying (2). The conditions (2) are equivalent with (11). Hence, p2dαE = 0. �

The above theorem provides us with a geometric meaning of the variationality conditions,
as conditions, under which the (n + 1)-form αE is closed. Hence,

p2dαE = 0

is an intrinsic expression of the variationality conditions (2).

The next corollary clarify the meaning of the Lepage equivalents α and αE of a locally
variational form E. The form α represents class of the Lepage equivalents. The class has
representatives with different properties (e.g. global differential and local differential forms).
One of them is αE which represents local Lepage equivalent which is determined only on the
coefficients of the variational dynamical form.

Corollary 2.5 Let α be a closed (n + 1)-form on J2Y such that p1α = E where E is a second
order dynamical form. Let αE be a form in the sum (3) such that p2dαE = 0. Then the form
α represents the class of the Lepage equivalents of the Euler–Lagrange form E. Let (V, ψ) be
a fibered chart on Y with coordinates (xi, yσ). If moreover dαE = 0 then the (n + 1)-form αE

determined by the Euler–Lagrange expressions of E and defined on π−1
2,0(V ) ⊂ J2Y is a Lepage

equivalent of E.

Proof. The proof of the assertion comes from the Theorem 2.4 and from the definition of the
Lepage equivalent of the Euler–Lagrange form. �

Example 2.6 On fibered manifold R
n × R

m → R
n, where n ≥ 4, m ≥ 1, we consider a

second order dynamical form E as follows E =
(
Pσ + Qkl

σν yν
kl + Rklpq

σνκ yν
kl yκ

pq

)
ωσ ∧ ω0, where

the functions Pσ, Qkl
σν, Rklpq

σνκ are constant functions and some of functions “R” are non-zero.
The above dynamical form represents non-affine case.
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The corresponding principal part α̂E (4 ) is obviously

α̂E =
(
Pσ + Qkl

σν yν
kl + Rklpq

σνκ yν
kl yκ

pq

)
ωσ ∧ ω0 +

(
Qkl

σν + (Rklpq
σνκ + Rpqkl

σκν ) yκ
pq

)
ωσ ∧ ων

kl ∧ ω0

The variationality conditions (2) read the following coefficients conditions

(
Qkl

σν

)
Alt(σν)

= 0,
(
Rklpq

σνκ + Rpqkl
σκν

)
Sym(kpq)

= 0,(
Rklpq

σνκ + Rpqkl
σκν

)
Sym(klpq)

= 0,
(
Rklpq

σνκ

)
Alt(σν)

+
(
Rpqkl

σκν

)
Alt(σκ)

= 0.
(12)

The above dynamical form is variational if and only if the conditions (12) are fulfiled.
The Lagrangian λ = Lω0 corresponding to the above variational dynamical form takes the

expression of the Lagrange function

L = Pσ yσ +
1

2
Qkl

σν yσ yν
kl +

1

3
Rklpq

σνκ yσ yν
kl yκ

pq

We note that the above Lagrangian is not only local but it is the global one.
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THE REGULARIZATION PROCEDURE
AND THE LEGENDRE TRANSFORMATION IN EXAMPLES:

DIRAC FIELD AND ELECTROMAGNETIC FIELD
LAGRANGIANS.

SMETANOVÁ Dana, (CZ), ŠENKEŘÍKOVÁ Petra, (CZ)

Abstract. The aim of the paper is apply the regulatization method to the cases of
concrete Lagrangians - Dirac field Lagrangian and the electromagnetic field Lagrangian.
The generalized Legendre transformation is studied.
Key words and phrases. Lagrangian, Lepagean form, Hamilton equations, regularity,
regularizable Lagrangian, Legendre transformation, Dirac field Lagrangian, electromag-
netic field Lagrangian.
Mathematics Subject Classification. 70G50, 58Z05.

1 Introduction

In the paper we apply the regularization method (proposed by Krupková and Smetanová [3, 4])
to the cases of concrete Lagrangians. Two methods of the regularizaton are presented by ex-
amples. The Dirac field Lagrangian as Lagrangian afinne in “first derivatives” is regularizable.
We use for this Lagrangian regularization method by constants. In the second case we pro-
pose the regularization by Lagrange function of the electromagnetic Lagrangian. The explicit
formulas for generalized momenta and Hamiltonian are found. The equivalent Lagrangian -
dedonderization of the Lagrangian - (regular in the “standard” sense) is presented.

Throughout the paper all manifolds and mappins are smooth and summation convention
is used. We consider a fibered manifold (i.e., surjective submersion) π : Y → X, dim X = n,
dim Y = n + m, its r-jet prolongation πr : JrY → X, r ≥ 1 and canonical jet projections
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πr,k : JrY → JkY , 0 ≤ k ≤ r (with an obvious notations J0Y = Y ). A fibered char on Y
(resp. associated fibered chart on JrY ) is denoted by (V, ψ), ψ = (xi, yσ) (resp. (Vr, ψr),
ψr = (xi, yσ, yσ

i , . . . , yσ
i1...ir)).

A vector field ξ on JrY is called πr-vertical (resp. πr,k-vertical) if it projects onto the zero
vector field on X (resp. on JkY ).

Recall that every q-form η on JrY admits a unique (canonical) decomposition into a sum
of q-forms on Jr+1Y as follows [1]: π∗

r+1,rη = hη +
∑q

k=1 pkη, where hη is a horizontal form,
called the horizontal part of η, and pkη, 1 ≤ k ≤ q, is a k-contact part of η.

We use the following notations: ω0 = dx1∧dx2∧· · ·∧dxn, ωi = i∂/∂xiω0, ωij = i∂/∂xjωi, and
ωσ = dyσ −yσ

j dxj, . . . , ωσ
i1i2...ik

= dyσ
i1i2...ik

−yσ
i1i2...ikjdxj. For more details on fibered manifolds

and the corresponding geometric stuctures we refer e.g. to [5].

2 The regularization procedure and the Legendre transformation

Definition (Krupka [1]) An n-form ρ on JrY is called a Lepagean equivalent of a Lagrangian
λ (resp. Lepagean n-form) if
1) hρ = λ, λ = Lω0,
2) (n + 1)-form p1(dρ) is a πr+1,0-horizontal form.

For an r-th order Lagrangian we have all its Lepagean equivalents of order (2r − 1) charac-
terized by the following formula

πr+1,r
∗ρ = Θ + μ, (1)

where Θ is a global Poincaré–Cartan form associated to the Lagrangian, and μ is an arbitrary
n-form of order of contactness ≥ 2, i.e., such that h(μ) = p1(μ) = 0.

Recall that for a first order Lagrangian, Θ = θλ where θλ is the Poincaré–Cartan form of λ,
θλ = Lω0+

∂L
∂yσ

j
ωσ∧ωj. If r ≥ 2, Θ is no more unique however, there is an invariant decomposition

Θ = θλ + dν, where θλ is Poincaré–Cartan equivalent for higher order Lagrangian and ν does
not depend upon λ.

Theorem ([1]) [Let λ be a Lagrangian on JrY , ρ its Lepagean equivalent. A section γ of
π is an extremal of λ if and only if

J2r−1γ∗iJ2r−1ξdρ = 0 (2)

for every π-vertical vector field ξ on Y . ]

A section δ of the fibered manifold π2r−1 is called a Hamilton extremal of ρ if

δ∗iξdρ = 0 (3)

for every π2r−1-vertical vector field ξ on J2r−1Y .

The equations (2) are called the Euler–Lagrange equations and (3) the Hamilton equations
of ρ, respectively. Notice that while the Euler–Lagrange equations are uniquely determined
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by λ, Hamilton equations depend upon a choice of μ. Consequetly, one gets many different
Hamilton theories associated to a given variational problem

Definition [2] A Lepagean form ρ on J1Y is called regular if every its Hamilton extremal
is holonomic.

2.1 Regularization procedure (Krupková and Smetanová [3, 4] ).

In the sequel we shall consider Lepagean forms (1) where μ is 2-contact, and μ = p2(β), where
β is defined on Y and such that pi(β) = 0 for all i ≥ 3. In a fiber chart, where the Lagrangian
λ is expressed by λ = Lω0, we can write

ρ = Lω0 +
∂L

∂yσ
j

ωσ ∧ ωj + gij
σν ωσ ∧ ων ∧ ωij, (4)

(summation over all sequences of indices) where the functions gij
σν do not depend on the yκ

l ’s
and satisfy the conditions

gij
σν = −gij

νσ, gij
σν = −gji

σν , gij
σν = gji

νσ. (5)

Note that equations (5) mean that only

(
m

2

)
·
(

n

2

)
=

1

4
mn(m − 1)(n − 1)

of the m2 · n2 functions gij
σν are independent.

Theorem Let λ be a first-order Lagrangian, let λ = Lω0 be its expression in a fiber chart
(V, ψ), ψ = (xi, yσ) on Y . Let ρ be a Lepagean equivalent of λ of the form (4), (5). Assume
that the matrix

Aij
σν =

(
∂2L

∂yσ
i ∂yν

j

− 4gij
σν

)
(6)

with rows (resp. columns) labelled by the pair (σ, i) (resp. (ν, j)), is regular. Then ρ is regular,
i.e., every Hamilton extremal δ of ρ is of the form δ = J1γ, where γ is an extremal of λ.

Note that the above regularity condition (6) means that Hamilton equations and the Euler–
Lagrange equations are equivalent.

Definition Let W ⊂ Y be open, W ⊂ V , where (V, ψ) is a fiber chart on Y , and let
λ = Lω0 be a Lagrangian on π−1

1,0(V ). We say that L is regular over W if there exist functions
gij

σν on W satisfying (5) and the condition

det

(
∂2L

∂yσ
i ∂yν

j

− 4gij
σν

)
�= 0. (7)
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If λ does not satisfy the standard regularity condition but is regular in the sense of the
above definition, we also say that λ is regularizable over W (or, locally regularizable).

The noninvariant decomposition of Lepagean form (4), (5) reads

ρ = −Hω0 + pi
σdyσ ∧ ωj + gij

σν dyσ ∧ dyν ∧ ωij,

where

pi
σ =

∂L

∂yσ
i

− 4gij
σνy

ν
j , H = −L + pi

σy
σ
i + 2gij

σνy
σ
i yν

j . (8)

In analogy to the standard terminology, we shall call H the Hamiltonian and pi
σ momenta.

The regularity condition (7) admits the coordinate transformation (xi, yσ, yσ
j ) → (xk, yν , pk

ν), so
called Legendre transformation.

Expressing Hamilton equations in Legendre coordinates we get

∂(pi
σ ◦ δ)

∂xi
= −∂H

∂yσ
◦ δ + 4

∂gij
σν

∂xj

∂(yν ◦ δ)

∂xi
(9)

+ 2

(
∂gij

κν

∂yσ
+

∂gij
σκ

∂yν
+

∂gij
νσ

∂yκ

)(
∂H

∂pi
κ

◦ δ

)(
∂H

∂pj
ν

◦ δ

)

∂(yσ ◦ δ)

∂xi
=

∂H

∂pi
σ

◦ δ.

Corollary If the n-form

η = gij
σνdyσ ∧ dyν ∧ ωij (10)

is closed, then the above Hamilton p2-equations (9) take the form

∂(pi
σ ◦ δ)

∂xi
= −∂H

∂yσ
◦ δ,

∂(yσ ◦ δ)

∂xi
=

∂H

∂pi
σ

◦ δ. (11)

We introduced regularization as a procedure to find for a Lagrangian appropriate Hamilton
equations which are equivalent with the Euler–Lagrange equations, hence represent a suitable
alternative for solving the extremal problem. We can see this problem from the different point
of view. For given Hamilton equations (11) we find a new Lagrangian which is regular in the
Hamilton–De Donder theory and equivalent to the original one. Now the Hamilton equations
are identified with Hamilton–De Donder equations for the new Lagrangian.

Proposition If the form η (10), (5) is closed then the Lagrangian λ̄ = (L− 2gij
σνy

σ
i yν

j )ω0 is
equivalent with Lagrangian λ = Lω0, and dρ = dθλ̄.

Above Lagrangian λ̄ is called a dedonderization of the Lagrangian λ.

Theorem Let λ be a regularizable Lagrangian. Then for all its regularizations ρ (4), (5)
such that dη = 0 (10), the Lagrangian λ̄ = λ − h(η) = (L − 2gij

σνy
σ
i yν

j )ω0 is equivalent to λ,

satisfies the “standard” regularity condition det
(

∂2L
∂yσ

i ∂yν
j

)
�= 0. and the Hamilton equations of

λ based upon ρ coincide with Hamilton–De Donder equations based on the Poincare–Cartan
form of the Lagrangian λ̄.
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3 The regularization by constant - Dirac field Lagrangian

Dirac field Lagrangian is linear in the variables yν
i , hence special case of affine Lagrangian. In

this case we have X = R4, Y = R4 ×R2, i.e. J1Y = R4 ×R2 ×R4, with the global coordinates
denoted by (xμ, ψ, ψ̄, ∂μψ, ∂μψ̄), μ = 1, 2, 3, 4, Lagrangian takes the form λ = Lω0, where

L =
i

2

(
ψ̄γμ∂μψ + ∂μψ̄γμψ

) − ψ̄mψ

and it is apparently degenerate in the Hamilton–De Donder sense.
The regularization procedure means that we find some Lepagean equivalent satisfying the

condition (6). Note that we have only 6 independent functions exist. We can choose where the
function 4g12

12 = 1, 4g13
12 = 2, 4g14

12 = 3, 4g23
12 = 4, 4g24

12 = 5, 4g34
12 = 6 as constant function.

Then the Lepagean eqiuvalent have the form

ρ =

[
i

2
(ψ̄ γ1 ∂1ψ + ψ̄ γ2 ∂2ψ + ψ̄ γ3 ∂3ψ + ψ̄ γ4 ∂4ψ + ∂1ψ̄ γ1 ψ + ∂2ψ̄ γ2 ψ + ∂3ψ̄ γ3 ψ+

+ ∂4ψ̄ γ4 ψ) − ψ̄ m ψ
]

ω0 +

+
i

2
γ1 ψ ω1 ∧ ω1 +

i

2
γ2 ψ ω1 ∧ ω2 +

i

2
γ3 ψ ω1 ∧ ω3 +

i

2
γ4 ψ ω1 ∧ ω4 +

+
i

2
γ1 ψ̄ ω2 ∧ ω1 +

i

2
γ2 ψ̄ ω2 ∧ ω2 +

i

2
γ3 ψ̄ ω2 ∧ ω3 +

i

2
γ4 ψ̄ ω2 ∧ ω4 +

+ ω1 ∧ ω2 ∧ ω12 + 2 ω1 ∧ ω2 ∧ ω13 + 3 ω1 ∧ ω2 ∧ ω14 +

+ 4ω1 ∧ ω2 ∧ ω23 + 5 ω1 ∧ ω2 ∧ ω24 + 6 ω1 ∧ ω2 ∧ ω34.

The regularity condition (6) reads

det

⎛
⎜⎜⎝

0 1 2 3
−1 0 4 5
−2 −4 0 6
−3 −5 −6 0

⎞
⎟⎟⎠ �= 0.

The Hamiltonian H = −L + pi
σy

σ
i + 2gij

σνy
σ
i yν

j , where 4g12
12 = 1, 4g13

12 = 2, 4g14
12 = 3, 4g23

12 =
4, 4g24

12 = 5, 4g34
12 = 6. and the momenta take the formulas

p1
1 =

i

2
ψ̄ γ1 − ∂2ψ̄ − 2∂3ψ̄ − 3∂4ψ̄, p2

1 =
i

2
ψ̄ γ2 + ∂1ψ̄ − 4∂3ψ̄ − 5∂4ψ̄,

p3
1 =

i

2
ψ̄ γ3 + 2∂1ψ̄ + 4∂2ψ̄ − 6∂4ψ̄, p4

1 =
i

2
ψ̄ γ4 + 3∂1ψ̄ + 5∂2ψ̄ + 6∂3ψ̄,

p1
2 =

i

2
γ1 ψ + ∂2ψ + 2∂3ψ + 3∂4ψ, p2

2 =
i

2
γ2 ψ − ∂1ψ + 4∂3ψ + 5∂4ψ,

p3
2 =

i

2
γ3 ψ − 2∂1ψ − 4∂2ψ + 6∂4ψ, p4

2 =
i

2
γ4 ψ − 3∂1ψ − 5∂2ψ − 6∂3ψ.

The equivalent Lagrangian λ̄ = L̄ω0, where

L̄ =
i

2

(
ψ̄γμ∂μψ + ∂muψ̄γμψ

) − ψ̄mψ +
∑
μν

u(μ,ν)ε
μν∂μψ̄∂νψ,
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where u(μ,ν) = u(ν,μ), u(1,2) = 1, u(1,3) = 2, u(1,4) = 3, u(2,3) = 4, u(2,4) = 5, u(3,4) = 6,
εμν is the Levi–Civita symbol; is a dedonderization of the Dirac field Lagrangian, which is reg-
ular in the “standard” sense.

4 The regularization by the Lagrange function - electromagnetic field Lagrangian

If in particular, n = 4, we have m = 4, X = R4, Y = R4 × R4. For the electromagnetic field
Lagrangian

L = −1

4
FμνF

μν , (12)

where Fμν = Aμ,ν − Aν,μ, (gσν) denotes the Lorentz metric gσν = 0 for σ �= ν , −g11 = g22 =
g33 = g44 = 1 , and yσ = gσνAν = Aσ, yσ

ν = ∂Aσ/∂xν), the standard regularity condition gives

det
( ∂2L

∂yσ
i ∂yν

j

)
= 0.

However, this Lagrangian is regularizable, and admits many regularizations. We will study
case of the Lagrangian where the Lepagean equivalent depends only on the Lagrange function,
i.e. we use regularization by the Lagrange function.

Now we choose one of them the Lepagean equivalent now reads,

ρ = Lω0 +
∂L

∂yσ
α

ωσ ∧ ωα +

(
∂2L

∂yσ
α∂yν

β

− ∂2L

∂yσ
β∂yν

α

)
ωσ ∧ ων ∧ ωαβ.

and the regularity condition (7) takes the form

det
(
4 ∂2L

∂yσ
β∂yν

α
− 3 ∂2L

∂yσ
α∂yν

β

)
�= 0.
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The explicit computation of the above condition leads

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 4 0 0 0 0 4 0 0 0 0 4
0 1 0 0 −3 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 −3 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 −3 0 0 0
0 −3 0 0 1 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 4 0 0 0 0 4
0 0 0 0 0 0 −1 0 0 −3 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 −3 0 0
0 0 −3 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −3 0 0 −1 0 0 0 0 0 0
4 0 0 0 0 4 0 0 0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −3 0
0 0 0 −3 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −3 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 −3 0 0 −1 0
4 0 0 0 0 4 0 0 0 0 4 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�= 0.

We can present the formulas for the momenta

p1
1 = 4 A2

,2 + 4 A3
,3 + 4 A4

,4, p2
1 = A1

,2 − 3 A2
,1, p3

1 = A1
,3 − 3 A3

,1, p4
1 = A1

,4 − 3 A4
,1,

p2
2 = 4 A1

,1 + 4 A3
,3 + 4 A4

,4, p1
2 = A2

,1 − 3 A1
,2, p3

2 = −A2
,3 − 3 A3

,2, p4
2 = −A2

,4 − 3 A4
,2,

p3
3 = 4 A1

,1 + 4 A2
,2 + 4 A4

,4, p1
3 = A3

,1 − 3 A1
,3, p2

3 = −A3
,2 − 3 A2

,3, p4
3 = −A3

,4 − 3 A4
,3,

p4
4 = 4 A1

,1 + 4 A2
,2 + 4 A3

,3, p1
4 = A4

,1 − 3 A1
,4, p2

4 = −A4
,2 − 3 A2

,4, p3
4 = −A4

,3 − 3 A3
,4,

and Hamiltonian

H =
1

2
(A1

,2)
2 +

1

2
(A2

,1)
2 +

1

2
(A1

,3)
2 +

1

2
(A3

,1)
2 +

1

2
(A1

,4)
2 +

1

2
(A4

,1)
2 −

− 1

2
(A2

,3)
2 − 1

2
(A3

,2)
2 − 1

2
(A2

,4)
2 − 1

2
(A4

,2)
2 − 1

2
(A3

,4)
2 − 1

2
(A4

,3)
2 +

+ 4 A1
,1 A2

,2 + 4 A1
,1 A3

,3 + 4 A1
,1 A4

,4 + 4 A2
,2 A3

,3 + 4 A2
,2 A4

,4 + 4 A3
,3 A4

,4 −
− 3 A1

,2 A2
,1 − 3 A1

,3 A3
,1 − 3 A1

,4 A4
,1 − 3 A2

,3 A3
,2 − 3 A2

,4 A4
,2 − 3 A3

,4 A4
,3

We can write dedonderization of the electromagnetic field Lagrangian (12) which takes the
form λ̄ = L̄ω0, where

L̄ = −1

4
FμνF

μν + 2
(
Aμ

μA
ν
ν − Aμ

νA
ν
μ

)
.

Acknowledgement

Research supported by Grant MSM 6198959214 and Cooperation Grant MEB 040907 of the
Czech Ministry of Educations, Youth and Sports.

volume 4 (2011), number 2 283



Aplimat - Journal of Applied Mathematics

References

[1] KRUPKA, D.: Some geometric aspects of variational problems in fibered manifolds, Folia
Fac. Sci. Nat. UJEP Brunensis 14 (1973) 1–65.
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GEOMETRY IN VEDIC ALTARS

SÝKOROVÁ Irena (CZ)

Abstract. Sacrificial rites were an important part of the religion in India in the Vedic
era (about 1500 – 500 BC). There existed several kinds of rituals and each of them needed
an altar of special shape and size. Very precise measurements were necessary so that
the ritual was successful. In this period the collections of sacred texts known as Vedas
were created. The Śulbasūtras are appendices to the Vedas which give rules for geometric
constructions of sacrificial altars. The aim of this paper is to present some of these old
rules.
Key words and phrases. Ancient Indian geometry, Sulbasutra, the Pythagoras’ theo-
rem, Pythagorean triples, geometrical construction, squaring a circle, circling a square.

Mathematics Subject Classification. Primary 01A32; Secondary 51M15, 14-03.

1 Vedic sacrifices

The Vedas are the oldest Indian sacred texts composed in the Vedic period (about 1500 – 500
BC). In this period of time the sacrificial rituals and ceremonies had an important role in life.
The ceremonies were performed on the top of the altars either in sacrificer’s house or on a
nearby plot of ground. There were two basic classes of sacrificial rituals – Nitya (perpetual,
daily) and Kāmya (optional), see [1], [3]. The sacrifice of the first class was obligatory and it
was supposed to bring happiness for the family. The sacrifice of the second class was seasonal
and was performed at special times – at every new moon or full moon, at the time of the winter
and summer solstices and so on. The purpose of these rituals was to give material progress,
to achieve a special object. Each sacrifice had to be made on an altar of prescribed shape,
size and orientation. It was stated that even a small irregularity and variation in the form and
size of the altar could annul the whole ritual. So it was necessary to respect exact rules for
construction of each altar.
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Later several appendices to the Vedas were created, from which the texts Kalpasūtras deal
with rules for vedic sacrificial rituals. Particularly the parts named Śulbasūtras describe the
rules for geometric constructions of sacrificial altars.

Thanks to this works we gain the first literary evidence of the oldest Indian mathematics.

1.1 Sulbasutras

Śulbasūtras are the oldest geometrical texts which represent traditional Indian mathematics de-
veloped for constructions of sacrificial altars. The word śulba means a rope or a cord which were
used during a construction, the word sūtra means a thread and refers to a rule or a collection
of formulas in the form of a manual.

The most important Śulbasūtras were written by Baudhāyana (about 800 BC), Āpastamba
(about 600 BC), and Kātyāyana (about 200 BC). The Baudhāyana Śulbasūtra is the biggest
and the oldest one, it is divided into three chapters and it contains 525 sutras. The Āpastamba
Śulbasūtra is divided into six sections, this work contains 223 sutras in twenty one chapters.
The Kātyāyana Śulbasūtra is divided into two parts, the first of them is composed of 90 sutras
while the second part is written in about 40 verses. Compared with the works of Baudhāyana
and Āpastamba the Kātyāyana Śulbasūtra presents some interesting geometrical knowledge in
a more systematic form. There exist more Śulbasūtras written by Manava, Maitrayana, Varaha
and Vadhula. Several later commentaries on the Śulbasūtras are available now.

As the Śulbasūtras deal with the science of geometry and its applications, the earliest Indian
name for geometry was Śulba.

1.2 Sacrificial altars

It has already been mentioned that there were two classes of sacrificial rituals. The perpetual
fires were constructed on a smaller area of one square vyāma,1 the optional fires were constructed
on a bigger area of 71

2
square purusas.2 Each altar was constructed with five layers of bricks

which together came up to the height of a knee and every layer contained a definite number of
bricks of specified shapes. The smaller altars had one layer constructed with 21 bricks, each
layer of the greater altar consisted of about 200 bricks.

Altars for the daily sacrifices were Āhavan̄ıya, Gārhapatya and Daks. in. a. Everybody had to
offer sacrifices in them daily. The altar of the Āhavan̄ıya was always square and that of the
Daks. in. a semi-circular. The altar of the Gārhapatya had to be of the form of a square according
to one school and a circle according to a different school. The area of each had to be the same
and equal to one square vyāma.

One of the most elaborated altars, the Kāmya Agni had the form of a falcon (Śyena) and
its area was 71

2
square purusas. It was believed that offering a sacrifice on such an altar enable

1Vyāma is the measure of a man from the soles to the root of the hair on the forehead. It is a standard of
measure for the altars of the daily sacrifices. Vyāma has 96 aṅgulas and aṅgula is the width of a finger, aṅgula
is approximately equal to 3

4 inch or 1.8 cm.
2Purusa is the mesure of a man with arms lifted up. The length of a purusa is standardised as 120 aṅgulas.
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the soul of the supplicant to be conveyed by a falcon to heaven. The first layer of that altar
consisted of 60 brick of type a in each wing and the body was made from 46 bricks of type b,
6 of type c and 24 of type d, see Figure 1, (borrowed from [4]).

Fire altars for other optional sacrifices had different shapes – triangle, usually an isosceles
triangle (altars such as Praūga), rhombus (Ubhayatah. praūga), circle (Rathacakra), isosceles
trapezium (Mahāvedi, Sautramani or Śmaśāna), tortoise (Kūrma) and so on, see [1], [3]. Each
of them had the same area as that of a falcon (71

2
square purusas).

Figure 1: The first layer of a sacrificial altar in the shape of a falcon.

These constructions led to interesting mathematical problems like constructions of many
geometrical figures and their transformations of one figure to another, the Pythagoras’ theorem,
discovery of Pythagorean triples.

Thus the Śulbasūtras contain:

a) construction of a line perpendicular to a given line,
b) constructions of geometrical figures – triangles, squares, rectangles, isosceles
trapeziums, circles,
c) the early form of the Pythagoras’ theorem,
d) constructions of the same figures with doubled, tripled or multipled areas,
e) constructions of a square equal to the sum or the difference of two unequal
squares,
f) the solution of the problem of equivalence of area – squaring a circle and vice-
versa, transformation of a rectangle into a square and vice-versa.

Śulbasūtras do not contain any proofs of the rules which they describe. Some of the rules,
such as the method of constructing a square equal in area to a given rectangle, are exact.
Others, such as constructing a square equal in area to a given circle, are only approximations.
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2 Constructions

There are described several methods of constructing basic geometrical shapes in Śulbasūtras.
There are five methods of constructing a square, some of them used a rope or a cord, others
used a bamboo rod.

The following method was suggested by Āpastamba for the construction of the Mahāvedi
(the great altar). The shape of the Mahāvedi is prescibed by tradition to be an isosceles
trapezium which altitude is 36 padas,3 face 24 padas and base 30 padas. Āpastamba gave four
methods, but all of them are in principle the same. We present only one of them, see [2].

The diagonal of a rectangle whose sides are 3 and 4 [pada] is 5. With these increased
by three times themselves [are determined] the two eastern corners of the vedi. With
them increased by four times themselves [are fixed] the two western corners.

W E

15

15

25

25

12

12

20

20

20 16

A

B

C

D

Figure 2: The construction of an isosceles trapezium.

This method (as the others) used the Pythagoras’ theorem:

32 + 42 = 52,

(3 + 3 · 3)2 + (4 + 3 · 4)2 = (5 + 3 · 5)2 122 + 162 = 202,

(3 + 4 · 3)2 + (4 + 4 · 4)2 = (5 + 4 · 5)2 152 + 202 = 252.

It is clear that the authors of the Śulbasūtras knew the Pythagoras’ theorem. The Pythago-
ras’ theorem is used frequently and there are also many examples of Pythagorean triples in
the Śulbasūtras – for example (5, 12, 13), (12, 16, 20), (8, 15, 17), (15, 20, 25), (12, 35, 37),
(15, 36, 39). Besides these which are integers, we can find also a few rational triples – for
example (21

4
, 3, 31

4
), (71

4
, 10, 121

2
), (2 1

12
, 5, 5 5

12
), (781

3
, 188, 2032

3
).

The Baudhāyana Śulbasūtra gives a special case of the Pythagoras’ theorem, see [5]:

The rope which is stretched across the diagonal of a square produces an area double
the size of the original square.

3One pada is equal to 6 aṅgulas.
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This is the method of making a square with double area.
The Āpastamba Śulbasūtra gives a more general version of the Pythagoras’ theorem, see [2]:

The rope which is stretched along the length of the diagonal of a rectangle produces
an area which the vertical and horizontal sides make together.

3 Combination of areas

Kātyāyana described a very simple method of finding a square equal to the sum of n other
squares of the same size, see [3]:

As many squares [of equal size] as you wish to combine into one, the transverse line
be [equal to] one less than that; twice a side will be [equal to] one more than that;
[thus] form a triangle. Its arrow [i.e. altitude] will do that.

That is, if n is the number of equal squares to be combined together into one, form the
triangle ABC whose base AB is of the length (n − 1) times the side a of a given square. The
sides AC and BC are together equal to (n+1) times a. The constuction of a triangle according
to rules in Śulbasūtras is: Draw the line AB of the length (n − 1)a. Fix two poles at A and
B. Take a cord of length (n + 1)a. Fasten its two ends at the two poles and stretch the cord
sidewise having taken it by the middle point. Let C be the point reached. Bisect AB at D and
join CD. Than the square on CD will be equivalent to the sum of n given squares.

The Pythagoras’ theorem was also used. It holds for the triangle BCD:

(CD)2 = (BC)2 − (BD)2 =

(
n + 1

2
a

)2

−
(

n − 1

2
a

)2

=

=
n2 + 2n + 1

4
a2 − n2 − 2n + 1

4
a2 = na2.

(n-1) a

n+1
2

a

A B

C

D

Figure 3: The square equal in area to n given squares.

The construction of a square equal in area to two given unequal squares was given in most
of Śulbasūtras. The following description is from Āpastamba, see [2]:
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ab

bc

Figure 4: The square equal in area to the sum of two squares.

Separate a parallel band of the width of the smaller square from the bigger square.
The rope which is stretched diagonally across the band unites both [the squares].

Using of the Pythagoras’ theorem a2 + b2 = c2 is evident.
The problem of making a square whose area is equal to a difference of two given squares is

solved similarly. The Pythagoras’ theorem a2 − b2 = c2 is used. Āpastamba wrote, see [2]:

To deduct a square from a square, cut off from the larger a [rectangular] segment
with a side of the square which is to be deducted. Then draw a longer side of this
segment diagonally across to the other longer side and where it falls [on the other
side] cut off that portion. By this cut-off portion the deduction is finished.

c

a

a

b

b

c

Figure 5: The square equal in area to the difference of two squares.

4 Transformations

Āpastamba, Baudhāyana and Kātyāyana also described the method of finding a square equal
in area to a given rectangle. The rule was given by Baudhāyana, see [3]:
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If you wish to transform a rectangle into a square, make its breadth as the side of
a square; divide the remainder into two parts and changing the place [of the farther
one of them] and inverting, add it on the order side of the square. Then adding
a [square] portion, fill up that [the empty space in the corner]. It has been taugth
[before] how to deduct it [the added square from the full square thus formed].

Following figures demostrate this construction. The rectangle ABCD is given. Let E be
marked on AD so that |AE| = |AB|. Then complete the square ABFE. Now bisect ED at H
and divide the rectangle EFCD into two equal rectangles with the line HG (Figure 6a). Now
move the rectangle HGCD to the position FBIK and complete the square AILH (Figure 6b).
The required square is equal in area to the difference of the squares AILH and FKLG. Now
rotate IL about I so that it touches the side BG at R, thus |IL| = |IR|. Now draw RP parallel
to GL such that P is on IL. Then IP is the side of the required square equal in area to the
given rectangle ABCD (Figure 6c).

A B

E F

H G

D C

A B I

E F K

H G L

D C

A B I

E F K

H G L

D C

R P

a) b) c)

Figure 6: The construction of a square equal in area to a given rectangle.

If we denote |AB| = a and |BC| = b, then the side of the small square FKLG is b−a
2

, the
side of the large square AILH is a + b−a

2
= b+a

2
. We can see that the following identity is used(

b+a
2

)2 − (
b−a
2

)2
= ab.

Baudhāyana gave the following rule for transforming a square into a rectangle, see [3]:

If you wish to transform a square into a rectangle, divide it by the diagonal. Divide
again one part into two, and add them suitably so as to fit the two sides [of the
other half].

The square ABCD is given. Divide it by the diagonals and S is the point of intersection
(Figure 7a). Then rotate the triangle ABS into position ADE and similarly the triangle CSB
into position CFD. Thus the rectangle EACF equal in area to the square ABCD is formed
(Figure 7b).

To transform a square into a rectangle whose side is given, Āpastamba explained, see [2]:

If you wish to transform a square into a rectangle [cut off from it a rectangular
segment] by making a side as long as you wish [a side of the transformed rectangle
to be] What remains in excess, should be added [to the former] as suitably as to fit.
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A

B

C

D S

A

B

C

D S

E

F

a) b)

Figure 7: The construction of a rectangle equal in area to a given square.

Let ABCD be a given square. If the given side b of the rectangle is smaller than the side a
of the square ABCD, then cut off length b from the sides AB and CD so the rectangle EBCF
is gained (Figure 8a). Join BF and produce it to cross AD at I. Complete the rectangle ABGI
(Figure 8b). Produce EF to cross GI at H (Figure 8c). Then EBGH is the rectangle which
is equivalent to the square ABCD and which has a side EB equal to the given length b.

A B

CD

E

F

b A B

CD

E

F

GI

b A B

CD

E

F

H GI

b

a) b) c)

Figure 8: The construction of a square equal in area to a given rectangle.

This method is based on the congruence of triangles. It holds

� ABI = � GIB, because BI is a diagonal of the rectangle ABGI,

� EBF = � CFB, � DFI =� HIF.

As a result of that the rectangle AEFD is equal in area to the rectangle FCGH. So the
rectangle EBGH is equal in area to the given square ABCD.

If the given side b of the rectangle is longer than the side a of the square ABCD, the
procedure is similar. Produce AD and BC to I and G respectively so that |AI| = |BG| = b.
Join GI and complete the rectangle ABGI (Figure 9a). Draw the diagonal BI cutting CD at
F (Figure 9b). Then CF is the breadth of the tranfsormed rectangle. Through F draw the
straight line EH parallel to AI or BG (Figure 9c). Then EBGH is the rectangle which is
equivalent to the square ABCD and which has a side BG equal to the given length b.
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A B

CD

GI

b

A B

CD F

GI

b

A B

CD

E

F

H GI

b

a) b) c)

Figure 9: The construction of a square equal in area to a given rectangle.

This geometrical construction described above is of algebraic significance. That is an ex-
ample of geometrical algebra. We find a solution of the equation

bx = a2,

where a is the side of the given square, b is one side of the required rectangle, x is the second
side of the required rectangle.

All Śulbasūtras contain a method explaining how to square a circle. Āpastamba wrote,
see [2]:

Divide the [the diameter] into fifteen parts and remove two [of them] This is the
gross [value of a] side of the [equivalent] square.

This is an approximate method based on a construction of a square which side a is 13
15

times
the diameter d of the given circle (Figure 10a).

A B

CD

E F

GH

a) b)

Figure 10: The square equal in area to the given circle.

One possible reason for this method is in [3]. Draw the square ABCD circumscribing the
given circle and also the square EFGH inscribed within it. Then the side of the square ABCD
is 2r and its area is 4r2. The side of the smaller square EFGH is

√
2r and its area is 2r2

(Figure 10b).
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Then it holds

2r2 < area of the circle < 4r2.

An obvious approximation is

area of the circle =
4r2 + 2r2

2
= 3r2.

If we denote by a a side of the square equal in area to the circle, we shall have approximately

a2 = 3r2 ⇒ a =
√

3r.

The value of
√

3 was expressed as
√

3 = 1 + 2
3

+ 1
15

= 26
15

, therefore a = 26
15

r = 13
15

d.
The result corresponds to the value of π = 4(13

15
)2 = 676

225

.
= 3.00444. It is not a very good

approximation and certainly not as good as that one known earlier to the Babylonians.
The Śulbasūtras also examine the opposite problem of finding a circle equal in area to the

given square. Baudhāyana, Kātyāyana and Āpastamba thought, see [3], [5]:

If you wish to circle a square, draw half its diagonal about the centre towards the
east–west line; then describe a circle together with the one third of that which lies
outside [the square].

Given a square ABCD find the centre S. Rotate SA to the position SP such that SP is
perpendicular to the side AD. The point O is the midpoint of the side AD. Let Q be the point
on PO such that |OQ| is one third of |OP |. The required circle has centre S and its radius is
|SQ|.

A B

D C

SOQP

Figure 11: The circle equal in area to the given square.

If we denote by a a side of the given square ABCD, then the diameter d of the required

circle is d =
(
1 +

√
2−1
3

)
a. This method gives the following value π

.
= 3.088.

Many different values of π appear in the Śulbasūtras, even several different ones used in one
text. It is not surprising because the authors thought in terms of approximate constructions,
not in terms of exact constructions with π. A given approximate construction implied some
value of π.
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5 Conclusions

These are only some examples from the Śulbasūtras. But Śulbasūtras deal with other problems.
We can find fractions and calculations with them or rational rectangular triangles. There
are surds and various expressions of them. The remarkable result of the mathematics of the
Śulbasūtras is a very close approximation to

√
2, see [3], [6]

√
2 = 1 +

1

3
+

1

3 · 4 − 1

3 · 4 · 34
=

577

408
.
= 1.414215686

where five decimal places are correct.
The need for finding right time of sacrifices and urge for precise construction of altars gave

the first impulse for astronomical observations and accurate mathematical and geometrical
discoveries.
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SOME RESULTS ON BUNDLES OF COVELOCITIES
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Abstract. For m-dimensional manifold M and a Weil algebra A = D
r
k/I we investigate

the spaces TA∗M of A-covelocities and prove that any covelocity TA
x f ∈ TA∗

M is determined
by its values over k regular 1-jets of the form i(j1

0ϕl) ∈ i(P 1M) � i(reg J1
0 (Rk, M)x) ⊆

TA
x M if i denotes the canonical insertion of the space of 1-jets J1

0 (Rk, M) into
TAM . Further, we extend the rigidity result on TA∗M obtained in [15] for m ≥ k
to arbitrary m.

Key words and phrases. r-jet, bundle functor, Weil functor, Lie group

Mathematics Subject Classification. 58A20, 58A32, 58D15.

1 Preliminaries

We give the contribution to the theory of Weil functors. We come out from the concepts of an r-
jet, a jet space Jr(M,N) and a bundle functor. We follow the terminology in [9]. Let us denote
by M an m-dimensional manifold and by N a smooth manifold. All manifolds are considered
as C∞-manifolds. Denote by Mf the category of smooth manifolds with smooth maps and by
Mfm the category of m-dimensional manifolds with local diffeomorphisms. Further, consider
the category FM of fibered manifolds with smooth fibered maps. Analogously we denote by
FMm the category of fibered manifolds with m-dimensional bases together with the fibered
maps above local diffeomorphisms. Recall that a bundle functor defined on the category Mfm

is said to be a natural bundle, [9]. We essentially use jet functors Jr defined on the category
Mfm × FM. We define Jr(M,N) as the space r-jets of smooth maps M → N to any couple
(M,N) ∈ Obj(Mfm × Mf) and the map Jr(g, h) : Jr(M1, N1) → Jr(M2, N2) defined by
jr
xf �→ jr

g(x)(h ◦ f ◦ g−1) to any couple (g, h) ∈ Morph(Mfm ×Mf).
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Among bundle functors defined on Mf there is a significant class of product preserving
bundle functors. The classical result of Michor and others reads that they coincide with Weil
functors TA associated to some Weil algebra A, [9]. The restriction of a Weil functor to Mfm

is said to be a Weil bundle. In order to resume briefly the elementary concepts from the Weil
theory, consider the algebra E(k) of germs of smooth functions defined on R

k with the source
at zero. Recall that a Weil algebra can be defined either as A = R ⊕ NA for the ideal NA

of nilpotent elements (the so called nilpotent ideal) or as a quotient A = E(k)/I by an ideal
I ⊂ E(k) of finite codimension. It can also be defined as a quotient A = D

r
k/J of the so called

jet algebra D
r
k of polynomials of k variables of order at most r by some of its ideal J . Finally,

we define width(A)as dim NA/N2
A and height(A) as the minimal r for which A = D

r
k/J .

In the present paper, we use contravariant approach to the definition of Weil functors. This
comes out from the I-factorization of germs in the following sense. Two germs germ0 g : R

m
0 →

M and germ0 h : R
m
0 → M satisfying g(0) = h(0) = x are said to be I-equivalent if and only if

germx γ ◦ germ0 g − germx γ ◦ germ0 h ∈ I for any function γ : M → R defined near x. Classes
of such an equivalence are denoted by jAg, the space of them by JAM .

For a smooth map ϕ : M → N define the map JAϕ : JAM → JAN as follows

JAϕ(jAg) := jA(ϕ ◦ g).

We remark that a Weil functor can be also defined from the covariant point of view as a
functor TA defined by TAM = Hom(C∞(M, R), A) on objects and by TAf(H)(ϕ) = H(ϕ ◦ f)
for H ∈ Hom(C∞(M, R), A) and ϕ ∈ C∞(N, R). The identification of JAM with TAM is given
by

jAg(ϕ) = jA(ϕ ◦ g)

for any function ϕ defined near g(0). In what follows we shall use only the notation TA for
Weil functors in spite of applying the contravariant approach to them.

As for natural transformations t̃M : TBM → TAM , they bijectively correspond to homo-
morphisms t : B → A. Further, homomorphisms B → A correspond bijectively to the so called
B-admissible A-velocities defined in [7] as follows.

Let A = E(k)/I and B = E(p)/J be Weil algebras considered as the quotiens of the germ
algebras E(k) and E(p) respectively. For a smooth map f : R

k
0 → R

p
0 an A-velocity jAf is said

to be B-admissible if and only if

germ0 ϕ ∈ J ⇒ germ0(ϕ ◦ f) ∈ I. (1)

Thus a natural transformation t̃M : TBM → TAM is assigned to a B-admissible A-velocity
jAf by

t̃M(jBϕ) = tj
Af

M (jBϕ) = jA(ϕ ◦ f).

In particular all automorphisms are determined by those reparametrizations of τ 1, . . . , τm gen-
erating D

r
m which satisfy the conditions of admissibility (1).

Denote by Gr
m the Lie group inv Jr

0 (Rm, Rm)0 consisting of zero preserving invertible r-jets
with respect to their composition. For a Weil algebra p : D

r
m → A = D

r
m/I Alonso in [1] defined

the subgroups GA and GA of Gr
m � Aut(Dr

m) by

GA = {jr
0g ∈ Gr

m; p ◦ jr
0g = p}, GA = {jr

0g ∈ Gr
m; Ker(p ◦ jr

0g) = Ker(p)}. (2)
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He also proved that GA is a normal subgroup of GA and the identification GA/GA � Aut A.
Clearly, jr

0g determines an automorphism of A if and only if jr
0g ∈ GA.

Besides Weil bundles there are significant natural bundles T r∗M ([9]), the r-th order bundles
of covelocities. Recall that the natural bundle T r∗ is defined by T r∗

x M = Jr
x(M, R)0 on objects

and by T r∗g(jr
xf) = jr

g(x)(f ◦ g−1) on morphisms. In [15] we have presented the bundles T r∗M
in the form of P rM [N r

m, �] where N r
m denotes the nilpotent ideal of the jet algebra D

r
m and the

action � : Gr
m × N r

m → N r
m on the standard fiber is defined by �(jr

0g, jr
0ϕ) = jr

0(ϕ ◦ g−1).
Moreover, we have generalized the space of classical r-th order covelocities to the space

TA∗M of A-covelocities TA
x f : TA

x M → TA
0 R � NA. In [15] we have proved for m ≥ k the

rigidity result saying that TA∗M with the so-called TA∗-maps defined by

TA∗
x g(TA

x f) = TA
g(x)(f ◦ g−1) (3)

for every local diffeomorphism g form a natural bundle identified with P rM [N r
m, �].

Apart from the spaces TA∗M we shall investigate the spaces TA∗
V,pM of p-vertical covelocities.

Our attention will be focused on k = width(A) > m = dim M in both cases of TA∗M and TA∗
V,pM .

Before resuming the basic concepts and the already achieved results from [15], recall that for
m > k it is usefull to consider A = D

r
k/I as D

r
m/(I ∪ 〈τk+1, . . . , τm〉) adding formally m − k

variables to the original ones. Thus we can suppose m = k without loss of generality in the
following text.

For a Lie group homomorphism p : Gr
m � Aut(Dr

m) → GA consider the left action of p(Gr
m)

on TA
x M defined by

�(jr
0g, jAϕx) = pA(jr

0ϕ̂x ◦ jr
0g

−1) (4)

for any jr
0ϕ̂x ∈ jAϕx and jr

0g ∈ p(Gr
m). For jr

0ϕx ∈ P r
xM � reg(T r

m)xM denote by Orbjr
0ϕx its

p(Gr
m)-orbit in respect to the action of p(Gr

m) from (4). Taking its corestriction to reg TA
x M

defines OrbjAϕx
in the obvious way.

Consider the restrictions X = TA
x f |Orbjr

0ϕx
of covelocities TA

x f to the p(Gr
m)-orbits of regular

elements of (T r
m)xM and consequentely of TA

x M . Such orbits will be called regular. We extend
the elements X to other regular p(Gr

m)-orbits of TA
x M as follows. For jr

0ψx ∈ reg(T r
m)xM , every

element X = TA
x f |Orb(j

r
0ϕx) is assigned an element Y = TA

x f̂|Orbjr
0ψx

defined as follows

TA
x f̂(jr

0ψx) = TA
x f(jr

0ϕx) ◦ p(jr
0(ϕ

−1
x ◦ ψx)). (5)

We denote the space of such elements by TA∗
V,pM . In order to verify the correctness of this

definition one must check that for any jr
0ψ̃x satisfying jAψx = jAψ̃x it holds TA

x f(jr
0ϕx) ◦

p(jr
0(ϕ

−1
x ◦ ψx)) = TA

x f(jr
0ϕx) ◦ p(jr

0(ϕ
−1
x ◦ ψ̃x)) which is quite easy. For deteils, see [15].

For a local diffeomorphism g : M → N defined in the neighbourhood of x ∈ M define the
map TA∗

V,pg : (TA∗
V,p)xM → (TA∗

V,p)g(x)N by

(TA∗
V,p)xg(TA

x f |Orbp(Gr
m)(j

r
0ϕx)) = TA

g(x)(f ◦ g−1)|Orbjr
0(g◦ϕx)

. (6)

Let us resume of the main results achieved in [15] to be generalized in the next sections. They
read as follows
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Let A = D
r
k/I and m ≥ k. Then it holds

(a) The spaces TA∗M together with the maps defined by (3) form the natural bundle P rM [Dr
m, �]

defined on the category Mfm.
(b) The spaces TA∗

V,pM of p-vertical A-covelocities together with the maps TA∗
V,pg defined by

(6) form a natural bundle on Mfm of the form TA∗
V,pM = P rM [NA, �] with the standard fiber

formed by NA. The left action � : Gr
m × NA → NA is defined as follows

�(jr
0g, jAα) = pA(jr

0α0 ◦ (p(jr
0g))−1) (7)

where pA : D
r
m → A is the canonical projection of Weil algebras and jr

0α0 ∈ jAα is arbitrary.

In the very end of the Section we recall that the elements TA
x f ∈ TA∗

x M form the nilpotent
ideal NB of a Weil algebra B = D

r
m/J for some ideal J if we define the vector space operations on

TA∗
x M by (TA

x f1+TA
x f2)(j

Aϕx) = TA
x f1(j

Aϕx)+TA
x f2(j

Aϕx) and (c·TA
x f)(jAϕx) = c·TA

x f(jAϕx).
The algebra multiplication is defined by (TA

x f1 · TA
x f2)(j

Aϕx) = μA(TA
x f1(j

Aϕx), T
A
x f2(j

Aϕx))
where μA denotes the multiplication in A, c ∈ R and TA

x f1(j
Aϕx) ∈ reg TA

x M are arbitrary. We
remark that for m ≥ k the coincidence of B with D

r
m was proved in [15].

For any jr
0ϕx ∈ P r

xM we can define the algebra operations on the space of all TA
x f|Orb(jr

0ϕx)

restricting the operations we have just defined. To define Weil algebra operations on (TA∗
V,p)xM

one must check that

{(TA
x f |Orbjr

0ϕx
, TA

x f̂ |Orbjr
0ψx

) ∈ Cov2
p,0M ; TA

x f̂(jr
0ψx) = TA

x f(jr
0ϕx) ◦ p(jr

0(ϕ
−1
x ◦ ψx))}

is the congruence on Covp,0M if we denote by Covp,0M the space {TA
x f |Orbjr

0ϕ
; jr

0ϕx ∈ P r
xM}.

The verification of this fact is straight and simple.

2 A-covelocities are determined by k values over elements from P 1M � reg J1
0 (Rk,M)

In the present Section we prove that every covelocity TA
x f ∈ TA∗

x M is determined by its
values over at most k elements of TA

x M . It was remarked in Corollary following Theorem 1
in [15] mentioned in the end of Section 1, assertion (a) that for m ≥ k every A-covelocity
TA

x f ∈ TA∗
x M is determined by at most k values of itself over some regular elements of TA

x M .
We present the more sophisticated formulation of this fact and extend it to the case of arbitrary
m independently of the mentioned Theorem.

Before the formulation of this result recall from the end of Section 1 that all TA
x f under

disscussion form a Weil algebra B of height r independent on the choice of M and x. In
general, for every Weil algebra B of height r there is an subordinate Weil algebra Bq of height
q < r defined as follows. If B = D

r
k/I then we set Bq = D

r
k/(I ∪ μq+1). Further, there is a

canonical homomorphism πq,B : B → Bq defined by [p]I �→ [p]I∪μq+1 and consequently we have
homomorphisms πq

s,B : Bq → Bs for any s ≤ q ≤ r. Further we have the natural transformation

π̃q
s,B : TBqM → TBsM induced by the homomorphism πq

s,B.

It is easy to see that for every local diffeomorphism g : M → N , the map TA∗g : TA∗
x M →

TA∗
g(x)N from (3) determines an isomorphism of Weil algebras. This follows that our investiga-

tions can be reduced to the algebra TA∗
0 R

m � Nm
B . Let us start with m = k while the cases
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m < k will be disscussed later. We shall need the cyclic permutations σ1, . . . , σk ∈ Sk and let
us consider them as the permutation matrices which we can denote by the same symbols.

In what follows we shall need the following matrices. For any permutation matrix σ, a real
c and l ∈ {1, . . . , k} define the matrix σ(c, l) by

σ(c, l) = d(1, cl, c2l, . . . , c(l−1)k) · σ, (8)

where d(a1, . . . , ak) denotes in general the diagonal matrix consisting of a1, . . . , ak in the obvious
way. We have the following lemma

Lemma 1 Let c /∈ {0, 1} and Ck ⊆ Sk denote the set of all cycles of lenght k. Then the
matrices σ(c, l) for σ ∈ Ck and l = 1, . . . , k form a linear basis in gl(k, R).

Proof: It is obtained by assigning a k2-dimensional vector to every matrix and constructing a
k2-th order matrix from them. This is a block matrix and determinants of the blocks coincide
with the Van der Monde determinants of order k. Therefore they take non-zero value whenever
c /∈ {0, 1} which proves our claim. �

Let us recall that B denotes the Weil algebra on TA∗M . Denote by pB : D
r
m → B the

canonical projection homomorphism. Further, let

TA
0 f = pB(T r

m,0f(r) + T r
m,0f

(r−1)) = TA
0 f(r) + TA

0 f (r−1) = TA
0 f(r) + T

Ar−1

0 f (r−1) (9)

be a decomposition of TA
0 f ∈ NB such that f(r) is a homogenous polynomial of order r and

f (r−1) is the residual polynomial of order at most r − 1. Clearly, TA
0 f(r) ∈ Ker πr

r−1,B.

It is quite easy to see that under the assumption of I ⊆ μ2 which can be done without loss
of generality we can consider J1

0 (Rm, Rm)0 as a linear subspace of TA
0 R

m and consequently for
m = k we can consider the support of the linear group GL(m, R) = πr

1(reg TA
0 R

m) either as a
linear subspace or as a factor linear space of reg TA

0 R
m.

Given jAη ∈ TA
0 R

m, consider a decomposition of jAη = TA
0 f(jAϕ) analogous to that of (9),

i.e.

jAη = jAη(r) + jAη(r−1) (10)

where η(r) is a homogenous polynomial of order r and η(r−1) a polynomial of order at most
r − 1. Suppose jAϕ ∈ reg J1

0 (Rm, Rm)0. Then the coordinate formula for the composition of
jets yields that jAη(r) is not affected by f (r−1) and is determined by f(r). This can be expressed
in coordinates by

yj1...jr = fl1...lrx
l1
j1

. . . xlr
jr

(11)

for some fl1...lr if we denote by yα the jet coordinates of η and xi
α those of ϕ. We have the

following Proposition

Proposition 1 Every TA
0 f(r) from the decomposition (9) is determined by its values over k

cycles j1
0σ(1, l) ∈ Ck, i.e. TA

0 f(r) is determined by k values TA
0 f(r)(j

Aσ(1, l)) = TA
0 f(r)(j

1σ(1, l)).
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Proof: It follows from the preceding investigations that instead TA
0 f(r)(j

Aϕ) we can consider
TA

0 f(r)(j
1
0ϕ). By Lemma 1, the regular matrix j1

0ϕ ∈ reg(J1
0 (Rm, Rm)) is identified with a linear

combination as follows

j1
0ϕ =

k∑
σ∈Ck,l=1

pσ,lj1
0σ(c, l). (12)

Then TA
0 f(r)(j

1ϕ) can be expressed as

∑
σ∈Ck

TA
0 f(r)(

k∑
l=1

pσ,lj1
0σ(c, l)) (13)

due to the fact that we consider cyclic permutations and the formula (11). Further,
∑k

l=1 pσ,lj1
0σ(c, l)

can be expressed as D · j1
0σ(1, 1) for some matrix D having all elements equal to zero except

those on the diagonal. Further, D · j1
0σ(1, l) = j1

0 σ̃(1, l) · D where j1
0 σ̃ is the inverse cycle to

j1
0σ. Since D ∈ GA (if we consider GL(m, R) as a subgroup of Gr

k) every summand of (13) is
determined by TA

0 f(r)(j
1
0σ(1, l)) for some l. This completes the proof. �

Proposition 2 Let m = dim M = k = width A. Then every TA
x h ∈ TA∗

x M is determined by
at most k regular elements jAϕ1, . . . j

Aϕk ∈ TA∗
x M . Moreover, TA

x f depends on such elements
only up to their 1-jets j1

0ϕ1, . . . , j
1
0ϕk.

Proof: In the first step we prove that for every TA
0 f ∈ TA

0 R
m and jAϕ ∈ TA

0 R
m the value

TA
0 f(jAϕ) is determined by the values TA

0 f(j1
0σ(1, l)) over k cycles j1

0σ ∈ Ck. The formula
(9) yields that the map TA

0 f (r−1) = TA
0 f − TA

0 f(r) can be considered as TAr−1f (r−1) and we
can iterate the preceding Proposition which step by steps verifies the first claim. The rest
of the Proposition follows from the already mentioned fact that every local diffeomorphism
g : M → N induces the isomorphism TA∗g : TA∗

x M → TA∗
g(x)N particularly for N = R

m and

g(x) = k. �
We remark that the assertion was proved without the application of the result from [15]

giving the coincidence of TA∗M with T r
k M = P rM [Dr

m, �]. We can easily extend our Proposition
to the cases of m < k. In what follows, an element jAϕ ∈ TA

x M is said to be regular if and
only if jAϕ is over submersions.

Corollary 1 Let m = dim M < k = width A. Then every TA
x h ∈ TA∗

x M is determined by at
most k regular elements jAϕ1, . . . j

Aϕk ∈ TA
x M . Moreover, TA

x f depends on such elements only
up to their 1-jets j1

0ϕ1, . . . , j
1
0ϕk.

Proof: The assertion is obtained immediately if we identify every f : M → R with the map
f̂ : M × R

k−m → R defined by

f̂(x, y) = f(x) (14)

for any (x, y) ∈ R
m × R

k−m. �
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3 The rigidity result for TA∗M and m < k

Given Weil algebra A = D
r
k/I satisfying width(A) = k > m we extend the rigidity result

concerning TA∗M to our cases of m. For k ≤ m it was obtained in [15] and recalled in the
end of Section 1, assertion (a). In order to find the Weil algebra B with the nilpotent ideal
formed by TA∗

x M we first recall from [15] that the maps TA∗
x g defined in (3) are Weil algebra

isomorphisms. Thus we are going to investigate only the algebra TA∗
0 R

m in order to determine
B. Since TA is a bundle functor of order r we have B = D

r
m/J for some ideal J ⊆ D

r
m.

It follows from Corollary 1 and its proof that every TA
0 f ∈ TA∗

0 R
m is determined by

TA
0 f̂(j1

0σ(1, l)) over k cycles j1
0σ(1, l) ∈ Ck if f̂ : R

m × R
k−m is defined by (14). In the first

step of our searching for B consider the subalgebras Ai1...im of A corresponding to subsets
{i1, . . . , im} ⊆ {1, . . . , k} of cardinality m which are defined as the algebras of all I-classes of
polynomials of order at most r of variables τi1 , . . . , τim only.

Without loss of generality suppose A = E(k)/I in the normal form, i.e. I ⊆ μ2
k. The

following Proposition yields the Weil algebra B.

Proposition 3 For m < k the algebraic structure of TA∗
0 R

m coincides with the nilpotent ideal
N r

m of the Weil algebra D
r
m.

Proof: Every TA
0 f̂ : Mx×R

k−m actually does not depend on the second arguments (see (8)) and
neither does TA

0 f̂ : R
m
0 ×R

k−m
0 . For any cycle j1

0σ = j1
0σ(1, l) ∈ Ck the recent morphism can be

restricted to Am
σ(1)...σ(m) × Ak−m

σ(m+1)...σ(k). Renaming the polynomial variables τσ(1), . . . , τσ(m) to

t1, . . . , tm we can identify pr2 ◦(Am
σ(1)...σ(m) ×Ak−m

σ(m+1)...σ(k)) with Bσ(1)...σ(m) which can be briefly
denotes by Bσ and is obtained from A as follows.

Supposing A = D
r
k/I then the Weil algebra Bσ is defined as D

r
m/Jσ if we define the ideal Jσ

by
Jσ = ((I ∪ {τσ(m+1), . . . , τσ(k)) ◦ σ) ∩ 〈τ1, . . . , τm〉. (15)

By the trivial renaming of polynomial variables τ1, . . . , τm to t1, . . . , tm we obtain Bσ as Jσ-
classes of polynomials from D

r
m in variables t1, . . . , tm.

If we evaluate TA
0 f̂ corresponding to TA

0 f ∈ TA∗
0 R

m in the sense of (14) over all j1
0σ =

j1
0σ(1, l) ∈ Ck then every TA

0 f is determined by the k-tuple

(TA
0 f(pr1 ◦j1

0σ(1, l)), . . . , TA
0 f(pr1 ◦j1

0σ(1, k))). (16)

If we consider all TA
0 f restricted to Am

σ(1),...,σ(m) only then they can be identified with elements of

the form TBσ
0 f together with the TBσ∗-maps induced by the obvious corestriction of TA∗-maps.

By the rigidity result from [15] and recalled in the end of Section 1, assertion (a) the algebra
of such elements coincides with D

qσ if we put qσ = height(Aσ(1)...σ(m)) .
Taking into account the identification (16) we obtain J ⊆ ⋂

σ∈Ck
Jσ. Since TA

0 f is in general

of order r and every TA
0 f in question is identified with (16) then q = r and J ⊆ {0} which

completes the proof. �
We state the rigidity result concerning TA∗M for m < k which generalizes that obtained in

[15].
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Theorem 1 The space of A-covelocities TA∗M together with the maps TA∗g defined in (3)
forms the natural bundle P rM [N r

m, �] with the left action � : Gr
m × N r

m → N r
m on the standard

fiber TA∗
0 R

m ∼= N r
m defined by

�(jr
0g, TA

0 f̃) = TA
0 (f̃ ◦ g−1) (17)

for arbitrary TA
0 f̃ ∈ TA∗

0 M . In the more intrinsic way the action is defined by

�(jr
0g, jr

0α) = jr
0(α ◦ g−1) (18)

for arbitrary jr
0α ∈ N r

m.

Proof: For k ≤ m, the result was proved in [15], Theorem 1. Although the proof is quite
analogous for the other cases of m, we shall briefly present it. The first formula as well as
the assertion follow from the general theory of natural bundles, see [9]. More exactly, we have
the identification of TA

x f ∈ TA∗
x M with {jr

0ϕx, T
A
x f(jr

0ϕx)} ∈ P rM [TA∗
0 R

m, �] with the action

� defined by (17). Indeed, the correctness of this assignement is given by {jr
0ϕx ◦ jr

0g, TA
0 (f̃ ◦

g)} = {jr
0ϕx, T

A
0 f̃}. As for morphisms, it is easy to verify that the maps TA∗g correspond to

the morphism of associated bundles which are of the form {P rg, idT A∗
0 Rm}. The identification

TA∗
0 R

m ∼= N r
m proved in Proposition 3 completes the proof of the first assertion.

In order to prove the formula (18) consider the identification H of the form

TA
0 f ∼= 1

α!
aαTA

0 prα
Rm

∼= 1

α!
aα prα

Nm
A

. (19)

This follows from the fact that TA preserves products and from the definition of the multiplica-
tion in TA∗

0 R
m ∼= TA∗

x M by the formula TA
x f1 ·TA

x f2 �→ TA
x (u �→ f1(u) ·f2(u)) for any u ∈ TA

x M .
The formula (18) will be proved if we check the the equivariancy of H in respect to � from (18),
i.e.

H ◦ �(jr
0g, TA

0 f̃) = �(jr
0g,H(TA

0 f̃)) (20)

which can be verified directly and easily in coordinates applying the definition of �. �
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Department of Physical and Applied Chemistry, Faculty of Chemistry,
Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech republic
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Abstract. Several known definitions of the Minkowski difference of point sets in the Euclidean 

space are presented in this paper, together with some of the basic properties of this operation. 

Examples are introduced, in which results of a particular Minkowski difference definition 

application and Minkowski sum and product of point sets are compared, used as tools for 

modelling of surface patches from curve segments determined by vector representations. 

 

Key words. Minkowski difference, modelling of surface patches  

 

Mathematics Subject Classification:  Primary 51N25, Secondary 53A056. 

 
 
1.   Introduction 
 
Minkowski difference of two point sets is a binary geometric operation defined on point sets in the 
n-dimensional Euclidean space. Various definitions and interpretations of this point set operation 
can be found in the available literature. The most common way of interpretation of Minkowski 
difference of sets A and B is the one using Minkowski sum of sets A and –B, where –B is the set 
symmetric to the set B with respect to the reference point O. Other appearing definition is based on 
the operation of difference of the positioning vectors of all points from the given operands A and B, 
which are point subsets of the Euclidean space. Another possible way how to introduce Minkowski 
difference is to define it as an inverse operation to the operation of Minkowski sum. Applications of 
Minkowski difference can be found in many areas of computer graphics, robotics, in determination 
of offsets and when finding trajectory of the movement of the material elaborating tools, in 
geometric modelling, in CAD, and others. In this paper, the algorithm is presented for calculation of 
Minkowski difference of two continuous manifolds that are subsets of the 3D Euclidean space, i.e. 
curve segments. Algorithm is based on vector representations of figures appearing as operands, 
while difference of the two given figures is a new figure defined by its vector equation. Interesting 
examples of surface patches created using this approach as modelling tool are compared to surface 
patches that are results of Minkowski sum and Minkowski product of the same two point sets. 
Using this powerful tool in geometric modelling, not only the geometric form of the figure can be 
defined, but its analytic representation can be received, too.  
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2   Definition and properties of the Minkowski difference 
 
Let A and B be two point sets, which are subsets of the n-dimensional Euclidean space En. Firstly, 
those definition of Minkowski difference of sets A and B is given, which is presented in [2] as 
a special case of Minkowski sum.  
 
Definition 1. Minkowski difference of sets A and B in the Euclidean space is the set, which is the 
difference of all points in the set A with all points in the set B, i.e. the set 

   A � B = A  ⊕  –B { }BbAaba ∈∈−= ,; , (1) 

where ba−  is the difference of the positioning vectors of points a, b. 
 
Set A � B is defined as Minkowski sum of set A and set –B, which is symmetric to the set B with 
respect to the origin of the coordinate system in the reference point, therefore it is the sum of all 
points in the set A with all points in the set –B. Operation defined in this way is not the inverse 
operation to the operation of the Minkowski sum, anyhow it represents one of the important 
classification and modelling tools in computer graphics.   
 
Several basic properties of the Minkowski difference of sets A and B in the Euclidean space are 
included, which are frequently used for its calculation. 
 
1. If sets A and B are convex sets, then their Minkowski difference A � B is also a convex set. 
2. Sets A and B are overlapping, if their Minkowski difference A � B contains the reference 
point, it means the origin of the coordinate system. 
3. Minkowski difference is not a commutative operation, it holds: A � B ≠ B � A. 

 

Illustration of the validity of the third property can be seen in fig. 1, on examples of surface patches 
created as Minkowski difference of two parabolic segments A and B with axes parallel to the 
coordinate axis z. 

  
Fig. 1.  Minkowski difference A � B (left), and B � A (right). 
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Distance d of sets A and B can be defined by means of Minkowski difference. 

    d(A, B) = ba
BbAa

−

∈∈ ,

min  = c

BAc �∈

min  (2) 

Minkowski difference can be used for simplification of some calculation problems in more 
dimensional spaces by reducing dimension while transforming the problem to the space with lower 
dimension. Calculation of the distance of two line segments in the three-dimensional space can 
serve as an example. Minkowski difference of two line segments is a parallelogram; therefore the 
problem is reduced to the calculation of the distance of this parallelogram from the origin of the 
coordinate system. Projection of the coordinate system origin to the plane of the parallelogram leads 
to the solution, while the required distance is the distance of the projected point from the origin. 
Next included definition of Minkowski difference is presented in [4]. 
 
Definition 2.  Minkowski difference of sets A and B in the Euclidean space is the set  
    A � B ∩

Bb

b
A

∈

= , (3) 

where Ab is the set A translated by vector b  
    { }AabaA

b
∈+= ; . (4) 

Minkowski difference defined according to Definition 2. is used in computer graphics e.g. for the 
set layout and in placing one set into another one, but again, this binary operation is not the inverse 
operation to the operation of Minkowski sum.   
 
The last presented definition of Minkowski difference of sets A and B is the definition as the inverse 
operation to Minkowski sum, available in [5]. 
 
Definition 3.  Minkowski difference of sets A and B in the Euclidean space is the set  
    A � B ∩

Bb

b
A

∈

−

= , (5) 

where A-b is the set A translated by vector –b, 
    { }AabaA

b
∈−=

−

; . (6) 
 
Let A and B be point sets in the Euclidean space En

 and sets A´ and B´ be their complements. The 
following properties are valid for the Minkowski difference from the last Definition 3. 
 

1. Minkowski difference of convex sets is again a convex set. 
2. Minkowski difference of convex sets A and B can be defined by formula  

  A � B = (A´ ⊕ (–B )´ . (7) 

3. Minkowski sum of convex sets A and B can be defined through Minkowski difference as 
  A ⊕ B = (A´ � (–B ))´ . (8) 

4. The following relations are valid for convex sets A and B  
  (A ⊕ B) � B = A, (9) 
  (A � B) ⊕ B ⊂ A. (10) 

5. Let the translation of the set A be determined by the translation vector t1 and translation of the 
set B by the translation vector t2 . The following equation holds for Minkowski difference of the 
translated sets A and B  

    Trans(A, t1) � Trans(B, t2) = Trans(A � B, t1 – t2) (11) 
The last property implies the following consideration and preposition. 
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Theorem 1.  Sets Trans(A, t1) and Trans(B, t2) are overlapping if and only if the set, which is 
Minkowski difference A � B contains the point with the positioning vector t2 – t1. 
 
 
3   Modelling of surface patches in E3 
 
Let two curve segments k and h be determined by vector functions parametrized on unit intervals in 
the space E3 
 

   ( ) ( ) ( ) ( )( ) 1,0,,, ∈= uuzruyruxrur   (12) 
 

   ( ) ( ) ( ) ( )( ) 1,0,,, ∈= vvzsvysvxsvs       (13) 
 

Minkowski difference of curve segments k and h according to the Definition 1. is a patch of 
translational surface χ,  which is created by translation of the curve r(u) along the curve r(v) 

  k � h = χ                    (14) 

and it is determined by the vector function defined on the unit square in the form 
 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 2

1,0,,,,, ∈−−−=−= vuvzsuzrvysuyrvxsuxrvuvu srp . (15) 
 

Surfaces in fig. 2 are examples of Minkowski difference of two ellipses compared to their 
Minkowski sum and product, located in the same plane  
 

  ( ) ( ) ( )
2

2121
1,0,,0,2sin2sin,2cos2cos, ∈π−ππ−π= vuvbubvauavup  (16)  

 

and in two perpendicular planes 
 

  ( ) ( ) ( )
2

2211
1,0,,2sin,2cos2sin,2cos, ∈π−π−ππ= vuvbvaubuavup  .(17) 

          

         
Fig. 2.  Minkowski difference - sum (top left) and product (top right) of 2 ellipses in one 
plane,   and in 2 perpendicular planes (bottom from left). 
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Surface patch (part of a plane) depicted in fig. 3 on the left is Minkowski difference of sinusoidal 
curve and circle, and it is determined by the vector equation 
 

  ( ) ( ) ( )
2

1,0,,0,2sin2sin,2cos2, ∈π+ππ+π= vuvruvruvup , (18) 
 

while surface presented on the right in fig.  3 is illustration of Minkowski difference of these curve 
segments, with equation 
 

  ( ) ( ) ( )
2

1,0,,0,2sin2sin,2cos2, ∈π−ππ−π= vuvruvruvup . (19) 
 

Surfaces differ only in their position in the plane z = 0, but not in the form, which demonstrates the 
fact that Minkowski difference according the Definition 1. is a special case of Minkowski sum of 
these two sets. Anyhow, this property is not valid generally.  
 

  
Fig. 3.  Minkowski sum (left) and difference (right) of sinusoidal curve and circle in one plane. 

 
Minkowski difference of sinusoidal curve and circle that are located in perpendicular planes is 
a surface patch determined by vector function 
 

 ( ) ( ) ( )
2

1,0,,2sin,2sin,2cos2, ∈ππ−π−π= vuukvrvruvup , (20) 
 

which is illustrated in fig. 4, on the right (that is equal to the sum of these curves) together with the 
product of these curves on the left 
 

 ( ) ( ) ( )
2

1,0,,2sin2,2cos2sin,2sin2sin, ∈ππππ−ππ−= vuvurvukrvukrvup  . (21) 

         
Fig. 4.  Minkowski product and difference (sum) of sinusoid and circle in perpendicular planes. 
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Minkowski sum of a parabolic arc and a semicircle is presented in fig. 5 on the left, whose vector 
equation is in the form 
 

 ( ) ( )( ) ( )
2

2

1,0,,2sin,2cos,, ∈π+−π= vuvruubvrauvup , (22) 
 

while on the right in fig. 5 Minkowski difference of these curve segments is viewed, with vector 
equation 
 

 ( ) ( )( ) ( )
2

2

1,0,,2sin,2cos,, ∈π−−π−= vuvruubvrauvup  (23) 

     
Fig. 5.  Minkowski sum (left) and difference (right) of a parabolic arc and a semicircle. 

 
Illustration of Minkowski product of these two curve segments, a parabolic arc and a semicircle 
located in perpendicular planes is in fig. 6 on left, determined parametrically by equation    
 

 ( ) ( )( ) ( )
2

2

1,0,,2cos,2sin,2cos, ∈πππ−−= vuvaruvaruvuubvup . (24) 
 

On the left in fig. 6 surface created as Minkowski product of those 2 parabolic arcs is presented, 
whose Minkowski difference is illustrated in fig. 1, whereas its vector equation has the form 
 

 ( ) ( )( ) ( )
2

2

1,0,,2cos,2sin,2cos, ∈π−π−π−= vuvaruvaruvuubvup  (25) 

      
Fig. 6.  Minkowski product of parabolic arc and semicircle (left), and of two parabolic arcs (right). 
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Minkowski sum and Minkowski difference of two semicircles in perpendicular planes are presented 
in fig. 7, vector parametric representations are 
 

  ( ) ( ) ( ) 2

2211
1,0,,2sin,2cos2sin,2cos, ∈±±= vuvrvrururvu ππππp  (26) 

 

       
Fig. 7.  Minkowski sum (left) and difference (right) of 2 semicircles in perpendicular planes. 

 
Minkowski sum, which equals to Minkowski difference of ellipse and sinusoidal curve that are 
located in two perpendicular planes and their Minkowski product are presented in fig. 8, while their 
vector representations are 
 

  ( ) ( ) ( ) 2

1,0,,2sin2sin,2,2cos, ∈±±= vuvubvuavu ππππp  (27) 
 

  ( ) ( ) ( ) 2

1,0,,2cos2,2sin2cos,2sin2, ∈= vuuavvuaubvvu ππππππp   (28) 
 

 

 
Fig. 8.  Minkowski sum - difference (left) and product (right) of ellipse and sinusoidal curve located 

in perpendicular planes. 
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Abstract. Paper brings mathematical theory for visualization of more dimensional objects by 

means of their parallel, orthogonal projections to the plane. Different formulas for various 
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cases. Examples of four dimensional hyper-polyhedra views in plane are introduced and 

explained. 

 

Key words. orthogonal projection, orthographic view, axonometric view, 4D space, hypercube, 
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1 Introduction 
 
This paper on different projection modelling is designed for geometry teachers working with 
graphical computer programs that allow modelling only of planar problems and constructions. In 
the sequence of 4D → 3D → 2D dual projections, planar images of the 4-dimensional objects loose 
a lot of the relationships available in 4D modelling, which are well-known and prepared 
theoretically, but these relevant abstract concepts are not applicable for object views in lower 
dimensions. The situation can be compared to the case when we investigate relationships in 3D on 
the line after designing the sequence of its 3D → 2D → 1D views, in which almost all relevant 
spatial information can be lost as the line might finally appear in the 1D view simply as a single 
point, where all relations and properties disappear.  

In order to enable modelling and visualisation of different views of more dimensional objects, so 
that their created mapped views might be changed, the idea of determining the particular position of 
the projection plane depending on parameters has arisen. Change of parameters defines a new 
position of the projection plane, which immediately allows a new view of the visualised object, in 
order to receive as much information as possible for successful reconstruction of the original object 
and better understanding of its spatial properties, dimensions and relations.  
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2 Orthogonal projection from 3D to 2D 
 
Let us choose in E3 with the orthonormal basis (e1, e2, e3) a unit vector determined by Cartesian 
coordinates n = (sin φ cos ψ, sin φ sin ψ, cos φ), where φ is the latitude and ψ is the longitude, for 
which 0 <φ <π, 0 ≤ ψ <2π. Angular parameters φ and ψ are therefore spherical coordinates on the 
unit sphere determining the position of the vector n end point.  
As it is generally irrelevant for a parallel projection whether the projection plane has been moved in 
the direction of the projection, we can choose its particular position. We define the projection plane 
oriented in the way that it passes through the origin of coordinates O and its normal is determined 
by the vector n. The point A*(x*, y*, z*) is the orthographic projection of the point A(x, y, z), and the 
following relations are true 
 
  A*= A – λn,  A*·n = (A – λn)·n = 0, then  λ = A·n.   (1) 
 
The rectangular projection e3

* of the vector e3 satisfies the equation 
 
  (e3 – (e3 · n) n) · (e3 – (e3 · n) n) = 1 – cos2φ = sin2φ .   (2) 
 
let us choose a new orthonormal basis (f1, f2, f3) in the following way 
 
                                       f3 = n 
 

  f2 = ± e3
*/sin φ = (± cos φ cos ψ, ± cos φ sin ψ, ± sin φ) (3) 

 

                                      f1 = f2 × f3 = (± sin ψ, ± cos ψ, 0). 
 
The transition from the base (e1, e2, e3) to the base (f1, f2, f3) can be determined by two orthonormal 
square matrices  
 

 T1 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ϕψϕψϕ

ϕψϕ−ψϕ−

ψψ−

=

cossinsincossin

sinsincoscoscos

0cossin

  (4) 

 

 T2 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ϕψϕψϕ

ϕ−ψϕψϕ

ψ−ψ

=

cossinsincossin

sinsincoscoscos

0cossin

. (5) 

 
Let the upper index t denote the matrix transpose. For i = 1, 2 we can receive new coordinates of the 
object in the basis (f1, f2, f3) by simple matrix multiplication 
 
 (x*, y*, z*)t = Ti · (x, y, z)t. (6) 
 
In matrices Ti the value of spherical coordinates may be φ = 0 or φ = π. With the two angles φ, ψ 
we can achieve a general position of the projection plane. All rectangular projections 3D → 2D used 
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in throughout this article for production of illustrative views were performed with the values φ = π/3 
and ψ = π/5. The first picture presents the orthogonal projection, axonometric view of the unit cube.  

Fig. 1. Orthographic (axonometric) 3D view of a unit cube. 
 
 In the old base there is sufficient to choose two rotations of an object around two arbitrary 
coordinate axes and we can get the same relative position of the projection plane and the model. Let 
us select out of the six possible options a pair of rotations about coordinate axes z and x. 
The first rotation is around the axis z by an angle π/2 ψ± . While the complex number expression is 

(x + iy) i ψ± i
e ,  the matrix expression will be in the form 

 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ψψ

ψ±ψ

100

0sincos

0cossin

∓∓

∓

. (7) 

 
The second rotation is around the  new axis x by angle ϕ± . In complex numbers it is (y + iz) ψi∓

e , 
while in the matrix form it appears as 
 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ϕϕ

ϕ±ϕ

cossin0

sincos0

001

∓

 .   (9) 

 
In the original basis we get new coordinates of the object in the following calculation 
 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ϕψϕψϕ

ϕ±ψϕψϕ

ψ±ψ

=

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ψψ

ψ±ψ

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ϕϕ

ϕ±ϕ=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

z

y

x

z

y

x

z

y

x

cossinsincossin

sinsincoscoscos

0cossin

100

0sincos

0cossin

cossin0

sincos0

001

*

*

*

∓∓

∓

∓∓

∓

∓

 (10) 
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For i = 1, 2 we have again 
 

 (x*, y*, z*)t  = Ti ·(x, y, z)t.  (11) 
In the rectangular projection to the image plane (x, y) we restrict our considerations to two first new 
coordinates only, while the third new coordinate z

* can serve for determination of the object 
visibility in the view. For i = 1, 2 matrices of projections Ti are orthonormal matrices, as for their 
product the equality Ti

-1 = Ti
t holds. We can see that also the following holds  

 
 (n1, n2, n3)

t  = Ti
t · (0, 0, 1)t. (11) 

 
 
3 Orthogonal projection from 4D to 3D 
 
In the Cartesian coordinates (x, y, z, w) with the orthonormal basis {e1 , e2 , e3 , e4} in 4D Euclidean 
space we can represent the unit vector n, | n | = 1, in spherical coordinates, 0≤ ψ<2π, 0≤ φ ≤ π 
 
 n1 = sin χ sin φ cos ψ, n2 = sin χ sin φ sin ψ, n3 = sin χ cos ψ, n4 = cos χ , (12) 
 
while from this quadruple (n1, n2, n3, n4)  all three angles χ, φ, ψ can be uniquely determined. 
 Considering orthogonal projection of the space E4 to the image hyperplane passing through the 
origin O of the coordinate system and determined by the normal vector n, then for the orthographic 
view A* of the point A we receive 
 
  A → A*: A* = A – (A· n) n.    (13) 
 
The following relations hold for i, k = 1, 2, 3 
 
 ei

*
· ei

* = 1– ni
2, i = k (14) 

 

 ei
*
· ek

*
 = – ni nk, i ≠ k. (15) 

 
We introduce a new orthonormal basis { f1 , f2 , f3 , n}, and then we define  
 

 
2

3
1

1

n−

±
ρ   (16) 

  

 f3 = ρ e3
* = ρ (e3 – n3 n), where -1 < n3 < 1.   (17) 

 

It holds: | f3 | = 1. 
Next, let us choose  

 
2

3
1

1

n−

=ρ  .  (18) 

Then 

 ( ) ( ) tt

nnnnnnnffff
43

2

332314321
,1,,,,, −−−−= ρ  (19) 
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Next vector f2 will be the direction vector of the intersection line of the plane (ei
*, e2

*) and the plane 
perpendicular to f3, which is also passing through the origin O of the coordinate system.  
 

 ∗∗

+=
22112
eef µµ   (20) 

 
with conditions: f2 · f3 = 0,  | f2 | = 1.  
The first condition implies for n3 ≠ 0 
 

 n1 μ1 + n2 μ2 = 0.  (21) 
 

Let us choose 
 

 μ1 = – σ n2,  μ2  = σ n1.  (22) 
 

The proportionality constant σ can be determined from the condition 
 
  1 =  f2 · f2 = … = σ2 (n1

2 + n2
2).   (23) 

 

For n1
2 + n2

2  > 0 we get 

  
2

2

2

1

1

nn +

±
=σ  . (24) 

 

The selection of the plus /minus sign shall determinate the orientation of the intersection.  
Let us choose 

  
2

2

2

1

1

nn +

=σ ,  (25) 

then 
 

  ( ) ( )
122112212
enenenenf −=−=

∗∗

σσ . (26) 
 
Vector f1 will be determined as the orthogonal complement  
 

 .
000

0000

4321

12

4321

4321

43

2

33231

12

4321

1

nnnn

nn

eeee

nnnn

nnnnnnn

nn

eeee

f
ρ

σσ

ρρρρρ

σσ −

=

−−−−

−

=  (27) 

 
This implies 

  f13 = 0, | f1| = 1, (28) 
 
or in other words, the volume of a cube with edges f2 ,  f3, n equals one.  
After transferring the coordinates to the new base { f1,  f2,  f3, n}, the fourth coordinate of the 
orthographic views will be equal to zero, and the projection can be determined in the following 
matrix form 
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The last coordinate w*= n1x + n2 y + n3z + n4w can serve for determination of visibility. 
 

 

Example  
 
Let us consider a unit tesseract (hypercube) in 4D, the coordinates of its 24 vertices are either zeros 
or ones. The centre S of the tesseract has coordinates (1/2, 1/2, 1/2, 1/2). Let us choose the unit 

normal vector n = OS  . Then  

 
3

62
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3

32
=== ρσσρ  . (30) 

The orthographic projection is  
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The projections of the opposite vertices (0,0,0,0), (1,1,1,1) coincide with the point S*(0,0,0), fig. 2. 

The unit vectors in the coordinate axes will result in a tetrahedral pyramid with length 
2

3
, and 

angles α = arccos(–1/3), they are actually the line segments joining the center S
* of a regular 

tetrahedron with his legs. All squares of the tesseract are therefore projected as rhombi with sides of 

the same length 
2

3
 and with diagonals of size 1 and 2 , while each rhombus - diamond has a 

sharp internal angle π - α. 
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Fig. 2. Orthographic views of the unit hypercube. 

Orthographic view of the unit tesseract is in our case a rhombic dodecahedron; in its centre of 
symmetry S the projections of two opposite vertices of the tesseract coincide. In fig. 2, on the left, 
there is shown the orthographic view of rhombic dodecahedron with the base in the plane (x, y).  

In fig. 2, on right, there is also presented the orthographic view of the tesseract, but OS  is not the 
normal vector of the 3D projection plane. We often encounter featuring of rhombic dodecahedron in 
Cartesian coordinates. Eight of its vertices have coordinates ( )1,1,1 ±±± , and the remaining six 
vertices have coordinates (± 2, 0, 0), (0, ± 2, 0), (0, 0, ± 2).  

For rotation of an object in 4D space with coordinate axes (x, y, z, w), we can choose three 
revolutionary movements:  
revolution about the plane (x, y) by the angle γ is represented by matrix  
 

 G = 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

γγ

γγ

cossin00

sincos00

0010

0001

, (32) 

 
revolution about the plane (x, w) by the angle δ represented by  matrix  
 

 D = 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

1000

0cossin0

0sincos0

0001

δδ

δδ
, (33) 

 
revolution about the plane (z, w) by the angle ε represented by  matrix  
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 E = 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛ −

1000

0100
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00sincos

εε

εε

. (34) 

 
Matrix of orthographic projection can be achieved as the product of these orthonormal matrices,  

G·D·E, while this transformation (selected from the ⎟
⎠

⎞
⎜
⎝

⎛

2

4
 · 3! = 36 possibilities) will introduce the 

angles γ, δ, ε. Then  
 
 (x*, y*, z*, w*)t  = G·D·E·(x, y, z, w)t.  (35) 
 
Omitting the new fourth coordinate w*, we receive the coordinates (x*, y*, z*) of the orthographic 
view in the hyperplane. We determine the unit normal vector in coordinates (x, y, z, w) 
perpendicular to the new 3D projection plane. Since  
 
 (n1, n2, n3, n4)

t  = Et·Dt·Gt· (0, 0, 0, 1)t,  (36) 
 
the transformation is actually inverse. Like in 3D, we should take into account the other 3 
alternatives corresponding to the selection of the sign for ρ and σ. From here we can express the 
angles χ, φ, ψ using angles γ, δ, ε, for example: χ = γ, φ = δ, ψ = π/2 – ε. We can also determine the 
angles γ, δ, ε of rotation of the object in the selected transformation using the normal unit vector n.  
In fig. 3, on the left, there is presented the orthographic view of the unit tesseract in the projection 
determined by parameters γ = π/4, δ = π/6, ε = 2π/5.  
On the right, there is the popular parallel projection of the tesseract shaped as a regular octagon. 
The dodecahedron parallelograms are not identical rhombuses because in the 4D → 3D projection 
none of two opposite points of tesseract coincide.  
 

 
 

Fig. 3. Orthographic view of the unit hypercube. 
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STUDY OF ALGEBRAIC OPERATIONS USED IN CAGD

THROUGH INCIDENCE VARIETIES

VRŠEK Jan, (CZ), LÁVIČKA Miroslav, (CZ)

Abstract. Current geometric modelling (Computer Aided Geometric Design) uses several
operations defined over algebraic varieties whose output are again algebraic varieties (e.g.
offsetting, operation of convolution, bisectors). Nevertheless, an uncomfortable feature
of these constructions is the fact that the output variety may be, in some sense, more
complicated than the input varieties – e.g. its algebraic degree is often higher, it consists
of more components and mainly it does not have to be rational although the both input
objects are rational. From this reason, it is necessary to leave the rational world of CAGD
and use the techniques of algebraic geometry which work over the field of complex numbers
and thus give global and more general results. Especially, we discuss an unifying approach
based on the so called incidence varieties.
Key words and phrases. Algebraic varieties, incidence variety, convolutions, offsets,
bisectors, conchoids, genus.
Mathematics Subject Classification. Primary 51N35; Secondary 14H45.

1 Introduction

Geometric modeling, or Computer Aided Geometric Design (CAGD) is a branch of applied
mathematics that studies methods and algorithms for the mathematical description of shapes,
[17]. In recent years and decades, studying various algebraic operations of shapes used in
CAGD has become an active and popular research area. For instance, we recall one of the
fundamental operations, offsetting, which is nothing else than convolution of hypersurfaces with
a circle/sphere. Many interesting problems related to this topic have arisen, e.g. analysis of
(geometric and algebraic) properties, determining number and kind of components of resulting
varieties, a construction of rational parameterizations (if they exist) and formulation of suitable
corresponding symbolic algorithms, cf. [10, 3, 2, 12, 13, 11, 16, 15].
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Figure 1: Left: One-sided offset (magenta) of a curve V (blue) – arrows demonstrate the normal
vector field. Right: Convolution V � W (magenta) of curves V (red) and W (blue).

The main aim of this paper is to study a unifying approach to various operations based on
the so called incidence varieties, firstly mentioned for offsets (in a modified form) in [3] and
then thoroughly studied for convolutions in [16]. We start with a brief overview of selected
operations. For the sake of simplicity we restrict ourselves only to operations over planar
algebraic curves.

Convolutions and offsets. One of the fundamental operations studied in geometric mod-
elling is offsetting or, in other words, a construction of equidistant curves, see e.g. [7]. If v(s)
is a parameterization of a curve V , then the (two-sided) δ-offset Oδ is defined as the curve
parameterized by

vδ(s) := v(s) ± δn(s), (1)

where n(s) is the unit normal vector field associated to the corresponding parameterization,
see Fig. 1 (left). The operation convolution (see [16]) can be understood as a generalization of
offsetting defined as follows

V � W := {x + y | x ∈ V, y ∈ W and TxV ‖ TyW}, (2)

see Fig. 1 (right). It is not difficult to see that the δ-offset of a given curve is nothing but the
convolution of this curve with the circle centered at the origin and with the radius equal to δ.
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Figure 2: Left: Bisector B(V ,W) (magenta) of curves V (red) and W (blue). Right: Conchoid
of Nicomedes (magenta).

Bisectors. Bisector B(V ,W) of two curves V , W (see [6] for more details) is defined as the
locus of all points halving the distance between the input curves in the following sense: A point
p is a point of B(V ,W) if there exist points v ∈ V and w ∈ W such that p ∈ NvV ∩NwW and
|pv| = |pw|, cf. Fig. 2 (left).

Conchoidal transform. Finally, we recall an operation well-known rather from the classical
geometry than from geometric modelling. Nevertheless, also this operation is becoming a part
of modern applications. Let be given a point p and a curve V not passing through this point.
Then for each v ∈ V there exists a unique line pv. The conchoid consists of intersections of
theses lines with the unit circles centered at v, cf. Fig. 2 (right) where the so called conchoid
of Nicomedes is shown. If the unit circle in the definition of conchoid is replaced by a general
curve W (i.e., the phrase ‘the unit circle centered at v’ is replaced by ‘a curve W translated
by the position vector of v’), we obtain a binary operation called conchoidal transform and
denoted by Cp(V ,W).

The above mentioned operations invoke several questions whose answers are necessary for
right understanding of these operations and hence subsequently also for a correct formulation
of efficient algorithms:

♣ Can we find any common property of all introduced operations?
Yes. Input algebraic varieties guarantee that the output objects are also algebraic varieties.

♦ What descriptions of shapes (input objects for the studied operations) are used in CAGD?
Bézier, B-Spline, NURBS objects ⇒ rational parameterizations ⇒ algebraic varieties.
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♥ Does each algebraic variety admit a rational parameterization?
Unfortunately not. This is a rather exceptional property.

♠ Does an arbitrary input rational variety guarantee that applying one of above mentioned
operations we arrive again at a rational variety?
Unfortunately not. This is also very exceptional case.

Thus, we have to leave a rational area of CAGD and apply the techniques of algebraic
geometry, working over the field of complex numbers and thus giving global results, see e.g.
[4, 5, 8]. This is a world where incidence varieties appear.

2 Incidence varieties

Our main aim is to obtain results of a global character (number of components, their rationality,
etc.) and thus we have to work over an algebraically closed field – in what follows we will
consider the field of complex numbers C. On the other hand, since every real curve can be
viewed as a complex curve with the defining polynomial possessing only real coefficients, the
obtained results can be specialized for real curves, too.

A closer look at the examples given in the previous section reveals that all the operations are
based on one identical scheme. Let us restrict ourselves to binary operations only. An algebraic
operation 
 is given if for any two two admissible curves X ,Y . we have following objects:

1. The variety I�(X ,Y) ⊂ X ×Y , such that the natural projections πX : I�(X ,Y) → X and
πY : I�(X ,Y) → Y are finite and dominant.

2. A rational mapping ξX ,Y : X × Y → C
2.

Then the variety X 
 Y is defined as the closure of the set ξX ,Y(I�(X ,Y)).

Example 2.1 If the studied operation is convolution (i.e., 
 = �), then under an admissible
variety we mean a curve which is not a line. Then the variety I�(X ,Y) is the closure of the set

{(x,y) ∈ C
2 × C

2 | TxX ‖ TyY} (3)

and the mapping ξX ,Y is nothing but the sum x + y.

Definition 2.2 For two curves X ,Y and an algebraic operation 
 we define an incidence vari-
ety as I�(X ,Y) = X × Y together with the mappings πX , πY a ξX ,Y , see the following diagram

X πX←−−− I�(X ,Y)
πY−−−→ Y⏐⏐�ξX ,Y

X 
 Y
(4)

The pair of points x ∈ X , y ∈ Y are said to be corresponding if (x,y) ∈ I�(X ,Y).
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A very important procedure when dealing with the operation 
 is the so called “arrow
reversion”. For instance, if there exists the mapping ξ−1 in the diagram (4), we immediately
arrive at the mappings X 
Y → X and X 
Y → Y . The usefulness of such a construction will
be evident from what follows.

Let us start with giving a condition on rational mappings to have the rational inverse. If
φ : A → B is a rational dominant mapping between two curves then its degree (deg φ) is defined
as the cardinality of a generic fibre, i.e., deg φ = �{φ−1(p)}, where p ∈ B is a generic point.
Obviously, if there exists the rational inverse φ−1 (we say that φ is birational) then it has to
hold deg φ = 1. Surprisingly this condition is sufficient, too, cf [9].

Proposition 2.3 The mapping φ is birational if and only if deg φ = 1.

Let us emphasize that the irreducibility of varieties X and Y does not guarantee that X 
Y
is irreducible too. If we denote the number of irreducible component of A by �IC(A) then it is
easy to see that the following theorem holds

Theorem 2.4 �IC(X 
 Y) ≤ min{deg πX , deg πY}.
Remark 2.5 The degree of the projections πX often depends on the variety Y (and analogously
for the second natural projection). For instance, for conchoidal transforms it holds deg πX =
degY (cf. [1]) and for convolutions it equals to the so called convolution degree (cf. [16]).

If the operation 
 fulfills the following properties

• x ∼� y and y ∼� z ⇒ x ∼� z,

• x ∼� y ⇒ x ∼� ξ(x,y),

then it is possible to prove a stronger version of Theorem 2.4.

Theorem 2.6 Under the previous assumptions it holds

�IC(X 
 Y) ≤ gcd{deg πX , deg πY}. (5)

Now, we focus on different types of components of X 
 Y . Based on their nature, they can
be classified into one of the three following types:

Definition 2.7 Let U ⊂ X 
Y be an irreducible component. Then we distinguish the following
possibilities

deg ξ|ξ−1(U) =

⎧⎪⎨
⎪⎩

1,

k > 1,

∞,

⇒ U is called

⎧⎪⎨
⎪⎩

simple,

k-special,

degenerated.

For reasonable operations, e.g. for all defined in the previous section, it holds that the
components are almost always simple. This is a pleasant property as for a simple component
the mapping

ξ|ξ−1=(U) : I�(X ,Y) → U (6)

is birational. Thus, there exists a rational mapping from the curve U onto the input curves X
and Y . Moreover, if the variety X 
Y decomposes into “enough” components, we can formulate
a stronger statement.
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Theorem 2.8 If �IC(X 
 Y) = deg πX , then each simple component is birationally equivalent
to X .

Therefore, X is rational whenever U is. Unfortunately X 
Y tends to be rather irreducible –
e.g. it was proved that conchoidal transforms and convolutions are generically irreducible, cf.
[1] and [14], respectively. Thus we have to manage only with the rational mappings U → X ,Y
in most cases. Then the Riemann-Hurwitz formula (cf. [9]) plays a very useful role.

Theorem 2.9 (Riemann-Hurwitz) Let X ,Y be smooth curves and φ : X → Y be a finite
separable morphism. Then

2g (X ) − 2 = deg φ · (2g (Y) − 2
)

+ deg R, (7)

where g (X ) is the genus1 of X and deg R is the degree of a ramification divisor (for demon-
stration/definition see Fig. 3)

Figure 3: This figure illustrates the mapping φ : X → Y of degree 3. The degree of ramification
divisor can be computed by the formula

∑
x X (ex − 1).

A straightforward application of the previous theorem onto the problem of algebraic opera-
tions can be shown in the following lemma

Lemma 2.10 If U is a simple component of X 
 Y then g (U) ≥ max{g (X ), g (Y)}.
The proof of the previous lemma consists of using the Riemann-Hurwitz formula on the

mappings φ : U → X and ψ : U → Y . In particular, after some computations we obtain, for
instance, for the mapping φ the following equality

g (U) = g (X ) + 2(deg φ − 1)(gX − 1) +
1

2
deg R. (8)

1Let us note that the genus is a birational invariant of a curve which gives us a criterion of the rationality
of the curve. Namely X is rational if and only if g (X ) = 0.
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Since deg R ≥ 0 and deg φ ≥ 1, the sought result follows.
Moreover, the only unknown value in (8) is in the most cases only the degree of the ramifi-

cation divisor. Therefore if we are able to evaluate this degree, then we immediately arrive at
a genus formula. These computations have been recently proceeded independently for offsets,
convolutions and conchoidal transforms in [2], [14] and [1], respectively. For the sake of brevity,
we mention only the resulting formuale and refer the readers for detailed proofs to original
papers.

Theorem 2.11 Under some assumptions on curves X and Y it holds

• Offset (Arrondo-Sendra-Sendra 1999)

g (Od(Y)) = 4g (Y) + 2 deg(Y) − 3

• Convolution (Vršek-Lávička 2010)

g (X � Y) = 4g (Y) + 2 deg(Y) − 3

• Conchoidal transform (Albano-Rogero 2010)

g (C(X ,Y)) = deg(X ) · g (Y) + deg(Y) · g (X ) +
(
deg(X ) − 1

)(
deg(Y) − 1

)

3 Conclusion

In this contribution, we have sketched an unifying approach to distinguished algebraic oper-
ations which play an important role in geometric modelling and related applications (CAD,
CAM, CAE, etc.). The presented technique (based on the methods of algebraic geometry)
can serve as a first step to thorough theoretical study of these operations. We have demon-
strated on several examples the results invented in recent years. It seams that the presented
novel approach using the so called incidence varieties can help to understand the operations of
geometric modelling from a more general point of view.
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FILTER   LC  AND   LCLC   UNDER   TRANSIENT   CONDITION 
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Abstract. The problem how to obtain sinusoidal voltage of load side at non-harmonic 
periodical supplying from the converters is very important in technical practices. The 
paper shows that there can be used either LCLC resonant filter for frequency of 
fundamental harmonic component, or LC filter tuned for switching frequency. Both 
filters have to remove higher harmonic components from the supplying voltage to reach 
the harmonic distortion roughly 5 %. Using non-symmetrical control the output voltage 
of inverter comprises all harmonic components, both odd and even ones. The paper 
deals mainly with analysis and modelling of the 4th order LCLC filter (of the first type) 
under non-symmetrical supply and with comparing to the other types of filtering. 
Simulation results as well as experimental verification confirm good quality of output 
quantities of the filter, voltage and current. 
 
Keywords. State-space modelling, Fourier series, periodical non-harmonic function, 
total harmonic distortion, transient analysis  
 

Mathematics Subject Classification:  Primary 42A16, 42A20; Secondary 42A24 
 

 

1 Basic connection of single-phase inverter with output resonant filter  

 
 The single-phase voltage inverter can be realised in principle as full-bridge or half-bridge 
connection [1] with DC sources, Fig. 1a. For alternative AC sources we have either single-phase 
AC-AC converter – type of cyclo-converter (if it is a natural commutation and f1>f2) or single-phase 
matrix converter (with a forced commutation and f1>f2 or f1<f2), Fig. 1b.  
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Fig. 1. Principle schematic connections of the single-phase half-bridge voltage inverter: 

 the single-phase DC-AC inverter supplied from DC sources (left) 

the single-phase AC-AC inverter supplied from AC sources (right) 

 

In case when harmonic sinusoidal voltage of load is demanded, it is possible to use resonant AC 
filter tuned to basic harmonic, or filter tuned to switching frequency on converter output, Fig. 2a,b. 

 

        
Fig. 2. Principle schematic connections of the single-phase voltage inverter and the output filter: 

the output resonant filter with basic resonance frequency (left) 

the output resonant filter with switching resonance frequency (right) 

 
 
2 Transient analysis and modeling of the 4

th
-order LCLC filter under symmetrical control  

 
Output voltage of the inverter features wide spectrum of higher harmonic components. Full-

width waveform is depicted in Fig. 3a. Harmonic content (odd harmonics, THD = 43.5 %) is shown 
in Fig. 3b. 

 
 

Fig. 3. Full-width output voltage of the inverter (left) and  

its harmonic content without filtering (right) 

 
Using Fourier theory one can derive relation (1) for basic harmonic amplitude of output voltage 

of inverter 
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β
=
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 (1) 

where: U1M(β)  is amplitude of fundamental harmonic depending on voltage pulse width β 

U maximum value of inverter input DC voltage 
β voltage pulse width in the range of 0-180 °el. deg., whereby 

β = π - α, and 
α control angle oriented from end of half-period to the end of positive voltage pulse. 

 

Considering converter scheme in Fig. 1a and LCLC filter in Fig. 2a, the state-space equations can be  
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After time discretization (using implicit Euler method) of the system equations it yields 
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iL1, iL2   - currents of inductors L1 and L2 of filter respectively 
iL   - current  of the load R, LL  
uC1, uC2 - voltage of capacitors C1 a C2 of LCLC filter respectively 
J  - unit matrix 
A  - system matrix 
h  - step size 
u(t)  - output voltage of the inverter 
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3 Transient analysis and modeling of the 4
th

-order LCLC filter under non-symmetrical 

control 

 

The real waveform of the output voltage of inverter has a wide spectrum of harmonic 
components. Using non-symmetrical control the output voltage of inverter (Fig. 4a) comprises all 
harmonic components, both odd and even ones of Fourier series as shown on Fig. 4b. The distortion 
is considerably high, e.g. for 2/3-non-symmetrical control it is  62.5 %. 
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Fig. 4. The output voltage of the 1-phase inverter with non-symmetrical control 165/180°el (left)  

and its harmonic content without filtering (right) 

 
Using Fourier theory one can derive relation (4) for basic harmonic amplitude of output voltage 

of inverter  

    ( )2/cos1
22)(M1 β

π

β
−=

U

U
 (5) 

Considering converter scheme in Fig. 1a and LCLC filter in Fig. 2a under non-symmetrical 
control then the state-space equations are the same as eqv. (2), (3) with symmetrical output voltage 
of inverter u(t). 
 
 
4 Transient analysis and modeling of the 2

nd
 -order LC filter under bipolar PWM 

control 

 

The harmonic spectrum of output voltage of inverter, which is depicted in Fig. 5a is shown in 
Fig. 5b. 

       
Fig. 5. Output voltage of the 1-phase inverter under bipolar PWM control ((left)  

and its harmonic content (right) 
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The harmonics in the inverter output voltage waveform appear as a sidebands, centered around 
the switching frequency and its multiples. It follows, that output voltage does not have higher 
harmonic components around the fundamental frequency. Now is not necessary use the output 
resonant filter tuned to fundamental frequency, but it can be used output resonant filter tuned to 
switching frequency as depicted in Fig. 2b. 

Considering converter scheme in Fig. 1a and LC filter in Fig. 2b then the state-space equations 
can be written 
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After discretization of system equations it yields 
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where  iL  - current of the inductor L of LCLC filter 
uC - voltage of the capacitor C of LCLC filter 
iZ  - current of the load R, LL 
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5 Results of simulation experiments and verifications  

 
Following figures show both the steady-state waveforms of input and output voltages, and 

transients for load disconnection in the middle of half period of output filter voltage. The transients 
are simulated for two sets of filter parameter values: basic values of the filter parameters, i.e. 
resonant power is equal to the load power (so quality of the each part series- and parallel are equal 
one), and resonant power is equal 2-multiply of the load power (so quality of the each part series- 
and parallel are equal two).  
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Fig. 6. Output capacitor voltage of LCLC filter with full-wide of pulse β = 180°el. (left) and  
for load disconnection in the middle of half period of output filter voltage (right) 

 
The output capacitor voltage of LCLC filter for load disconnection in time of maximum output 
filter voltage embodies overvoltage for symmetrical control (Fig. 8, Fig. 12) as well as for non-

symmetrical control (Fig. 10). The overvoltage is higher for resonant quality factor equal to two. 
 

      
 

Fig. 7. Output capacitor voltage of LCLC filter under phase control with β = 165°el. (left) and  

for load disconnection in the middle of half period of output filter voltage (right) 

 

   
 

Fig. 8. Output capacitor voltage of LCLC filter under symmetrical control (left) and for load 

disconnection in the middle of half period of output filter voltage (right) 

 
Transients during switch-on of the load are shown in Fig. 9; load current has no current 

overshoots in case of load connection.  
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Fig. 9. Output capacitor voltage of LCLC filter and load current for load connection  

 
In case of simulation of the 2nd-order LC filter it is evident that output capacitor voltage of the 

filter for load disconnection in time of the maximum output filter voltage embodies no high 
overvoltage, Fig. 10a. It has only temporary growth of voltage amplitude as the saved energy of 
inductor is only up to 5 % of load energy. This is better choice of filter application. The measured 
output voltage of the filter for R-L load is shown in Fig. 10b.  

 

       
 

Fig.15. Output capacitor voltage of matrix LC filter for load disconnection in time of maximum 

output filter voltage (left) and measured voltage of inductive load (right) 

 
 
6 Conclusions 

 
A state-space transient analysis of two types of resonant filters has been done. Euler’s implicit 

method was used for obtaining of difference equation system of the filters. Using filters the output 
voltage is nearly harmonic waveform without substantial distortion. It has been shown that 
overvoltage occurred during disconnection of the load could reach up three multiply of rated value. 
These facts are dangerous mainly for semiconductor switches of the inverter supplying the filters. 
Using second type of filter the overvoltage reaches just 5 %, so this type is more suitable for 
applications. Measured waveforms of output voltages under resistive-inductive load confirm good 
coincidence with simulated waveforms of the quantities. 

 
Appendix 

 
The parameters of the simulation and filter components:  
U = 255 V; R = 150 Ω; L = 360 mH 
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L1 = L2 = 610 mH; C1 = C2 = 17 μF 
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USING   PARAMETERIZATION  OF  SURFACE   AREAS   FOR  VOLUMES  

 
BITTNEROVÁ  Daniela,  (CZ)  

 
 

Abstract. The paper follows up with the papers published in the proceedings of the Slovak-

Czech-Polish Mathematical School (Ružomberok 2004) – see [1] and The International 

Colloquium on the Acquisition Process Management, Brno 2006, 2010 - see [2] and [3], where 

volumes of solids were discussed as topological problems. The new relation for a calculation of 

volumes of solids in En was presented there. That relation asks a parametric description of 

a surface area of a given solid and then we are able to solve that problem by using basic 

topological properties. The surface areas of these volumes must be smooth or smooth by parts 

areas in Euclidean space of the corresponding dimensions. The calculations of areas and 

volumes could be easier in some cases, because we calculate with integrals of fewer 

dimensions. 

That paper shortly repeats all needed assumptions and also results, and presents some 

applications on two examples. 

 
Key words. Volume, parameterization, surface area, smooth hypersurface 

 

 

1 Introduction 
 
Areas and volumes of solids occur in the technical practice often. Usually, the multidimensional 
real integrals are used to calculations of them. Therefore, the theory of a measure and 
multidimensional real integrals in generally n-dimensional space En are very important. In the 
papers [1] and [2], that problem is investigated as a problem in the topological sense and the 
formula for the calculation of the area (resp. volume) of the n-dimensional solid in the space En is 
proved there. In that theory, we must find suitable parametric descriptions of the surface areas of 
solids for the calculation of their volumes. Then the surface areas are the smooth (respective by 
parts smooth) areas in Euclidean space of the corresponding dimensions. The method shows a new 

approach to the solving of the known problems. In the paper [3], the correspondence between the 
new theory in E2 and the known result of the curvilinear integral theory is presented. It is 
demonstrated by some examples. In that article, we present an application of it in E3. We calculate 
volumes of bounded closed solids in E3 by using parametric descriptions of their surface areas.  
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2 Formulation of the Problem 
 
Let x  be points of Euclidean n–dimensional space En, 2≥n , 

α

x , n...,,1=α ,  be the Cartesian co-ordinates of the point 
n

Ex∈ , 
a

u , 1...,,1 −= na ,  the Cartesian co-ordinates of the point 
1n

Eu
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∈ , 

 Ω  the bounded closed domain in En-1, 

( )11
...,,
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α   given functions defined on some domain O ⊂ En-1, Ω ⊂ O, where 
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Let us also suppose that 
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derivatives 
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α  is equal to n – 1 almost everywhere in Ω; 

- the subset { }Ω∈=∈= int),(: uuxxEx
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o
P   

of the set  { }Ω∈=∈= uuxxEx
n

),(:P  is a homeomorphic range of the set int Ω in En. 

 
It follows from the given assumptions, that the set P is bounded and a smooth hypersurface by parts 
in the space En. That manifold does not intersect by itself and that divides the space En to two 
disjoint regions in En, in which one is bounded and the second one is unbounded. Then we can 
consider the closure W of the set P that is called the n-dimensional solid in space En, PW =∂  is the 
boundary of it. We would like to calculate the volume of it. 
 
 
3 Formula of the Volume 

 

Let the equations 
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be the parametric description of a hypercone K with the vertex 
⎥⎦
⎤

⎢⎣
⎡= + 1

0
;0

n
xV  (i.e. α

0
x = 0), that 

is a homeomorphic range of a hypersphere W in En, then we can calculate the volume µW of the n–
dimensional solid W in the space En by the formula  
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 (The proof - see D. Bittnerová - [1].) 

 

 
4 Examples 

 

Example 1 

 

Calculate the volume of the ellipsoid determined by the set  
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Ex  x ≥ 0, y ≥0, z ≥0, a, b, c ∈ R+.  (4) 

 

Solution: 

The set P is a smooth closed area in the space E3 (in the sense above). The projection of this area P 
to the (x, y) – plane is the closure of the interior of the ellipse whose implicit description is of the 
form  
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The area P is obviously described by these parametric equations  
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According to the notation given above where υϕ ==
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, uu , n = 3, there is 
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In this case, the determinant )(uΔ  defined in (3) is equal to  
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For calculation of the volume 
W

µ  of three-dimensional solid W in E3, whose boundary is the 

smooth closed area P, we use the relation (2). With respect to the symmetry of this solid, we will 
calculate one quarter of this volume only (see limits of integral): 
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The whole volume is equal to  
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Example 2 

Calculate the volume of the solid determined by the set 
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Solution: 

With respect to the symmetry, we use the parametric equations of one quarter of the set P: 
 

 3
cossincos υυϕ=x , 3

cossinsin υυϕ=y , 3 4
cos υ=z ,  (12) 
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According to the used denotations, there is υ=ϕ=
21

, uu , n = 3, thus the determinant )(uΔ is 
equal to 
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 υυ−== cossin...  
 

The volume 
W

µ  of the solid W in E3 with the boundary P is: 
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5 Conclusion 

 
There exist lots of examples and technical applications where the presented method may be used. If 
we are able to find the suitable parameterizations of the smooth areas, the calculations of areas and 
volumes could be easier, because we calculate with integrals of fewer dimensions. However, to find 
the parameterization can be a rather complicated problem in specific cases. 
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PARALLEL MODELS OF ADAPTIVE DIFFERENTIAL
EVOLUTION BASED ON MIGRATION PROCESS

BUJOK Petr, (CZ)

Abstract. The influence of parallelism on the performance of differential evolution is
studied. Performance of non-parallel and two kinds of parallel topology is compared
experimentally. The parallel versions were implemented on a single-processor machine
and the influence of parallelism is simulated in the pseudo-parallel regime. The results
show that parallel version of differential evolution with star topology exhibits the best
efficiency among algorithms in comparison on the benchmark problems.
Key words and phrases. Global optimization, differential evolution, parallel migration
model, migration topology, comparison on benchmark functions.
Mathematics Subject Classification. Primary 68T20, 78M50; Secondary 90C59.

1 Introduction

The global optimization problem is considered in the following form:

minimize f(x), x ∈ D, f(x) : D → R
d,

where x is a continuous variable with the domain D ⊆ R
d and f(x) is continuous. In this

paper we focus on the problems defined by specifying boundary constraints: [a1, b1]× [a2, b2]×
. . . × [ad, bd], ai < bi, i = 1, . . . D. The global minimum point x∗ while satisfying condition
f(x∗) ≤ f(x) for ∀x ∈ D is the solution of the problem.

To find the global minimum of the optimization tasks are used algorithms based on heuristic.
Heuristics are techniques used in the stochastic algorithms based on a skill, knowledge, chance
and sense, motivated by evolution behaviour of groups of animals in nature [6]. Population-
based algorithms are efficient search methods of the global minimum in the real time. However,
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their efficiency depends on settings of its control parameters. Proper setting of parallel strat-
egy in evolutionary algorithms (EA) can bring faster search of solution, especially in difficult
problems [3]. Distribution of computing power of EA enables to find a better solution of the
global minimization with reducing time-demands of the search. Parallel EA are able to solve
difficult optimization problems and increase reliability of the search.

2 Differential evolution (DE)

Differential evolution (DE) is one of the popular and efficient stochastic population-based algo-
rithms searching the global minimum of difficult real-world problems [7, 9]. In DE are as well as
in other evolutionary algorithms there are applied evolutionary operators, namely selection, mu-
tation, and crossover. Mutation in DE uses a control parameter F and control parameter CR
for crossover. The setting of values F and CR influences significantly the efficiency of the
search process. In this study we use self-adaptation of parameters F and CR [11]. Stochastic
algorithms as DE can benefit from computing power of the parallel models. The goal of this
paper is to study the influence of different parallel models on the performance of DE.

Main idea of DE algorithm is shown in pseudo-code Algorithm(1). At first, there is cre-
ated populations P of size N filled by N points randomly chosen from uniform distribution
from the search space D. A new trial point (offspring) y is made from the current point
(parent) of the source population xi ∈ P by crossover with its mutation point u. A new
point y is chosen into the new population Q if f(y) < f(xi), otherwise xi is inserted into
Q. After completion of the new population Q, the old population P is replaced by Q and the
process of searching the global minimum proceeds until the stopping condition is achieved.

initializing population P = (x1,x2, . . . ,xN);
while stopping condition not achieved do

for i = 1 to N do
generate a new trial vector y by computing from P ;
if f(y) < f(xi) then

insert y into Q;
else

insert xi into Q;
end

end
P := Q;

end
Algorithm 1: Non-parallel DE in pseudo-code

There are several strategies how to make the trial point y from points of the old population
P [9, 7]. The strategies can use different way of mutation and crossover. In DE community,
the abbreviation DE/m/a/c is used for the kind of strategy, where m is the type of mutation,
a is the number of differences of randomly chosen pair of points used in mutation, and c stands
for type of crossover. Reliability and efficiency of differential evolution algorithm is sensitive
on the choice of strategy and the values the control parameters F and CR, usually F ∈ [0.3, 1]
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and CR ∈ [0, 1]. The study of control parameter values settings was worked in [12].
Standard DE using only one strategy with one fixed control parameter setting often needs

the time-consuming trial-and-error search of proper F and CR values. Adaptive setting of
control parameters value and strategies based on their competition was proposed in [11]. This
competitive approach to the choice of strategy and parameter’ values enables robust search
across relatively wide set of problems without special control parameter tuning. In this pa-
per there are chosen adaptive DE algorithms debr18 [11] and b6e6rl [10] based on strategies
DE/rand/1/bin, DE/best/2/bin, DE/randRL/1/bin and DE/randRL/1/exp.

3 Parallel differential evolution

The main problem of optimization is the time-complexity of the global optimum point search.
One way how solve this problem is using parallel models of DE. There are several approaches
of parallelism that can lead to faster search of the global minimum. The most frequently used
parallel models are master-slave model, migration (island) model, diffusion (cellular) model
and their combination resulting in hybrid models [2, 3, 5]. This study is focused on parallel
DE with application of migration model. DE time complexity is divided into several subpo-
pulations (islands) and the individuals migrate among them. Parallel DE based on migration
model is illustrated in pseudo-code Algorithm(2). The global population P of N individuals
xi, i = 1, . . . , N is uniformly divided into (k) independent subpopulations.

initializing k independent subpopulations Qj = (xj1,xj2, . . . ,xjNp), j = 1, 2, . . ., k;
while stopping condition not achieved do

while migration criteria not achieved do
for j = 1 to k do

compute new generation of subpopulation Sj by one generation of DE
Qj := Sj;

end

end
choose and migrate several individuals among subpopulations Qj

end
Algorithm 2: Parallel DE based on migration model in pseudo-code

Thus each subpopulation contains Np = N/k individuals from global population Q. After-
wards non-parallel DE algorithm proceeds independently and separately on each island. After
(nde) generations migration criterion is achieved and the algorithm proceeds by migration op-
eration. Migration provides diversity of subpopulations through exchange several individuals
among selected islands (Np/k individuals in this case). Thus probability of the premature
convergence is reduced. Migration model of DE has control parameters as follows:

• number of independent subpopulations (islands),

• topology of islands interconnection,

• number of individuals migrating among islands,
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• number of DE generations before migration (length of epoch).

Settings of these parameters influence the efficiency and reliability of the global minimum
search.

3.1 Topologies of island model

Interconnections among islands in migration model provide possibility to increase the subpo-
pulations diversity and to decrease the time-demands of the search. Selection of topology in
island models influences quality of the search [3, 8]. In this paper we compare two topologies
of migration model with DE.

Interconnection of the first topology, named star, is shown in Figure 1. One of the subpopu-
lations is chosen as the major subpopulation denoted Q1. The star topology has interconnection
only between the major subpopulation Q1 and each of other subpopulations Qj (j = 2, . . . , k)
as shown in the figure. If migration criterion is achieved all the subpopulations are sorted with
respect to function values in ascending way. The sorted major subpopulation Q1 is divided into k
blocks. The best block remains in the major population Q1 and other blocks (2nd, 3th, . . . , kth)
are exchanged with the best block of corresponding subpopulation Q2, . . . , Qk.

 

Q(3) 

Q(4) 

Q(5) 

Q(6) Q(2) 

Q(1) 

    

subpopulations interconnection
k independent subpopulations

Figure 1: A star topology of migration model

The second topology of the migration model, named ring, is depicted in Figure 2. Opposite
to star topology, here are all subpopulations at the same hierarchical level. Each of independent
subpopulation Qi has only interconnection with two neighbours Qi−1 and Qi+1 as shown in the
figure. The Np/k best individuals of Qi−1 migrate to neighbour Qi and at the same time the
Np/k best individuals of Qi migrate to Qi+1 for i = 1, 2, ...k.

4 Test functions

Six scalable functions [4] were used as a benchmark: Rosenbrock function (unimodal, non-
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Figure 2: A ring topology of migration model

separable),

f(x) =
d−1∑
j=1

[
100(x2

j − xj+1)
2 + (1 − xj)

2
]
,

where xj ∈ [−2.048, 2.048], x∗ = (1, 1, . . . , 1), f(x∗) = 0.

Schwefel function (multimodal, separable),

f(x) = 418.98288727 d −
d∑

j=1

xj sin(
√
| xj |)

where xj ∈ [−500, 500], x∗ = (c, c, . . . , c), c
.
= 420.9687, f(x∗) .

= 0.

Because the next test functions in their standard form have the global minimum point in the
middle of the search domain, we use them in a shifted version as defined bellow. First DeJong

shifted function (uni-modal, separable),

f(x) =
d∑

j=1

(xj − oj)
2,

where xj ∈ [−5.12, 5.12], f(x∗) = 0, x∗ = o.

Ackley shifted function - (multimodal, separable),

f(x) = −20 exp

⎛
⎝−0.02

√√√√1

d

d∑
j=1

(xj − oj)2

⎞
⎠ − exp

(
1

d

d∑
j=1

cos 2π(xj − oj)

)
+ 20 + exp(1)

xj ∈ [−30, 30], f(x∗) = 0, x∗ = o.

Shifted Griewank function - multi-modal, non-separable,

f(x) =
d∑

j=1

(xj − oj)
2

4000
−

d∏
j=1

cos

(
(xj − oj)√

j

)
+ 1
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xj ∈ [−400, 400], f(x∗) = 0, x∗ = o.

Shifted Rastrigin function - multi-modal, separable,

f(x) = 10 d +
d∑

j=1

[
(xj − oj)

2 − 10 cos(2π(xj − oj))
]

xj ∈ [−5.12, 5.12], f(x∗) = 0, x∗ = o.

5 Experiments and results

In this study we compare six variants of DE algorithm that are labeled as shown in Table 1. In
adaptive debr18 algorithm compete 18 different combinations of DE control parameter settings,
F = 0.5, 0.8, 1, CR = 0, 0.5, 1 and strategies DE/rand/1/ and DE/best/2/ (3 × 3 × 2), in
adaptive b6e6rl compete 12 different combinations of DE control parameter settings, F =
0.5, 0.8, CR = 0, 0.5, 1 and strategy DE/randRL/1/ with binomial or exponential crossover
(2 × 3 × 2) [10].

Table 1: Variants of DE algorithm in tests

Variant of DE non-parallel star-topology ring-topology

debr18 debr18 debr18 star debr18 ring
b6e6rl1 b6e6rl b6e6rl star b6e6rl ring

These variants of adaptive DE algorithm were tested on six test functions given above for
problem dimension d = 5, 10, 30. The size of global population N and was set up as N = 10×d
and size of all the subpopulations Np = N/k. The parameter k, denoting number of subpopu-
lations, was set up as k = 5 and the number of migrating individuals was set up as mr = Np/k.
All algorithms were run one hundred times for four values of epoch parameter nde = 1, 3, 5, 7
and fifty times for four values nde = 10, 20, 30, 40. The parameters of DE competition were
set up as n0 = 2 and δ = 1/(5 H) where H is the number of competitive adaptive strategies
(H = 12 for b6e6rl and H = 18 for debr18).

The search process was stopped if the difference between the maximum and minimum
function value of the population (or one of the subpopulations) was great, in these experiments
it means fmax − fmin < 1× 10−7 or the number of function evaluations (fev) reached 20000×d.

The reliability R (percentage of successful runs) and number of the function evaluation were
compared. For easier comparison of performance of DE variants, a new integrated criterion
C was used in (1). Ratio d2/250 makes the C values approximately comparable for all the
dimensions of the tested problems (d = 5, 10, 30).

C =
R ∗ d2

fev ∗ 250
(1)

The values of C criterion of DE algorithm variant with the length of epoch providing the best
performance of parallel variants are presented in Table 2.
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Table 2: The best values of criterion C for each dimension and each problem

d problem C-best variant nde

Ackley 62 b6e6-star 10
Dejong1 137 b6e6-star 1

5 Griewank 34 b6e6-star 1
Rastrigin 75 b6e6-star 1
Rosenbrock 61 b6e6rl -
Schwefel 87 b6e6-star 1

Ackley 64 b6e6-ring 20, 30
Dejong1 134 b6e6-star 10

10 Griewank 42 b6e6-star 20
Rastrigin 70 b6e6-star 7
Rosenbrock 52 b6e6rl -
Schwefel 83 b6e6-star 10

Ackley 56 b6e6-ring 20
Dejong1 106 b6e6-ring 40

30 Griewank 80 b6e6-ring 40
Rastrigin 61 b6e6-star 30
Rosenbrock 38 b6e6-star 30
Schwefel 67 b6e6-star 40

The count of the best performance of DE variants in all tested problems together in depen-
dence of length of epoch (nde) is given in Table 3. The DE variants using debr18 have never
outperformed the others and that is why they do not appeared in the table.

Table 3: Summary of experimental results – counts of maximum C values over all six tested
DE variants and all six problems found for various length of epoch (nde).

d 5 10 30
nde 1 3 5 7 10 20 30 40

∑
1 3 5 7 10 20 30 40

∑
1 3 5 7 10 20 30 40

∑
total

b6e6rl 1 1 1 1 1 4 6 5 20 1 1 1 1 1 1 1 4 11 0 0 0 0 0 0 0 0 0 31
b6e6-star 5 5 5 5 5 2 0 1 28 5 4 3 5 4 4 4 1 30 6 6 5 5 5 4 4 4 39 97
b6e6-ring 0 0 0 0 1 0 0 0 1 0 1 2 0 1 1 1 1 7 0 0 1 1 1 3 2 3 11 19

6 Conclusion

Two adaptive variants of DE (b6e6rl and debr18 ) were compared experimentally in three types
of topology (non-parallel, star, and ring) on six benchmark problems, each problem at three
levels of dimension. Experimental results show:

• Adaptive variant b6e6rl outperformed the debr18 in all the tested problems.
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• Benefit of parallelism is greater in the problems of higher dimension.

• Performance of parallel variants depends on the type of topology and on the frequency
of migration given by the control parameter nde. The star topology in parallel variants
gives better results more frequently than the ring topology.

• Parallel versions with greater length of epoch perform better for the problems of higher
dimension.

Next research will be focused on the study of other types of ring topology and on the different
kinds of migration.
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COMPUTATION OF BIORTHOGONALIZATION MATRICES
FOR SPLINE-WAVELET BASES ON THE INTERVAL

ČERNÁ Dana, (CZ), FINĚK Václav, (CZ)

Abstract. The adaptation of spline-wavelet bases to the interval requires the computation
of a biorthogonalization matrix, which is the matrix of inner products of primal scaling
functions and generators of a dual space. Due to the low Sobolev regularity of generators of
a dual space we do not obtain the sufficiently accurate entries of the biorthogonalization
matrices directly by classical quadratures. In this paper, we propose a method which
enables to compute the biorthogonalization matrices exactly up to the round off errors.
This method includes the computation of the integrals of the product of a polynomial and
a refinable function over a dyadic interval.
Key words. Spline, wavelet, interval, refinable function, integral, biorthogonalization.

Mathematics Subject Classification. Primary 65T60, 65D30; Secondary 65D07.

1 Introduction

Wavelets were first constructed on the whole real line, then they were adapted to the interval
and the n-dimensional cube and nowadays wavelet bases are available for fairly general domains
and for a wide range of applications. The construction of a wavelet basis on a general domain
usually starts with the adaptation of a wavelet basis on the real line to the interval. Thus,
the properties of the employed wavelet basis on the interval are crucial for the properties
of the resulting bases on a general domain. Biorthogonal spline-wavelet bases on the unit
interval were constructed in [7]. The disadvantage of them is their bad condition which causes
problems in practical applications. Some modifications which lead to better conditioned bases
were proposed in [8, 12]. Our recent construction in [4] leads to optimally conditioned wavelet
bases up to the order four. The adaptation of wavelet bases on the real line to the interval
requires the computation of biorthogonalization matrices, i.e. the matrices of inner products
of primal scaling functions and generators of a dual space. These generators are derived from
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the dual scaling functions on the real line. However the dual scaling functions have typically a
low Sobolev regularity. Thus the generators of a dual space also have a low Sobolev regularity.
Therefore, we do not obtain the sufficiently accurate entries of the biorthogonalization matrices
directly by classical quadratures. In this paper, we propose a method which enables to compute
the biorthogonalization matrices precisely up to the round off errors. The method requires the
knowledge of the integrals of the product of a polynomial and the scaling function over a dyadic
interval. We also propose a method for the computation of these integrals for a general refinable
function with compact support.

First, we shortly describe the concept of a wavelet basis for L2 (R). Let 〈·, ·〉 be an inner
product and ‖·‖ be a norm in L2 (R). Let l2 be a space of v := {vj,k}j,k∈Z

satisfying

‖v‖l2 :=
∑
j,k∈Z

|vj,k|2 < ∞. (1)

Definition 1.1 A function ψ ∈ L2 (R) is called a wavelet if the family Ψ := {ψj,k}j,k∈Z
, where

ψj,k := 2j/2ψ (2j · −k), is a Riesz basis in L2 (R), i.e. Ψ is complete in L2 (R) and there exist
constants c, C ∈ (0,∞) such that

c ‖v‖l2 ≤
∥∥∥∥∥

∑
j,k∈Z

vj,kψj,k

∥∥∥∥∥ ≤ C ‖v‖l2 , v ∈ l2. (2)

The functions ψj,k are also called wavelets.

Let Vj be the closure of the span of the set {ψl,k, l ≤ j, k ∈ Z} and let us suppose that there
exists a function φ such that Φj := {φj,k, k ∈ Z}, φj,k := φ (2j · −k), is a Riesz basis of Vj.
Functions φ and φj,k are called scaling functions.

Then there exists a sequence {hk}k∈Z
such that

φ (x) =
∑
k∈Z

hkφ (2x − k) for all x ∈ R. (3)

This equation is called a refinement or a scaling equation and the coefficients hk are known as
scaling or refinement coefficients.

By the Riesz representation theorem, there exists a unique family Ψ̃ = {ψj,k}j,k∈Z
biorthog-

onal to Ψ, i.e. 〈
ψi,k, ψ̃j,l

〉
= δi,jδk,l, i, j, k, l ∈ Z, (4)

where δi,j denotes a Kronecker delta. The family Ψ̃ is also a Riesz basis for L2 (R). The basis
Ψ is called a primal wavelet basis, Ψ̃ is called a dual wavelet basis. Dual scaling basis Φ̃, dual
scaling functions φ̃ and φ̃j,k, and dual refinement coefficients h̃k are defined in a similar way.

We define wavelet coefficients as

gn = (−1)n h̃1−n, g̃n = (−1)n h1−n. (5)

Wavelets are then given by

ψ (x) =
∑
n∈Z

gnφ (2x − n) , ψ̃ (x) =
∑
n∈Z

g̃nφ̃ (2x − n) for all x ∈ R. (6)
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We say that the wavelet ψ has n vanishing moments, if

∫
R

xlφ (x) = 0, for l = 0, . . . , n − 1. (7)

It is equivalent with the polynomial exactness of order n of the dual scaling functions. It means
that any polynomial up to order n − 1 lies in Ṽj.

The concept of wavelet bases on the interval is similar. Some scaling functions and wavelets
on the interval are just the restrictions of scaling functions and wavelets on the real line, only
at the boundaries special functions have to be constructed, see Section 2.

In this paper, we focus on scaling functions and wavelets from [5]. Here the primal scaling
functions are B-splines of order N and dual scaling functions are constructed such that the
primal wavelet has Ñ vanishing moments. It implies that the polynomial exactness of primal
scaling functions is N and the polynomial exactness of dual scaling functions is Ñ . Figure 1
shows the graphs of several scaling functions denoted by Nφ and N,Ñ φ̃ and wavelets denoted by

N,Ñψ and N,Ñ ψ̃.
Recall that the Sobolev regularity γ of a function f is defined by

γ := sup {s : f ∈ Hs} , (8)

where Hs denotes the Sobolev space. It is known that the Sobolev regularity of the primal
scaling function φ is γ = N − 1

2
. The Sobolev regularity of the dual scaling functions from [5]

is shown in Table 1.

Table 1: Sobolev regularity γ̃ of dual scaling functions, N and Ñ denotes the polynomial
exactness of primal and dual scaling functions, respectively.

N Ñ γ̃ N Ñ γ̃ N Ñ γ̃

2 2 0.441 3 3 0.175 4 6 0.344
2 4 1.175 3 5 0.793 4 8 0.862
2 6 1.793 3 7 1.344 4 10 1.363

2 Optimized construction of spline-wavelet bases on the interval

In this section, we briefly review the construction of a spline-wavelet basis on the interval
from [3, 4]. The primal scaling bases will be the same as bases designed in [2], because they
are known to be well-conditioned. Let N be the desired order of polynomial exactness of the
primal scaling basis and let tj = (tjk)

2j+N−1
k=−N+1 be the Schoenberg sequence of knots:

tjk = 0 for k = −N + 1, . . . , 0,

tjk =
k

2j
for k = 1, . . . 2j − 1,

tjk = 1 for k = 2j, . . . , 2j + N − 1.
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Figure 1: Scaling functions and wavelets derived from B-splines [5].
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The corresponding B-splines of order N are defined by

Bj
k,N (x) :=

(
tjk+N − tjk

) [
tjk, . . . , t

j
k+N

]
t
(t − x)N−1

+ , x ∈ [0, 1] , (9)

where (x)+ := max {0, x} and [t1, . . . tN ]t f is the N -th divided difference of f . The set Φj of
primal scaling functions is then simply defined as

φj,k = 2j/2Bj
k,N , k = −N + 1, . . . , 2j − 1, j ≥ 0. (10)

The desired property of the dual scaling basis Φ̃ is biorthogonality to Φ and the polynomial
exactness of order Ñ . Let φ̃ be a dual scaling function which was designed in [5] and which is
shifted so that its support is [−Ñ + 1, N + Ñ − 1]. In this case Ñ ≥ N and Ñ + N must be an
even number. We define inner scaling functions as translations and dilations of φ̃:

θj,k = 2j/2φ̃
(
2j · −k

)
, k = Ñ − 1, . . . 2j − N − Ñ + 1. (11)

There will be two types of basis functions at each boundary. Basis functions of the first
type are defined to preserve the polynomial exactness:

θj,k = 2j/2

Ñ−2∑
l=−N−Ñ+2

〈
pÑ−1

k+N−1, φ (· − l)
〉

φ̃
(
2j · −l

) |[0,1], k = 1 − N, . . . , Ñ − N.

Here pÑ−1
0 , . . . , pÑ−1

Ñ−1
is a basis of the space of all algebraic polynomials on [0, 1] of degree less

or equal to Ñ − 1. It can be shown [4] that the resulting dual scaling basis Φ̃ does not depend
on the choice of a polynomial basis. The basis functions of the second type are defined as

θj,k = 2
j+1
2

N+Ñ−1∑
l=Ñ−1−2k

h̃lφ̃
(
2j+1 · −2k − l

) |[0,1], k = Ñ − N + 1, . . . , Ñ − 2, (12)

where h̃l are scaling coefficients corresponding to φ̃.

The boundary functions at the right boundary are defined to be symmetrical with the left
boundary functions:

θj,k = θj,2j−N+1−k (1 − ·) , k = 2j − N − Ñ + 2, . . . , 2j − 1. (13)

Since the set Θj := {θj,k : k = −3, . . . , 2j − 1} is not biorthogonal to Φj, we derive a new

set Φ̃j from Θj by biorthogonalization. Let Γj = (〈φj,k, θj,l〉)2j−1
j,l=−N+1, then viewing Φ̃j and Θj

as column vectors we define

Φ̃j := Γ−T
j Θj. (14)

Since the construction of the corresponding wavelets is long and technical we can not provide
it here. A detailed description can be found in [4].
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3 Computation of biorthogonalization matrices

As already mentioned, due to the low Sobolev regularity of the function θj,k it can be a problem
to compute the matrix Γj by quadrature rules. Fortunately, we are able to compute the matrix
Γj exactly up to the round off errors. It is easy to verify that the matrix Γj has the structure

Γj =

⎛
⎝ΓL

Ij

ΓR

⎞
⎠ , (15)

where the matrices ΓL and ΓR does not depend on j and Ij is the identity matrix of the size
2j − N + 1. First, we compute ΓL. For k = 1 − N, . . . , Ñ − 2 and l = 1 − N, . . . , Ñ − N we
have

〈φj,k, θj,l〉 =
Ñ−2∑

m=−N−Ñ+2

Ñ−1∑
n=0

cl,n 〈(·)n , φ (· − m)〉
〈
φ (· − k) , φ̃ (· − m)

〉
, (16)

where cl,n are coefficients of polynomials pÑ−1
l in (2). The function φ is piecewise polynomial and

φ̃ is refinable, the computation of integrals of product of a polynomial and a refinable function
will be proposed in the next section. By using the refinement equation (3), we easily obtain the
relations for the computation of the remaining entries of ΓL. We have for k = −N + 1, . . . ,−1,
l = Ñ − N, . . . , Ñ − 2,

〈φj,k, θj,l〉 =
N+Ñ−1∑

m=Ñ−1−2l

h̃m

〈
φ0,k, φ̃ (· − 2k − m)

〉
, (17)

and for k = 0, . . . , Ñ − 2, l = Ñ − N, . . . , Ñ − 2,

〈φj,k, θj,l〉 = 2−1

N+Ñ−1∑
m=Ñ−1−2l

h2k−2l+mh̃m. (18)

Since the boundary functions at the right boundary are defined to be symmetrical with the left
boundary functions, the matrix ΓR is obtained from ΓL by reversing the ordering of rows and
columns.

4 Computation of the moments of scaling functions

In applications one often needs to compute the integrals involving scaling functions or wavelets.
By the wavelet equation (6), the integrals of a product of some function and a wavelet can be
computed as a linear combination of integrals of product of the function and scaling functions.
Therefore, we consider only the integrals involving scaling functions. Since many types of
scaling functions have a low Sobolev regularity, the classical quadratures such as the Simpson
rule are not useful in this case. Therefore, other quadratures were designed in [1, 9, 14]. They
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require the knowledge of the precise values of scaling moments, that means the integrals of the
form

M i
c,d :=

∫ d

c

xiφ (x) dx, (19)

where i = 0, . . . ,M for some given M and φ is a refinable function. If supp φ ⊂ 〈c, d〉, then
Mi := M i

c,d can be simply computed by the reccurence formula

Mi :=

∫ ∞

−∞
xiφ (x) dx =

1

2i+1 − 2

i∑
l=1

∑
n∈Z

(
i

l

)
hnn

i−lMl. (20)

If supp φ is not contained in [c, d], then the computation of M i
c,d is more difficult. The method

of computation of precise values of M i
c,d in the case that supp φ is not a subset of [c, d], c, d ∈ N,

has been proposed in [10, 11] for the Daubechies wavelets and in [9] for more general wavelets.
We should also mention the method for the computation of biorthogonalization matrices in
[13]. This method enables to find the biorthogonalization matrices as a solution of the system
of linear algebraic equations, but it can be used only for wavelet bases with nested boundary
functions, which is not our case. In this chapter we propose a novel method for the computation
of the moments M i

c,d for a refinable function φ with compact support and any dyadic points
c, d. The advantage of our method is that it leads to solving the system of linear algebraic
equation of much less size than the system in [9].

4.1 Computation of antiderivatives of scaling functions

Integrating the refinement equation (3), we find that an antiderivative of a scaling function
Φ[1] (x) =

∫ x

−∞ φ (s) ds satisfies the refinement equation

Φ[1] (x) =
∑
k∈Z

hk

2
Φ[1] (2x − k) , x ∈ R. (21)

Note that the function Φ[1] is generally not compactly supported. Assuming that supp φ = [a, b],
the function Φ[1] is vanishing on (−∞, a] and Φ[1] is constant on [b,∞). Due to the non-
compactness of the support we could not find exact values of Φ[1] at integer points by solving
an eigenvalue problem as in [6]. However, we show that we are able to find these values as a
solution of a system of linear algebraic equations.

Lemma 4.1 Let φ be a refinable function with compact support [a, b], where a, b ∈ Z, and let
φ be normalized as

∫
R

φ (x) dx = 1. Then the values of Φ[1] at integers are given by

Φ[1] (k) = 0, k ≤ a, (22)

Φ[1] (k) =
b−1∑
l=a

h2k−l

2
Φ[1] (l) +

∞∑
l=b

h2k−l

2
, a < k < b, k ∈ Z,

Φ[1] (k) = 1, b ≤ k.
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Proof. It is clear that Φ[1] (k) = 0 for k ≤ a and Φ[1] (k) =
∫ b

a
φ (x) dx = 1 for k ≥ b. From the

refinement equation (21) it follows that

Φ[1] (k) =
∑
l∈Z

hl

2
Φ[1] (2k − l) =

∑
l∈Z

h2k−l

2
Φ[1] (l) (23)

=
b−1∑
l=a

h2k−l

2
Φ[1] (l) +

∞∑
l=b

h2k−l

2
, a < k < b, k ∈ Z.

Hence, we can find precise values of Φ[1] at integers solving the system (23) and then applying
the refinement equation J times, we obtain a precise value of Φ[1] at any dyadic point k

2J , k ∈ Z.
For evaluating integrals of refinable functions we will also need Φ[n+1] (x) :=

∫ x

−∞ Φ[n] (s) ds.
Integrating (3), we obtain the refinement equation:

Φ[n] (x) =
∑
k∈Z

hk

2n
Φ[n] (2x − k) . (24)

In the next theorem we show that we are able to find the values of Φ[n] at integers and then
at any dyadic point.

Theorem 4.2 Let φ be a refinable function with compact support [a, b], a, b ∈ Z, and φ be
normalized by

∫
R

φ (x) dx = 1. Then the following relations hold:

Φ[n] (k) = 0, k ≤ a, (25)

Φ[n] (k) =
b−1∑
l=a

h2k−l

2n
Φ[n] (l) +

∞∑
l=b

h2k−l

2n

n∑
m=1

Φ[m] (b)
(l − b)n−m

(n − m)!
, a < k < b, k ∈ Z,

Φ[n] (b) =
1

2n − 2

n−1∑
m=1

Φ[m] (b)

(n − m)!

b∑
l=a

hl (b − l)n−m ,

Φ[n] (k) =
n∑

m=1

Φ[m] (b)
(k − b)n−m

(n − m)!
, b ≤ k.

Proof. We prove this theorem by induction. For n = 1 relations (25) hold by Lemma 4.1.
Now let us suppose that the above system of equations hold for k = 1, . . . , n − 1. Then

Φ[n] (b) =
∑
m∈Z

h2b−m

2n
Φ[n] (m) =

∑
m∈Z

h2b−m

2n

(
Φ[n] (b) +

∫ m

b

Φ[n−1] (x) dx

)
(26)

=
∑
m∈Z

h2b−m

2n

(
Φ[n] (b) +

∫ m

b

n−1∑
l=1

Φ[l] (b)
(x − b)n−1−l

(n − 1 − l)!
dx

)

=
∑
m∈Z

h2b−m

2n
Φ[n] (b) +

∑
m∈Z

h2b−m

2n

n−1∑
l=1

Φ[l] (b)
(m − b)n−l

(n − l)!
.
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Integrating (3), we obtain
∑

m∈Z
hm = 2. Thus

Φ[n] (b) =
1

2n − 2

n−1∑
m=1

Φ[m] (b)

(n − m)!

b∑
l=a

hl (b − l)n−m . (27)

For k ≥ b we have

Φ[n] (k) =

∫ b

a

Φ[n−1] (x) dx +

∫ k

b

Φ[n−1] (x) dx (28)

= Φ[n] (b) +

∫ k

b

n−1∑
m=1

Φ[m] (b)
(x − b)n−1−m

(n − 1 − m)!
dx

= Φ[n] (b) +
n−1∑
m=1

Φ[m] (b)
(k − b)n−m

(n − m)!

=
n∑

m=1

Φ[m] (b)
(k − b)n−m

(n − m)!
.

Now using the refinement equation (24), we obtain for k ∈ Z, a < k < b,

Φ[n] (k) =
b∑

l=a

hl

2n
Φ[n] (2k − l) =

∑
l∈Z

h2k−l

2n
Φ[n] (l) (29)

=
b−1∑
l=a

h2k−l

2n
Φ[n] (l) +

∞∑
l=b

h2k−l

2n

n∑
m=1

Φ[m] (b)
(l − b)n−m

(n − m)!
.

Note that the size of the system of equations depends linearly on N and Ñ . The method
in [9] leads to solving the systems of the size depending quadratically on N and Ñ .

4.2 Evaluation of moments

Now we can evaluate moments M i
c,d by the formula from the following theorem.

Theorem 4.3 Let φ be a refinable function and let Φ[n] be defined as above. Then

M i
c,d =

∫ d

c

xiφ (x) dx =
i∑

l=0

(−1)l i!

(i − l)!

(
di−lΦ[l+1] (d) − ci−lΦ[l+1] (c)

)
. (30)
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Proof. We prove Theorem 4.3 by induction. Clearly for i = 0 the relation (30) is valid. Let
us now suppose that (30) holds for 0, . . . , i. Using integration by parts, we obtain

∫ d

c

xi+1φ (x) dx =
[
xi+1Φ[1] (x)

]d

c
− (i + 1)

∫ d

c

xiΦ[1] (x) dx (31)

=
[
xi+1Φ[1] (x)

]d

c
− (i + 1)

i∑
l=0

(−1)l i!

(i − l)!

(
di−lΦ[l+2] (d) − ci−lΦ[l+2] (c)

)

=
[
xi+1Φ[1] (x)

]d

c
− (i + 1)

i+1∑
l=1

(−1)l−1 i!

(i − l + 1)!

(
di+1−lΦ[l+1] (d) − ci+1−lΦ[l+1] (c)

)

=
i+1∑
l=0

(−1)l (i + 1)!

(i + 1 − l)!

(
di+1−lΦ[l+1] (d) − ci+1−lΦ[l+1] (c)

)
,

which proves the assertion.
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A PRIORI ERROR ANALYSIS OF BDF-DG METHOD
FOR NONLINEAR CONVECTION-DIFFUSION EQUATION

HOZMAN Jǐŕı, (CZ)

Abstract. We deal with a scalar nonstationary convection-diffusion equation with non-
linear convective as well as diffusive terms. We present a discretization of this problem by
a combination of the discontinuous Galerkin method for the space semi-discretization and
the backward Euler method for the time discretization. Moreover, under some assumptions
on the nonlinear terms, domain partitions and the regularity of the exact solution, we in-
troduce a priori error estimates in the discrete L∞(L2)-norm and L2(H1)-seminorm. A set
of numerical experiments verifying the theoretical results via evaluating the experimental
orders of convergence with respect to mesh size and time step is presented.

Key words and phrases. Discontinuous Galerkin method, convection-diffusion equa-
tion, backward Euler method, a priori error estimates, experimental order of convergence.

Mathematics Subject Classification. 65M60, 65M15, 65M12, 65L06.

1 Introduction

Our aim is to develop a sufficiently robust, accurate and efficient numerical method for the
solution of the viscous compressible flow problems. Due to the lack of the theory concerning
an existence of the solution of the Navier-Stokes equations we consider the model problem
represented by a scalar unsteady convection–diffusion equation with nonlinear convection as
well as diffusion.

Among a wide class of numerical methods, the discontinuous Galerkin method (DG mehod)
seems to be a promising technique for the solution of convection-diffusion problems. This
DG technique is based on the idea to approximate the solution of an initial-boundary value
problem by piecewise polynomial functions over a finite element mesh, without any requirement
on interelement continuity, for a survey, see, e.g., [2].
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Within this paper we first consider the space semi-discretization of the model problem with
the aid of three variants of DG method for stabilization of the diffusion term, see [1]. Then the
resulting semi-discrete scheme is discretized in time by semi-implicit approach via the backward
difference formula (BDF), the detailed treatment can be found in [6].

This article represents a generalization of research papers [3], [4], [5], [6], where the linear
diffusion term was considered. Moreover, let us cite works [7], [9], where simpler forms of
nonlinear diffusion were analyzed.

2 Problem formulation

We consider the following unsteady nonlinear convection–diffusion problem: Let Ω ⊂ IRd,
d = 2, 3, be a bounded open polygonal (if d = 2) or polyhedral (if d = 3) domain with
Lipschitz-continuous boundary ∂Ω, and T > 0. We seek a function u : QT = Ω × (0, T ) → IR
such that

(a)
∂u

∂t
+ ∇ · �f(u) = div(IK(u)∇u) + g in QT , (1)

(b) u
∣∣
∂Ω×(0,T )

= uD, (2)

(c) u(x, 0) = u0(x), x ∈ Ω, (3)

where g : QT → IR, uD : ∂Ω × (0, T ) → IR, u0 : Ω → IR are given functions, the vector-

valued function �f = (f1, . . . , fd) : IR → IRd represents convective terms and the regular matrix
IK(u) ∈ IRd,d (even nonsymmetric) plays a role of nonlinear anisotropic diffusive coefficients.

We generalize the approach from [9], where a nonlinear diffusion is studied in form
−div(β(u)∇u) with a suitable scalar function β(u). Moreover, if IK(u) = εII, where ε is a
positive constant and II ∈ IRd,d the unit matrix, then the problem (1) – (3) reduces to the
equation with linear diffusion considered in [6].

The initial boundary value problem (1) – (3) is equipped with the initial condition (3) and
the Dirichlet boundary condition (2) prescribed on the whole boundary but it is also possible
to consider mixed Dirichlet–Neumann boundary conditions.

In what follows, we shall assume that the continuous problem (1) – (3) has a unique suffi-
ciently regular solution u. Its regularity, used in the theory of error estimates, will be specified
later in Section 4.

Further, we shall introduce standard notation for function spaces and their norms ‖ · ‖ and
seminorms | · |. Let k ≥ 0 be a integer and p ∈ [1,∞]. We use the well-known Lebesgue and
Sobolev spaces Lp(Ω), Hk(Ω), Bochner spaces Lp(0, T ; X) of functions defined in (0, T) with
values in Banach space X and the spaces Ck([0, T ]; X) of k-times continuously differentiable
mappings of the interval [0, T] with values in X.
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3 Discretization

Let Th (h > 0) be a family of the partitions of the closure Ω of the domain Ω into a finite
number of closed mutually disjoint polygons (if d = 2) or polyhedra (if d = 3) K. We call
Th = {K}K∈Th

a triangulation of Ω and do not require the conforming properties from the finite
element method, i.e., more general elements (even non-convex) and the so-called hanging nodes
are allowed. The symbols hK and ρK stand for the diameter of K and radius of the largest
d-dimensional ball inscribed into K, respectively. By Fh we denote the smallest possible set of
all open (d − 1)-dimensional faces (open edges when d = 2 or open faces when d = 3) of all
elements K ∈ Th. Further, we label by F I

h the set of all Γ ∈ Fh that are contained in Ω (inner
faces) and by FD

h the set of all Γ ∈ Fh that Γ ⊂ ∂Ω (Dirichlet faces). Obviously, Fh = F I
h ∪FD

h .
Finally, for each Γ ∈ Fh, we define a unit normal vector �nΓ. We assume that �nΓ, Γ ⊂ ∂Ω, has
the same orientation as the outer normal of ∂Ω. For �nΓ, Γ ∈ F I

h , the orientation is arbitrary
but fixed for each edge.

DG method allows to treat with different polynomial degrees over elements. Therefore, we
assign a local Sobolev index sK ∈ IN and local polynomial degree pK ∈ IN to each K ∈ Th.
Then we set the vectors

s ≡ {sK , K ∈ Th}, p ≡ {pK , K ∈ Th}. (4)

Over the triangulation Th we define the so-called broken Sobolev space corresponding to the
vector s

Hs(Ω, Th) ≡ {v; v|K ∈ HsK (K) ∀K ∈ Th} (5)

with the seminorm |v|Hs(Ω,Th) ≡
(∑

K∈Th
|v|2HsK (K)

)1/2

, where | · |HsK (K) denotes the standard

seminorm on the Sobolev space HsK (K), K ∈ Th. Moreover, the approximate solution is
sought in a space of discontinuous piecewise polynomial functions associated with the vector p
by

Shp ≡ Shp(Ω, Th) ≡ {v; v ∈ L2(Ω), v|K ∈ PpK
(K) ∀K ∈ Th}, (6)

where PpK
(K) denotes the space of all polynomials of degree ≤ pK on K, K ∈ Th. In order to

derive a priori hp error estimates we additionally assume that there exists a constant CP ≥ 1
such that pK/pK′ ≤ CP ∀K,K ′ ∈ Th sharing a common face.

For each Γ ∈ F I
h there exist two neighbouring elements Kp, Kn ∈ Th such that Γ ⊂ Kp∩Kn.

We use a convention that Kn lies in the direction of �nΓ and Kp in the opposite direction

of �nΓ. For v ∈ H1(Ω, Th), we introduce notation: v|(p)
Γ = trace of v|Kp on Γ, and v|(n)

Γ =
trace of v|Kn on Γ, for traces of v on edge Γ, which are different in general. Moreover,

[v]Γ = v
∣∣(p)

Γ
− v

∣∣(n)

Γ
, 〈v〉Γ =

1

2

(
v
∣∣(p)

Γ
+ v

∣∣(n)

Γ

)
, (7)

denote the jump and mean value of function v over the edge Γ, respectively. For Γ ∈ FD
h

there exists an element Kp ∈ Th such that Γ ⊂ Kp ∩ ∂Ω. Then for v ∈ Shp, we put: v|(p)
Γ =

trace of v|Kp on Γ, and 〈v〉Γ = [v]Γ = v|(p)
Γ .

volume 4 (2011), number 2 371



Aplimat - Journal of Applied Mathematics

3.1 Semi-discrete DG scheme

Now, we recall the space semi-discrete DG scheme presented in [8]. The crucial item of the
DG formulation is the treatment of the nonlinear diffusive term. In order to replace the inter-
element continuity, we add some stabilization and penalty terms into formulation of the discrete
problem. A particular attention should be also paid to the nonlinear convective term, where
we employ the concept of a numerical flux, known from the finite volume method.

Therefore, we say that uh ∈ C1(0, T ; Shp) is the semi-discrete solution of problem (1) – (3)
if (uh(0), vh) = (u0, vh) ∀ vh ∈ Shp and(

∂uh(t)

∂t
, vh

)
+ bh(uh(t), vh) + aΘ

h (uh(t), vh) + αJσ
h (uh(t), vh) = lΘh (uh(t), vh) (t) (8)

∀ vh ∈ Shp, ∀ t ∈ (0, T ),

where (·, ·) denotes the L2-scalar product and

aΘ
h (u, v) =

∑
K∈Th

∫
K

IK(u)∇u · ∇v dx −
∑
Γ∈Fh

∫
Γ

〈IK(u)∇u · �n〉Γ [v]Γ dS

+ Θ
∑
Γ∈Fh

∫
Γ

〈IK(u)T ∇v · �n〉Γ [u]Γ dS, (9)

bh(u, v) = −
∑

K∈Th

∫
K

�f(u) · ∇v dx +
∑
Γ∈Fh

∫
Γ

H(u|(p)
Γ , u|(n)

Γ , �nΓ) [v]Γ dS, (10)

Jσ
h (u, v) =

∑
Γ∈Fh

∫
Γ

σ[u]Γ [v]Γ dS, (11)

lΘh (u, v)(t) =

∫
Ω

g(t) v dx +
∑

Γ∈FD
h

∫
Γ

(
Θ IK(u)T ∇v · �nΓ uD(t) + σ uD(t) v

)
dS. (12)

According to value of parameter Θ, we speak of symmetric (SIPG, Θ = −1), incomplete
(IIPG, Θ = 0) or nonsymmetric (NIPG, Θ = 1) variants of stabilization of DG method, i.e., we
generally consider three variants of the diffusion form aΘ

h and right-hand side form lΘh . Penalty
terms are represented by Jσ

h and the penalty parameter function σ in (11) is defined by

σ|Γ =
CW

d(Γ)
with d(Γ) =

⎧⎨
⎩

min
(
hKp/p

2
Kp

, hKn/p2
Kn

)
, Γ ∈ F I

h ,

hKp/p
2
Kp

, Γ ∈ FD
h ,

(13)

where CW > 0 is a suitable constant depending on the used variant of scheme and on the degree
of polynomial approximation. The value of multiplicative constant α before the penalty form
Jσ

h depends on the properties of matrix IK and will be specified in Section 4. The symbol IK(·)T

stands for the transpose of matrix IK(·). As for the convective form bh we treat boundary terms
similarly as in the finite volume method with the aid of numerical flux H(u, v, �n).

The problem (8) represents a system of ordinary differential equations (ODEs) for uh(t)
which has to be discretized in time by a suitable method. Since these ODEs belong to the class
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of stiff problems it is advantageous to use a semi-implicit approach which is introduced in the
following subsection.

3.2 Semi-implicit BDF-DG scheme

The proposed approach, sidetracking the time step restriction typical for explicit schemes as well
as the nonlinearity of the corresponding forms unfavourable for explicit schemes, is generally
based on a suitable linearization of nonlinear forms. The linear terms are treated implicitly
whereas the nonlinear ones explicitly which leads to a linear algebraic problem at each time
step.

In the case of the scalar convection-diffusion problem (1) – (3), it is able to linearize
only the diffusion form aΘ

h (u, ·) due to its special form of the considered nonlinear diffusion
−div

(
IK(u)∇u

)
. On the other hand, the nonlinearity appearing in the form bh(u, ·) and the

used numerical flux (29) do not allow to linearize form bh in general that is why it has to be
treated explicitly.

Now based on (9), for ū, u, v ∈ Hs(Ω, Th) we define the linearized diffusion form

aΘ
hL(ū, u, v) =

∑
K∈Th

∫
K

IK(ū)∇u · ∇v dx −
∑
Γ∈Fh

∫
Γ

〈IK(ū)∇u · �n〉Γ [v]Γ dS

+ Θ
∑
Γ∈Fh

∫
Γ

〈IK(ū)T ∇v · �n〉Γ [u]Γ dS (14)

which is linear with respect to its second and third components. Moreover it is consistent with
aΘ

h (·, ·) by
aΘ

h (u, v) = aΘ
hL(u, u, v) ∀ u, v ∈ Hs(Ω, Th). (15)

In order to obtain a sufficiently accurate approximation with respect to the time coordinate
we use the so-called BDF scheme for the solution of ODE problem (8). Moreover, for the
nonlinear parts of aΘ

hL(·, ·, ·) we employ a suitable explicit higher order extrapolation which
preserve a given order of accuracy and does not destroy the linearity of the problem at each
time level, for more details see [6] and [8].

Let 0 = t0 < t1 < · · · < tr = T be a partition of the interval [0, T ] and τk ≡ tk+1 −
tk, k = 0, 1, . . . , r − 1. We define the approximate solution of problem (1)-(3) as functions
uk

h ≈ uh(tk), t ∈ [0, T ], k = 1, . . . , r, satisfying the conditions

(a) uk+1
h ∈ Shp,

(b)
1

τk

(
n∑

l=0

βl u
k+1−l
h , vh

)
+ aΘ

hL

(
n∑

l=1

γl u
k+1−l
h , uk+1

h , vh

)
+ bh

(
n∑

l=1

γl u
k+1−l
h , vh

)
(16)

+αJσ
h

(
uk+1

h , vh

)
= lΘh

(
n∑

l=1

γl u
k+1−l
h , vh

)
(tk+1) ∀ vh ∈ Shp, k = n − 1, . . . , r − 1,

(c) u0
h is Shp-approximation of u0,

(d) ul
h ∈ Shp, l = 1, . . . , n − 1 are given by a suitable one-step method,
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where n ≥ 1 is the degree of the BDF scheme and the coefficients βl, l = 0, . . . , n and γl, l =
1, . . . , n depend on time steps τk−l, l = 0, . . . , n, in general. We call this approach the BDF-DG
method.

The discrete problem (16), (a) – (d) is equivalent to a system of linear algebraic equations
for each tk+n ∈ [0, T ], which can be solved by a suitable solver, e.g. GMRES.

4 A priori error analysis

Our goal is now to analyze the error estimates of the approximate solution uk
h, k = 1, 2, . . . , r,

obtained by the semi-implicit BDF-DG method (16), (b) of the first order (i.e. n = 1), which
really represents the semi-implicit linearization of the backward Euler method. The basic frame-
work refers to [4], [6] and [9] with some generalization for considered problem.

In order to carry out the error analysis we need to specify the additional assumptions on
mesh, numerical flux, nonlinear diffusion term and regularity of the exact solution u of the
continuous problem (1)–(3). Therefore, we assume that

(T) The triangulations Th, h ∈ (0, h0), h0 > 0, consist of a finite number of closed
d-dimensional simplexes and/or parallelograms K with mutually disjoint interiors. These
elements are locally quasi-uniform, i.e., there exists a constant CQ > 0 such that hKp ≤
CQ hKn ∀Kp, Kn ∈ Th sharing face Γ ∈ F I

h , and shape-regular, i.e., there exists a constant
CS > 0 such that hK ≤ CS ρK ∀K ∈ Th.

(H) We shall assume that the numerical flux H(u, v, �n) is
(a) Lipschitz-continuous with respect to u, v, i.e.,

|H(u, v, �n) − H(u∗, v∗, �n)| ≤ CH(|u − u∗| + |v − v∗|) ∀u, v, u∗, v∗ ∈ IR, ∀ �n ∈ IRd, (17)

(b) consistent: H(u, u, �n) = �f(u) · �n ∀u ∈ IR, ∀�n ∈ IRd,

(c) conservative: H(u, v, �n) = −H(v, u,−�n) ∀u, v ∈ IR, ∀�n ∈ IRd.

(D) The diffusive matrix IK(v) = {kij(v)}d
i,j=1, kij(v) : IR → IR, satisfies

(a) boundedness : ‖IK(v)‖∞ ≤ CU and ‖IK(v)T‖∞ ≤ CU ∀ v ∈ IR,

(b) Lipschitz-continuity : ‖IK(v1) − IK(v2)‖∞ ≤ CL|v1 − v2| ∀ v1, v2 ∈ IR, (18)

(c) positive definiteness : zT IK(v)z ≥ α‖z‖2, α > 0, ∀ v ∈ IR, ∀ z ∈ IRd,

where ‖ · ‖∞ represents the l∞-matrix norm, i.e., ‖IK‖∞ = max
1≤i≤n

∑n
j=1 |kij|.

(R) The weak solution u is sufficiently regular, namely

(a) u ∈ L∞(0, T ; H s̄(Ω)),
∂u

∂t
∈ L∞(0, T ; H s̄(Ω)),

∂2u

∂t2
∈ L∞(0, T ; L2(Ω)), (19)

(b) ‖∇u(t)‖L∞(Ω) ≤ CD for a.a. t ∈ (0, T ),

where s̄ = max{sK , sK ∈ s} ≥ 2.
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In what follows, for simplicity, we consider a uniform partition tk = kτ, k = 0, 1, . . . , r, of
the time interval [0, T ] with time step τ = T/r, where r > 1 is an integer. Let ek

h = uk
h − uk,

k = 0, . . . , r, be the discretization error and ||| · ||| ≡
(
| · |2H1(Ω,Th) + Jσ

h (·, ·)
)1/2

. We set

‖e‖2
h,τ,L∞(L2) = max

k=0,...,r
‖ek

h‖2
L2(Ω), ‖e‖2

h,τ,L2(H1) = τ
α

2

r∑
k=0

|||ek
h|||2 (20)

Now, we can proceed to formulation of the main result of this paper.

Theorem 4.1 Let assumptions (T), (H), (D) and (R) be valid. Let u be the exact solution
of the continuous problem (1) – (3). Let tk = kτ, k = 0, 1, . . . , r, τ = T/r, be a time parti-
tion of [0, T ] and let uk

h, k = 0, . . . , r, be the approximate solution defined by (16), (a) – (d)

for n = 1 and let τ ≤ 1/2. Then there exist constants C̃ = O (exp(2T (1 + L/α))) and

Ĉ = O (exp(2T (1 + L/α))) such that

(a) ‖e‖2
h,τ,L∞(L2) ≤ C̃

( ∑
K∈Th

h2μK−2
K

p2sK−3
K

(
h2 + h2/α + α + 1/α

)
+ τ 2 (1 + 1/α)

)
, (21)

(b) ‖e‖2
h,τ,L2(H1) ≤ Ĉ

( ∑
K∈Th

h2μK−2
K

p2sK−4
K

(
h2 + h2/α + α + 1/α

)
+ τ 2 (1 + 1/α)

)
, (22)

where μK = min(pK + 1, sK), K ∈ Th, and L is a constant from proof.

Proof. The main framework is based on the expression of the discretization error as ek
h =

ξk + ηk with ξk = uk
h − Πhpu

k ∈ Shp and ηk = Πhpu
k − uk ∈ Hs(Ω, Th), where Πhpu

k is
the Shp-interpolation of uk = u(tk), k = 0, . . . , r. Consequently, the multiplicative trace in-
equality, inverse inequality and approximation properties of the space Shp, for more details
see [5, Lemmas 4.2–4.4], are applied. The whole proof can be found in [8, Theorem 4.3.2]. �

Remark 4.2 In the case that u is sufficiently regular exact solution and pk = p ∀K ∈ Th, the
estimates (21) and (22) imply that

‖u − uh‖L∞(0,T ;L2(Ω)) = O(hp + τ), ‖u − uh‖L2(0,T ;H1(Ω,Th)) = O(hp + τ) for h → 0 + . (23)

5 Numerical examples

In this section we shall numerically verify the theoretical a priori error estimates of the presented
BDF-DG scheme in the discrete L∞(L2)-norm and L2(H1)-seminorm with respect to the time
step τ and the mesh size h. The computational errors are evaluated at final time T = rτ in
L2-norm and H1-seminorm, and we suppose that these errors behave according to the formulae

e0
h,τ ≡ ‖er

h‖L2(Ω) ≈ D̃0h
a0

+ D̂0τ
b0 , e1

h,τ ≡ |||er
h||| ≈ D̃1h

a1

+ D̂1τ
b1 . (24)
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The constants D̃n, n = 0, 1, are independent of τ and D̂n, n = 0, 1, are independent of h. The
values an, bn, n = 0, 1, are the orders of accuracy of the method in the corresponding considered
norms. We define the experimental order of convergence (EOC) by

an =
log

(
en

h,τ1
/en

h,τ2

)
log (τ1/τ2)

and bn =
log

(
en

h1,τ/e
n
h2,τ

)
log (h1/h2)

, n = 0, 1. (25)

We consider the 2D viscous Burgers equation

∂u

∂t
+

2∑
s=1

u
∂u

∂xs

= div(IK(u)∇u) + g in Ω × (0, T ), (26)

with the nonsymmetric matrix K(w) in the following form

IK(w) = ε

(
1
2
(3 + arctan(w)) 1

3
(2 − arctan2(w))

0 4 + arctan(w)

)
. (27)

We set ε = 0.02, Ω = (0, 1)2, T = 10 and define the function g and the initial and boundary
conditions in such a way that the exact solution has the steady-state form

u(x1, x2, t) = 2
(
1 − e−10t

)
(x2

1 + x2
2)x1x2(1 − x1)(1 − x2). (28)

In the form bh we use the numerical flux

H(u1, u2, �n) =

{ ∑2
s=1 fs(u1)ns if Df > 0∑2
s=1 fs(u2)ns if Df ≤ 0

, (29)

where Df =
∑2

s=1
∂fs

∂u
((u1 + u2)/2) ns, �n = (n1, n2).

First, we investigate the convergence of the method with respect to h. Numerical exper-
iments are carried out with the use of piecewise linear (P 1), quadratic (P 2) and cubic (P 3)
approximations on 6 regular triangular meshes having 128, 288, 512, 1152, 2048 and 4608 ele-
ments for SIPG, NIPG and IIPG variants. In order to guarantee the stability of the BDF-DG
scheme with respect to penalty parameter σ, the parameter CW from (13) in each of the six
cases is chosen according to [8, Table 6.3].

Table 1 shows computational errors in L2-norm and H1-seminorm at final time T and the
corresponding EOC for each IPG variant. Since u(·, ·, t) is sufficiently regular solution over Ω
it follows from Remark 4.2 that the theoretical errors estimates are of order O(hp + τ). On the
other hand, we observe that the obtained numerical results indicate a better behaviour of EOC
in L2-norm, which is expected to be asymptotically O(hp+1) for p odd and O(hp) for p even
in the case of NIPG and/or IIPG variant. Moreover, in the case of SIPG variant we observe
optimal EOC for p arbitrary. Further, the results for EOC in H1-seminorm are in a quite good
agreement with theoretical estimates, in other words, all IPG techniques produce optimal order
of convergence O(hp).

Secondary, we verify experimentally the convergence of method in L2-norm and H1-seminorm
with respect to the time step τ . In order to restrain the discretization errors with respect to h,
we use a fine mesh with 2048 triangles and piecewise cubic approximation (P 3).

The computations were carried out with six different time steps τl for all three IPG vari-
ants, see Table 2. The computational error is evaluated at time T in L2-norm and H1-se-
minorm, respectively. We observe that all considered IPG variants produce EOC of order O(τ)
in L2-norm and H1-seminorm which is in good agreement with derived theoretical results.
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P1 P2 P3

mesh hl e0
hl,τ

a0
l e0

hl,τ
a0

l e0
hl,τ

a0
l

1 1.768E-01 6.846E-03 – 4.851E-05 – 2.974E-06 –
2 1.179E-01 2.958E-03 2.070 1.477E-05 2.933 5.917E-07 3.983
3 8.839E-02 1.565E-03 2.213 6.392E-06 2.911 1.876E-07 3.992
4 5.893E-02 6.248E-04 2.264 1.999E-06 2.866 3.712E-08 3.996
5 4.419E-02 3.249E-04 2.273 8.968E-07 2.787 1.175E-08 3.999
6 2.946E-02 1.301E-04 2.257 2.776E-07 2.892 2.320E-09 4.000

S
IP

G

mesh hl e1
hl,τ

a1
l e1

hl,τ
a1

l e1
hl,τ

a1
l

1 1.768E-01 2.171E-01 – 1.959E-03 – 1.953E-04 –
2 1.179E-01 1.351E-01 1.169 8.474E-04 2.067 5.915E-05 2.946
3 8.839E-02 9.213E-02 1.331 4.695E-04 2.053 2.521E-05 2.965
4 5.893E-02 5.211E-02 1.406 2.054E-04 2.039 7.540E-06 2.977
5 4.419E-02 3.441E-02 1.443 1.146E-04 2.028 3.192E-06 2.988
6 2.946E-02 1.902E-02 1.462 5.079E-05 2.006 9.476E-07 2.995

mesh hl e0
hl,τ

a0
l e0

hl,τ
a0

l e0
hl,τ

a0
l

1 1.768E-01 2.817E-03 – 2.635E-04 – 8.652E-06 –
2 1.179E-01 1.276E-03 1.954 1.125E-04 2.099 1.727E-06 3.975
3 8.839E-02 7.240E-04 1.969 6.234E-05 2.052 5.479E-07 3.991
4 5.893E-02 3.246E-04 1.979 2.739E-05 2.029 1.083E-07 3.998
5 4.419E-02 1.833E-04 1.985 1.534E-05 2.016 3.429E-08 3.999
6 2.946E-02 8.184E-05 1.989 6.806E-06 2.004 6.753E-09 4.007

N
IP

G

mesh hl e1
hl,τ

a1
l e1

hl,τ
a1

l e1
hl,τ

a1
l

1 1.768E-01 3.083E-02 – 4.750E-03 – 4.182E-04 –
2 1.179E-01 1.855E-02 1.254 2.026E-03 2.101 1.211E-04 3.056
3 8.839E-02 1.299E-02 1.239 1.110E-03 2.093 5.036E-05 3.051
4 5.893E-02 7.945E-03 1.212 4.777E-04 2.078 1.466E-05 3.043
5 4.419E-02 5.659E-03 1.180 2.639E-04 2.063 6.150E-06 3.020
6 2.946E-02 3.554E-03 1.147 1.151E-04 2.046 1.808E-06 3.019

mesh hl e0
hl,τ

a0
l e0

hl,τ
a0

l e0
hl,τ

a0
l

1 1.768E-01 4.223E-03 – 2.523E-04 – 5.847E-06 –
2 1.179E-01 1.923E-03 1.940 1.024E-04 2.225 1.170E-06 3.969
3 8.839E-02 1.093E-03 1.964 5.510E-05 2.154 3.724E-07 3.978
4 5.893E-02 4.904E-04 1.977 2.346E-05 2.106 7.403E-08 3.985
5 4.419E-02 2.770E-04 1.985 1.292E-05 2.073 2.349E-08 3.990
6 2.946E-02 1.236E-04 1.990 5.586E-06 2.069 4.653E-09 3.993

II
P

G

mesh hl e1
hl,τ

a1
l e1

hl,τ
a1

l e1
hl,τ

a1
l

1 1.768E-01 2.570E-02 – 2.782E-03 – 2.329E-04 –
2 1.179E-01 1.529E-02 1.281 1.179E-03 2.118 6.828E-05 3.026
3 8.839E-02 1.078E-02 1.216 6.458E-04 2.091 2.860E-05 3.025
4 5.893E-02 6.752E-03 1.153 2.792E-04 2.068 8.405E-06 3.020
5 4.419E-02 4.916E-03 1.103 1.548E-04 2.050 3.530E-06 3.015
6 2.946E-02 3.187E-03 1.068 6.783E-05 2.035 1.040E-06 3.014

Table 1: Convergence with respect to mesh size h: Computational errors in L2-norm (e0
h,τ )

and H1-seminorm (e1
h,τ ) with corresponding EOC for all three IPG formulations and P1–P3

elements.
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SIPG NIPG IIPG
l τl e0

h,τl
b0
l e0

h,τl
b0
l e0

h,τl
b0
l

1 4.000E-02 3.1685E-03 – 3.1686E-03 – 3.1687E-03 –
2 2.000E-02 1.6371E-03 0.953 1.6374E-03 0.953 1.6372E-03 0.953
3 1.000E-02 8.3140E-04 0.977 8.3143E-04 0.977 8.3138E-04 0.977
4 5.000E-03 4.1904E-04 0.989 4.1901E-04 0.989 4.1903E-04 0.989
5 2.500E-03 2.0983E-04 0.998 2.0983E-04 0.998 2.0983E-04 0.998
6 1.250E-03 1.0521E-04 0.995 1.0522E-04 0.996 1.0521E-04 0.995
l τl e1

h,τl
b1
l e1

h,τl
b1
l e1

h,τl
b1
l

1 4.000E-02 1.5152E-02 – 1.5152E-02 – 1.5151E-02 –
2 2.000E-02 7.8278E-03 0.953 7.8280E-03 0.953 7.8278E-03 0.953
3 1.000E-02 3.9782E-03 0.977 3.9778E-03 0.977 3.9780E-03 0.977
4 5.000E-03 2.0051E-03 0.989 2.0052E-03 0.989 2.0045E-03 0.989
5 2.500E-03 1.0043E-03 0.998 1.0042E-03 0.998 1.0041E-03 0.998
6 1.250E-03 5.0352E-04 0.995 5.0360E-04 0.996 5.0351E-04 0.995

Table 2: Convergence with respect to time step τ : Computational errors and corresponding
EOC in L2-norm (e0

h,τ ) and H1-seminorm (e1
h,τ ) for all three IPG formulations.

6 Conclusion

We presented a higher order numerical scheme for the solution of scalar unsteady nonlinear
convection-diffusion equation. The method, denoted by BDF-DG method, is based on the
semi-discretization by the discontinuous Galerkin method in space and on the semi-implicit
backward Euler method used for discretization in time. Under some additional assumptions
we have derived a priori error estimates, namely O(hp + τ) in the L∞(0, T ; L2(Ω))-norm and in
the L2(0, T ; H1(Ω))-seminorm. Presented numerical examples verify the theoretical results.
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Abstract. This paper describes shortly evaluation of experiment for research of parameter 

impact on final briquettes quality. The final briquettes quality (quality of solid high-grade 

biofuels) is mainly evaluated by briquettes density. Briquettes density is exactly defined by 

Standards for solid biofuels. At briquetting process exist parameters those with their changes we 

can markedly impact the final briquettes quality.  One of the goals of our research was to detect 

the impact of some parameters on final briquettes quality. Experiment which was done on our 

department consists of two phases. These are closely described in this paper. From briquettes 

production point of view and also from briquetting machines constructions point of view is very 

important to know mutual interaction of these technological parameters on final briquettes 

quality. The main goal of this paper is to present results of analysis of the significance of the 

technological parameters at briquetting of selected types of hardwood and softwood.  

 

Key words. briquetting, compacting, mathematical model, briquettes density 
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1 Introduction 
 
With research of technological parameters we are dealing on our department for many years. We 
are trying to describe mathematically impact of technological parameters (compacting pressure, 
pressing temperature, material moisture, fraction size) changes on final briquette quality. Created 
mathematical model helps us by briquette density prediction before lonely real briquetting. We are 
able to say which parameters we have to set for achieving the density given by Standards. Also this 
mathematical model helps us by engineering of some mechanical parts of briquetting machines. 
Very important thing was specifying what will be the main goal of the experiment. The primary 
goal was to detect the impact and to analyze the significance of lonely parameters (listed above). 
But the conditions by briquetting process are very complicated. There are many external parameters 
which can influence the researched parameters impact and their mutual activity. For example type 
of briquetted material. It is not the same if we are briquetting some type of softwood, some type of 
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hardwood or straw, or paper. For each material we need to find optimal technological parameters 
setting by briquetting. Everything comes from the briquetted material chemical composition. On the 
following picture 1 and table 1 you can see how large differences between some types of softwoods 
and hardwoods are. At first step we have done experiment by using one chosen type of softwood.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We choose pine sawdust for first step of experiment. We designed experimental plan for detecting 
of impact of changes of technological parameters at briquetting of pine sawdust. For this type of 
experiment was designed and made experimental pressing stend [2, 3] on which we were able to 
provide all changes of researched parameters setting according to experimental plan.  
 
 
2 Experiment description and results 
 
So because the impact of input (briquetted) material is very influencing, from this reason we had to 
divide our experiment to 2 main phases. In first phase we have done experiment according to 
designed levels of measured parameters (see Table 2). These levels come from our analyses, further 
experience and pressing stend possibilities. We realized experiment by form of full factorial 
experiment 24 according to Table 2. Goal of the experiment was to follow up the briquettes quality 
in dependence with pressing temperature, compacting pressure, fraction size and material moisture. 
  
                         Table 2 Levels of measured parameters [3], [4] 

Pressure 

p (MPa) 

Temperature 

T (°C) 

Size 

L (mm) 

Moisture 

w
r
 (%) 

95 - 159 85 - 115 1 - 4 8 - 12 

 
Briquettes quality was evaluated by briquettes density as is given in EU Standards about solid 
biofuels. According to EU Standards briquette have very good quality if density is from 1 to 1,4 

Table 1 Chemical composition of some     
             domestic woods [1] 

 Spru

ce 
Pine Beech 

Component  [%] [%] [%] 

Cellulose - “C” 45,6 43,2 39,2

Figure 1 Main organic units in softwoods 

and hardwoods [1] 

 

Softwood Hardwood 

C 

C  

H 

H 

L 

L 
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kg/dm3. In every setting we pressed 7 briquettes. We measured briquette’s dimension, length and 
weight. These measured values were the base for density calculation. Briquettes density values were 
processed by various mathematical and statistical methods (e.g. Bartlett´s Test, ANOVA, etc...) 
with the help of software Stathgraphic S Plus. For closely determination of parameters impact and 
also impact of their mutual interaction we used method of parameters effect [5]. Results you can see 
on the following Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Individual parameters impact – Paret´s effects diagram [3], [4] 
 
 
Method of parameters effect determined that the biggest impact have pressing temperature and 
material moisture. Also their interaction has very significant impact on final briquette density. This 
is very important and helpful result. Pressing temperature is influencing the lignin plastification in 
cellular structures of material. Lignin is in briquette as nature glue. Helps to briquettes be stronger 
and to have higher density. Pressing temperature significance is important also from the machines 
engineering point of view. If we are able to provide higher pressing temperature we can use not so 
high compacting pressure (as usual). This is influencing the final price of briquetting machine and 
of course final price of hour production. Because higher pressing temperature is cheaper to provide 
as higher compacting pressure. But very important is also the interaction between temperature and 
material moisture. When is the pressed material moisture very low and vice-versa very high that 
means out of some optimal interval (8 – 15%), material particulars aren’t consistence and briquettes 
is falling to pieces. At lower moisture values material isn’t sintered what is needed for consistence 
of material particulars into the briquette. Researches and experiment proved that moisture have 
impact also on lignin plastification. As we wrote above pressing temperature is influencing the 
lignin plastification, therefore is also very important mutual interaction between temperature and 
moisture content. Temperature of lignin softening is depending also on type of wood from which is 
isolated and also on isolation method. Temperature of lignin phase switching form solid to plastic 
state is direct proportion to its molecular weight and indirect proportion to its moisture content. 
The next step was execution of selection of variables for mathematical model. For this selection we 
used three widely known criterions: index of multi-launching determination (R2), Akaike´s criterion 
(AICc) and Root mean squared error criterion (RMSE). We choose model with containing of all 
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C – material moisture  wr (%)  
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parameters and also with their most important mutual interactions (see following Formula 1). This 
model had the best results after selection by criterions. 
 ( , , , , , , , )f A B C D AB AC BC ABCρ =  (1) 
 
We were able to design the mathematical model with help of software SAS and JMP 8 and also we 
were able to calculate or estimate the regression parameters values. The final designed form of 
mathematical model for the first phase you can see in following Formula 2, where the “ρ” is 
briquette density. This model is valid only for briquetting of pine sawdust and is valid only by 
parameters intervals listed in Table 2. 
 

 

4,98371 0,0261781. 0,0410292. 0,620594. 0,015446. 0,000228845. .
0,0031851. . 0,00528717. . 0,0000273004. . .

r

r r r

p T w L p T
p w T w p T w

eρ

− − − − + +⎛ ⎞
⎜ ⎟+ −⎝ ⎠= (kg.dm-3) (2) 

 
With this model we obtained tool for effective and quickly prediction of final briquettes density 
values, pressing temperature values, compacting pressure values, material moisture values and 
fraction size values. 
 
Second phase of experiment was very similar. Also the experiment procedure was very similar but 
the differences were used material (pine and oak) and extended parameters intervals where was 
experiment done. Comparison of these phases from parameters intervals point of view you can see 
in following Figure 3 and Table 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Comparison of experiment phases from parameters intervals point of view [4], [5] 

 

                         Table 3 Levels of measured parameters in second phase [4], [5]  
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Pressure 

p (MPa) 

Temperature 

T (°C) 

Size 

L (mm) 

Moisture 

w
r
 (%) 

63 - 191 55 – 130 0,5 - 4 5 - 15 

The second phase of experiment was done with the pine sawdust and also with the oak sawdust. The 
goal of the second phase was to design the mathematical model which will describe behavior of 
each material (pine, oak) at compacting process. But these models will valid in extended parameters 
intervals as the mathematical model (Formula 2).  
Similarly as in first phase we set compacting pressure “p”, pressing temperature “T”, material 
moisture “wr” and fraction size “L” as independent variables. Briquette density “ρ” was set as 
dependent variable.  
At first was needed to make Goodness-of-Fit test by Shapir-Wilk W test. This test was realized for 
each level of each parameter. On the following Figures 4 and 5 you can see outputs of these 
analyses for one level of parameters at pine sawdust briquetting and for one level of parameters at 
oak sawdust briquetting. As you can see - measured data for given level of parameters approaching 
to the line of normality. Also the histogram shows for normality of measured data. A result of 
Shapir-Wilk W test of normality was that we did not reject the testing hypothesis. 
 

  
Figure 4 Output example of Goodness-of-Fit test 

for given level of parameters at pine sawdust [6] 
Figure 5 Output example of Goodness-of-Fit test 

for given level of parameters at oak sawdust [6] 
 
In the next step we analyzed measured data from outliers data point of view. We had to determine if 
we had some extreme data in our file of data. For testing we used Dean-Dixon non-parametric test 
of outliers and Grubbs test. If some data are outlying we need to exclude them from measured data 
for following processing. Also these tests were done for each level of measured data. From file of 
measured data at pine sawdust we excluded some values from following data processing. At oak 
sawdust we didn’t had any outlying data. 
We also tested equal variances in groups of measured data because it is very important for 
following processing. The most famous tests for equal variances testing are Bartlett’s test, Brown-
Forsythe test, Leven and O’Brien tests. We used these tests through much known statistical 
software SAS JMP 8. We tested also softwood (pine sawdust) and also hardwood (oak sawdust). 
Results of these tests said us that we could accept the hypothesis about variances equal at 95 % 
interval of probability also for pine and also for oak sawdust. 
Analysis of variance examines interaction between dependent variable and one or more independent 
variables. File of data was divided into the groups according parameters changes and was tested if 
differences between group’s averages were random or statistically significant. If the differences are 
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significant, parameter is statistically significant – we can say between dependent variable and 
parameter exist some interaction. This analysis was done with software SAS JMP 8. You can see on 
following figure that parameters which are overhung the given interval (two full vertical lines). 
These parameters have significance impact on final briquette quality from pine sawdust.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
  
 
 
      
 

 

 

 

 

 

 
 

Figure 6 Analysis of significance of individual parameters – pine sawdust [6] 
 
With help of software SAS JMP 8 we have done estimation of regression parameters, evaluation 
and generated all possible models. We knew also all parameters of each generated model. For final 
design of mathematical model and regression parameters selection was used index of multi-
launching determination (R2), Akaike´s criterion (AICc), Malowo´s criterion (Cp) and Root mean 
squared error criterion (RMSE). We choose model containing of all significance parameters and 
also with their most important mutual interactions (see following Formula 3). This model had the 
best results after selection by criterions. This model is valid only for pine sawdust briquetting.  
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( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0,833 0,000646* 0,00403* 0,02144* 0,01226* 0,000045* 130,2 * 103,5

0,000249* 130,2 * 9,83 0,00133* 103,5 * 9,83

0,000022* 130,2 * 103,5 * 9,83 0,000005* 130,2 * 103,5 * 9,83 * 2,03

r

r r

r r

p T w L p T

p w T w

p T w p T w L

ρ = + + − − − − − +

+ − − + − − −

− − − − − − − − − +

+ ( )
2

0,00171* 9,83
r

w −

 

                                                                                                                                        (kg.dm-3)    (3) 
 
Also the same procedure was done with measured data from oak sawdust briquetting. Analysis of 
significance you can see following Figure 7. And below the Figure you can see Formula 4 – final 
form of mathematical model for oak sawdust. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Analysis of significance of individual parameters – oak sawdust [6] 
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( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

3

2 3

0,142 0,00112* 0,00596* 0,039* 0,00095* 103,5 * 9,83 0,15732*

0,000004* 130,2 * 103,5 * 9,83 * 2,03 0,00003* 103,5

0,02894* 2,03 0,06399* 2,03

r r

r

p T w T w L

p T w L T

L L

ρ = + + − + − − + −

− − − − − − − +

+ − − −

 

                                                                                                                                        (kg.dm-3)    (4) 
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Figure 8 Graphic comparisons of measured density values and calculated density values - pine sawdust 
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Figure 9 Graphic comparisons of measured density values and calculated density values - oak sawdust 

 
 
On Figures 8 and 9 you can see simple graphic comparisons of measured density values and 
calculated density values for pine and also for oak sawdust. These comparisons confirmed that our 
experiment and measured data processing were correct. With these designed mathematical models 
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we obtained the tool for briquette density prediction and by engineering of some important parts of 
compacting machines.    
 
 
3 Conclusion 

 

The main aim of the experiment was to detect and identify the effect rate of monitored parameters 
on the final briquettes quality evaluated by briquettes density. By the individual steps we discovered 
that the most significant effect on briquettes quality has pressing temperature and then material 
moisture and mutual interaction of these two parameters. The results our hypothesis that 
compacting pressure, which may seem to be a parameter having the biggest effect on the final 
briquettes quality, is minor in analyze of effects on briquettes quality. With usage of mathematical 
and statistical tools we were able to design mathematical model of single axis pressing of pine and 
oak sawdust. From results of our experiment you can see that pressing temperature and material 
moisture are most significant parameters also at briquetting of softwoods and also at briquetting of 
hardwoods. Temperature and moisture are influencing the lignin plastification. Lignin is at biomass 
compacting as a nature glue and from briquette density and strength point of view is very important 
component.  
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ANT COLONY OPTIMIZER WITH APPLICATION
TO THE VEHICLE ROUTING PROBLEM

LUCKA Maria, (SK), PIECKA Stanislav, (SK)

Abstract. This paper introduces a new open source Ant Colony Optimization framework
for parallel environment, named ACOptim. The aim of the proposed system is to provide
environment for studying behaviour of various strategies of synchronization and communi-
cation among colonies, population creation, different termination criteria, etc. ACOptim
is coded in C++ and uses POSIX threads keeping in mind portability and object oriented
principles. In the proposed paper we show an application of ACOptim to solving large
Vehicle Routing Problems. We present and analyze results of experiments achieved by
different configurations.
Key words and phrases. Ant Colony Optimization, Parallel Metaheuristic, Vehicle
Routing Problem, POSIX threads.
Mathematics Subject Classification. Parallel computation 65Y05; Transportation 90B06;
Parallel algorithms 68W10.

1 Introduction

An optimization of combinatorial problems related to logistics and transportation systems is
nowadays very important. One of the most challenging problems related to transportation is the
Vehicle Routing Problem (VRP)introduced by Dantzig [9]. This NP-hard optimization problem
and it’s variants can be applied to several situations in transportation, telecommunication and
logistics. In practice, it is often required to receive quality solutions of such problems in
relatively short time, leading so to requirements of using metaheuristics and computations in
parallel environments. It is especially important in the case, when exact optimal solutions
(for larger instances of the VRP) are not calculable by current computing power, since the
time of computation increases exponentially. For these reasons, many scientists are looking
for improvements in new parallel execution models of various metaheuristics. Recently, it
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was shown that nontrivial communication and synchronization strategies between calculation
processes have significant impact on quality of received solutions.

This paper focuses on application of new approaches in parallelization of the Ant Colony
Optimization (ACO) and presents the framework which helps in study of parallel ACO be-
haviour. It is structured into four sections. The first section gives reader short introduction to
the ACO and brings short formulation of the VRP problem. In the second section we describe
shortly parallelization strategies for metaheuristics, and compare several software frameworks
suitable for solving of the ACO. Section 3 describes architecture and basic features of the ACOp-
tim framework and it’s application to the VRP. It presents computational results gained with
several parallelization configurations. The paper concludes with several remarks and outlooks
concerning the future work.

1.1 A short introduction to ACO

Ant Colony Optimization is a relatively new metaheuristic approach in calculating combinato-
rial problems including the VRP, first published in [12]. Basic principle is given by observation
of real ants behaviour, where ants cooperate by leaving pheromone on the ground by moving
from food sources to the nest. In this way better routes are identified by another ants during the
path selection process. Assuming that ant k stays in the vertex i, then probability of selecting
j as the next vertex in route, is given by following rule:

pk
ij =

⎧⎨
⎩

[τij ]
α[ηij ]

β
P

l∈Nk
i

[τil]α[ηil]β
if j ∈ Nk

i ,

0 otherwise,

where Nk
i is set of feasible neighborhood of the vertex i, τij is amount of pheromone and

ηij = 1/dij is heuristic information, where dij is the distance between i and j. Parameters α and
β specify the relative influence of the pheromone and the distance during the decision process.
Each ant remembers the passed route in its local memory. The amount of the pheromone on
the ground evaporates in time.

There are several models of artificial ants and their behaviour. For more detailed review
reader should see [14]. In our paper we use ACOptim framework to the algorithm ASrank [3],
which provides good quality solutions of the VRP in a relatively short calculation time [11].
This method combines basic Ant System and Elitists Ant System into a single method. The
specific behaviour of ASrank method allows only ants which belong to the elite to affect global
pheromone at the end of each iteration.

1.2 Formulation of the VRP

The symmetric VRP [6] is defined on a complete, not oriented graph G = (V,E), where set V =
{0, ..., n} defines vertices. Each vertex i ∈ V \ {0} represents customer with positive demand
qi, where 0 stands for the depot and q0 = 0. Let each edge e ∈ E = {(i, j) : i, j ∈ V, i < j} has
assigned transportation costs cij >= 0 (usually cij = dij). There are available m vehicles, each
with capacity Q, in depot. The goal is to specify m routes with minimal transportation costs,

392 volume 4 (2011), number 2



Aplimat - Journal of Applied Mathematics

with following constrains: each route starts and ends in depot, each customer is served exactly
once, there are not overloaded vehicles. Solution can be represented as set of arcs which share
only one vertex - the depot.

For description of problem it is necessary to introduce binary decision variable xk
ij with

following representation:

xk
ij =

{
1 if vehicle k follows vertex j immediately after i,

0 otherwise.

The problem is defined as:

minf(x) =
n∑

i=0

n∑
j=0
j �=i

m∑
k=1

cijx
k
ij (1)

with following constrains:

n∑
i=0

n∑
j=1
j �=i

xk
ijdj ≤ Q 1 ≤ k ≤ m (2)

n∑
i=0
i�=j

xk
ij −

n∑
l=0
l �=j

xk
jl = 0 1 ≤ k ≤ m, 0 ≤ j ≤ n (3)

n∑
i=0
i�=j

m∑
k=1

xk
ij = 1 1 ≤ j ≤ n (4)

∑
i∈S

∑
j∈S
j �=i

xk
ij ≤ |S| − 1 ∀S ⊆ {1, ..., n}, 1 ≤ k ≤ m, |S| ≥ 2 (5)

xk
ij ∈ {0, 1} 1 ≤ k ≤ m, 0 ≤ i ≤ n, 0 ≤ j ≤ n, i �= j (6)

First, it is ensured that no vehicle is overloaded by constrains (2). Following constrains (3)
ensure, that each customer visited by vehicle is also left by the same vehicle. Constrains (4)
ensure that each customer is visited only once and the depot is left by all used vehicles. Finally,
constrains (5) are used to eliminate sub-tours, followed by binary constrains (6).

There are several applications of the ACO metaheuristics to the VRP in the literature,
first proposed by [4]. Construction of solutions is usually based on Savings mechanism, where
heuristic information is defined as ηij = 1/sij and the savings as sij = s0i +sj0−sij. During the
execution of iterations there is obtained value of pheromone concentration τij, which specifies
quality of the combination of two customers i and j.

There are many possibilities, how the ACO can be parallelized, [7],[8],[10],[11]. An illustra-
tive example of the parallel ACO, that is applicable for the VRP, is the following:

1: Initialization;

2: Foreach parallel Colony do:

Foreach Iteration do:
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Foreach Ant do:

Create Savings based solution;

Apply local search;

Select elitists Ants;

If Synchonize step then:

Exchange Solution(s);

Update Pheromone matrix;

3: Finalization;

The application of Local search algorithm is optional, if it is applied usually one of im-
provement heuristics, or their combinations are used. Synchronization step and amount of
exchanged information is defined by the parallelization algorithm. In the following section we
discuss several parallelization strategies.

2 Parallel Metaheuristics

In general, there are three dimensions of classification used for the description of parallel meta-
heuristic strategies [7], [8], where the first of them specifies Control Cardinality. This classifi-
cation examines how the global search is controlled. In the case of a single process, it is denoted
by 1C. Another case, when more collaborative or even independent processes control search, it
is pC. The second classification reflects the art of information exchange. In parallel computing,
this dimension is specifies as Communications, where four classes are defined: whether com-
munication mechanism exchanges more knowledge about solutions (e.g. statistical information)
or not and also whether synchronous or asynchronous communication is used. Combining of
those alternatives is noted as follows: RS as rigid synchronization, KS as knowledge synchro-
nization, C as collegial synchronization and KC as knowledge collegial synchronization. The
third dimension of classification indicates the search Differentiation of parallel processes.
There are specified four cases: SPSS, each process uses Same initial Population and Same
search Strategy; SPDS, each process uses Same initial Population but Different search Strate-
gies; MPSS, Multiple initial Populations are used by processes but Same search Strategies;
MPDS, Multiple initial Populations are used by processes and Different search Strategies.

Historically the first parallel implementations are independent and synchronous. Typically
this 1C/RS model is implemented with one master and several slaves, where each process
is initiated, stopped at synchronization points and continued by controlling process. During
synchronization, which occurs in specified situations e.g. number of iterations, master evaluates
received solutions and re-distributes results to slave processes. Distribution of good or global
best solutions, is performed by different communication infrastructure [7]. However, knowledge
exchange was first introduced with synchronous communication, currently research is focused
more on asynchronous communication models pC/KC, which now more-less define the “state
of the art“ in parallel metaheuristics.

There are more reasons for this. The first is the fact, that it is hard to predict how much
time each population needs to finish its iteration when MPSS, MPDS or SPDS with different
settings are used, therefore wasted time during synchronization is more probably. Another
reason can be found in lower flexibility of the algorithm setting possibilities. This problem is
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Table 1: Available ACO frameworks

Name Language Object − oriented Parallel License

AntLib [13] C++ Yes No ?
ACOTSP [19] C No No GPL

libaco [17] C++ Yes No LGPL
ACOptim C++ Yes Yes GPL

PARMETAOPT [2] C++ Yes Yes ?
HeuristicLab [20] .NET Yes Yes GPL

reduced when asynchronous communication is used and population doesn’t have to wait for
other processes.

The significant goal of current research of parallel metaheuristics is to gain advance from
parallel execution of algorithm not only to speedup execution or only to obtain better quality
solution but to increase both of them together. Therefore algorithms are not only executed
in parallel but sophisticated cooperation is introduced. This combines found solutions to ob-
tain new characteristics of good solutions and tries to create or prefer solutions with similar
characteristics during next search. Such cooperative strategies belong to the pC/KC class of
the taxonomy. Although asynchronous procedures follow similar principles of starting from the
same or different solution and use the same or different search strategy, the knowledge creating
mechanism is fundamental principle of parallel metaheuristics. For example, one can store more
parts of good solutions and combine them to create new solutions or to store less but whole
solutions possibly with additional information (e.g. neighborhood information). First approach
is widely used in genetic metaheuristics [7].

2.1 Existing software

In the literature there are several libraries and frameworks which apply metaheuristics for
solving the problem. For instance, there are projects like GAlib [21], OpenBEAGLE [15],
ParMetaOpt [2] and pALS [1] in early development phase and projects in stable development
phase like ParadisEO [5] and HeuristicLab [20]. Only few of them are suitable for parallel envi-
ronment (e.g. HeuristicLab, ParMetaOpt, pALS and ParadisEO) and those primary implement
metaheuristics based on genetic algorithms. To the best knowledge of the authors libraries or
frameworks which contain implementations of the ACO are listed in Table 1. Although several
currently available software packages contain mechanisms of creating knowledge-based parallel
algorithms, so far, there is no one known which is suitable for the ACO and stays simple,
customizable, easy to use and free of charge.
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3 ACOptim: Ant Colony based Optimizer

This chapter presents basic architecture and design principles used by creation of the frame-
work. Basic motivation to create ACOptim framework was to examine several knowledge-based
parallel ACO algorithms for the VRP. Therefore ACOptim should be an flexible modularized
tool providing several communication strategies with simple possibility to extend new strate-
gies. To achieve modularization, the object oriented paradigms has been adopted. Each module
loadable into the framework provides basic customization of execution in dependence on input
parameters. ACOptim has been developed in Linux operating system, with keeping in mind to
stay portable console application, so it can run in batch mode.

The ACOptim framework consists of four basic groups of components: generally used sup-
port layer, generic Ant Colony Problem solver, communication and synchronization layer and
problem specific layer. Simplified architecture overview is displayed in Figure 1.

The support layer consists of objects which are used in the whole framework, like: So-
lution , PheromoneMatrix , DistanceMatrix , TimeDiff . There is defined object Op-
erator , which specifies element operation over two matrixes. Inherited subclass can be used
for manipulating matrixes in several situations, for example when a new pheromone matrix is
received by ant colony.

Module interface LoadModule defines a set of operations to be implemented by any module
which should be loaded into system. First, it provides module identification, specification of
module type and functions for interaction with user as providing of help and parsing of input
arguments. Second, it is used by ModuleManager which according to the module type and
its configuration, affects behaviour of ant colony solver.

There exist following types of modules: terminate condition, synchronizer, communicator,
algorithm calculation, solution constructor and local search optimizer. In the case of need,
it is possible to extend this list by introducing new module types. Any module type can be
re-implemented by subclass to achieve customized functionality.

Generic Ant Colony Problem Solver represented by Problem class is responsible to run
several Ant Colonies (AntColony) according to the used configuration and infrastructure. It
is also responsible to specify parameters of executed colonies in MPSS and MPDS parallel
diversification strategies.

Transportation and synchronization layer is responsible for: low level communication within
or between nodes, higher level interaction and communication strategy between colonies. It
defines also Ant Colony stopping criteria. Objects which should be send trough network or
should be saved into files has to implement serializing and de-serializing functionality.

When ACOptim is applied to a custom problem, specific layer has to be implemented by
the user. An example of applying ACOPtim to the VRP can be found in the next chapter.

3.1 Application of ACOptim to the VRP

Before starting application of ACOptim to the VRP, it is important to understand that VRP
is actually a combination of two problems. The first subproblem is to divide customers into
groups which will be served within one route. The second aspect is to solve Traveling Salesman
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Problem over each group of customers. According to the ACO definition it is necessary to define
complete graph, which will be traversed by artificial ants. Afterwards it is required to define
mechanism of pheromone update and ensure that all VRP constrains will be satisfied by ants.
Optionally it is possible to define improvement heuristics. There exists approach mentioned in
the previous chapter which defines Savings based complete graph to be traversed by ants. This
approach has been used in our paper, where class SolutionConstructor has been inherited
and solution creating in Saving based environment has been implemented. The same class has
been used for capacity constrain checking, where ant prior to selection of next customer, checks
if it is not overloaded. If no such customer can be found, the depot is selected. We have used
general pheromone evaporating mechanism.

For improving the solution quality, two local search procedures has been implemented. The
first procedure calls swap heuristic exchanges between groups of customers, while all constrains
stay satisfied. The second one used heuristic 2-opt, which exchanges order of served customers
within one route. This functionality has been achieved by inheriting of the class LocalSearch .

There are proposed three communication strategies in this paper. First communication
strategy called “Best Solution Only“ (bso), applies sending best founded solution, so far in-
cluding elite, to other colonies. When such solution is received, local pheromone matrix is
updated by this solution. Second tested strategy, denoted nc, uses no communication at all.
This strategy is usually used as reference strategy. This approach is similar to independent run
of several experiments, where the best run is used as result. The last presented communication
strategy, denoted bpm, uses combination of pheromone matrices, where better pheromone ma-
trix is selected. When a better solution is found, corresponding pheromone matrix is spread
between colonies and each colony combines the local pheromone with the received pheromone.
In comparison to bso, this approach seems not to lead so quickly into local optima, because the
pheromone matrix is kept with more alternative promising solution areas.

3.2 Computational results

We have used two larger Christofides instances [6] and three larger Golden instances [16] in our
experiments. Tested instances contained from 150 to 420 customers. The experiments were
executed on the Luna cluster of University of Vienna, consisting of 72 SUN X4100 nodes with
two 64-bit dual core processors, each. We have assigned one colony to one core, therefore we
could use 4 colonies working over the common shared memory of one node. Each colony has
been executed in separate POSIX thread. Inter-node communication has been implemented
by sending UDP (User Datagram Protocol) packets with scaling factor of 32kB. Each group
of four colonies uses one thread for receiving of UDP packets. Synchronization of threads
within one node has been achieved by POSIX mutual exclusion locks. Pheromone matrix has
been transferred compressed using zlib library. Except experiments, without communication,
asynchronous communication strategy has been used between colonies.
During each iteration two local search heuristics has been applied. First heuristic uses vehicle
swap algorithm between routes, second is well known 2-opt heuristic applied within one route.
During experiments we have generally used iteration based stopping criteria, where number
of iterations iter = 2n. Reported results are average values gained over 10 runs for each

volume 4 (2011), number 2 397



Aplimat - Journal of Applied Mathematics

Figure 1: Architecture overview

instance. Total number of artificial ants equals number of customers n. Calculation parameters
α = β = 5, ρ = 0.95, elite σ = 6 and neighborhood size k = �n/2	. Used parameters has been
proposed by [18]. Results from Table 2 show that communication strategy has significant
influence on the solution quality. We can see that bso strategy has produced worst solutions.
This is caused by fact that the algorithm relatively quickly reaches local optima. Surrounding of
this solution is afterwards ineffectively explored by all cooperative colonies. Interesting results
are reported by nc strategy without communication between colonies. This strategy provides
best measured speedup. Proposed strategy bpm where better values of received and local
pheromone matrix is combined, provides best quality solution with similar speedup of previous
strategies. None of examined strategies increases solution quality with increasing number of
cores.

4 Conclusions

We have presented a new framework for computation of the ACO with application to the VRP.
In this paper we have focused on synchronization between ant colonies and examined three
proposed strategies from solution quality and speedup point of view. We have shown that
communication strategy has impact to calculated solution quality. Multithreaded framework
ACOptim has been developed as expandable, portable, built on object oriented foundations
and written in C++ language under general public license. Therefore it provides good basics
and functionality for further examination of complex communication strategies. In our further
work we would like to design and examine more complex communication strategies, with keep
in mind the solution quality and speedup. We would like to improve the proposed framework
to automatically generate statistical reports and introduce parameterized instance generator.
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Table 2: Calculated average results of each measured instance according to the number of
threads and used strategy. Th denotes number of used threads, V denotes calculated quality
solution and S denotes speedup.

Instance Th Vbso Sbso Vnc Snc Vbpm Sbpm

E151 –
Christofides

150 customers

1 1054.74±1.24 1.00 1049.80±1.22 1.00 1051.08±1.41 1.00
2 1052.49±0.97 1.95 1051.92±1.24 1.94 1052.32±1.41 1.88
4 1056.18±1.76 3.81 1051.73±0.96 3.76 1055.19±1.16 3.80
8 1063.65±1.78 7.44 1058.55±0.78 7.39 1058.09±0.57 7.30
16 1075.26±3.32 13.41 1060.69±1.39 13.38 1060.28±1.37 13.50
32 1071.90±4.36 23.75 1061.74±1.49 25.54 1058.86±0.97 24.96

E200 –
Christofides

199 customers

1 1339.09±2.25 1.00 1337.06±2.65 1.00 1334.73±2.47 1.00
2 1340.13±1.59 1.94 1336.13±1.96 1.96 1336.64±2.28 1.90
4 1351.44±2.50 3.77 1340.77±1.39 3.80 1338.60±1.42 3.76
8 1350.89±3.33 7.18 1348.95±0.86 7.26 1343.71±1.34 7.24
16 1360.30±2.35 13.74 1355.82±1.93 14.16 1348.96±1.62 13.90
32 1371.65±2.45 23.27 1360.12±1.58 24.52 1352.26±2.54 24.83

E301 – Golden
300 customers

1 1037.60±1.44 1.00 1040.23±1.79 1.00 1036.98±1.61 1.00
2 1039.39±2.36 1.92 1038.49±1.82 1.96 1034.02±1.54 1.85
4 1039.52±1.70 3.72 1041.66±1.65 3.79 1035.72±1.85 3.62
8 1045.71±3.54 7.24 1047.79±2.09 7.49 1041.76±2.20 7.25
16 1055.55±2.24 14.25 1052.83±1.44 14.52 1050.65±1.53 14.24
32 1066.49±1.23 23.63 1059.95±1.59 26.58 1054.98±1.27 25.74

E361 – Golden
360 customers

1 1426.33±2.32 1.00 1426.14±3.91 1.00 1422.88±1.99 1.00
2 1418.93±2.64 1.88 1423.10±1.47 2.00 1414.30±1.50 1.82
4 1425.25±2.93 3.68 1427.04±1.96 3.86 1428.36±1.64 3.61
8 1427.81±2.03 7.15 1435.05±1.67 7.50 1430.71±2.29 7.07
16 1445.17±3.18 14.02 1435.91±2.85 14.78 1434.55±1.56 13.76
32 1454.54±2.28 25.38 1449.48±1.74 26.22 1440.77±2.56 25.60

E421 – Golden
420 customers

1 1905.25±2.09 1.00 1902.99±3.38 1.00 1901.11±2.85 1.00
2 1895.27±3.21 1.90 1905.57±2.29 1.98 1890.96±2.43 1.80
4 1895.88±2.09 3.56 1904.21±2.48 3.89 1903.52±3.42 3.60
8 1906.68±2.50 7.23 1910.55±2.66 7.55 1905.78±1.93 7.21
16 1932.97±4.43 12.57 1919.88±2.05 14.62 1916.99±2.77 13.68
32 1937.72±3.78 25.06 1931.72±2.76 26.62 1917.79±3.71 25.20
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   FOR  SCREW   EXTRUSION MACHINES 
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Abstract. The contribution deals with the technology of biomass briquetting into the solid high-

grade biofuel by screw extrusion machines. It is focused mainly on the theory of compacting 

tools for screw briquetting presses, their analysis, stress conditions and geometry. The main aim 

is analyzing of pressing screw geometry and determination process of its design. Analysis of 

force conditions on the screw is necessary for designed geometry verification and for stress 

analysis.  The determination process of the frictional power is instrumental to main power drive 

design. Knowledge of these processes is the base of the new tools research for screw presses, 

the increase of tools lifetime and the competitiveness of whole technology. 

 

Key words. biomass, briquetting, tool, screw, screw machine, screw profile  

 

Mathematics Subject Classification:  Primary 28A75; Secondary 49Q10. 

 
 
1 Introduction 
 
The world trend of the fossil fuel substitution by renewable energy sources affects the research 
direction of production machines in field of the material agglomeration. Biomass represents the 
most perspective renewable energy source with the most effective possibilities of the energy 
storage. It gives rise to a necessity of the research in field of the biomass treatment and 
transformation into solid high-grade biofuel. The briquetting technology is successfully used for 
production of solid biofuel destined for industrial sector as well as household. The biomass 
briquetting is based on the pre-treatment material pressing and its extruding through the pressing 
die. It is a complicated production process where the mount of conditions affecting the binding 
mechanism within the briquette has to be fulfilled. The production process and the production 
quality are influenced by many technological and structural parameters. The briquetting technology 
of biomass uses three types of machines – hydraulic presses, mechanical crank presses and screw 
extrusion machines. Ever principle of machine with own advantages and disadvantages has its 
justification in the production of solid high-grade biofuel. In light of the achieved production 
quality, as a determining factor on the biofuel market, the most suitable is the principle of screw 
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extrusion machine. This principle allows production of different shapes of briquettes (cylindrical, n-
angular; with or without hole, etc.). The main disadvantage of this type of press is high operating 
costs following the low lifetime of very expensive tools - screws. Nowadays, manufactured pressing 
screws reach lifetime only a few decades of working hours. The biomass briquetting by the screw 
presses is progressive technology of solid biofuel production. It is high actual and perspective to 
deal with the research in this area. Increase of the tools lifetime and decrease of the operating costs 
will be reflected on the lower price of production and may contribute for wider utilization of 
renewable energy sources. 
 
 
2 Tools for screw briquetting presses 
 
The briquetting process by screw presses is continual without beats. The high compacting pressure 
is characteristic what causes high density and high strength of briquettes. The surface of briquette is 
high-class. By screw presses is possible to produce different shapes of briquettes with or without 
hole.  
There are put material and geometric requirements on the tools. Material requirements include high 
wear resistance, toughness and thermal stability. Specification of geometrical requirements in not 
simple and it is dependent on the pressed material. The main geometrical request is creating the 
rapid increase of pressure into the pressed material. The tool geometry has also to insure the 
material axial movement and the fluency of the pressing process. Tools consist of the feeding 
screw, the pressing screw and the pressing chamber included particulate dies (Fig. 1). 
 

 
Figure 1.  Tools of screw extrusion machines  

(1 - feeding screw, 2 - pressing screw, 3 - pressing chamber, 4 - dies) 
 
The feeding screw is not stressed by high working load. Its main task is fluent axial movement of 
material toward the pressing screw and the homogenous filling the whole screw profile cross-
section. The pressing screw as the tool is exposing to high workload, abrasion and temperature. Its 
geometry provides a high degree of compaction of material in the pressing chamber and the 
material extrusion through a particular dies, thereby achieving a compact pellet of high density, 
strength and surface quality. This contributes to compact briquette of high density, strength and 
surface quality. Pressing screw is the most loaded machine part with the highest rate of wear. The 
most worn part of the pressing screw is the spike (Fig. 2) and the first 1.5 thread, which shows the 
distribution of the workload on the tool. Material movement, compression, wear rate, stress 
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distribution depends primarily on the chosen screw geometry. Therefore it is extremely important in 
the design of the screw to pay great attention to its geometry. 

 
Figure 2.  Pressing screw (1 - working screw part, 2 - calibration spike) 

 
Pressing chamber must be sufficiently strong to withstand the internal pressure of compression. 
Each die in the pressing chamber have to copy the pressing screw, its geometry has to prevent the 
rotation of the material and provide its axial displacement. Their geometry is chosen so that on the 
one side of the pressing chamber, they copy the screw and on the other side, they pass fluently to 
the required shape of briquettes. They are highly stressed by compression pressure, temperature and 
abrasion especially. Therefore, their material has to be hard and abrasion resistant on the surface, 
tough in the core. 
 
 
3 Analysis of pressing screw 
 
3.1 Volume of screw profile 
 
Assuming that the thread space is filled with material to 100%, the volume of the screw profile 
represents the amount of material transported by the screw. Feeding screw is designed to achieve a 
fill volume of the screw profile. It is set coaxially with the pressing screw and form one unit. The 
main task of the feeding screw is the homogenization of entering material throughout cross-section 
of the screw profile.  
 

 

 

 

 

α1 - face angle 

α2 - backoff angle  

s - pitch  

e - sliding surface  

h - profile depth 

D - outside diameter of screw 
Figure 3.  Screw profile (meridian cross-section) 

 
Screw profile volume of i-course screw can be expressed (i - number of courses): 
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The volume profile of one thread can be changed following the screw length. Such changes will be 
achieved by: 

-
 

changing the outer diameter (conical screw), 
-
 

changing the profile depth (conical screw core),changing the pitch angle (screw with 
progressive pitch).Several parameters can be changed also at the same time. Then the ratio 

of volumes in the monitored areas on the screw is known as the compression ratio, thus: k = V/Vi 

 
 
3.2 Speed and force relationships in the screw 
 
Material, in our case biomass, is delivered to the screw profile in loose form. The feeding screw 
profile under the hopper is permanently flooding, thus the filling of the screw profile is kept at the 
interface constant value during the compression process. Fluent and constant supply of material 
from the hopper is provided by the filling screw. The advantage of using the filling screw is the 
possibility of partial pre-compacting of material before entry into the feeding respectively pressing 
screw area. 
 
For describing the movement of material in the screw is introduced following assumptions: 

-
 

thread profile is completely filled with solid,material moves in the direction of the screw 
pitch,neglecting the influence of curvature on the bottom of screw profile ,friction 
coefficient between material and monitored surfaces is constant,processed material does not 
transmit shear stresses.

 

If the assumptions are valid and in steady conditions, we can monitor the movement of defined 
particles in Fig 4. 
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α - spiral angle 

φ - feeding angle 

uo - circumferential speed 

vr - relative circumferential speed component  

va - absolute circumferential speed component 

Figure 4.  Speed conditions in screw profile 
The material is moving at a speed vr relative to screw (in the moving coordinates). The material is 
moving at a speed va relative to the die (in the fixed coordinates). From Fig 4 we can derive: 
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For the material transport is applied only axial velocity component vax, which is given by: 
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If is valid, that the vax has to be greater than 0, then the numerator in the fraction expression has to 
be greater than zero. Therefore has to be that the feeding angle φ belongs to the interval 0< φ< π/2. 
If φ = 0 then tgφ = 0, and so vax = 0. The first boundary state occurs. In other words, we can say that 
the material will not be transported in the direction of the axis of the screw, but will rotate with it. 
The second boundary state occurs, if φ = π/2. This value can not be appointed directly to the above 
relation, because we get an indefinite term. Therefore the original relationship is necessary to 
modify: 
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Substituting for φ = π/2 we get:  
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In this case, the material is moving in the direction of the screw axis without circumferential 
velocity component (such as nut and bolt). It follows that the real value of the angle φ will lie 
somewhere between these extremes. Using those relationships and knowledge can be expressed 
extruded amount. For simplicity, here is mentioned relationship for angular profile with the 
neglecting radius on the bottom of the screw profile:  
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 (
S

V�  - volume flow of material, ρSH - bulk density of material). 

 
For circumferential speed uo is valid:  
 

  nDu ..

0
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(D – screw diameter, n – number of screw revolutions). Then we can write: 
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As conditions will vary in length l, the feeding angle will vary too. When the bulk material is 
pressed, the feeding angle ϕ shrink lengthwise. 
On the defined particles when the screw profile is completely filling, the forces affect by the 
following Fig. 5. 

 

Figure 5.  Force conditions in screw profile  

 

Three-dimensional system of forces is converted to the planar so that all forces are reduced to the 
outer diameter of the screw. We respect the same pitch by introduction the pitch angles, see Fig. 6. 
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Figure 6.  Pitch angles on screw profile 
 
From Fig. 6 for forces balance in the direction of relative speed is valid: 
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Where: fz - friction coefficient between the material and the screw, fp - friction coefficient between 
the material and the die. 
Exclusion of F we get: 
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It is also valid: 
 

 
( )[ ] dl

D

hD

s

ie
sf

D

hDh
ff

s

ie
sf

p

dp

D

hD

s

ie
sh

s

s

zzpsp

p

p

p

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

⎟
⎠

⎞
⎜
⎝

⎛
−−

−
−+−+⎟

⎠

⎞
⎜
⎝

⎛
−=

=
−

⎟
⎠

⎞
⎜
⎝

⎛
−

2
.

sin

cos
.1...

sin
.2sin.)cos(.

sin

cos
.1..

..cos.1..

0

0

α

α

α
ϕαϕα

α

α

α

 (14) 

 

After treatment: 
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Assuming that the right-side expression the variables will not depend on the length l nor the 
pressure p, then integrating and using the boundary condition 

0
0 ppl =→= , where l is the working 

length of the screw with filled profile, we get: 
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The expression on the right side will denote as the constant of proportionality A. 
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Then it is a valid:  
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The above relations show that the pressure in the screw profile is exponentially dependent on the 
length of the screw. Proportionality constant A depends on the geometry of screw profile and the 
friction coefficient between material and die fp, and the material and screw fz. The condition of 
steep growth pressure requires that the coefficient of friction fp is the largest and coefficient fz the 
smallest. Coefficient fz can be greatly affected by the quality of screws surface. The aim is to 
achieve the least surface roughness. Enlargement of the coefficient fp can be achieved by rougher 
surface treatment of the die or grooves in the screw axis. Using the grooves will not only increase 
friction, but form closure prevents rotation of material and causes the so-called block axial flow. 
 

 

3.3 Frictional power of screw 

 

Movement of material in the filled screw profile has connection with friction power. The friction 
power is transformed into heat. 
 
Elementary friction power on the die is given by expression: 
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 (ka is coefficient of pressure anisotropy). 
 
Elementary friction power on the screw is given by expression: 
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Using those relationships and integration within the limits from 0 to 1 under the above assumptions 
we get: 
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The resulting friction power with filled profile:  
 

  PzPpPv +=    (23) 
 

Torque on the screw:  
 

  
n
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..2π
=   (24) 

 

Friction power Pv and torque on the screw Mk are necessary for drive of machines design. 
 
 
4 Application of the theory of geometry pressing screw design 
 
The usefulness of that theory we demonstrate on three variants of the pressing screw geometry  
(Fig. 7, 8, 9). For comparison simplicity of variants, the same input parameters are chosen for all 
variants: outer screw diameter (D = 70 mm), inner screw diameter (d = 40 mm), cross-sectional area 
of thread (S = 325 mm2), width of the screw guide surface (e = 5 mm), number of threads (z = 3). 
 

  
Figure 7.  Screw cross-section - variant A 
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Figure 8.  Screw cross-section - variant B 

 

  
Figure 9.  Screw cross-section - variant C 

 
Figure 10 shows that the work pressure is growing slowest in the screw geometry of variant A. 
Conversely, in the variant C the pressure grows steepest with the number of threads. The thread area 
is constant in all three variants. Just screw pitch varies depending on changes in the profile. In terms 
of condition of steep pressure growth is the most advantageous the geometry of variant C. It can not 
be definitively held that the mentioned thread profile is optimal in all aspects. Certainly it is 
necessary to verify that assumption also from other aspects - strength, technological and economic. 
 

 
Figure 10.  Dependence of pressure available by screw and number of screw-threads at constant initial 

pressure (p0 = 1.05 MPa) 
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5 Conclusion 
 
Compaction of biomass is relatively complicated process. Therefore good design of the pressing 
tool geometry is a fundamental for the success of the technology. The mentioned analysis of the 
pressing screw geometry can help in the design of new progressive tools that would eliminate the 
deficiencies of current instruments and allow the increase in biomass briquetting technology and 
application in a larger share of utilization of solid high-grade biofuel within the renewable energy 
sources. 
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MATHEMATICS   OF   INSTRUMENTED   INDENTATION 
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Abstract. Indentation testing is a common method to investigate mechanical properties of solids 

near their surface. The elastoplastic properties such as microhardness and Young modulus may 

be determined from the curves load – depth of penetration (Depth Sensing Indentation - DSI). In 

our work basic mathematical elements of DSI theory used for explanation and interpretation of 

experimental results for some pure metals are presented. 

 

Key words: microhardness, instrumented indentation, pure metals,   

 

Mathematics Subject Classification:  74Fxx – Mechanics of deformable solids 

 
 
1 Introduction 
 
Material science is a discipline nearly as old as mankind. Over a long period (up to 30th last century) 
it had been developed only empirically but from that time many new physically based methods have 
been introduced and intensively developed. For example the hardness methods were established by 
the end of 19th century (Mohs scale (1898), Brinell hardness test (1900), Mayer test (1908), 
Rockwell test (1914), Vickers test (1924) and Knoop test (1939)). In the second half of the 20th 
century a new approach to mechanical properties of material investigation has began. The founders 
of such approach were H. Hertz, D. Tabor, Sneddon and especially Bulychev and Alekin who 
published an analysis of continuous conical and spherical indentation, later called “Instrumented 
indentation”, or “Depth Sensing Indentation” (DSI). Instrumental indentation in micro- and 
nanoscale is now very popular technique for measuring the mechanical properties of surface of bulk 
materials and thin films [1 - 3]. This method provides to record the load penetration curves during 
the loading and unloading process. According to Doerner and Nix [4] and Oliver and Pharr [5] 
many important parameters such as hardness, and Young modulus can be determined especially 
from unloading curves. 
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2 Instrumented indentation 
 
It has been observed that sharp indenters (Vickers, Berkovich, Knoop) deform material both 
elastically and plastically and that the indenter is shelded by a hydrostatic core and plastic zone. The 
final model is based on the similarity to the processes in radial expansion of a spherical cavity under 
internal pressure [3] (Fig.1) 
 

 
 

Fig.1. Expanding cavity model [6] Fig.2. Contact mechanics [7] 

 

The rudiments of micro- and nanoindentation begins with study of contact mechanics between solid 
bodies, which were done by H.Hertz at the end of 19th century. Hertz [8] determined that the radius 
of the circle of contact a cold be calculated in terms of load P, the radius R and elastic modulus E* 
by the relation (Fig.2) 
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where E* is the combined elastic modulus of the indenter and specimen: 
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 ( ν1 resp. ν2 is Poisson´s ration of material resp. indenter and E1, resp. E2 is Young modulus of 
material, resp. indenter). For radius R we have (see Fig.2): 
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(for flat specimen R1→∞). 
For an rigid spherical indenter the profile of deformed surface can be expressed ([7], Fig.3) as 
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And finally with using (1): 
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(hc is the depth of the circle of contact). 

                                   
a)                            b) 

 
  Fig 3. To evaluation of P for round a) and conical b) indenter [7] 

 

Analogous considerations give for conical indenter [7]: 
 

   α

π

tghEP 22
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=  (6) 

and 
   απ

22
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c
=  

 

 (where α is the indenter cone half – angle) 
 
For Berkovich indenter:  
 

   hEaP
∗

= .2  (7) 
and 
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49.2433

cc
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(where θ = 65,270  and α = 70,2960) 
 

For Vickers indenter: 
 

   hEaP
∗

= .2  (8) 
and 
   222

504,244
cc
htghA =Θ=  

(where θ = 680 and α = 70,30) 
 

For Knoop indenter: 
 

   hEaP
∗

= .2  (9) 
and 
   2

21

2
.24,1082

cc
htgtghA =ΘΘ=  

(where θ1 = 86,250, θ2 = 650, α = 77,640) 
 

And for Cube corner indenter: 
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= .2  (10) 
And 
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(where θ = 35,260, α = 42,2780) 
 

 

 

2.1. Contact Stiffness 

 
The elastic contact between cone and flat specimen is done by the equation  (6): 
 

   α

π

tghEP 22
∗

=  (6a) 

 

Taking the derivation of P with respect to h we obtain: 
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And after substitution to the (6a) we have: 
 

   h
dh

dP
P

2

1
=  (12) 

 

which means that the slope of the load – displacement curve for an elastic loading at any particular 
point on the curve is twice that given by the ration P/h. 
For r = 0 is the relation between the displacement of the indenter and the radius of the circle of 
contact done by the equation 
 

   α

π

gah cot.
2

=  (13) 

 

Since  A = π.a2, we have 
 

   aE
dh

dP
∗

= 2   (14) 

 
 
3. Experimental procedure. 

 

The equipment. The Fischerscope H100 Xyp is a computer controlled microindentation system 
by Fischer Technology. Its main characteristics are: 

- Load range 0,4 ~ 1000 mN, 
- Depth sensitivity ± 1μm, 
- Maximal indentation depth 700 μm. 

The equipment is located in Laboratory of Mechanical Properties of Thin Solid Films, Institute of 
Physical Electronics, Masaryk University Brno. The calibration of equipment was performed on 
certified standard samples with well known mechanical properties and without any work hardening. 
These samples are usually carried out by massive planparallel blocks of boron silicate glass with 
small surface roughness. Typical schematical load – indentation depth curve with parameters 
commonly measured is shown on Fig.4.  
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Fig.4. Typical load – indentation depth curve and Vickers indent. 

 
Measured materials.  The samples of polycrystalline tin and copper (purity of 99,99 %) were 
mechanically grained and chemically polished to remove Beilby´s layer. In order to find the 
possible influence of the layer on microhardness both measurements were provided on samples with 
and without Beilby´s layer [9]. The microindentation experiments were performed by using Vickers 
indenter tips. All experimental results are shown on Figs 5,6. 
 
 
4. Results and discussion. 

 
According to our measurements, the Beilby´s layer does not influence significantly microhardness 
of pure tin and copper (Figs. 5, 6). It can be explained either as a consequence of a small thickness 
of the layer (~ 100 nm) or as a result of similar mechanical properties of Beiby´s layer and bulk 
material under it. The answer can be confirmed by nanoindentation measurements because 
nanoindents penetrate only this layer unlike microindents which are much more greater 
(micrometers). 

 
Fig. 5. Microhardness vs. Load for pure tin. Results for polished (red dots) 

and only grained samples (blue dots) show the occurence of ISE. 
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Fig.6. Microhardness vs. Load for pure copper. Results for polished (red dots) 

and only grained samples (blue dots) do not show occurence of ISE. 

 

Second result of our measurements confirm existence of the Indentation Size Effect (ISE), i.e. 
dependence of the microhardness on the load (or on the indentation depth) [10,11]. According to 
many authors the explanation of ISE can be done by 

- abroaded surface layers and oxides, 
- chemical contamination, 

- inadequate measurement capability of small areas of indents, 
- elastic recovery of indents, 
- indenter-specimen friction. 
- occurrence of the geometrically necessary dislocations. 

As we can see from the Figs. 5 and 6, the ISE for pure tin is considerable unlike for pure copper 
where was not observed. The explanation of that difference can be done by existence of 
geometrically necessary dislocations. The structure of tin is tetragonal, unlike copper, which is 
faced centered cubic (f.c.c.). It means that in copper there is at the beginning of indentation more 
working slip systems than in tin, i.e. for small indents is mechanical resistence (hardness) of tin 
comparatively higher than that for copper one. 
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TO   THE  IMPACT   OF  THE   OCCUPATION  

ON  THE  HOUSEHOLDS   INCOME  

 

NOSKOVA Barbora, CZ  

 

 
Abstract. The paper is focused on the analysis of household income. We try to describe and 

analyze how the occupation of the head of household influence the household income per capita 

and per EU scale equivalency and what is the development of this influence in time (1992 – 

2008). We have at a disposal micro-data on household incomes from Micro-censuses (1992, 

1996, 2002) and from the Statistics of Income and Living Conditions (annual data from 2005 – 

2008). We also use the aggregated and weighted data from both these surveys. Two different 

approaches are used. Firstly, the regression models are built up. These models for every year 

explain the household income by many factors including the occupation of the head of 

household. Secondly, the deciles distributions of income divided by occupations are analyzed. 

At both approaches, the incomes per capita and per EU scale equivalency are considered. 

 

Key words. Household income, micro-census, SILC, head of household, occupation   

 

Mathematics Subject Classification:  Primary 62P20; Secondary 91B82. 

 

 

1 Introduction 

 

Surveys of household income have a very long tradition and are an important part of the social 

statistics. Till 2002, the surveys (micro-censuses) had been realized in intervals of 4 – 6 years, from 

2005 the income and living condition are surveyed using harmonized surveys called Statistics of 

Income and Living Conditions (EU-SILC). The aim of the survey is to gather representative data on 

income distribution and on housing, labour, financial and health conditions not for the whole 

population, but also for various household types and adults living in the households. 

Our attention is paid to the impact of occupation on the income distribution. How does the 

occupation of head of household influence the income per capita and per EU scale equivalency? 

What is the impact on deciles distribution? Is there any trend in time (from 1992 to 2008)? 
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2 Data and Methodology 

 

For our analysis the data from the Czech Statistical Office (CZSO) are used. Two types of surveys 

were realized in period 1992 – 2008. We have micro-data sets from micro-censuses 1992, 1996 and 

2002. The number of surveyed household is 4,353, 7,485 and 28,150 units respectively. Also the 

micro-data sets are at a disposal from the EU-SILC surveys for each year from period 2005 – 2008 

(number of units varies between approx. 8,000 and 16,000). The aggregated data are also used for 

our analysis, because these data, published by the CZSO are weighted and grossed-up
1
. It implies 

advantages and disadvantages of using micro-data vs. aggregated data. While the micro-data allow 

us to use advanced statistical techniques for the multivariate analysis, they are not good for direct 

aggregation due to the biases caused by non-responses. For our analysis we use micro-data and the 

aggregated data as well. For the purpose of assessment the impact of occupation, we use 

Classification of Occupation (CZ-ISCO).  

 

 

2.1 Regression Analysis 

 

As the first approach, we use the regression analysis for describing the impact of occupation. For 

every year we try to find regression function  
 

 

   Y = f(x1, x2, …, xn),  (2.1) 
 

 

Where Y         ...income of individual household, 

 x1, x2, …, xn. ...characteristics of the head of household (occupation, age, edcuation level, 

gender...) or of the whole household (number of children etc.). 

 

Some of the factors (incl. the occupation, sex, education) are represented by the dummy variables 

(see table 1). As the reference category there was chosen a woman who has a university education 

and works as a manager, senior official, law-giver. Regression parameters give us the information 

on the influence of the related factor. The regression model is built-up for every year and for 

household income per capita and per EU scale equivalency. 

 

 

Table 1 

Occupation   Education   

non-working dummy_0 non or not finished primary dummy_ed0 

managers, senior officials, law-givers* dummy_1 Primary dummy_ed1 

professionals, research workers dummy_2 lower secondary, apprenticeship dummy_ed2 

teachers, technicians, medical staff dummy_3 secondary, post-secondary dummy_ed3 

lower administrative staff dummy_4 baccalaureate, graduate, postgraduate* dummy_ed4 

service sector workers dummy_5 ph.d. studies dummy_ed5 

skilled workers in agriculture and 

forestry dummy_6   

                                                 
1 For technical details, see also Methodological Remarks of  Micro-census 2002 (CZSO 2004) and of EU-SILC (CZSO 

2006 – 2008).  
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craftsmen, artisans, skilled producers dummy_7   

machinery operators dummy_8 Sex   

unskilled workers, element.occupations dummy_9 Female* dummy_sex0 

armed forces dummy_10 Male dummy_sex1 

*Reference group 

 

The analysis and mainly the comparison in time are complicated by the fact that the selection of 

variables surveyed in micro-censuses has been slightly changed between surveys. Also the 

methodology of micro-censuses differs from the methodology of EU-SILC.  

 

 

2.2 Decile Distribution 

 

For the second approach, we use aggregated data from Micro-Census 2002 and from the EU-SILC 

2005 – 2008. We analyze the deciles distribution of household income per capita and per EU scale 

equivalency, divided by occupations (using 1-digit CZ-ISCO).  

 

There are two possible points of view on the distributions. On the one hand, we can see the structure 

of households by occupation for each individual decile. On the other hand, we can see the structure 

of households by the income-level (by income decile) for each individual occupation category. 

From the comparison between years we can see the development of the impact of occupancy on the 

household income, both per capita and per EU scale equivalency. 

 

 

3 Results 

 

 

3.1 Regression Analysis 

 

We have used regression analysis to data from years 1992, 1996 and 2002. Data for additional 

years, which was obtained from the EU-SILC was unusable for the regression analysis in this 

research. 

 

 

3.1.1   Household income 1992 

 

For this research we have a reference household, where we consider as a head of household a single 

woman without children, with university level of education and working as manager, senior official 

or law-giver. The average income of a reference household per year per head was 60 642 CZK.  

In this case we describe changes for income per head. Incomes per economic and consumer units 

behave similarly. 

Difference in income between profession in the group managers, senior officials, law-givers and the 

group unskilled workers, elementary occupations is 17 856 CZK. If we compare income in group 

unskilled workers, elementary occupations and non-working, the difference is 4 140 CZK. Every 

child in household reduces income per head of about 8 567 CZK per year. Every non-working adult 

reduces income per head of about 5 304 CZK per year. An average per year per head income 
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increases of about 4 170 CZK when a man serves as a head of household. With a lower level of 

education, average income per head falls down, maximum difference is 9 240 CZK per year. This 

situation is illustrated in Figure 1. 

 

 
 

Figure 1 

 

3.1.2   Household income 1996 

 

Situation in 1996 is quite similar like in 1992. For an income level of households per head, 

economic unit and consumer unit there is still important education, profession, sex and age of a 

head, number of children, number of non-working persons in household and number of non-

working pensioners. There is only one important difference between year 1992 and 1996 because of 

increasing the price level. For this reason the average income was higher than in year 1992. And for 

the reference household there is a difference in average income per head of about 70 744 CZK per 

year. 

 

 

3.1.3  Household income 2002 

 

In 2002, the price level was still increasing. The impact of education, profession, sex and age of the 

head, number of children, number of non-working persons in household and number of non-

working pensioners on average income per head, per consumer unit and per economic unit was not 

changed too much. The income per head for households with a head working as a lower 

administrative staff the same was the same as for households with a head working as a professional 
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or research worker. But the income was higher in comparison to households in which the head 

worked as a teacher, technician or a medical staff. 

The most important change in this year was a fact, that households with a non-working head had 

not the lowest income per head among households. Households, where a head worked as a 

craftsman, artisan or a skilled producer, had a lower income per head than household, where the 

head was non-working. 

 

 
 

Figure 2 

 

3.2 Decile Distribution 

 

In a decile distribution the households are sorted by income per capita or per consumer unit to 10 

deciles groups. In the lowest decile there are households with the lowest income (per head, per 

consumer unit) while the highest one comprises households with the highest income. 

 

 

3.2.1   Decile distribution in 2005 

 

In 2005 the head of households included to the lowest decile (sorted by income per capita) was 

most often non-working (49.5 %). If he was working, he was most often a craftsman, artisan or 

skilled producer (22.9 %). In the highest decile, the head worked as a professional, research worker 

(20.6 %) or as a manager, senior officials or law-giver (18.3 %). They are only 3.9 % non-working 

heads in the highest decile. 

If we sort households to deciles by income per consumer unit, 67.7 % of heads in the lowest 

decile are non-working. Working heads worked mainly in a group craftsman, artisan, skilled 

producer (11.5 %). In the highest decile, heads of households worked most often in groups teacher, 
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technician, medical staff (26.4 %), manager, senior official, law-giver (19.9 %) and professional or 

research worker (19.8 %). (See also figure 3). 

 

  
 

Figure 3 – Decile distribution in 2005 
 

Figure 4 – Decile distribution in 2006 

 

 

3.2.2  Decile distribution in 2006 

 

In 2006 head of households in the lowest decile (sorted by income per capita) was most often 

non-working (45.6 % - it is less than in 2005). If he was working, he was most often a craftsman, 

artisan, skilled producer (19.7 %). On the other side, head of household in the highest decile worked 

most often as a teacher, technician or a medical staff (25.2 %), then professional, research worker 

(22.6 %) or manager, senior official and law-giver (13.6 %). There is only 6.3 % non-working 

heads of households in the highest decile, it is about 3 % higher than in 2005. 

Sorting households to deciles by income per consumer unit, 68.9 % of heads in the lowest 

decile are non-working. Working heads of households worked mainly in group craftsman, artisan, 

skilled producer (9.6 %). In the highest decile, heads of households worked most often as a  teacher, 

technician, medical staff (24.4 %), then as professional, research worker (21.9 %) and manager, 

senior official and law-giver (16.9 %).  See also figure 4. 

 

3.2.3   Decile distribution in 2007 

 

In 2007, the share of non-working heads of households included to the lowest deciles increased 

to 47.5 %. Working head of households worked mainly as a craftsman, artisan, skilled producer 

(17.1 %). In the highest decile, heads of households worked most often still in groups teacher, 

technician, medical staff (27.3 %), professional, research worker (22.9 %) and manager, senior 

official, law-giver (13.6 %). Number of heads of households included to the highest decile, which 

worked as artisan and skilled producer appreciably increased (13.1 %). 

Also in 2007 there was an increase of non-working heads of households in the lowest decile 

(sorted by income per consumer unit). Almost 71 % of heads of households included to the lowest 

decile was non-working. Working heads worked mainly in group craftsman, artisan and skilled 

producer (8.1 %). In the highest decile, heads of households worked most often in groups teacher, 

technician, medical staff (25.7 %), professional or research worker (23.1 %) and manager, senior 

official, law-giver (15.7 %).  See also figure 5. 
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3.2.4   Decile distribution in 2008 

 

In 2008 head of households included to the lowest decile (sorted by income per capita) was 

most often non-working (45.3 %). The most often group of professions remains unchanged like in 

2007 – craftsman, artisan, skilled producer (18.2 %). In the highest decile, the head worked mainly 

as a teacher, technician, medical staff (25.3 %), professional or research worker (19.0 %) and 

manager, senior official and law-giver (15.2 %). 

As well as in 2007, there is an increase of non-working heads of households in the lowest 

decile (by income per consumer unit). Almost 72 % heads of households included to the lowest 

decile were non-working. Number of working heads of households decreased in most represented 

group craftsman, artisan and skilled producer to 7.0 %. In the highest decile, heads of households 

worked most often as a teacher, technician, medical staff (24.5 %), professional or research worker 

(18.7 %) and manager, senior official and law-giver (17.1 %). See also figure 6. 

 

  
 

Figure 5 – Decile distribution in 2007 

 

Figure 6 – Decile distribution in 2008 

 

 

3.2.5   Decile distribution for non-working head of households 

 

While the decile distribution of households for all the groups of working heads of households by 

ISCO classification corresponds to our expectations (e. g. higher ratio of households with more 

qualified heads in higher deciles), for non-working heads the situation was surprising. In our 

reference period (2005 – 2008), most households with a non-working head were not included to the 

lowest decile (as we expected), but to the deciles 4 and 5 (i. e. middle-class), see also table 2. This 

could be caused by the system of social benefits.  

 

Table 2 – Non-working head of household in deciles (in %) 

Year 

lowest 
10% 

second 
10% 

third 
10% 

fourth 
10% 

fifth 
10% 

sixth 
10% 

seventh 
10% 

eighth 
10% 

ninth 
10% 

highest 
10% 

2005 13,30 6,61 11,49 16,40 16,89 14,63 10,22 6,19 3,23 1,05

2006 11,95 7,99 12,36 14,91 15,51 14,98 11,55 6,22 2,88 1,65

2007 13,30 6,61 11,49 16,40 16,89 14,63 10,22 6,19 3,23 1,05

2008 11,61 8,17 13,17 15,52 15,34 13,98 10,20 6,88 3,20 1,92
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4 Discussion 

 

Two different data sources and two different analytical approaches have been used. While the data 

from Micro-Censuses are at a disposal once per several years (1992, 1996, 2002), the EU-SILC 

survey is realized every year from 2005. Due to the methodological changes between Micro-Census 

and EU-SILC, it is not possible to make a direct comparison between the first and the second 

periods. Since the Micro-Censuses were also changed from 1992 – 2002, we preferred the 

comparison of the data using regression models for each of the survey. The decile distribution used 

for EU-SILC data gives us the other point of view for the same issue. 

 

 

5 Conclusion 

 

The issue of the impact of occupation on the households’ income has been solved. Using two data 

sources and two methodological approaches we can conclude that the income is strongly influenced 

by the occupation of the head of household both for the income per capita and per EU scale 

equivalency. As a side-effect we analyzed the other income factors such as sex, level of education, 

number of children and so on.  

But, contrary to our expectation, the income situation of household with a non-working head is not 

so. Using the decile distribution we can see that these households are mainly included to the middle 

class.  
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Abstract: Finite element method is a progressive tool for developed engineering work. 
Softwares which used the finite element method for simulating physical phenomenon are more 
and more sophisticated. Engineers have to find a way how to use these software tools correctly. 
For these types software simulators exist verifications methods which compare Analytical 
solution with Computed results. These particular master tasks are useful for real usage and 
calibrate the software for application in real life. The biomass compacting is a very complicated 
process, because the biomass is a “live” material and there are many factors influencing this 
process. We used finite element method for our development work and optimizing the machines 
construction. 
 
Key words: biomass, finite element method, pressing, compacting, briquetting, Catia V5R20, 
solver verification. 
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1 Background 

The finite element method is a numerical technique which gives approximate solutions to 
differential equations that model problems arise in physics and engineering. As in simple finite 
difference schemes the finite element method requires a problem defined in geometrical space (or 
domain) to be subdivided into a finite number of smaller regions (a mesh). In finite differences, the 
mesh consists of rows and columns of orthogonal lines; in finite elements, each subdivision is 
unique and does not need to be orthogonal. For example, triangles or quadrilaterals can be used in 
two dimensions, and tetra hexagons or hexahedrons in three dimensions. Over each finite element, 
the unknown variables (e.g., temperature, velocity, etc.) are approximated using known functions; 
these functions can be linear or higher-order polynomial expansions that depend on the geometrical 
locations (nodes) used to define the finite element shape. In contrast to finite difference procedures 
(conventional finite difference discretizations, as opposed to the finite volume method, which is 
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integrated), the governing equations in the finite element method are integrated over each finite 
element and the solution summed (“assembled”) over the entire problem domain. As a consequence 
of these operations, a set of finite linear equations is obtained in terms of a set of unknown 
parameters over each element. Solution of these equations is achieved using linear algebra 
techniques.  

2 History 

The history of the finite element method is particularly interesting, especially since the method has 
only been existing since the mid 1950s. Earlier work on numerical solution of boundary value 
problems can be traced to the use of finite difference schemes; Southwell discusses the use of such 
methods on his book published in 1946. The beginnings of the finite element method actually stem 
from these earlier numerical methods and the frustration associated which attempting to use finite 
difference methods on more difficult, geometrically irregular problems (Roache 1972). Beginning 
in the min 1950s, efforts to solve continuum problems in elasticity using small, discrete „elements“ 
to describe the overall behavior of  simple elastic bars began to appear. Argyris (1954) and Turner 
at all (1956) were the first to publish on the use of such techniques for the aircraft industry. The 
actual coining of the term “finite element” appeared in a paper by Clough (1960). The earlier use of 
finite elements was restricted to the application of such techniques for structural related problems. 
However, the versatility of the method and its underlying rich mathematical basis were soon 
recognized by others for application in nonstructural areas. Zienkiewicz and Cheung (1965) were 
among the first to apply the finite element method to field problems (e.g., heat conduction, 
irrotational fluid flow, etc.) involving solution of Laplace and Poisson equations. Much of the 
earlier work on nonlinear problems can be found in Oden (1975). Efforts to model heat transfer 
problems which complex boundaries are discussed in Hueber (1975); a comprehensive three-
dimensional finite element model for heat conduction is described by Heuser (1972). An earlier 
application of the finite element technique to viscous fluid flow is given by Martin (1968). A virtual 
explosion in usage of the method has occurred since the mid 1970s. Numerous articles and texts 
have been published, and new applications appear routinely in the literature. Excellent reviews and 
descriptions of the method can be found in the texts by Finlayson (1972), Desai (1979), Becker at 
al. (1981), Fletcher (1984), Reddy (1984), Segerlind (1984), Hugnes (1987), Bickford (1990), and 
Zinkewiwcz and Taylor (1989). A rigorous mathematical discussion is given in the text by Johnson 
(1987), and programming the finite element method is described by Smith (1982). A short 
monograph on development of finite element method is given by Owen and Hinton (1980). The 
underlying mathematical basic of finite element method first lines with the classical Rayleigh-Ritz 
method and variation calculus procedures introduced by Rayleigh (1977) and Ritz (1909). These 
theories provided the reasons why the finite element method worked well for the class of problems 
in which variation statements could be obtained (e. g. linear diffusion-type problems). However, as 
interest, expanded theory could no longer be used to describe such problems. This is particularly 
accident in fluid-related problems involving convection. Extension of the mathematical basic to 
nonlinear and nonstructural problems was achieved through the method of weighted residuals, 
originally conceived by Galerkin (1915) in the earlier 20th century. The method of weighted 
residuals was found to provide Rayleigh-Ritz method can be applied. Basically, the method requires 
the governing product to be integrated over space; this integral is then required to vanish. 
Technically Galerkin's method is a particular case of the general weighted residuals procedure 
where various typed of weights can be utilized; in the case of Galerkin's method, the weights are 
chosen to be the same as the functions used to define the unknown variables. Galerkin's method 
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yields results identical to the Rayleigh of functions; the weighted residual method yields the finite 
volume technique. A rigorous description of the method of weighted residuals can be found in 
Finlayson (1972).  Most practitioners of the finite element method now employ Galerkin's method 
to establish the approximations to the governing equations.  
 

3 Mathematical models and engineering decisions 

Controversial safety problems of dams, bridges, offshore drilling platforms, aircraft, automobiles, 
etc., pose many difficult questions ( 
Figure 1). As a simple illustration, consider the safety of a bridge. The bridge has to resist loads 
caused by traffic, high wind, and earthquake. Does this mean, however, that the bridge has to resist 
maximum traffic load, high wind, and earthquake imposed simultaneously? What does "resist" 
mean? What kind of damages is acceptable under various conditions? What intensity of earthquake 
and wind should one assume in designing the structure? The problem of safety and durability are 
formulated differently in one time than in another. For example, in the 1970s the U. S. Air Force 
changed its design requirements from the maximum stress criterion to criteria based on linear elastic 
fracture mechanics. 

 
Figure 1 Schematic representation of the engineering decision-making process 

 

3.1 The General Mathematical Model 

The general mathematical model, also called the mathematical model, is an idealized representation 
of reality. In constructing mathematical models we take into consideration our purposes in wanting 
to model a physical system or process, what we know about the physical system or process, and 
what we consider important about it. The mathematical model will represent reality only if we 
succeed in taking into consideration all factors that will affect the conclusions drawn from the 
mathematical solution. Among the factors we need to consider is how well we know the data 
needed for the mathematical model, such as the material properties, geometric properties, and 
loading. Uncertainties about the data can be taking into consideration by stochastic models or by 
using bounding assumptions which are conservative with respect to the appropriate safety and 
durability requirements. Because of their complexity, general mathematical models do not permit 
exact solutions. Of necessity, the solutions are approximate. Correct interpretation of these 
approximate solutions is possible only if one is aware of the assumptions incorporated in the 
mathematical model and the implied limitations. 
Finite element analysis has now become an integral part of Computer Aided Engineering (CAE) 
and is being extensively used in the analysis and design of many complex real-life systems. While it 
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started off as an extension of matrix methods of structural analysis and was initially perceived as a 
tool for structural analysis alone, its applications now range for structures to bio-mechanics to 
electromagnetic field problems. Simple linear static problems as well as highly complex nonlinear 
transient dynamic problems are effectively solved using the finite element method. The filed of 
finite element analysis has natured and now rests of rigorous mathematical foundation. Many 
powerful commercial software packages are now available, enabling its widespread use in several 
industries. Classical analytical methods consider a differential element ant develop the governing 
equations, usually in the prom of partial differential equations. When applied to real-life problem 
situations, it is often difficult to obtain an exact solution to these equations is view of complex 
geometry and boundary conditions. The finite element method (FEM) can be viewed simply as a 
method of finding approximate solutions for partial differential equations or as a tool to transform 
partial differential equations into algebraic equations, which are then easily solved. Some of key 
ideas used in finite element formulation are now summarized: - Since the solution for field variable 
satisfying both the boundary conditions and the differential equation is unknown, we begin with an 
assumed trial solution. The trial solution is chosen such that the boundary conditions are satisfied. - 
The trial solution assumed, in general, does not satisfy the differential equation exactly and teases a 
domain residual defined as the error in satisfying the differential equation. - In general, the domain 
residual varies from point to point within the domain and cannot be exactly reduced to zero 
everywhere. We can choose to make in vanish at select points within the entire domain. Thus, the 
weighted sum of the domain residual computed over the entire domain is rendered zero. - The 
accuracy of the assumed trial solution can be improved by taking additional, higher order terms, but 
the computations become tedious and do not readily render themselves for automation. Also, for 
complex real-life problems, choosing a single continuous trial function valid over the entire domain 
satisfying the boundary conditions is not a trivial function valid over the entire domain satisfying 
the boundary conditions is not a trivial task. We therefore prefer to discretise the domain into 
several segments (called finite elements) and use several piece-wise continuous trial functions, each 
valid within a segment (finite element). - Trial functions used in each segment (finite element) are 
known as element level shape functions. These are defined in the form of interpolation functions 
used to interpolate the value of the field variable at an interior point within the element from its 
value at certain key points (called the nodes) in the element. Typical elements commonly used in 
finite element analysis are shown in Figure 2. 
 

  
 

Figure 2: Typical finite elements (frame element, 2d e., plate and shell e., 3-d e.) 
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With these shape functions, the weighted sum of the domain residual is computed for each element 
and then summed up over all the elements to obtain the weighted sum for the entire domain. - For 
all elements using the same shape functions, the computations will be identical and, thus, for each 
type of element we have element level characteristic matrices. These characteristic matrices for 
several types of elements are derived a priori and programmed into finite element software such as 
ANSYS, NASTRAN, IDEAS, etc. And other categories of software called CAx systems which are 
more complex and oriented to complex engineering design solutions as CATIA, SOLID WORKS, 
SOLID EDGE, INVENTOR, PROENGINEER, etc. These categories of software solution contain 
lot of tools necessary for development worked during whole life cycles of product. These solutions 
are every year more complex and improvement. The user can choose to discretise (model) his 
domain with a variety of different finite elements. The computer program sets up the characteristic 
matrices for each element and then sums them all up for entire finite element mesh to set up and 
solve the system level equations. The basic steps of finite element analysis, as outlined above, are 
quite generic and can be applied to any problem-be it from the field of structural mechanics or heat 
transfer, or fluid flow or electromagnetic fields, given the appropriate differential equation and 
boundary conditions. In view of the similarity in the form of governing differential equations, the 
finite element formulation for a particular type of differential equation can be used to solve a class 
of problems. For example, a differential equation of the type.  

 
2

02
d f

AC q
dx

   (1) 

Described of a rod when we use the connotation that f represents the axial deformation, 
q represents the load, and A , C  stand for cross-sectional area and Young’s modules, respectively. 
The same equation, when interpreted with the connotation that f  stands for temperature, 
q represents internal heat source and A , C  stand for cross-sectional area and coefficient of thermal 
conductivity, respectively will be the governing equation for one-dimensional heat conduction. 
Thus, finite element formulation developed for the above differential equation can be readily used 
to solve either of physical problems. Sometimes, the governing equations are more readily available 
in the form of minimization of a functional. For example, in problems of structural mechanics, the 
equilibrium configuration is the one that minimizes the total potential of the system. Finite element 
formulation can be developed readily for a problem described by a functional, rather than a 
differential equation. When both the forms are available for a given for each other. The finite 
element method essentially grew up as a tool for structural mechanics problems, as an extension of 
the matrix methods of structural analysis. While such an approach towards the study of finite 
element formulation enables easy visualization in the form of lumped springs, masse, etc., the 
approach outlined above highlights the generic nature of the method, applicable for a variety of 
problems belonging to widely varying physical domains. It is felt that this approach gives a proper 
perspective on the entire field of finite element analysis. In the chapters that follow, we elaborate on 
the various basic steps outlined above for one- ant two- dimensional, static and dynamic problems. 
We now present several examples of application of finite element analysis to real-life problems, to 
give an overview of the capabilities of the method. Our application examples are drawn from the 
fields of structural mechanics, aerospace, manufacturing, processes, electromagnetic, etc. 
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3.2 Equation Solvers 

After the computational model has been created, it is then fed to solver to solve the discretised 
system, simultaneous equations for the field variables at the nodes of the mesh. This is the most 
computer hardware demanding process. Different software packages use different algorithms 
depending upon the physical phenomenon to be simulated. There are two very important 
considerations when choosing algorithms for solving a system of equations: one is the storage 
required, and another is the CPU (Central Processing Unit) time needed. There are two main types 
of method tor solving simultaneous equations: direct methods and iterative methods. Commonly 
used direct methods include the Gauss elimination method and the LU decomposition method. 
Those methods work well for relatively small time of duration. 

4 CATIA Elfini Solver Verification 

For our application finite element method at the construction process of compacting machines FOR 
biomass we are using very sophistic software solution CATIA Structural Analysis. This software 
module is part of complex software solutions CAx categories developed by Dassault Systemes. 
Actual used version of product is CATIA V5R20. This module used Elfini Solver. For verification 
functionality any solvers you can use compare principle. This principle is base on compares 
analytical or reference solution with solution of solver represent by result in CATIA. Exempli gratia 
we presented some examples part of verification process. A Structural Analysis contains the Static 
Analysis, Modal Analysis, Buckling Analysis, Dynamic Response Analysis, Thermo Mechanical 
Analysis, Analysis Assembly and Composite. For actual task of engineering work we need mainly 
Static and Assembly Analysis. Description of several linear static analysis problems, several 
elements assembled with a fastened connection and comparison of results. In literature are 
introduced problem as Thick Beam, Twisted Beam, Bending of a Beam, Thick Cylinder, etc. 
Static Analysis contains static linear analysis problems which illustrate some of the features and 
capabilities of CATIA-ELFINI. Static linear analysis consists in finding the deformed shape and the 
internal strains and stresses of an elastic structure subject to prescribed boundary conditions 
(displacement and traction types). In literatures you can find following tests: Space Structure on 
Elastic Supports, Cylindrical Roof Under its Own Weight, Hemispherical Shell under Concentrated 
Load, Morley's Problem, Pinched Cylinder, Simply-supported Square Plate, Thick Beam, Twisted 
Beam, Bending of a Beam, Thick Cylinder etc. 
Bending of a Beam test lets you check analysis results for the bending of a beam, in the context of a 
static case. You will use 3D meshes. Reference: SFM, Afnor Technique, Guide de validation des 
prologiciels de calcul de structures, pp124-125. Specifications are in the Table3, analytical solution 
is represent by educational (2) and the table below presents the analysis results. The results 
correspond to the means of the stress and the displacements in the section A. 
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Table 1: Analysis Specifications and pictures of “TE10“ 

Young Modulus (material):  
+005E = 2e  GPa  

 

Poisson's Ratio (material): 
v = 0.3  
Mesh Specifications: 
3D elements of 500  
Restraints (User-defined): 
Tx = Ty = Tz = Rz = 0 on H  

Loads (Moment):  

On C , +007My = 4/3e  Nm  

 

 
Table 2: Geometry Specifications 

CH = L = 6m  
AH = L' = (2/3) L  
DE = GF = 2a = 2m  

EF = DG = 2b = 2m  

  

 
Table 3: Analysis Specifications (HR20) And compare equations of analytical solution 

 

Figure 3 Misses stress by Parabolic 

Hexahedron mesh (HR20) 
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Table 4: Normalized results (computed results divided by analytical solution) are listed. 

Localizati
on 

Type of Values
Analy- 

tical 
Solution 

Values 

Linear Tetrahedron
(TE4) 

Parabolic 
Tetrahedron  

(TE10) 

Linear 
Hexahedron  

(HE8) 

Parabolic 
Hexahedron 

(HE20) 

  

Computed 
Results 

Norma-
lized 

Results

Computed 
Results 

Norma-
lized 

Results

Comp-
uted 

Results

Norma-
lized 

Results 

Comp-
uted 

Results 

Normali-
zed 

Results 

Section  zz [Mpa]  10 7.6 0.76 10 1 9.97 0.997 9.99 0.99 

A  AU  [mm]  -0.4 -0.329 0.823 -0.388 0.97 -0.389 0.973 -0.39 0.975 

B  BW  [mm]  0.2 0.17 0.85 0.197 0.985 0.197 0.985 0.197 0.985 

F or G  F GV  = -V  [mm] 0.015 0.012 0.8 0.01485 0.99 0.0149 0.993 0.0149 0.993 

D or E  D EV  = -V  [mm] -0.015 -0.012 0.8 -0.01485 0.99 -0.0149 0.993 -0.0149 0.993 

 
This was one of compare verification test which certify functionality of this finite element 
simulating software. 
 

5 Briquetting - Pressing spiral worm 

Biomass briquetting by spiral worm achieves the best quality of briquettes. This principle 
can create different shapes of briquettes (cylinder, n-angle parallelepiped, with hole or without) 
(Figure 4). Material is compacted continually and structural defects are not created. Material is 
compacted to the cylindrical endless briquette, which is cut to suitable length. Continual 
compacting of material insures high grade of mechanical pressing quality indexes. 

 

 
Figure 4: Briquettes made by spiral worm 

Every principle of briquetting using other type of pressing tool, has advantages and 
disadvantages. But the pressing quality is not always determining for briquetting principle selection. 
Producers also have to consider the production costs and capital costs on the unit of compacted 
material to be competitive on the biofuel market. Therefore we do research work in this field to 
increase the pressing quality. But the quality cannot raise at the expense of costs if biofuel has to be 
successfully using and gradually gets competitive to fossil fuel. 
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5.1 Finite element real life applications 

Within the development project construction process of compacting machines for biomass we 

have to solve a lot of question about durability, stability, tribology and acceptable load of part 

of construction or whole assemblies of machines. One of examples is partial task which has 

been solved. Task was oriented of Analysis of an compressed spiral worm Assembly ( 

Figure 5). This analyses solved critical construction nodal that is a joint between two part of screw 
assembly. The joint is realized by parallel key. . It must be very compact because there is limited 
space in the main construction. One of other problem is Hub Key Groove made for key in blind 
hole. For this reason is drilled gap advisory hole in to the spiral worm. This hole whither stability of 
the spiral worm. For that geometrical and dimensional limitations is necessary verify this nodal. In 
Catia Structural Analysis was created simulation of this operative state. Because the complex 
process of continues compacting Biomass as wood is very hard to describe. Compacting is a 
technology which influences many factors. The most variables is coming to the compacting process 
with the compacted material, kind, structure, chemical composition, mechanical conditions, 
humidity. For this reasons analysis was simplified. 
 

 
 

Figure 5: Assembly of compacting spirall worm 

 
 High pressure worm spiral (green  

Figure 5) was replaced by virtual part as well as other contact parts. It was defined load only of 
gear which we suppose from the previous calculations. There were defined relevant constrains and 
contacts. Results were represented graphically and numerically. As a result is that spiral worm is 
manufactorable. Very hard steal must be used in manufacture which satisfies solved technical 
parameters.  
 

 
 

Figure 6: Simplified simulation, compare Von Misses stress, constrains, virtual part and load 
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Figure 7: Detail view, compare Von Misses stress. 
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Abstract. This article is focused on Mathematica software (www.wolfram.com) GUI and its 
usage in the study course Methods of artificial intelligence at Tomas Bata University in Zlin, 
Faculty of Applied Informatics. Methods of artificial intelligence in this case is applied 
mathematics in the fields of neural networks and optimization. The article will describe 
advantages and disadvantages of GUI environement of Mathematica software. 
 
Key words. Mathematica, GUI, webMathematica, neural networks.  
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1 Introduction and motivation 
 
This paper will be focused on presentation how Mathematica GUI can be used during lessons, 
tutorials and lectures in the field of artificial intelligence. Our university – Tomas Bata University in 
Zlin has bought a Unlimited Site License for Mathematica software and since that time not only 
computer laboratories have been equipped by this software but also students and employees have 
been allowed to ask the home use license of Mathematica. This caused spreading of usage of 
Mathematica over all study programmes and study years. Students learn the basics of the software 
in the first year and then they use it in different subjects like Mathematics, Differential Equations, 
Cryptology, classical Optimization and also in Methods and Applications of Artificial Intelligence 
and others. The possibility of visualization and very short programming code is the main thing 
which allows to show the explained problem very quickly without time demanding programming to 
see first results.  
Mathematica has two possibilities of nice functional programs for presentations: command 
Manipulate which can be translated on demonstrations.wolfram.com into a self running program 
only with Mathematica Player and GUI (graphics user interface) environment where Mathematica 
or Mathematica Player Pro is necessary for its run. Mathematica Player compared to Mathematica 
Player Pro can be downloaded free of charge and it is possible to see the code or run Manipulate 
translated by demonstrations.wolfram.com. In this case no parts where editing is necessary are 
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allowed. Mathematica Player cannot edit anything, in Mathematica environment it is possible to 
have a Manipulate with editable fields. In the case of Mathematica Player Pro the core of 
Mathematica is available but no edit is possible too. Manipulate case is perfect if no external data is 
required. It is the case all parameters and data have to be inside the Manipulate and a user only 
chooses the combination of his/her interests. 
The case with GUI is suitable for offering many choices and even uploading of external data or 
opening of more windows, storing results inside the Mathematica window or export into text of 
graphical files. There is also two big disadvantages from the programmer point of view and these 
are: a small support in documentation and that the code has two be written in one big function and it 
seems that also definitions of user created functions has to be inside the one big function otherwise 
it is not working properly.  
As advantages of GUI were more important for us we have decided to use GUI in our case. The 
application, which is under development now, will be defended as a diploma thesis during June 
2011. Some parts have been already finished as simple neural network with one neuron, Hopfield 
net and correction of corrupted letters, BAM, multilayer Perceptron with Backpropagation 
algorithm and multilayer Perceptron with evolutionary techniques as a training algorithm are in the 
process of testing. The application counts with adding of further blocks of other neural networks 
types in the future.  
The aim of this application is to show possibilities of neural networks to students on tutorials and 
lectures without writing a code into Mathematica software. 
The article will describe introduction into neural networks, secondly figures of the application itself 
will be shown. In the third part evolutionary algorithms will be mentioned and example of usage 
with approximation of data. 
 
 
2 Neural networks 
 
Artificial neural networks [1] - [3] are inspired in the biological neural nets and are used for 
complex and difficult tasks. The most often usage is classification of objects. ANN are capable of 
generalization and hence the classification is natural for them. Some other possibilities are in 
pattern recognition, control, filtering of signals and also data approximation and others.  
Neural networks are of two kinds with and without supervision. Perceptron and feedforward nets 
are with supervision. They need a training set of known solutions to be learned on them. Supervised 
ANN has to have input and also required output. ANN with unsupervised learning is capable of 
self-organization. 
The neural network works so that suitable inputs in numbers have to be given on the input vector. 
These inputs are multiplied by weights which are adjusted during the training. In the neuron the 
sum of inputs multiplied by weights are transferred through mathematical function like sigmoid, 
linear, hyperbolic tangent etc. Therefore ANN can be used for data approximation [1] - [3]. 
These single neuron units (0) are connected to different structures to obtain ANN (e.g. Figure 2). 
These networks were design for different tasks. Feedforward nets have different training algorithms 
– the most known Backpropagation, Pruning algorithm, gradient methods, Levenberg-Marquardt 
[4] but in last years also evolutionary optimization techniques are used to train ANN, mainly 
genetic algorithms or Differential evolution [5], [7] In the current phase evolutionary algorithms 
like SOMA [6], [7] or Differential evolution are implemented and tested because it is supposed that 
classification or approximation of some tasks could be a very hard optimization problem to find 
suitable weights in neural networks. 
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Figure 1. Neuron model, where TF (transfer function like sigmoid), x1 - xn  
(inputs to neural network), b – bias (usualy equal to 1), w1 – wn, wb – weights, y – output. 

 

a)  b)  
       
Figure 2. ANN models with a) one hidden layer and b) with two hidden layer net and more outputs where 

  TF[ (wixi  bwb )]
and in this case  TF[ (wixi  bwb )], where TF is sigmoid. These pictures are 

taken from Neural Networks Toolbox for Mathematica environment (www.wolfram.com) since this tool was 

used during the simulations. Also names are taken from this tool to avoid other speculations what it means.. 

 
The previous nets are most often used neural nets. But in the application also Hopfield net and 
BAM net can be found for demonstration of their capabilities. Mainly Hopfield net which is able to 
correct corrupted text. It is possible to put either text file with letters or signs for training or GUI 
offers to open a second window ( 
Figure 3) where a user can click into the grid according the choice to create a sign. Such signs are 
added into training sets. 
 
 
3 Printscreens of the application 
 
The following figures ( 
Figure 3 - Figure 6) show example printscreens of the application created in GUI of Mathematica  
software. Currently, the application works with Perceptron, Adaline – one neuron net and the their 
types of training. BAM and Hopfield net work with typing of letters or uploading of external data 
from text file. The training history is also available in the last fold as well as weights set in each 
epoch. 
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Figure 3. Example of Hopfield net part of the application and a window 
 with possibility of new letters clicking 

 
 
4 Approximation of Sin (x) with usage of evolutionary techniques 
 
Besides above described modules, there is a module of one neuron and multilayer perceptron 
structure with evolutionary technique training algorithm which is in the testing phase now and 
adding of this module is in the near future plans. 
Evolutionary algorithms are optimization algorithms and are used for different task, usually very 
hard or impossible for solving by means of classical mathematical tools [7]. These techniques have 
been tried to use it as a training algorithm in the case of neural networks or even for synthesis of the 
whole structure and connections [8]. These techniques allow of usage of different transfer functions 
or different kinds of connection, even not fully connected nets. Usual technique is to optimize of all 
weights to minimize of the global error – to go through the training set, to count the global error and 
to change of weight values.  
As a demonstration this technique is applied on the approximation of sin(x) function in the interval 

<0, 2 Pi>. In this case SOMA algorithm was used [7]. It serves as a demonstration for students. 
Following figure ( 

Figure 4) shows one of the results of this approximation. It is not completely with a global error 
equal to zero but as it can be seen such approach is possible. More examples are planned as well as 
user can choose different connections or different transfer functions inside the neurons in the net. 
The same applications will be implemented also with classical approach to see the difference and 
comparison between these methods. 
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Figure 4. Example of approximation of sin (x), red – approximation, blue – original data 
 
 

5 Conclusion 
 
This article deals with an application in GUI of Mathematica environment for the subject Methods 
of artificial intelligence. The main aim is to show to students during lectures and tutorials how 
different types of neural networks work. There will be implemented also a experimental part with 
evolutionary technique training algorithm. The application could be used also for scientific 
computation as uploading of external data is possible. 
 

 
Figure 5. Example of Perceptron training 
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Figure 6. Example of Perceptron training history 
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UTILIZATION OF LINEAR TEMPORAL LOGIC
FOR GENERATED C PROGRAM CODE

PAŠKA Marek, (CZ)

Abstract. This paper presents a novel approach to software development, mainly useful
for embedded devices. Embedded software is described in a programming language with
very high level of abstraction. We first generate a special verifiable code from the descrip-
tion and prove that it has certain properties defined by LTL formulae. Then we generate
final C code with the same properties.
Key words and phrases. linear temporal logic, formal verification, generative program-
ming.
Mathematics Subject Classification. Primary 68N30, 68M15.

1 Introduction

Embedded computer systems are a very large domain. Nowadays, large portion of industrial
products are controlled by a computer within, e.g., cars, washing machines, cameras, etc. An
embedded software is the ultimate source of flexibility and controllability of the embedded
system [1].

There are special requirements for the software that runs on embedded computers. The
embedded system should be usually cheap, and thus an embedded software should use as little
resources, i.e., CPU and memory, as possible. Power consumption is also important in many
cases.

These constraints make embedded software development extremely conservative, see [2], [3].
Whereas programmers of desktop applications use new high level object oriented languages,
e.g., Java, C#, Python, embedded software development relies mostly on legacy tools such
as plain C or assembly; despite the fact that the performance of embeddable microprocessors
grows for decades.
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Another requirement is dependability. Embedded systems usually work in so called reactive
mode, that is, they react on events in the real world. Therefore, a malfunction of an embedded
system may directly cause real world damages. It is also typically too expensive to fix an error
in a deployed embedded piece of software.

Formal methods can contribute substantially to the reliability of embedded systems. Un-
fortunately, the state of the practice is often far behind the state of the art of formal methods.
This fact has several reasons: formal methods are considered hard and require special lan-
guages and tools. Furthermore, formal methods can be applied more easily to well defined
high-level languages such as Java or, even better, Haskell, than to low-level languages such as
C or assembly.

In this paper, we advocate a novel approach to the embedded software development based
on generative programming. It is based on a description in a high-level programming language.
We generate two types of codes from the description. The first is suitable for formal verification,
we use explicit model checker and linear temporal logic (LTL) formulae. The second one is C
code suitable for production use.

Our approach also fits well with advanced software engineering methods such as aspect
oriented programming or design by contract [10] because we use flexible dynamically typed
language for the description.

The paper is organized as follows: the second section describes the philosophy of our ap-
proach and tools we are using; the third section is devoted to the formal verification, literally
model checking. The fourth section describes our experiments with LTL verification on an
example. The fifth section concludes our achievements.

2 Generative Programming

2.1 Programming Languages Abstraction

Generative programming is a process of creating a program code that is done by an automated
tool, i.e., the code is not directly written by the human.

Every compiler of a programming language such as C or Ada can be viewed as an automated
code generator; a programmer writes a human-readable code (the actual source code), and the
compiler generates a code runnable by a computer—a low level native code. Without compilers
and automated low-level code generation, creating large applications would be unfeasible.

Level of abstraction is one of the most important attributes of a programming language.
If the language abstracts from implementation details, the code can be usually more easily
understood and verified.

Although the higher level languages and their environments have indisputable benefits for
development process, their performance overhead is not always bearable for embedded applica-
tions. For example, standard Sun Java Virtual Machine (JVM) needs at least several megabytes
of memory just to start its execution. Usually one has to employ special approaches such as
customizable JVMs with small memory-footprint [4] [5], or ahead-of-time compilation [6]. This
special approaches, however, demand additional effort.
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Figure 1: Code Generation Scheme

In the world of embedded software, the traditional pattern is to translate C language to the
machine code. However, much more advanced approaches can be taken. The translation process
can utilize more sophisticated methods than traditional compilers do, for example, abstract
interpretation. It is possible to take a language that offers higher level of abstraction than C
(or even Java) and to produce a machine code that does not require any special environment
such as JVM.

2.2 Our Toolchain

Our proposed approach relies on Python. Python is object oriented dynamically typed pro-
gramming language with very high level of abstraction. To execute a Python program, one
needs the Python interpreter, i.e., a virtual machine. Because of the overhead, it is usually not
feasible to run interpreted Python directly on an embedded device with limited resources.

We also rely on tools from the PyPy project. PyPy is an experimental implementation
of the Python language developed at ETH Zurich [11]. PyPy provides a tool that translates
fairly rich subset of Python (called RPython) to a more efficient code. The translation is based
on abstract interpretation, utilizes type inference, and offers great amount of flexibility. With
PyPy, we are able to generate both efficient C code suitable for running on an embedded device
and Java bytecode suitable for formal verification from one RPython source code.

The PyPy powered translation process consists of two steps:

1. Dynamic program source code is run in an interpreted manner. Classes and objects are
constructed dynamically. The result of this step is an initialized object system in the
memory of the interpreter. In this step, it is possible to take advantage of dynamic object
oriented environment and utilize advanced methods such as aspect oriented programming
or meta-programming.

2. In the second step, an abstract interpretation itself is performed. The abstract inter-
pretation starts from a selected entry point, i.e., a procedure/function, and follows the
control structure of the program reachable from the point. Static data types are inferred.
Output code is emitted during the interpretation.
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A significant advantage of the generative approach is that the generated output code can be
easily customized for a particular application, see [12]. This is especially useful when generating
C code. For example, memory management can be seen as a translation aspect. Garbage
collection algorithm can be selected during the translation and appropriate low-level operations,
e.g., reference counting, are emitted to the output C code. There are also possibilities how to
customize thread scheduling [13].

As mentioned above, an embedded application is implemented in RPython (a subset of
Python), and we translate it to Java bytecode and C code. So the application runs in three
modes.

• It runs on top of the Python interpreter. In this mode, a developer can take advantage
of very comfortable development environment.

• It is translated to Java bytecode and runs on top of the JVM. We use this mode mainly
for verification with Java Pathfinder.

• It is translated to C and compiled to native code, runs directly in the operating system.
This mode is intended for production use.

In order to run the application in three different environments, we developed a library called
parlib that lies between the application and the underlying platform. We have a special version
of parlib for each environment. Each version appropriately handles platform specific issues such
as I/O and threading. The translation process is depicted in figure 1.

For verification purposes, it is crucial that the code in the form of Java bytecode and the C
code behave identically. This is guaranteed by two properties of the translation.

First, we use the same thread mutual exclusion semantics in both codes. Whereas standard
Python programs use locks from POSIX threads, Java uses its own monitors. In our parlib
library, we implemented monitors for Python programs; see also our previous work [7]. Signif-
icant advantage of this method is that Java Pathfinder needs Java native monitors in order to
perform state-space optimizations.

Second, both codes are generated from the same intermediate code defined by PyPy transla-
tor. The intermediate code is platform independent. There are, however, two features that are
available for Java bytecode and not for C code: automatic memory management and exception
handling. These features has to be explicitly implemented by generated C code. There are two
well defined transformations that are applied to the intermediate code in order to implement
garbage collector and exception handlers in C code.

3 Formal Verification

3.1 Model-checking

Program correctness is really important in the field of embedded applications. There are plenty
of techniques that help detecting program defects, both design- and run-time. The most com-
mon is type checking that is usually provided by compilers of statically typed programming
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languages. Modern software engineering practices such as aspect oriented programming or de-
sign by contract may also help. Traditional error discovering technique is testing, i.e., comparing
the actual program output with the expected results.

One of the strongest technique is formal verification. One of the most popular formal tool
for verifying software functionality is model-checking.

Model-checking is a process of checking whether a given system, i.e., a piece of software, is
a model of a given logic formula. The process is done by enumeration (explicit or implicit) of
all the states reachable by the system and the behaviors that traverse through them [14].

The major drawback of model-checking is that it scales badly. When the system size grows
linearly, the state space of the system tends to grow exponentially. The nature of the growth is
given by the fact, that every component added to the system may cause multiplication of the
number of system states. That is why, the model-checking is often not performed on the original
piece of software, but rather on an abstracted model of the program. The abstracted model is
usually constructed by hand and utilizes some kind of modeling language, for instance Promela.
This simplification implies that the model does not necessarily have the same behavior as the
original program has.

3.2 Linear Temporal Logic

Linear Temporal Logic (LTL) [8] is popular way for describing formal properties of computer
program. LTL is a modal logic with modalities referring to time [8]. It is a subset of richer
Generalized Computational Tree Logic (CTL*). Its atoms are atomic propositions reflecting
the current state of a system.

A model for a temporal formula ϕ is an infinite sequence of states (i.e., a word)

π = π0π1π2... (1)

where each state πi provides an interpretation for the atomic propositions mentioned in ϕ.
The set of LTL formulae is defined inductively starting from countable set of atomic propo-

sitions, Boolean operators, and the temporal operators X (Next) and U (Until):

ϕ := a | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ (2)

Given a model π, as above, we present an inductive definition for the notion of a temporal
formula ϕ holding at a position j ≥ 0 in π, denoted by (π, j) |= ϕ. For a state formula ϕ,

(π, j) |= ϕ ⇐⇒ πj |= ϕ.

That is, we evaluate ϕ locally, using the interpretation given by πj.

(π, j) |= ¬ϕ ⇐⇒ (π, j) �|= ϕ
(π, j) |= ϕ ∧ ψ ⇐⇒ (π, j) |= ϕ and (π, j) |= ψ
(π, j) |= Xϕ ⇐⇒ (π, j + 1) |= ϕ
(π, j) |= ϕUψ ⇐⇒ for some k ≥ j, (π, k) |= ψ, and for every i such that j ≤ i < k, (π, i) |= ϕ
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There are also two additional useful operators: F (in the future, eventually) and G (glob-
ally) defined as follows:

(π, j) |= Fϕ ⇐⇒ (π, j) |= true Uϕ
(π, j) |= Gϕ ⇐⇒ (π, j) |= ¬F¬ϕ

According to [9], temporal properties can be partitioned into two classes: safety and liveness.
The classes can be informally characterized as:

• A safety property states that some bad thing never happens.

• A liveness property states that some good thing eventually happens.

Safety properties typically represent requirements that have to be continuously maintained
by the system. For example, safety property should specify mutual exclusion: a lock is acquired
at most by one thread. Liveness properties, on the other hand, represent requirements that
need not hold continuously, but have to be eventually of repeatedly fulfilled. For example, it is
guaranteed that one of the threads requiring a lock eventually acquires it.

3.3 Java Pathfinder

For verification, we use Java Pathfinder (JPF), which is an explicit model-checker developed
at NASA [15]. JPF is able to check programs in the form of Java bytecode. It can be seen
as a special implementation of Java Virtual Machine. Whereas standard JVM executes pro-
gram sequentially, JPF investigates all possible states of the program by traversing all possible
execution paths. JPF verifies Java bytecode of a real Java program, i.e., not an abstracted
model.

In our approach, the Java bytecode generated from our RPython program can be seen as
an inabstracted model of the final C code that is intended for production use.

JPF as is does not provide any LTL-based verification. Fortunately, JPF has an open
architecture and one can create modules for custom verification procedures. We use LTL verifier
developed by Nguyen and Khoo [16]. This verifier uses method calls as atomic propositions.

4 Case Study

4.1 Program for Logging Events

Let us apply our approach to an example that is taken from real-world application. Having
a network video recorder (NVR) which is an embedded computer system that manages IP
cameras over network. Its main goal is to store records from the associated cameras together
with metadata such as whether a camera detected a motion, how many frames-per-second are
in the video record, temperature, etc.
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Metadata are stored in a database that acts as a data warehouse. The metadata are not
stored in the raw form but summarized into time intervals. There is a predefined hierarchy of
lengths of intervals: 10 seconds, 3 minutes, 1 hour and 1 day. In the case of motion detects and
similar events, value of every interval is the total number of the events, that happened within
the interval. For physical quantities such as temperature, the value of the longer interval is
computed as average from subintervals that are lower in the hierarchy.

The data warehouse is built on-the-fly by NVR component called Logger. It handles in-
coming metadata from camera drivers. The camera driver runs in a separate thread and reads
video stream through network socket; raw video is saved to disk and extracted metadata are
pushed to Logger.

The key class of Logger is called Summarizer. It maintains the state of the current intervals
in memory, i.e., updates the values according to the events incoming from drivers, and writes the
final value into the database when a particular interval elapses. After the interval is successfully
written, its value in memory is cleared, i.e., new interval is started. The process of flushing
interval values from the memory to the database is performed by a thread called IntervalWriter.
It sleeps most of the time, wakes up only when interval ends to perform the write & clear
operation.

It is important to note that camera driver runs in soft real-time mode, i.e., it has to be
guaranteed that it is never blocked when interacting with Summarizer. This proposition holds,
because the possibly slow operation of inserting interval value into the database is performed
in IntervalWriter thread.

Apart from standard events that are summarized, there are special events called alarms with
completely different policy. Whenever an alarm occurs it has to be written into a persistent
alarm log as soon as possible. For this task, there is a thread called AlarmWriter that waits
for an alarm; when one arrives, thread is waken up and writes the alarm into the log. Unlike
intervals, alarm data are stored in operating memory as shortly as possible.

4.2 Experiments

In order to check the program by Java Pathfinder, we created a simplified version; simplification
is done by replacing interaction with real environment by interaction with some model of the
environment. We have a virtual camera driver that does not communicate with real device but
only semi-randomly generated events. The database is replaced by a mockup that simply does
nothing. It is important to emphasize that Summarizer itself and the thread interaction stays
unsimplified. With this setup, the model checker can enumerate all possible states of Logger.

There are plenty of properties that we can possibly specify by LTL formulae. For our
purpose, we investigate the reaction of the system when interval elapses. The following formula
denotes that whenever an interval elapses, it has to be written to the database1.

G((method:Summarizer.intervalElapsed)
->(X(F(method:Database.writeInterval)))

)

1We use syntax from used LTL verifier, ”->” denotes implication, ”~” negation.
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Java Pathfinder can check that our implementation has this property. If we inject a bug
into Summarizer, i.e., remove the writeInterval method call from the program, JPF finds this
bug and provides a program trace as a proof.

There is also a requirement that when an interval elapses, the intermediate value for the
interval has to be cleared in order to start a new interval. This can be expressed by simple
modification of the formula mentioned above, that is:

G((method:Summarizer.intervalElapsed)
->(X(F(method:Database.clearInterval)))

)

The order of writeInterval and clearInterval operations has to be always valid, i.e., the
interval is cleared only after it is written. The following formula denotes that whenever interval
elapses, it is not cleared until it is written to the database.

G((method:Summarizer.intervalElapsed)
->(X(

(~(method:Summarizer.clearInterval))
U(method:Database.writeInterval)
)

)
)

We can ensure the correctness of the formula by injecting a bug into Summarizer. If we swap
the clearInterval and writeInterval method calls in the program, model checker will discover this
misbehavior. Note that all these three methods are executed by one thread, the IntervalWriter
thread.

To demonstrate the ability to find bugs in multi-threaded programs, we will investigate the
part of the program dealing with alarms. As mentioned above, alarms are detected by camera
driver (in driver thread) and always have to be written to the alarm log (by AlarmWriter
thread). The following LTL formula holds if every occurrence of alarm is eventually followed
by write operation.

G((method:Driver.alarmOccurred)
->(X(F(method:AlarmLog.writeAlarm))))

After we run the verification procedure, we are sure that Logger has this property. Again,
if we inject a bug, i.e., remove a thread notification that wakes up AlarmWriter from alarmOc-
curred method, JPF discovers the bug.

Apart from the LTL formulae, JPF checks that the code has the following properties:

• no deadlock occurs,

• none of the threads ends by an uncaught exception,

• there is no unsafe data access among threads, i.e., there is no race condition.

In practice, it is impossible to prove that a real program is ultimately correct. However,
mere proving some isolated and almost trivial properties is excellent testing method.
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4.3 Generated C Code

After the program is verified, the final production C code can be generated. Proper investigation
of the C code is beyond the scope of this paper. In our previous work [7], we show that the
memory footprint is not heavily affected by the fact that the program was generated from
abstract high level description. Of course, hand-written C code may be more efficient, mainly
because of manual memory management.

5 Conclusion

In this article, we have presented a novel approach to embedded software development. In our
approach, we implement an intended embedded application in an object oriented programming
language with very high level of abstraction, that is, in our case, a subset of Python.

From this implementation, we generate code that is suitable for formal verification, literally
model-checking. We employ linear temporal logic (LTL) as a tool for specification of correct
behavior of the program. The LTL-based properties are investigated by explicit model checker
called Java Pathfinder.

From the high level implementation, we also generate very efficient native machine code that
is suitable for production use on an embedded device with limited resources. Thanks to the
nature of our tool-chain, the generated code has the same properties (defined by LTL formulae)
as were checked by the model checker.
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Abstract: Genetically programming processes are based on program loops which are repeating 
in many cycles, because many generations are required for the evolution of a genetic code. The 
time consumed for execution of such loop cycle has enormous impact on the whole performance 
of every genetically programming process of evolution. Author of the text decided to try 
alternative design methods of a genetically programming process and pure x86 assembly 
language was chosen as a programming language. The target goal of such research is a CPU 
code running as fast as possible without unnecessary time loses when implementing a 
genetically programming process. The paper describes improvements of algorithms designed in 
assembly language which are leading to a better performance of the whole genetically 
programming process according to author’s experiences. 
 
Key words: genetically programming, assembly language, minimalist implementation, efficient 
computing, cellular automaton  
 
Mathematics Subject Classification:  Computer science, Artificial intelligence 68T04. 

 
 
1 Short history of the research 
 
  On the beginning of my research at autumn 2008, I was thinking about genetically programming 
processes and how to increase their performance. As first improvement and increase of evolution 
speed I tried to define a new, universal language for coding of wide range of algorithms which 
could be evaluated fast and with a high efficiency. 
  Theoretical base (supported by a mathematical background) of the new “language” for universal 
coding of algorithms, was introduced on the beginning of 2009. Inspiration by cellular automata is 
evident and processing of the algorithm coded with the “language” can be compared to the 
processing of a cellular automata. 
  An algorithm described by this “language” is represented by cells, logic functions coded inside 
them and connections with other cells at the same time. Each of the cells contains binary 
information which can be propagated to other cells and it is equivalent to a flow and propagation of 
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binary information through a simulation of a logic circuit in discrete steps, with every possible 
complexity. 
 The cellular representation of the algorithm, called “Cellular processor of logical functions” 
is then simply converted to a sequence of bits – a binary vector, which is further evaluated by the 
genetic algorithm. 
 Most powerful option to handle large amount of bits and bytes and effective manipulation of 
them are algorithms coded in assembler language. At the summer 2009 started coding of the 
assembler program for genetically evolution of algorithms which are represented by Cellular 
processor of logical functions and the application is called “GenAlg”. 
 At the summer 2010, after one year of development during evenings at home (Development 
of this application is not part of my profession, only at free time), the first draft of the application 
has been running. Since then I am improving all program’s subparts to gain faster convergence 
during the evolution, to increase the effectiveness, to implement new useful features and to develop 
good examples of problem solving based on the usage of the application. 
 n following parts of the paper, detailed information is given about the core of algorithm 
representation - the “Cellular processor of logical functions”, short outline of the whole genetically 
programming loop is described and as the main part of the paper, improvements and experiences 
coming from the application operation are introduced. 

 
 

2 Cellular processor of logical functions 
 
Basic construction unit of the cellular processor of logical functions is one cell Bn,k, which in 
cooperation with other cells forms one-dimensional cellular automaton with the absolute cell 
address range < 0,  nmax >.  Each of the cell Bn,k is coded in 32 bits and carries the binary 
information: 

 1 bit: the last valid value calculated during the current step “k” in 
    22, 1,0kny

, (2.1) 
 1 bit: the previous value valid in previous step “k-1” in 

    221, 1,0kny
, (2.2) 

 11 bits: the relative link from the first other cell 
an = < -(nmax+1)/2 , +(nmax+1)/2 - 1> , (2.3) 

 11 bits: the relative link from the second other cell 
bn  = < -(nmax+1)/2 , +(nmax+1)/2 - 1>, (2.4) 

 8 bits: the logical function Fn coded by the 8-bit table (described by one byte) 
Fn = [fn,0, fn,1, fn,2, fn,3, fn,4, fn,5, fn,6, fn,7 ] =     < (0)10 , (255)10 >. (2.5) 

 
During each of the iteration step „k“, all new output values of all cells Bn,k are calculated from 
previous output value of cell Bn+an,k (address of the cell A is calculated from n + an), previous output 
value of the cell Bn+bn,k (address of the cell B is calculated from n + bn) and the previous output 
value of the cell Bn,k itself. All these three binary values are used as an address (0 … 7) to get a new 
output value (fn,0 … fn,7) of the cell Bn,k from the 8-bit table Fn. 
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3 Program algorithm 
 
My implementation of genetically programming algorithm consists of several programming blocks 
(inspired by [1], p.27)  - assembler subroutines: 

- 1: Definition of genetic algorithm’s parameters, control and termination parameters  
- 2: Generation of the first random population 
- 3: Calculation of fitness for all members of the population 
- 4: Sorting of members of the population according to their fitness 
- 5: Testing of termination conditions 
- 6: Selection of population members, removal of unsuccessful members 
- 7: Definition of pairs of survived population members and number of offspring 
- 8: Selection of crossing operators to generate children from defined pairs as the 

combination of genetic information 
- 9: Random mutation operators to modify genetic information of new members of the 

population 
 
 
4 Calculation of fitness 
 
 Fitness of a member of the generation is calculated in such a way, that a target function (a 
function algorithm which is to be found during the evolution) is represented with test patterns. 
Each of the test pattern consist of one input binary vector, number of steps (of cellular processor) to 
be performed and one output binary vector which is expected, after all steps of the cellular 
processor finished. 
 Input vector is mapped to first cells of the tested binary vector, output vector is mapped to 
last cells of the binary vector. Cells in-between which are not used for inputs and outputs are 
variables and they contain information about the processing. During each of the step of calculation 
of fitness, all test patterns one by one are applied to the tested member and the number of binary 
outputs which are equal to expected binary outputs is calculated. The goal of the evolution is to 
achieve maximum number of binary outputs equal to outputs defined in all test patterns. 
If the maximum of fitness is achieved, the equivalent of the target function is coded inside 
configuration of cells of the cellular processor. 
 To achieve better accuracy, more test patterns are necessary, but the evolution is very slow 
then. 
 It is recommended to perform the evolution in smaller steps. For example: To use a small 
group of patterns on the beginning of the evolution and to extend it in later phases. Another 
possibility is to have several groups of patterns which are changed during the evolution after several 
generations.   This can help to escape from potential local extremes in the evolution process. 
 
 
5 Selection of population members 
 
  During first versions of my application I used for selection of population members exponential 
function, which can be used as a probability function. On the figure Nr.1, there is on left side the 
probability function with k = 2 and on the right side the same function normalized to 1000 
population members and p(x) normalized to 400 as the maximum probability, stored in RAM as 
integer numbers. 
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x : ordinal number of the algorithm candidate starting with zero (max. fitness) 
k : constant which must be selected according to previous experiences 
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Figure  1: Left -probability function, Right -normalized to 1000 candidates and pmax = 400 

 
 After several time I have experimented with my application, I have seen that the effectivity 
of the selection algorithm has problems with the genetically diversity of members inside the 
population. Very soon after small amount of generations, there were many copies of one, two or 
three members inside the population with the different genetic information and the progress of the 
evolution was too slow.  
 I experimented after with different other types of selection functions and with one, the 
genetically diversity was much better than before as only simple exponential function was used. As 
a starting point I used the previous exponential function and then I added effect of the sinus 
function. This type of selection leads to : 

 
Figure  2: The selection function corresponds (normalized to 1000 candidates and pmax = 400) to 
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p(x) =400- 0,73*(400*(1-(EXP(-x/200)))+150*SIN(2*PI*(1000-x+50)/300)) 
  
This function leads to 3 local maximum: On places 215, 523 and 825. Around these points the 
probability function gives to members of a generation higher chance that they will pass to the next 
generation and this type of behaviour improves the genetically diversity. 
 
 
6 Parallelism of several evolutions 
 
When experimenting with the application, the progress of the evolution was not fast enough, the 
genetically diversity has been still not so big and it was easy to be stopped in some local extremes. 
The number of parallel running evolutions has been increased. The main strategy is, to mix 
members between parallel running evolutions after some number of evolution steps. 
  Currently I use 8 parallel evolutions and their members are mixed in this way (moved from one 
parallel evolution to other) while s3 > s2 > s1: 
 

- after s1 evolution steps 
 member1(ev1)->member1(ev2);  member1(ev2)->member1(ev3); 

                             member1(ev3)->member1(ev4);  member1(ev4)->member1(ev1); 
                             member1(ev5)->member1(ev6);  member1(ev6)->member1(ev7); 
                             member1(ev7)->member1(ev8);  member1(ev8)->member1(ev1); 

 
                             member2(ev2)->member2(ev1);  member2(ev3)->member2(ev2); 
                             member2(ev4)->member2(ev3);  member2(ev1)->member2(ev4); 
                             member2(ev6)->member2(ev5);  member2(ev7)->member2(ev6); 
                             member2(ev8)->member2(ev7);  member2(ev1)->member2(ev8). 

 
- after s2 evolution steps 
           member1(ev2)->member1(ev1);  member1(ev3)->member1(ev2); 

                             member1(ev4)->member1(ev3);  member1(ev1)->member1(ev4); 
                             member1(ev6)->member1(ev5);  member1(ev7)->member1(ev6); 
                             member1(ev8)->member1(ev7);  member1(ev1)->member1(ev8); 

 
                             member2(ev1)->member2(ev2);  member2(ev2)->member2(ev3); 
                             member2(ev3)->member2(ev4);  member2(ev4)->member2(ev1); 
                             member2(ev5)->member2(ev6);  member2(ev6)->member2(ev7); 
                             member2(ev7)->member2(ev8);  member2(ev8)->member2(ev1). 

 
- after s3 evolution steps 

                             member1(ev1)->member1(ev7);  member1(ev2)->member1(ev8); 
                             member1(ev3)->member1(ev5);  member1(ev4)->member1(ev6); 
                             member1(ev5)->member1(ev3);  member1(ev6)->member1(ev4); 
                             member1(ev7)->member1(ev1);  member1(ev8)->member1(ev2); 
 
                             member2(ev1)->member2(ev5);  member2(ev2)->member2(ev6); 
                             member2(ev3)->member2(ev7);  member2(ev4)->member2(ev8); 
                             member2(ev5)->member2(ev1);  member2(ev6)->member2(ev2); 
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                             member2(ev7)->member2(ev3);  member2(ev8)->member2(ev4). 
 
 
7 Future development 

 
  It is necessary to find more improvements in all of steps of the evolution cycle, as it is believed 
that there is still a possibility to gain better performance in the future. As next, some good examples 
for testing the application should be found in the future to be able to compare the performance of 
the application to other already existing programs which are based on more traditional concepts. 
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