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MEMORY TERM FOR DYNAMIC OLIGOPOLISTIC MARKET
EQUILIBRIUM PROBLEM

BARBAGALLO Annamaria, (I), MAUGERI Antonino, (I)

Abstract. The aim of the paper is to provide a more realistic model for the dynamic
oligopolistic market equilibrium problems. In particular, a long-term memory is introduced
and the corresponding variational inequality model is discussed in order to study the
problem in presence of delay. Moreover, existence and regularity results are proved.
Key words and phrases. Oligopolistic market equilibrium problem, evolutionary vari-
ational inequality, existence and continuity, memory term.
Mathematics Subject Classification. Primary 49J40, 49K40, 91B62

1 Introduction

The theory of elastic body was pioneered by Boltzman [9, 10] who gave a first mathematical
formulation to hereditary phenomena, where the deformations of a body are studied along with
the history of the deformations under which it was subjected in the past. Later Volterra [22,
23, 24] gave his contribution to the theory of elasticity, introducing some hereditary coefficients
in form of integral term in the constitutive equations for an elastic body with memory. Starting
from the 1960s, see [11, 13], the principle of fading memory was advanced, suggesting that a
body is able to recollect only its recent past and thus all the history before can be neglected.
As a consequence, the memory term represents only the history in the time interval (0, t) and
all the previous events cannot affect the body behavior.

Since then, notable applications in different fields have been studied. In economics we many
refer to [8], where the dynamics of market adjustment processes are described via a Volterra
integral term. More recently, the integral memory term has been used in order to represent
some physical characteristics of the quantities involved in mechanical and engineering problems.
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For instance, it may describe the relaxation tensor in viscoelastic contact models as in [1], or
the conductivity of an electrolyte in electrochemical machining as in [14, 21].

Inspired by these applied problems, in [18] the authors suggest to introduce the memory
term in the framework of network equilibria, thus leading to a refinement of the model. In fact,
they explicitly incorporate the contribution of flows from the initial time to the observation time
t, which causes the presence of the memory term. Hence we are able to analyze how the current
equilibrium solution is affected by past equilibria. The same suggestion can concern the dynamic
oligopolistic market equilibrium problem. This problem due to Cournot in [12], recently, has
been studied in the dynamic case. The dynamic framework has been developed by [6]. In this
paper, the variational formulation has been proved, from which the existence and regularity
of the dynamic oligopolistic market equilibrium solution has been derived. The continuity of
solution allows to provide a computational procedure to compute the equilibrium solution. In
the subsequently paper [7], applying the infinite-dimensional duality results developed in [17],
the existence of the Lagrange variables, which allow to describe the behaviour of the market,
is provided. Furthermore, some sensitivity results has been proved showing that small changes
of the solution happen in correspondence of small changes of the profit function.

2 Dynamic Oligopolistic Market Equilibrium

Here we describe, for the reader’s convenience, a dynamic spatial oligopolistic market equi-
librium problem, which constitutes an example of imperfect competition and can be viewed
as a prototypical game theoretic problem, operating under the Nash equilibrium concept of
noncooperative behaviour.

Let us consider m firms Pi, i = 1, 2, . . . , m, and n demand markets Qj, j = 1, 2, . . . , n, that
are generally spatially separated. Assume that the homogeneous commodity, produced by the
m firms and consumed at the n markets, is involved during a period of time [0, T ], T > 0.
Let pi(t), t ∈ [0, T ], i = 1, 2, . . . , m, denote the nonnegative commodity output produced by
firm Pi at the time t ∈ [0, T ] and let qj(t), t ∈ [0, T ], j = 1, 2, . . . , n, denote the demand
for the commodity at demand market Qj at the same time t ∈ [0, T ]. Let xij(t), t ∈ [0, T ],
i = 1, 2, . . . , m, j = 1, 2, . . . , n, denote the nonnegative commodity shipment between the supply
market Pi and the demand market Qj at the time t ∈ [0, T ]. Group the production output into
a vector-function p : [0, T ] → R

m
+ , the demands into a vector-function q : [0, T ] → R

n
+, and the

commodity shipments into a matrix-function x : [0, T ] → R
mn
+ .

Assuming that we are not in presence of production and demand excesses the following
feasibility conditions must hold for every i and j and a.e. in [0, T ]:

pi(t) =
n∑

j=1

xij(t), (1)

qj(t) =
m∑

i=1

xij(t). (2)

Hence, the quantity produced by a firm, at the time t ∈ [0, T ], must be equal to the sum of the
commodity from that firm to all the demand markets, at the same t ∈ [0, T ], and the demand
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at a demand market, at the time t ∈ [0, T ], must be equal to the sum of all the commodity
shipments to that demand market, at the same t ∈ [0, T ]. Furthermore, assuming that the
nonnegative commodity shipment between the supply market Pi and the demand market Qj

has to satisfy time-dependent constrains, namely that:

xij(t) ≤ xij(t) ≤ xij(t), ∀i = 1, 2, . . . , m, j = 1, 2, . . . , n, a.e. in [0, T ], (3)

where x, x ∈ L2([0, T ], Rmn), with x(t) < x(t) a.e. in [0, T ], are considered known with
non-negative values. In this paper we consider the functional setting of the Hilbert space
L2([0, T ], Rmn). Hence, the set of feasible vectors x ∈ L2([0, T ], Rmn) is

K =
{

x ∈ L2([0, T ], Rmn) : 0 ≤ x(t) ≤ x(t) ≤ x(t), a.e. in [0, T ]
}

. (4)

This set is convex, closed and bounded in the Hilbert space L2([0, T ], Rmn).
Furthermore, associate with each firm Pi a production cost fi and let us consider the more

general situation where the production cost of the quantity pi a firm i may depend upon the
entire production pattern and the time, namely we assume that

fi = fi(t, p(t)). (5)

Similarly, allow the demand price for the commodity at a demand market to depend, in general,
upon the entire consumption pattern and the time, namely we assume that

dj = dj(t, q(t)), (6)

where we have denoted with p and q the vector-functions given by (1) and (2).
Then, we have the following mappings:

f : [0, T ]× L2([0, T ], Rm
+ ) → L2([0, T ], Rm

+ ),

d : [0, T ]× L2([0, T ], Rn
+) → L2([0, T ], Rn

+).

Let cij, i = 1, 2, . . . , m, j = 1, 2, . . . , n, denote the transaction cost at the same time t ∈
[0, T ], which includes between firm Pi and demand market Qj. Here we permit the transaction
cost to depend, in general, upon the entire shipment pattern and the time, namely,

cij = cij(t, x(t)), (7)

so we have
c : [0, T ]× L2([0, T ], Rmn

+ ) → L2([0, T ], Rnm
+ ).

The profit vi(t, x(t)), t ∈ [0, T ], i = 1, 2, . . . , m, of firm Pi at the same time t ∈ [0, T ] is then

vi(t, x(t)) =
n∑

j=1

dj(t, q(t))xij(t)− fi(t, p(t))−
n∑

j=1

cij(t, x(t))xij(t). (8)

Now consider the dynamic oligopolistic market mechanism, in which the m firms supply the
commodity in a noncooperative fashion, each one trying to maximize its own profit at the time
t ∈ [0, T ]. We seek to determine a nonnegative commodity distribution pattern x for which the
m firms will be in a state of equilibrium as defined below.

volume 3 (2010), number 2 15
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Definition 2.1 A commodity shipment distribution x∗ ∈ K is a dynamic oligopolistic market
equilibrium if and only if for each i = 1, 2, . . . , m and j = 1, 2, . . . , n and a.e. in [0, T ] we have:

vi(t, x
∗(t)) ≥ vi(t, xi(t), x̂

∗
i (t)), ∀x ∈ K, a.e. in [0, T ], (9)

where we denote by x̂∗
i = (x∗

1, . . . , x
∗
i−1, x

∗
i+1, . . . , x

∗
m), and we set

vi(t, xi(t), x̂
∗
i (t)) = vi(t, x

∗
1(t), . . . , x

∗
i−1(t), xi(t), x

∗
i+1(t), . . . , x

∗
m(t)).

In the Hilbert space L2([0, T ], Rk), let us recall that

� φ, y �:=

∫ T

0

〈φ(t), y(t)〉dt,

is its duality mapping, where φ ∈ (L2([0, T ], Rk))∗ = L2([0, T ], Rk) and y ∈ L2([0, T ], Rk).
We recall at this point that a continuously differentiable function v (as for example given

by (8)) is called pseudoconcave with respect to xi, i = 1, 2, . . . , m, (see [15]) if the following
holds a.e. in [0, T ]:

〈 ∂v

∂xi

(t, x1, . . . , xi, . . . xn), xi − yi〉 ≥ 0 =⇒ v(t, x1, . . . , xi, . . . xn) ≥ v(t, x1, . . . , yi, . . . xn),

In the paper [6], the authors have shown that the equilibrium problem defined by (9) can
be reformulated as an evolutionary variational inequality. In fact, the following result holds:

Theorem 2.2 Assume that for each firm Pi the profit function vi(t, x(t)) is pseudoconcave with
respect to the variables {xi1, xi2, . . . , xin}, i = 1, 2, . . . , m, and continuously differentiable for
a.e. t ∈ [0, T ]. Assume that ∇v is a Carathèodory function such that

∃h ∈ L2([0, T ], R) : ‖∇v(t, u(t))‖ ≤ h(t)‖u(t)‖, ∀u ∈ L2([0, T ], Rmn). (10)

Then x∗ ∈ K is a dynamic Cournot-Nash equilibrium if and only if it satisfies the evolutionary
variational inequality

� −∇v(x∗), x− x∗ �≥ 0, ∀x ∈ K. (11)

Corollary 2.3 Assume that for each firm Pi the profit function vi(t, x(t)) is pseudoconcave with
respect to the variables {xi1, xi2, . . . , xin}, and continuously differentiable, for a.e. t ∈ [0, T ],
and ∇v is a Carathèodory function such that

∃h ∈ L2([0, T ], R) : ‖∇v(t, u(t))‖ ≤ h(t)‖u(t)‖, ∀u ∈ L2([0, T ], Rmn).

Then the evolutionary variational inequality (11) is equivalent to

〈−∇v(t, x∗(t)), x(t)− x∗(t)〉 ≥ 0, ∀x(t) ∈ K(t), a.e. in [0, T ], (12)

where
K(t) =

{
x(t) ∈ R

mn : 0 ≤ x(t) ≤ x(t) ≤ x(t)
}

.

This equivalence is very important in the construction of a discretization procedure to compute
numerical solutions for dynamic oligopolistic market equilibrium problems.
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3 The memory term in dynamic oligopolistic market equilibria

Let us consider the dynamic oligopolistic market equilibrium problem, that is expressed by
means of the evolutionary variational inequality (11):

x∗ ∈ K :

∫ T

0

〈−∇v(t, x∗(t)), x(t)− x∗(t)〉dt ≥ 0, ∀x ∈ K,

where K = {x ∈ L2([0, T ], Rnm) : x(t) ≤ x(t) ≤ x(t), a.e. in [0, T ]}.
Therefore, it turns out that the first effect of the presence of the integral term is the adjust-

ment of the operator v(t, x(t)) which become

v(t, x(t)) +

∫ t

0

I(t− s)x(s)ds,

where I = [Ir]r=1,...,m is a vector of nonnegative defined m × n matrixes with entries Ir
ij ∈

L2([0, T ], R).
This means that the commodity shipments do not only incur in the current-time operator,

but are also subject to the impact of all previous equilibrium solutions. As a consequence, the
equilibrium conditions are required on the full operator

Fr(t, x(t)) = −∇
(
vr(t, x(t))−

∫ t

0

m∑
i=1

n∑
j=1

Ir
ij(t− s)xij(s)ds

)
, r = 1, . . . ,m.

It is also worth emphasizing the role of the matrixes Ir(t − s), for r = 1, . . . ,m. In fact, the
entries of the matrix Ir

ij can be regarded as continuous weights acting on solutions and allow
us to represent the history of the past equilibrium patterns and their influence on the current
one. The meaning of the integral term is then justified: it expresses, by means of a relaxation
over the time interval (0, t), the equilibrium distribution in which commodity shipments incur
at time t, and, hence, the effect of the previous framework situation on the present one.

The memory term is also strictly connected with the concept of time shifts and delay
patterns. In fact, the integral term represents the displacement, namely the delay, of the
equilibrium solution commodity shipments, due to the previous equilibrium state. Therefore,
delay effects are not only regarded as perturbation factors for the constraint set, see [20] in
connection with traffic network problems, but can also be interpreted as adjustment factors of
operators.

In this case the variational inequality problem has the form

x∗ ∈ K :

∫ T

0

〈
−∇

[
v(t, x∗(t)) +

∫ t

0

I(t− s)x∗(s)ds
]
, x(t)− x∗(t)

〉
dt ≥ 0, ∀x ∈ K. (13)

The resulting problem explicitly takes account of the contribution of the equilibrium solution
from the initial time to the observation time and include it in the operator as an adjustment
factor.
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Now, we want to investigate on the explicit form of the gradient of the memory-long term.
We apply the definition of the Fréchet derivative, and we obtain:

∇xhk

[ m∑
i=1

n∑
j=1

Ir
ij(t− s)xij(s)

]
=

m∑
i=1

n∑
j=1

Ir
ij(t− s)δihδjk = Ir

hk(t− s).

Then, we get ∫ t

0

∇xhk

[ m∑
i=1

n∑
j=1

Ir
ij(t− s)xij(s)

]
ds =

∫ t

0

Ir
hk(t− s)ds = Ĩr

hk(t),

where we denote by Ĩr
hk(t) the final operator. We observe that the previous operators are

independent on the matrix of the commodity shipments. The last remark implies that the
operator F (t, x(t)) is given by the sum of the gradient of the profit function and a function
dependent only on the time, in particular:

Fr(t, x(t)) = −∇vr(t, x(t))− Ĩr(t), r = 1, . . . , m.

4 Existence and regularity results

In this section a theorem for the existence of continuous solutions to the dynamic oligopolistic
market problem is provided.

First of all, we recall some definitions (see [16]):

Definition 4.1 A mapping A : K → X∗ is pseudomonotone in the sense of Brezis (B-
pseudomonotone) iff

1. For each sequence un weakly converging to u (in short un ⇀ u) in K and such that
lim supn〈Aun, un − v〉 ≤ 0 it results that:

lim inf
n

〈Aun, un − v〉 ≥ 〈Au, u− v〉, ∀v ∈ K.

2. For each v ∈ K the function u → 〈Au, u− v〉 is lower bounded on the bounded subset ok
K.

Definition 4.2 A mapping A : K → E∗ is hemicontinuous in the sense of Fan (F-hemicontinuous)
iff for all v ∈ K the function u → 〈Au, u− v〉 is weakly lower semicontinuous on K.

Moreover we recall the following other kind of continuity, which will be used together with
some kind of monotonicity assumptions:

Definition 4.3 A mapping A : K → E∗ is hemicontinuous along line segments, iff the function
t → 〈A(tu + (1− t)v), w〉, t ∈ [0, 1] is continuous for all u, v ∈ K.
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Definition 4.4 A mapping A : K → E∗ is lower hemicontinuous along line segments, iff the
function ξ → 〈Aξ, u− v〉 is lower semicontinuous for all u, v ∈ K on the line segments [u, v].

Definition 4.5 The map A : K → E∗ is said to be pseudomonotone in the sense of Karamar-
dian (K-pseudomonotone) iff for all u, v ∈ K

〈Av, u− v〉 ≥ 0 =⇒ 〈Au, u− v〉 ≥ 0

Now, taking into account that our constraint set K is nonempty, convex and weakly compact,
we can present existence results for the dynamic oligopolistic market equilibrium problem.

Theorem 4.6 If −∇v is a B-pseudomonotone mapping and I is a vector of nonnegative defined
m× n matrixes with entries Ir

ij ∈ L2([0, T ], R), then variational inequality problem (13) admits
solutions.

To ensure the uniqueness of the solution, we must suppose that the operator −∇v is strictly
pseudomonotone, namely ∀x(t) �= y(t), a.e. in [0, T ],

〈−∇v(t, y(t)), x(t)− y(t)〉 ≥ 0 =⇒ 〈−∇v(t, x(t)), x(t)− y(t)〉 > 0.

Theorem 4.7 If −∇v is an F-hemicontinuous mapping and I is a vector of nonnegative defined
m×n matrixes with entries Ir

ij ∈ L2([0, T ], R), then variational inequality (13) admits solutions.

Theorem 4.8 If −∇v a K-pseudomonotone map which is lower hemicontinuous along line
segments and I is a vector of nonnegative defined m×n matrixes with entries Ir

ij ∈ L2([0, T ], R),
then variational inequality (13) admits solutions.

We point out that condition (10) ensures the lower hemicontinuity along line segments
of −∇v. Now, let us recall some conditions under which the dynamic oligopolistic market
equilibrium problem has continuous solutions. To do so, we first need to recall the definition
of set convergence given by U. Mosco (see [19]).

Definition 4.9 Let (X, ‖·‖) be an Hilbert space and K a closed, nonempty, convex subset of X.
A sequence of nonempty, closed, convex sets Kn converges to K in Mosco’s sense, as n → +∞,
i.e. Kn → K, if and only if

(M1) for any x ∈ K, there exists a sequence {xn}n∈N strongly converging to x in X such that
xn lies in Kn for all n ∈ N,

(M2) for any subsequence {xkn}n∈N weakly converging to x in X, such that xkn lies in Kkn for
all n ∈ N, then the weak limit x belongs to K.

The following result holds (see [6]).

Lemma 4.10 Let x, x ∈ C([0, T ], Rmn
+ ), and let {tn}n∈N be a sequence such that tn → t ∈ [0, T ],

as n → +∞. Then, the sequence of sets K(tn) =
{
x(tn) ∈ R

mn : 0 ≤ x(tn) ≤ x(tn) ≤ x(tn)
}
,

∀n ∈ N, converges to K(t) =
{
x(t) ∈ R

mn : 0 ≤ x(t) ≤ x(t) ≤ x(t)
}
, as n → +∞, in Mosco’s

sense.
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We remark that K(t), for t ∈ [0, T ], is uniformly bounded provided that x and x are two
continuous matrix-functions.

Now, we able to show the continuity of the solution to the evolutionary variational inequality
that models our retarded dynamic oligopolistic market equilibrium problem. The result is a
generalized version of Theorem 4.2 in [6].

Theorem 4.11 Assume that for each firm Pi the profit function v(t, x(t)) is strictly pseudo-
concave with respect to the variable x for a.e. t ∈ [0, T ], and belonging to C1([0, T ] × R

mn
+ , R)

and I is a vector of nonnegative defined m×n matrixes with entries Ir
ij ∈ L2([0, T ], R). Assume

∇v is a Carathèodory function such that

∃h ∈ L2([0, T ], R) : ‖∇v(t, u(t))‖ ≤ h(t)‖u(t)‖, ∀u ∈ L2([0, T ], Rmn. (14)

Then, the unique dynamic Cournot-Nash equilibrium x∗ ∈ K is continuous in [0, T ].

Analogous results have been proved for the parametric variational inequalities (see [5, 18])
and the dynamic traffic equilibrium problem (see [2, 3, 4]).

5 Lipschitz continuity result

This section is devoted to show a Lipschitz continuity result for the dynamic oligopolistic market
equilibrium problem. More precisely, we apply a general result proved in [18] to our model.
This theorem establishes the Lipschitz continuity of the solution to the following abstract
parameterized variational inequality problem:

〈F (t, x∗(t)), x− x∗(t)〉 ≥ 0, ∀x ∈ K(t), t ∈ [0, T ], (15)

where the constraint set K(t), t ∈ [0, T ], is a closed convex and nonempty subset of R
n,

F : [0, T ] × R
n → R

n is a point-to-point mapping, and 〈·, ·〉 denotes the scalar product in R
n.

Specifically, the following result holds (see [18], Theorem 1):

Theorem 5.1 Let the following assumptions be satisfied:

(a) F is strongly monotone, i.e., there exists α > 0 such that for t ∈ [0, T ], 〈F (t, x1) −
F (t, x2), x1 − x2〉 ≥ α‖x1 − x2‖2, ∀x1, x2 ∈ R

n;

(b) F is Lipschitz continuous with respect to t, i.e., there exists β > 0 such that, for t ∈ [0, T ],
‖F (t, x1)− F (t, x2)‖ ≤ β‖x1 − x2‖, ∀x1, x2 ∈ R

n;

(c) F is Lipschitz continuous with respect to t, i.e., there exists M > 0 such that, for t1, t2 ∈
[0, T ], ‖F (t2, x)− F (t1, x)‖ ≤ M‖x‖|t2 − t1|, ∀x ∈ R

n;

(d) there exists κ ≥ 0 such that, for t1, t2 ∈ [0, T ], ‖PK(t1)(z)−PK(t2)(z)‖ ≤ κ|t1− t2|, ∀z ∈
R

n, where PK(t)(z) = arg minx∈K(t) ‖z− x‖, t ∈ [0, T ] denotes the projection onto the set
K(t).
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Then, the unique solution x∗(t), t ∈ [0, T ], to (15) is Lipschitz continuous on [0, T ], t1 �= t2,
the following estimate holds:

‖x∗(t2)− x∗(t1)‖2

|t2 − t1|2 ≤ γ
(
‖x∗‖2

C0([0,T ],Rn + sup
t1,t2∈[0,T ]

t1 �=t2

∥∥∥PK(t2)(z)− PK(t1)(z)

t2 − t1

∥∥∥2)
, (16)

where γ = γ(α, β,M, T.L).

In order to achieve the Lipschitz continuity of the dynamic market equilibrium solution, we
need to estimate the variation rate of projections onto time-dependent constraint set describing
the oligopolistic market equilibrium problem. It is noteworthy that K(t) can be reduced to the
case where 0 ≤ xij(t) ≤ x∗

ij(t), x∗
ij(t) = xij(t)− xij(t), i = 1, . . . ,m and j = 1, . . . , n, with the

transformation x′
ij(t) = xij(t)− xij(t), i = 1, . . . ,m and j = 1, . . . , n. We are able to show that

assumption (d) of Theorem 5.1 is fulfilled. In fact we have the following result.

Proposition 5.2 Let us suppose that x∗ is Lipschitz continuous on [0, T ] with constant L and
let z be an arbitrary point in R

n. Then it results

‖PK(t2)(z)− PK(t1)(z)‖ ≤ L|t1 − t2|,

where K(t) = {x(t) ∈ R
mn : 0 ≤ x(t) ≤ x∗(t)}.

Then, the Lipschitz continuity of the solution to (13) is ensured assuming that the operator
−∇v satisfies conditions (a), (b), (c) of Theorem 5.1 and I is a vector of nonnegative defined
m× n matrixes with entries Ir

ij ∈ L2([0, T ], R).
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STABILITY AND ESTIMATION OF SOLUTIONS
OF LINEAR DIFFERENTIAL SYSTEMS

WITH CONSTANT COEFFICIENTS OF NEUTRAL TYPE
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Abstract. In this paper we investigate exponential stability of systems of linear differen-
tial equations of neutral type with constant coefficients and a constant delay

ẋ(t)−Dẋ(t− τ) = Ax(t) + Bx(t− τ),

where t ≥ 0 is an independent variable, τ > 0 is a constant delay, A, B and D are n × n
constant matrices and x : [−τ,∞) → R

n. Estimations of solutions are given as well.

Key words and phrases. System of linear differential equations of neutral type, expo-
nential stability, Lyapunov-Krasovskii functionals.
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1 Introduction

The purpose of the paper is to analyze systems of linear differential equations of neutral type
with constant coefficients and a constant delay

ẋ(t)−Dẋ(t− τ) = Ax(t) + Bx(t− τ), (1)

where t ≥ 0 is an independent variable, τ > 0 is a constant delay, A,B and D are n×n constant
matrices and x : [−τ,∞) → R

n is a column vector-solution. The derivative “ · ” is understood
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as a left-hand derivative. Let ϕ : [−τ, 0] → R
n be a continuously differentiable vector-function.

The solution x = x(t) of the problem (1), (2) on [−τ,∞) where

x(t) = ϕ(t), ẋ(t) = ϕ̇(t), t ∈ [−τ, 0] (2)

we define in a classical sense (cf. e.g. [1, 3]) as a function continuous on [−τ,∞) and continu-
ously differentiable on [−τ,∞) except at points τp, p = 0, 1, . . . , and satisfying the equation (1)
everywhere on [0,∞) except at the above mentioned points.

We will investigate exponential stability of (1) and, moreover, for every positive t we will
find estimation of the norm of the difference between the solution x = x(t) of the problem (1),
(2) and the steady state in the moment t.

We will use the matrix norm

‖A‖ :=
√

λmax(AT A) ,

where symbols λmax( · ) or λmin( · ) denote maximal and minimal eigenvalues of the corresponding
matrix, and the following vector norms

‖x(t)‖ :=

√√√√ n∑
i=1

x2
i (t), ‖x(t)‖τ := max

−τ≤s≤0
{ ‖x(s + t)‖ } , ‖x(t)‖τ,β :=

√√√√√ t∫
t−τ

e−β(t−s)‖x (s) ‖2 ds

where β is a parameter.
The most commonly used method for investigation of stability of functional-differential

systems is the method of Lyapunov-Krasovskii functionals [2]. Usually, functionals having a
quadratic form generated with terms on the left-hand side of equation (1), and with the integral
(over the interval of delay) of a quadratic form are used. The relevant form is

V [x(t)] = [x(t)−Dx(t− τ)]T H [x(t)−Dx(t− τ)] +

t∫
t−τ

xT (s)Gx(s)ds (3)

where H and G are suitable n× n positively definite matrices.
Regarding functionals of the form (3) we should remark the following. Using a functional (3),

we can obtain affirmations on stability only, and relevant stability statements stating, e.g. that
the expression

t∫
t−τ

xT (s)Gx(s)ds

is bounded from above, are of an integral type. Due to terms [x(t)−Dx(t−τ)] in (3) containing
differences we are not able to deduce the boundedness of the norm of x(t) itself.

In this paper we will use functionals of Lyapunov-Krasovskii of a quadratic type, which is
dependent on running coordinates as well as on their derivatives. This will permit us to derive
estimations of solutions of the system (1).
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2 Estimations of convergence of solutions of stable systems

At first we give relevant definition of exponential stability:

Definition 2.1 The zero solution of the system of equations of neutral type (1) is called expo-
nentially stable in the metric C0, if there exist constants Ni > 0, i = 1, 2 and γ > 0 such that
for arbitrary solution x = x(t) of (1) the inequality

‖x(t)‖ ≤ [N1 ‖x (0)‖τ + N2 ‖ẋ(0)‖τ ] exp(−γt/2)

holds for t ≥ 0.

We will give estimation of solutions of linear system (1) on interval (0,∞) using Lyapunov-
Krasovskii functional

V [x(t), t] = xT (t)Hx(t) +

t∫
t−τ

e−β(t−s)
[
xT (s) G1x(s) + ẋT (s)G2ẋ(s)

]
ds (4)

with n× n positively definite matrices G1, G2 and H and a constant β. Then it is easy to see
that the estimation

λmin(H)‖x(t)‖2 +

t∫
t−τ

e−β(t−s)
[
xT (s)G1x(s) + ẋT (s)G2x(s)

]
ds ≤ V [x(t), t]

≤ λmax(H)‖x(t)‖2 +

t∫
t−τ

e−β(t−s)
[
xT (s)G1x(s) + ẋT (s)G2x(s)

]
ds (5)

holds. We define an auxiliary 3n× 3n-dimensional matrix

S (β,G1, G2, H) :=

⎛⎝−AT H −HA−G1 − AT G2A −HB − AT G2B −HD − AT G2D
−BT H −BT G2A e−βτG1 −BT G2B −BT G2D
−DT H −DT G2A −DT G2B e−βτG2 −DT G2D

⎞⎠
depending on the parameter β and the matrices G1, G2, H, and numbers

ϕ (H) :=
λmax(H)

λmin(H)
, ϕ1 (G1, H) :=

λmax(G1)

λmin(H)
, ϕ2 (G2, H) :=

λmax(G2)

λmin(H)
.

Now we give a statement on exponential stability of the zero solution of system (1) and es-
timations of convergence of a solution, which will be proved using Lyapunov-Krasovskii func-
tional (4).

Theorem 2.2 Let D be a nonsingular matrix and let there exist positively definite matrices G1,
G2, H and a parameter β > 0 such that the matrix S(β,G1, G2, H) is also positively definite.
Then the zero solution of system (1) is exponentially stable in the metric C0.
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Moreover, for the solution x = x(t) of the problem (1), (2) the following estimation of
convergence holds on [0,∞) :

‖x(t)‖ ≤
[√

ϕ (H)‖x(0)‖+ τ
√

ϕ1 (G1, H) ‖x (0)‖τ + τ
√

ϕ2 (G2, H) ‖ẋ(0)‖τ

]
e−γt/2 (6)

where

γ = min

{
β,

λmin (S (β,G1, G2, H))

λmax(H)

}
.

Proof. Let t ≥ 0. We rewrite system (1) in the form

ẋ(t) = Dẋ(t− τ) + Ax(t) + Bx(t− τ), (7)

where t ≥ 0 and calculate the full derivative of functional (4) along solutions of system (7). We
obtain

d

dt
V [x(t), t] = [Dẋ(t− τ) + Ax(t) + Bx(t− τ)]T Hx(t)

+ xT (t)H [Dẋ(t− τ) + Ax(t) + Bx(t− τ)]

+
[
xT (t)G1x(t)− e−βτxT (t− τ) G1x(t− τ)

]
+
[
ẋT (t)G2ẋ (t)− e−βτ ẋT (t− τ) G2ẋ(t− τ)

]
− β

t∫
t−τ

e−β(t−s)
[
xT (s) G1x(s) + ẋT (s) Gẋ(s)

]
ds.

We substitute value from (7) for ẋ(t). We obtain

d

dt
V [x(t), t] = [Dẋ(t− τ) + Ax(t) + Bx(t− τ)]T Hx(t)

+ xT (t)H [Dẋ(t− τ) + Ax(t) + Bx(t− τ)]

+
[
xT (t)G1x(t)− e−βτxT (t− τ) G1x(t− τ)

]
+ (Dẋ(t− τ) + Ax(t) + Bx(t− τ))T G2 (Dẋ(t− τ) + Ax(t))

+ Bx(t− τ)− e−βτ ẋT (t− τ) G2ẋ(t− τ)

− β

t∫
t−τ

e−β(t−s)
[
xT (s) G1x(s) + ẋT (s) Gẋ(s)

]
ds.
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Now it is easy to verify that

d

dt
V [x(t), t] = − (

xT (t), xT (t− τ), ẋT (t− τ)
)

×
⎛⎝−AT H −HA−G1 − AT G2A −HB − AT G2B −HD − AT G2D

−BT H −BT G2A e−βτG1 −BT G2B −BT G2D
−DT H −DT G2A −DT G2B e−βτG2 −DT G2D

⎞⎠
×
⎛⎝ x(t)

x(t− τ)
ẋ(t− τ)

⎞⎠− β

t∫
t−τ

e−β(t−s)
[
xT (s) G1x(s) + ẋT (s) G2ẋ(s)

]
ds

or

d

dt
V [x(t), t] = − (

xT (t), xT (t− τ), ẋT (t− τ)
)× S (β,H,G1, G2)

×
⎛⎝ x(t)

x(t− τ)
ẋ(t− τ)

⎞⎠− β

t∫
t−τ

e−β(t−s)
[
xT (s) G1x(s) + ẋT (s) G2ẋ(s)

]
ds.

Since the matrix S (β,G1, G2, H) was assumed to be positively definite, for the full derivative
of Lyapunov-Krasovskii functional (4) we obtain the inequality

d

dt
V [x(t), t] ≤ −λmin (S (β,G1, G2, H))

[‖x(t)‖2 + ‖x(t− τ)‖2

+‖ẋ (t− τ)‖2
]− β

t∫
t−τ

e−β(t−s)
[
xT (s) G1x(s) + ẋT (s) G2ẋ(s)

]
ds. (8)

We will study the two possible (regarding the positive value of β) cases: either

β >
λmin (S (β,G1, G2, H))

λmax(H)
(9)

is valid or

β ≤ λmin (S (β,G1, G2, H))

λmax(H)
(10)

holds.

1. Let (9) be valid. From inequality (5) there follows that

−‖x (t)‖2 ≤ − 1

λmax(H)
V [x(t), t] +

1

λmax(H)

t∫
t−τ

e−β(t−s)
[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds.
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We substitute this expression into inequality (8). Then

d

dt
V [x(t), t] ≤ λmin (S (β,G1, G2, H))

[
− 1

λmax(H)
V [x (t) , t]

+
1

λmax(H)

t∫
t−τ

e−β(t−s)
[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds

]

− β

t∫
t−τ

e−β(t−s)
[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds

or

d

dt
V [x(t), t] ≤ −λmin (S (β,G1, G2, H))

λmax(H)
V [x (t) , t]−

[
β − λmin (S (β,G1, G2, H))

λmax(H)

]

×
t∫

t−τ

e−β(t−s)
[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds.

Due to (9) we have

d

dt
V [x(t), t] ≤ −λmin (S (β,G1, G2, H))

λmax(H)
V [x (t) , t] .

Integrating this inequality over interval (0, t) we get

V [x (t) , t] ≤ V [x (0) , 0] exp

(
−λmin (S (β,G1, G2, H))

λmax(H)
t

)
≤ V [x (0) , 0] e−γt. (11)

2. Let (10) be valid. From (5) we get

−
t∫

t−τ

e−β(t−s)
[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds ≤ −V [x (t) , t] + λmax (H) ‖x(t)‖2.

We substitute this expression into inequality (8). We obtain

d

dt
V [x (t) , t] ≤ −λmin (S (β,G1, G2, H)) ‖x (t)‖2 + β

[−V [x (t) , t] + λmax(H)‖x (t)‖2
]

or
d

dt
V [x (t) , t] ≤ −βV [x (t) , t]− {λmin (S [β,G1, G2, H])− βλmax(H)} ‖x (t)‖2.

Since (10) holds then
d

dt
V [x (t) , t] ≤ −βV [x (t) , t] .
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Integrating this inequality over interval (0, t) we get

V [x (t) , t] ≤ V [x (0) , 0] e−βt ≤ V [x (0) , 0] e−γt. (12)

Connecting both inequalities (11), (12) we conclude that in both cases (9), (10) we have

V [x (t) , t] ≤ V [x (0) , 0] e−γt. (13)

Now using inequality (13) we obtain an estimation of convergence of solutions of system (1).
From (5) follows that

‖x(t)‖2 ≤ 1

λmin(H)

[
λmax(H)‖x(0)‖2 + λmax(G1) ‖x(0)‖2

τ,β + λmax (G2) ‖ẋ(0)‖2
τ,β

]
e−γt,

or

‖x (t)‖ ≤
[√

ϕ (H)‖x (0)‖+
√

ϕ1 (G1, H) ‖x (0)‖τ,β +
√

ϕ2 (G2, H) ‖ẋ (0)‖τ,β

]
e−γt/2.

The last inequality implies

‖x (t)‖ ≤
[√

ϕ (H)‖x (0)‖+ τ
√

ϕ1 (G1, H) ‖x (0)‖τ + τ
√

ϕ2 (G2, H) ‖ẋ(0)‖τ

]
e−γt/2.

So the inequality (6) is proved and, consequently, the zero solution of system (1) is exponentially
stable in the metric C0.

3 Example

We will investigate system (1) where n = 2, τ = 1,

D =

(
0.5 0

0 0.5

)
, A =

( −1 0.1
0.1 −1

)
, B =

(
0.1 0

0 0.1

)
,

i.e., the system

ẋ1(t) = 0.5ẋ1(t− 1)− x1(t) + 0.1x2(t) + 0.1x1(t− 1), (14)

ẋ2(t) = 0.5ẋ2(t− 1) + 0.1x1(t)− x2(t) + 0.1x2(t− 1), (15)

with initial conditions (2). Set β = 0.1 and

G1 =

(
1 0
0 1

)
, G2 =

(
1 1
1 3

)
, H =

(
2 0.1

0.1 5

)
.

The following computations were performed by using MATLAB & SIMULINK R2009a.
The eigenvalues of matrix G1 are λmin(G1) = λmax(G1) = 1, the eigenvalues of matrix G2

are λmin(G2)
.
= 0.5858 and λmax(G2)

.
= 3.4142, and the eigenvalues of matrix H are λmin(H)

.
=

1.9967 and λmax(H)
.
= 5.0033.
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The matrix S (β,G1, G2, H) takes the form

S (β,G1, G2, H)
.
=

⎛⎜⎜⎜⎜⎜⎜⎝
2.15 −1.11 −0.11 0.06 −0.55 0.3

−1.11 6.17 0.08 −0.21 0.4 −1.05
−0.11 0.08 0.8948 −0.01 −0.05 −0.05

0.06 −0.21 −0.01 0.8748 −0.05 −0.15
−0.55 0.4 −0.05 −0.05 0.6548 0.6548

0.3 −1.05 −0.05 −0.15 0.6548 1.9645

⎞⎟⎟⎟⎟⎟⎟⎠ .

Eigenvalues of S (β,G1, G2, H) are

λ1(S)
.
= 6.7377,

λ2(S)
.
= 2.2297,

λ3(S)
.
= 1.8651,

λ4(S)
.
= 0.8967,

λ5(S)
.
= 0.8352,

λ6(S)
.
= 0.1445.

Because all eigenvalues are positive, matrix S (β,G1, G2, H) is positively definite.
All conditions of Theorem 2.2 are satisfied so the zero solution of system (14), (15) is

asymptotically stable in the metric C0. Further we have

ϕ(H)
.
=

5.003

1.9967
.
= 2.5056, ϕ1(G1.H)

.
=

1

1.9967
.
= 0.5008,

ϕ2(G2, H)
.
=

3.4142

1.9967
.
= 1.7099, γ

.
= min

{
0.1,

0.1445

5.0033

}
.
= 0.0289.

Finally, from (6) there follows, that the inequality

‖x(t)‖ ≤
[√

2.5056‖x(0)‖+
√

0.5008 ‖x (0)‖1 +
√

1.7099 ‖ẋ(0)‖1

]
e−0.0289t/2

holds on [0,∞).
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AVERAGING, MERGER AND STABILITY
OF LINEAR DYNAMICAL SYSTEMS

WITH SMALL MARKOV JUMPS

CARKOVS Jevgenijs, (LV), PAVLENKO Oksana, (LV)

Abstract. In this paper it is shown that the asymptotical methods may be succesfully
used for exponential mean square stability analysis of the linear dynamical system in R

n

of impulse type which dynamical characteristics are dependent on the step Markov process
{y(t), t ≥ 0}.
Key words and phrases. linear differential equations, small random perturbations,
impulse equations, mean square stability, Lyapunov methods, quadratic Lyapunov func-
tionals, averaging procedure.
Mathematics Subject Classification. 60H10, 60H30.

1 Introduction

Let {yε(t), t ≥ 0} be series of right continuous homogeneous Markov processes [4] on the
countable space Y ⊂ R depending on parameter ε ∈ (0, 1) with weak infinitesimal operators
Qε defined on any element of the space V of bounded mappings v : Y → R by the equality

Qεv(y) := a(y, ε)
∑
z∈Y

[v(z)− v(y)]p(y, z, ε), (1)

and let us suppose that 0 < a1 := inf
y∈Y

ε∈(0, 1)

a(y, ε) ≤ sup
y∈Y

ε∈(0, 1)

a(y, ε) := a2 < ∞. For any fixed

ε ∈ (0, 1) the Markov process with infinitesimal operator (1) is piecewise constant process [4, 7]
with switching moments {τ ε

j , j ∈ N}. These random variables can be recurrently defined by
equalities

τ ε
0 = 0, Py(τ

ε
j − τ ε

j−1 > t) = ea(y, ε)t, j ∈ N, y ∈ Y, t ≥ 0.



Aplimat - Journal of Applied Mathematics

Now we will describe the series of Impulse Dynamical Systems (IDS) in R
n with parameter

ε ∈ (0, 1) this paper deals with. The phase coordinates xε(t) of this systems satisfy:
1) the initial condition

xε(0) = x (2)

2) the differential equation
dxε

dt
= A(y(t), ε)) xε (3)

for all t ∈ (τ ε
j−1, τ ε

j ), j ∈ N;
3) the conditions of jumps

xε(t) = xε(t− 0) + B(y(t), y(t− 0)), ε)xε(t− 0) (4)

for all t ∈ {τ ε
j , j ∈ N}, where the matrices A(y, ε), B(z, y, ε) are defined as the series

A(y, ε) =
∞∑

k=1

Ak(y) εk, B(z, y, ε) =
∞∑

k=1

Bk(z, y) εk.

with matrix coefficients satisfying the inequalities

sup
y∈Y

||Ak(y)|| := αk < ∞, sup
z,y∈Y

||Bk(z, y)|| := βk < ∞, k ∈ N (5)

and also the series composed of αk, βk are convergent. It is easily to make sure of existence
and uniqueness of the above defined process xε(t) for all t ≥ 0.

The IDS (3)-(4) we will named as exponentially mean square stable if there exist such positive
numbers M and ρ that Ey |xε(t + s, s, x)|2 ≤ M e−ρt|x|2 for any x ∈ R

n, y ∈ Y and t ≥ s ≥ 0.
Due to homogeneity of the Markov process {xε(t), y(t)} the above inequality is equivalent to
the inequality Ey |xε(t, 0, x)|2 ≤ M e−ρt|x|2.

Let us denote by Q the space of the symmetric n × n matrix-valued continuous functions
{q(y), y ∈ Y} with the subset K := {q ∈ Q : (q(y)x, x) ≥ 0,∀x ∈ R

n,∀y ∈ Y} of nonnegative-
definite matrices.

The set of inner points of K can be defined as K̇ := {q ∈ K : ∃c > 0, q � cI}.
The following theorem was proved in [6].
Theorem. Equation (1) is exponentially mean square stable if and only if there exist q ∈ K̇

and r ∈ K̇ such that
Aε q = −r, (6)

where

(Aε) q(y) = AT (y, ε)q(y) + q(y) A(y, ε)

+a(y, ε)
∑
z∈Y

[(I + BT (z, y, ε)) q(z) (I + B(z, y, ε))− q(z)] p(y, z, ε) + Qε q(y).(7)

Corollary. IDS (3)-(4) is exponentially mean square stable if and only if there exists
solution q ∈ K̇ of equation (6) with r = I.
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Equation (6) will be named the Lyapunov equation for mean square stability investigation
of IDS (3)-(4).

We will suppose that the infinitesimal generator (1) also can be represented as the uniformly
on y ∈ Y, ε ∈ (0, 1) convergent series

Qε v(y) = Q v(y) +
∞∑

k=1

Qk v(y) εk

where

Q v(y) = a(y)
∑
y∈Y

[v(z)− v(y)] p(y, z), (8)

Qk v(y) =
∑
y∈Y

[v(z)− v(y)]pk(y, z), k ∈ N,

p(y, z) is transition probability of some embedded Markov chains and pk(y, z), k ∈ N are some
positive measures on Y. The operator (8) can be considered [4, 7] as the infinitesimal generator
of some homogeneous piece wise constant Markov process y0(t), t ≥ 0. Let us assume that
this operator has 0 as an isolated simple eigenvalue of multiplicity h, h eigenfunctions with
nonintersecting supports Yj, j = 1, h defined by equalities

fj (y) =

{
1, fory ∈ Yj

0, fory ∈ Yk, k �= j.
and the remaining part of its spectrum is situated in the

half-plane C−ρ for some positive ρ. The conjugate operator Q∗ also [4] has 0 as an isolated
eigenvalue of multiplicity h and h invariant measures μk(y) with the same supports Yk, k =
1, h. If h = 1 then [4, 7]the Markov process y0(t) is uniformly exponentially ergodic. It has
unique invariant measure μ(y).

The operator (7) can be decomposed in terms of powers of ε

Aε =
∞∑

k=0

εk Gk (9)

where the operators Gm ∈ L(Q), m ≥ 0 are defined by the formulae

(G0 q)(y) := AT
0 q(y) + q(y) A0 + (Q q)(y), (10)

(G1 q)(y) := AT
1 (y) q(y) + q(y) A1(y) + (Q1q)(y)

+a(y)
∑
z∈Y

[BT
1 (z, y) q(z) + q(z) B1(z, y)] p(y, z), (11)

(G2 q)(y) := AT
2 (y) q(y) + q(y) A2(y) + (Q2q)(y)

+a(y)
∑
z∈Y

[BT
2 (z, y) q(z) + q(z) B2(z, y) + BT

1 (z, y) q(z) B1(z, y)] p(y, z)

+
∑
z∈Y

[BT
1 (z, y) q(z) + q(z) B1(z, y)] p1(y, z), (12)
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(Gm q)(y) := AT
m(y) q(y) + q(y) Am(y) + (Qmq)(y) + a(y)

∑
z∈Y

[BT
m(z, y) q(z) + q(z) Bm(z, y)

+
m−1∑
k=1

BT
m−k(z, y) q(z) Bk(z, y)] p(y, z)

+[BT
1 (z, y) q(z) + q(z) B1(z, y)] pm−1(y, z),

+
∑
z∈Y

m−1∑
t=2

[BT
t (z, y) q(z) + q(z) Bt(z, y)

+
t−1∑
k=1

BT
t−k(z, y) q(z) Bk(z, y)] pm−t(y, z), m ≥ 3. (13)

Hence like in [7] one can prove the next result
Lemma. Let λ0 /∈ σ(Aε) for all sufficiently small ε > 0. Under the above assumptions

there exists positive ε0 such that the solution qε of the equation Aεq
ε−λ0q

ε = f for any f ∈ Q

and ε ∈ (0, ε0) has the form q ε =
∞∑

k=−d

εkqk with some d ∈ N.

2 Averaging, merger and stability

Let us suppose that the differential equation (3) has the form

dxε

dt
= εA1(yε(t)) xε + ε2 A2(yε(t)) xε (14)

for all t ∈ (τ ε
j−1, τ ε

j ), j ∈ N, and the conditions of jumps (4) have the form

xε(t) = xε(t− 0) + εB1(yε(t), yε(t− 0)) xε(t− 0) + ε2 B2(yε(t), yε(t− 0)) xε(t− 0) (15)

At the beginning we will assume that h = 1, that is, the Markov process y0(t) has a unique
invariant measure μ(dy) and will denote by ŷ0(t) the stationary Markov function, corresponding
to this measure. This means that for any t ∈ R and A ⊂ Y one can write P(ŷ0(t) ∈ A) =
μ(A). We shall also denote

Cj(y) := Aj(y) + a(y)
∑
z∈Y

Bj(z, y) p(y, z),

Aj =
∑
y∈Y

Aj(y) μ(dy), Cj =
∑
y∈Y

Cj(y) μ(dy), j = 1, 2,

If C1 = 0 one can define [4] the matrix

F := C2 +
∑
y∈Y

∑
z∈Y

(Π C1)(z) p1(y, z)μ(y)

+
∑
y∈Y

{A1(y) (Π C1)(y) + a(y)
∑
z∈Y

B1(z, y) (Π C1)(z) p(y, z)}μ(y)
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and the operator H ∈ L(Mn(R))

H q :=
∑
y∈Y

{AT
1 (y) q (Π C1)(y) + (ΠC1)(y) q A1(y)

+a(y)
∑
z∈Y

[BT
1 (z, y) q (Π C1)(z) + (Π CT

1 )(z) q B1(z, y)] p(y, z) μ(y)

for q ∈ Mn(R), where the operator-potential Π.
For the first example let us consider the algorithm described in [6] with d = 1. In this case

in order to investigate stability of the IDS (14)-(15) on the first step we must deal with the
equation

Qq(y) = 0. (16)

According to our previous assumptions about the operator Q one can conclude that the solution
of (16) is an arbitrary symmetric matrix q(y) ≡ q. The conjugate equation to (16) has the form

Q∗ p(y) = 0 (17)

and its solution can be represented as p(y) = p μ(y) with an arbitrary symmetric matrix p and
the invariant measure μ described above.

In the second step we must analyze the possibility of solving the equation

Q q0(y) = −I − (G1 q)(y)), (18)

that is, due to Fredholm alternative it should be

Tr {
∑
y∈Y

{AT
1 (y) q + q A1(y) + a(y)

∑
z∈Y

[BT
1 (z, y) q + q B1(z, y)] p(y, z)}μ(y) + I} p = 0

for an arbitrary matrix p. This is equivalent to existence of a symmetric matrix q as solution
of the equation

C
T

1 q + q C1 = −I. (19)

This equation has positive definite solution if and only if

σ(C1) ⊂ {C : �λ < 0} (20)

which is equivalent to asymptotic stability of the ordinary differential equation

dx

dt
= A1 x. (21)

If
σ(A1) ∩ {C : �λ > 0} �= ∅ (22)

the equation (21) is not asymptotically stable and then quation (19) has a nonpositive defined
matrix q as its solution. Thus, in both cases (20) and (22) equation (19) has solution q and we
can find the solution q0(y) of equation (18). Then the matrix

1

ε
q + q0(y) (23)
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allows us to infer on the stability of the IDS (14)-(15). It is clear that if the matrix q is positive
definite or nonpositive definite then the matrix (23) also has this property for sufficiently small
positive ε. Therefore

- if the averaged equation (21) is asymptotically stable then the IDS (14)-(15) is
exponentially mean square stable for sufficiently small positive ε;

- if the averaged equation (21) has exponentially growing solutions then equation
(14)-(15) also has exponentially mean square growing solutions for sufficiently small
positive ε.

If
σ(C1) ⊂ {C : �λ ≤ 0}, σ(C1) ∩ {C : �λ = 0} �= ∅ (24)

then equation (19) has no solutions and therefore d > 1 and we must analyze the equation

Q q(y) = −AT
1 (y) q − q A1(y). (25)

Due to the assumption (24) the equation

A
T

1 q̃ + q̃ A1 = 0 (26)

has as solution a nonnegative definite matrix q̃ [2]. Then equation (25) must have solution
because

Tr {(AT

1 q̃ + q̃ A1) p} = 0

for any matrix p. Let us assume that the Markov process {y(t)} is uniformly exponentially
ergodic, that is, its transition probability satisfies the inequality

|P (t, y, A)− μ(A)| ≤ e−ρt

uniformly on A ∈ G, y ∈ Y for some ρ > 0 and all t ≥ 0. In this case one can define [3] the
potential Π of Markov process by the equality

(Πg)(y) :=

∞∫
0

∫
Y

g(z)P (t, y, dz) dt =

∞∫
0

E yg(y(t)) dt (27)

for all g satisfying the condition
∫
Y

g(z)μ(dz) = 0. Next we extend the potential (27) on all

v ∈ C(Y) by the equality

(Πv)(y) :=

∞∫
0

{
∫
Y

v(z)P (t, y, dz)−
∫
Y

v(z)μ(dz)} dt. (28)

It is clear that Πv ∈ D(Q) and
QΠv = −v + v,

where

v =

∫
Y

v(z)μ(dz).
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By using the definition (28) of the extension potential Π the solution of (25) can be written in
the form

q−1(y) := (ΠAT
1 )(y) q̃ + q̃ (ΠA1)(y).

This function can also be rewritten in the form [3]

q−1(y) =

∞∫
0

E y {(AT
1 (y(t))− A

T

1 ) q̃ + q̃ (A1(y(t))− A1) } dt.

The right part of this formula is a linear continuous operator acting on q̃.
Next we must analyze the equation

Q q(y) = −I − AT
2 (y) q̃ − q̃ A2(y)− AT

1 (y) q−1(y)− q−1(y) A1(y). (29)

By using the Fredholm alternative one has to verify the orthogonality of the right part of (29)
to the matrix measure p μ(dy) for arbitrary matrix p. This equation has a solution if and only
if there exists a matrix q̃ which satisfies equation (26) and equation

A
T

2 q̃ + q̃ A2 + (ΠA1)A1

T
q̃ + q̃ (ΠA1)A1 + ΠAT

1 q̃ A1 + AT
1 q̃ ΠA1 = −I, (30)

where overline denotes an averaging according to measure μ (dy). Therefore, the following
conclusions about stability of (21) can be drawn under the conditions (24):

-if the system (26),(30) has positive definite solution q̃ then equation (21)
is exponentially mean square stable for sufficiently small positive ε;

-if the system (26),(30) has nonpositive definite solution q̃ then equation (21)
has exponentially mean square growing solutions for sufficiently small positive ε.

In the papers [1, 3] it is proven that under condition A1 = 0 the solutions of the system
(26),(30) when represented in the form x(t/ε2) converge weakly as ε → 0 to the corresponding
solutions of the stochastic equation

dx̂(t) = (F + Ā2) x̂(t) dt +
n∑

j=1

D j x̂(t) dwj(t) (31)

and if the latter equation is exponentially mean square stable then this property also holds for
the system (26),(30). The same result can be obtained using the above analysis of (26),(30)
with A1 = 0 since then (23) is automatically satisfied and equation (26) is fulfilled for any
matrix q̃. Equation (30) is the Lyapunov equation for analysis of mean square stability of
equation (31) [5]. It can be easily seen that both equations (31) and (26),(30) have the same
asymptotic behaviour as t →∞. Hence, under the condition A1 = 0:

- if the stochastic approximation of the system (26),(30), given by (31), is asymptotically
mean square stable then the system (26),(30) is exponentially mean square stable for sufficiently
small positive ε;

- if the stochastic approximation of the system (26),(30), given by (31), has exponentially
mean square growing solutions then the system (26),(30) also has exponentially mean square
growing solutions for sufficiently small positive ε.
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3 Example

Let us analyse the stability of the system of type (14)-(15), described below.
Let us consider the Markov process with two states space Y = {0; 1}, defined by the infinites-

imal matrix Q =

( −α α
1− α α− 1

)
where α ∈ (0; 1)

Then the transition probabilities are p(0, 0) = 0, p(1, 0) = 1, p(0, 1) = 1, p(1, 1) = 0 and
intensities of switching are: a(0) = α, a(0) = −α. Therefore the invariant measure of this
Markov process is given by the equalities μ(0) = 1− α, μ(1) = α.

Let the above Markov process be switching process for two dimensional MIDS of type (14)-
(15), given by the equations:

dx

dt
= εA(y(t))x

for all t ∈ (τj−1, τj), j ∈ N;

x(t) = (I + B(y(t), y(t− 0)))x(t− 0)

for all t ∈ {τj, j ∈ N},
where A(y) = Ay =

(
0 0
0 −2δ

)
, B(y) =

(
b11 b12

b21 b2

)
zy

1) In the first step we must deal with the equation (16). The solution is an arbitrary

matrix with equal elements Q =

(
q q
q q

)
. Then we solve the conjugate equation (17).

p(y) =

(
(1−α)2

α2
1−α

α
1−α

α
1

)
p

2) In the second step we must find the solution of (19). C1(y) =

(
0 0
0 −2δ

)
y,

C̄1 =

(
0 0
0 −2δα

)
.

(
0 0
0 −2δ

)(
q11 q12

q21 q2

)
+

(
q11 q12

q21 q2

)(
0 0
0 −2δ

)
=

( −1 0
0 −1

)
We obtain, that the solution of this equation do not exists. So we need to continue the

algorithm and find the solution of (26)-(30). But from the equation (26):

2

(
0 0
0 −2δ

)(
q11 q12

q21 q2

)
= 0

follows, that q21 = q22 = 0 of this solution. So the matrix q could not be positive defined and
MIDS can not has any stable solution.
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REPRESENTATION OF SOLUTIONS OF LINEAR DISCRETE
SYSTEMS WITH CONSTANT COEFFICIENTS,

A SINGLE DELAY AND WITH IMPULSES
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Abstract. The purpose of this paper is to develop a method for the construction of
solutions of linear discrete systems with constant coefficients, with pure delay and with
impulses. Solutions are expressed with the aid of a special function called a discrete matrix
delayed exponential.
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1 Introduction

We use the following notation throughout this paper: For integers s, q, s ≤ q we define
a set Z

q
s := {s, s + 1, . . . , q − 1, q}. Similarly we define sets Z

q
−∞ := {. . . , q − 1, q} and

Z
∞
s := {s, s + 1, . . . }. The function [ · ] is the greatest integer function.

Consider the initial Cauchy problem

Δx(k) = Bx(k −m), k ∈ Z
∞
0 , (1)

x(k) = ϕ(k), k ∈ Z
0
−m (2)

where m ≥ 1 is a fixed integer, B = (bij) is a constant n × n matrix, x : Z
∞
−m → R

n,
ϕ : Z

0
−m → R

n and Δx(k) = x(k + 1)− x(k).
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We add impulses Ji ∈ R
n to x at points having a form i(m + 1) + 1 where the index i ≥ 0

is defined as i =
[

k−1
m+1

]
for every k ∈ Z

∞
0 , i.e., we set

x(i(m + 1) + 1) = x(i(m + 1) + 1− 0) + Ji (3)

and investigate the solution of the problem (1) – (3).

Before we deal with the solution of the problem (1) – (3), we will give the definitions
and a theorem needed to solve our problem. We will also show an example to get a better
understanding of the problem.

Definition 1.1 For arbitrary integers n and k, we define the binomial coefficient

(
n

k

)
:

(
n

k

)
:=

⎧⎨⎩
n!

k!(n− k)!
if n ≥ k ≥ 0,

0 otherwise.

(4)

In this paper, we use a special matrix function called a discrete function exponential. Such
a discrete matrix function was first defined in [1], [2].

Definition 1.2 For an n×n constant matrix B, k ∈ Z and fixed m ∈ N, we define the discrete
matrix delayed exponential eBk

m as follows:

eBk
m :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ if k ∈ Z
−m−1
−∞ ,

I if k ∈ Z
0
−m,

I + B ·
(

k

1

)
if k ∈ Z

m+1
1 ,

I + B ·
(

k

1

)
+ B2 ·

(
k −m

2

)
if k ∈ Z

2(m+1)
(m+1)+1,

I + B ·
(

k

1

)
+ B2 ·

(
k −m

2

)
+ B3 ·

(
k − 2m

3

)
if k ∈ Z

3(m+1)
2(m+1)+1,

. . .

I + B ·
(

k

1

)
+ B2 ·

(
k −m

2

)
+ · · ·+ B� ·

(
k − (�− 1)m

�

)
if k ∈ Z

�(m+1)
(�−1)(m+1)+1, � = 0, 1, 2, . . .

(5)

where Θ is n× n null matrix and I is n× n unit matrix.

The Definition 1.2 of the discrete matrix delayed exponential can be shortened as

eBk
m :=

⎧⎪⎪⎨⎪⎪⎩
Θ if k ∈ Z

−m−1
−∞ ,

I +
�∑

j=1

Bj ·
(

k − (j − 1)m

j

)
if k ∈ Z

�(m+1)
(�−1)(m+1)+1, � = 0, 1, 2, . . . .
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Next, Theorem 1.3 is proved in [1].

Theorem 1.3 Let B be a constant n× n matrix. Then, for k ∈ Z
∞
−m,

Δ eBk
m = BeB(k−m)

m . (6)

The following example illustrates the influence of impulses on the solution and serves as a
motivation for the formulation of a general case.

Example 1.4 We consider a particular case of (1) if n = 1, B = b, m = 3 together with an
initial problem (2) for ϕ(k) = 1, k ∈ Z

0
−3 and with impulses Ji ∈ R at points i(m+1)+1 = 4i+1

where i ≥ 0, i =
[

k−1
m+1

]
=
[

k−1
4

]
:

Δx(k) = bx(k − 3), (7)

x(−3) = x(−2) = x(−1) = x(0) = 1, (8)

x(4i + 1) = x(4i + 1− 0) + Ji, (9)

where b ∈ R, b �= 0. Rewriting the equation (7) as

x(k + 1) = x(k) + bx(k − 3)

and solving it by the method of steps, we conclude that the solution of the problem, can be
written in the form:

x(k) = b0

(
k + 3

0

)
if k ∈ Z

0
−3,

x(k) = b0

(
k + 3

0

)
+ b1

(
k

1

)
+ J0 b0

(
k − 1

0

)
if k ∈ Z

4
1,

x(k) = b0

(
k + 3

0

)
+ b1

(
k

1

)
+ b2

(
k − 3

2

)
+ J0

[
b0

(
k − 1

0

)
+ b1

(
k − 4

1

)]
+ J1 b0

(
k − 5

0

)
if k ∈ Z

8
5,

x(k) = b0

(
k + 3

0

)
+ b1

(
k

1

)
+ b2

(
k − 3

2

)
+ b3

(
k − 6

3

)
+ J0

[
b0

(
k − 1

0

)
+ b1

(
k − 4

1

)
+ b2

(
k − 7

2

)]
+ J1

[
b0

(
k − 5

0

)
+ b1

(
k − 8

1

)]
+ J2 b0

(
k − 9

0

)
if k ∈ Z

12
9 ,

...
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x(k) = b0

(
k + 3

0

)
+ b1

(
k

1

)
+ b2

(
k − 3

2

)
+ · · ·+ b�

(
k − 3(�− 1)

�

)
+ J0

[
b0

(
k − 1

0

)
+ b1

(
k − 4

1

)
+ b2

(
k − 7

2

)
+ · · ·+ b�−1

(
k − 4− 3(�− 2)

�− 1

)]
+ J1

[
b0

(
k − 5

0

)
+ b1

(
k − 8

1

)
+ b2

(
k − 11

2

)
+ · · ·+ b�−2

(
k − 8− 3(�− 3)

�− 2

)]
+ J2

[
b0

(
k − 9

0

)
+ b1

(
k − 12

1

)
+ b2

(
k − 15

2

)
+ · · ·+ b�−3

(
k − 12− 3(�− 4)

�− 3

)]
+ J3

[
b0

(
k − 13

0

)
+ b1

(
k − 16

1

)
+ b2

(
k − 19

2

)
+ · · ·+ b�−4

(
k − 16− 3(�− 5)

�− 4

)]
+ · · ·

+ Ji

[
b0

(
k − 4(i + 1) + 3

0

)
+ b1

(
k − 4(i + 1)

1

)
+ b2

(
k − 4(i + 1)− 3

2

)
+ b3

(
k − 4(i + 1)− 6

3

)
+ · · ·+ b�−(i+1)

(
k − 4(i + 1)− 3(�− (i + 2))

�− (i + 1)

)]
if k ∈ Z

4(�−1)+4
4(�−1)+1, � = 0, 1, 2, . . . , i =

[
k−1
4

]
, i ≥ 0.

The solution of the problem (7) – (9) can be shortened to

x(k) =
�∑

j=0

bj

(
k − 3(j − 1)

j

)
+

i∑
q=0

Jq

�−(q+1)∑
j=0

bj

(
k − 4(q + 1)− 3(j − 1)

j

)
, (10)

for k ∈ Z
4(�−1)+4
4(�−1)+1, � = 0, 1, 2, . . . , i =

[
k−1
4

]
, i ≥ 0.

2 Representation of a Solution of a Homogeneous Initial Problem

Theorem 2.1 Let B be a constant n × n matrix, m be a fixed integer, Ji ∈ R
n. Then the

solution of the initial Cauchy problem with impulses

Δx(k) = Bx(k −m), k ∈ Z
∞
0 , (11)

x(k) = ϕ(k), k ∈ Z
0
−m, (12)

x(i(m + 1) + 1) = x(i(m + 1) + 1− 0) + Ji, Ji ∈ R
n, i ≥ 0, i =

[
k−1
m

]
(13)

can be expressed in the form:

x(k) = eBk
m ϕ(−m) +

0∑
j=−m+1

eB(k−m−j)
m Δϕ(j − 1) +

i∑
q=0

Jqe
B(k−(q+1)(m+1))
m (14)
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where k ∈ Z
∞
−m.

Proof. We substitute (14) into the left-hand side L of the equation (11):

L = Δx(k)

= Δ

[
eBk
m ϕ(−m) +

0∑
j=−m+1

eB(k−m−j)
m Δϕ(j − 1) +

i∑
q=0

Jqe
B(k−(q+1)(m+1))
m

]
= [according to the Theorem 1.3]

= ΔeBk
m ϕ(−m) +

0∑
j=−m+1

ΔeB(k−m−j)
m Δϕ(j − 1) +

i∑
q=0

JqΔeB(k−(q+1)(m+1))
m

= BeB(k−m)
m ϕ(−m) +

0∑
j=−m+1

BeB(k−m−m−j)
m Δϕ(j − 1) +

i∑
q=0

JqBeB(k−m−(q+1)(m+1))
m

= B

[
eB(k−m)
m ϕ(−m) +

0∑
j=−m+1

eB(k−m−m−j)
m Δϕ(j − 1) +

i∑
q=0

Jqe
B(k−m−(q+1)(m+1))
m

]
.

Now we substitute (14) into the right-hand side R of the equation (11):

R = Bx(k −m)

= B

[
eB(k−m)
m ϕ(−m) +

0∑
j=−m+1

eB(k−m−m−j)
m Δϕ(j − 1) +

i∑
q=0

Jqe
B(k−m−(q+1)(m+1))
m

]
.

Since L = R, (14) is a solution of (11), (12).

Now we have to prove that (13) holds, too. We substitute (14) into the left-hand side L∗

and right-hand side R∗ of (13):

L∗ = x(i(m + 1) + 1)

= eB(i(m+1)+1)
m ϕ(−m) +

0∑
j=−m+1

eB(i(m+1)+1−m−j)
m Δϕ(j − 1) +

i∑
q=0

Jqe
B(i(m+1)+1−(q+1)(m+1))
m ,

R∗ = x(i(m + 1) + 1− 0) + Ji

= eB(i(m+1)+1)
m ϕ(−m) +

0∑
j=−m+1

eB(i(m+1)+1−m−j)
m Δϕ(j − 1) +

i−1∑
q=0

Jqe
B(i(m+1)+1−(q+1)(m+1))
m

+ Ji.
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Since

i∑
q=0

Jqe
B(i(m+1)+1−(q+1)(m+1))
m =

i−1∑
q=0

Jqe
B(i(m+1)+1−(q+1)(m+1))
m + Jie

B(i(m+1)+1−(i+1)(m+1))
m

=
i−1∑
q=0

Jqe
B(i(m+1)+1−(q+1)(m+1))
m + Jie

B(−m)
m

=
[
according to the Definition 1.2 , eB(−m)

m = I
]

=
i−1∑
q=0

Jqe
B(i(m+1)+1−(q+1)(m+1))
m + Ji

it is obvious that L∗ = R∗ and (13) holds.

Example 2.2 We consider the problem (11) – (13) where n = 1, B = b, m = 3, ϕ(k) = 1 for
k ∈ Z

0
−3. Then (14) takes a form:

x(k) = ebk
3 ϕ(−3) +

0∑
j=−3+1

e
b(k−3−j)
3 Δϕ(j − 1) +

i∑
q=0

Jqe
b(k−(q+1)(3+1))
3 . (15)

This problem was also solved in Exaple 1.4. We will show that the representations (15) and
(10) are equivalent.

We write out all the addition terms of (15):

ebk
3 ϕ(−3) = [according to the Definition 1.2 ]

= 1 + b

(
k

1

)
+ b2

(
k − 3

2

)
+ b3

(
k − 6

3

)
+ · · ·+ b�

(
k − 3(�− 1)

�

)
= b0

(
k + 3

0

)
+ b1

(
k

1

)
+ b2

(
k − 3

2

)
+ b3

(
k − 6

3

)
+ · · ·+ b�

(
k − 3(�− 1)

�

)

=
�∑

j=0

bj

(
k − 3(j − 1)

j

)
,

0∑
j=−3+1

e
b(k−3−j)
3 Δϕ(j − 1) =

0∑
j=−2

e
b(k−3−j)
3 Δϕ(j − 1)

= e
b(k−1)
3 Δϕ(−3) + e

b(k−2)
3 Δϕ(−2) + e

b(k−3)
3 Δϕ(−1)

= e
b(k−1)
3 (ϕ(−2)− ϕ(−3)) + e

b(k−2)
3 (ϕ(−1)− ϕ(−2))

+ e
b(k−3)
3 (ϕ(0)− ϕ(−1))

= 0,
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i∑
q=0

Jqe
b(k−(q+1)(3+1))
3 =

i∑
q=0

Jqe
b(k−4(q+1))
3

= [according to the Definition 1.2 ]

=
i∑

q=0

Jq

�∑
j=0

bj

(
k − 4(q + 1)− 3(j − 1)

j

)

=
i∑

q=0

Jq

[
b0

(
k − 4(q + 1) + 3

0

)
+ b1

(
k − 4(q + 1)

1

)
+ b2

(
k − 4(q + 1)− 3

2

)

+ · · ·+ b�−(q+1)

(
k − 4(q + 1)− 3(�− (q + 1)− 1)

�− (q + 1)

)
+ b�−(q+1)+1

(
k − 4(q + 1)− 3(�− (q + 1))

�− (q + 1) + 1

)
+ · · ·+ b�

(
k − 4(q + 1)− 3(�− 1)

�

)]
.

We prove that the binomical coeficients(
k − 4(q + 1)− 3(�− (q + 1))

�− (q + 1) + 1

)
, . . . ,

(
k − 4(q + 1)− 3(�− 1)

�

)
are equal to zero. These coeficients can be writen as(

k − 4(q + 1)− 3(�− (q + 1) + p− 1)

�− (q + 1) + p

)
, where p = 1, 2, . . . , q + 1.

Since k ∈ Z
4(�−1)+4
4(�−1)+1, we can write k = 4(l − 1) + h where h = 1, 2, 3, 4. Thus(

k − 4(q + 1)− 3(�− (q + 1) + p− 1)

�− (q + 1) + p

)
=

(
4(l − 1) + h− 4(q + 1)− 3(�− (q + 1) + p− 1)

�− (q + 1) + p

)
=

(
�− q − 3p− 2 + h

l − q + p− 1

)
= [because − 3p− 2 + h < p− 1]

= 0.

Hence
i∑

q=0

Jqe
b(k−(q+1)(3+1))
3 =

i∑
q=0

Jq

�−(q+1)∑
j=0

bj

(
k − 4(q + 1)− 3(j − 1)

j

)
.

Then the solution (14) is in the form

x(k) =
�∑

j=0

bj

(
k − 3(j − 1)

j

)
+

i∑
q=0

Jq

�−(q+1)∑
j=0

bj

(
k − 4(q + 1)− 3(j − 1)

j

)
,

which is the solution (10) of the problem (7) – (9) .
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Žižkova 17, 662 37 Brno, Czech Republic
email: moravkova.b@fce.vutbr.cz

52 volume 3 (2010), number 2



SOME GENERALIZATIONS
OF BANACH FIXED POINT THEOREM

FAJMON Břetislav, (CZ), ŠMARDA Zdeněk, (CZ)

Abstract. In the paper the fixed point theorems are presented, which assert that every
complete metric space is a fixed point space for the class of contractive mappings. The
obtained results outgoing from the classical Banach fixed point theorem generalize con-
tractive conditions which do not imply the continuity of an operator. The illustrative
example is given, as well.
Key words and phrases. Fixed point theorems, Banach contraction principle.
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1 Introduction

The Banach contraction principle is the simplest and one of the most versatile elementary
results in fixed point theory. Being based on an iteration process, it can be implemented
on a computer to find the fixed point of a contractive map. It produces approximations of
any required accuracy, and moreover, even the number of iterations needed to get a specified
accuracy can be determined.

First we recal some basic notions. Consider the operator equation

u = Tu, u ∈ X, (1)

where X is a complete metric space. Solve (1) by means of the following iteration method:

un+1 = Tun, n = 0, 1, . . . , (2)

where u0 ∈ X. Each solution of (1) is called a fixed point of the operator T.
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Theorem 1.1 (Banach fixed point theorem). Let (X, d) be a complete metric space M ⊆ X
and T : M → M be a map satisfying

d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ M, (3)

where 0 ≤ k < 1 is a constant. Then, the following hold true:

(i) Existence and uniqueness. Equation (1) has exactly one fixed point u ∈ M .

(ii) Convergence of the iteration method. For each given u0 ∈ M the sequence (un) con-
structed by (2) converges to the unique solution u of equation (1).

(iii) Error estimates. For all n = 0, 1, . . . we have so-called a priori error estimate

d(un, u) ≤ kn(1− k)−1d(u1, u0), (4)

and the so-called a posteriori error estimate

d(un+1, u) ≤ k(1− k)−1d(un+1, un). (5)

(iv) Rate of convergence. For all n = 0, 1, . . . we have

d(un+1, u) ≤ kd(un, u).

This theorem was proved by Banach in 1920. The Banach fixed point theorem is also called
the contraction principle.

The a apriori estimate (4) makes it possible to use the knowledge of initial value u0 along
u1 = Tu0 to determine the maximal number of steps of iteration required to attain a desidered
level of precision.

In contrast to this, the a posteriori estimate (5) allows us to use computed values un and
un+1 to determine the accuracy of approximation un+1.

Theorem 1.1 suffers from one drawback the contractive condition (3) forces T to be contin-
uous on M . It was then natural to ask if there exist or not weaker contractive conditions which
do not imply the continuity of T . This was answered by R.Kannan [5] in 1968 , who proved a
fixed point theorem which extends Theorem 1.1 to mappings that need not be continuous on
M ( but are continuous in their fixed point) by considering instead of (3) the next contractive
condition: there exists a constant b ∈ [0, 1/2) such that

d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)], for all x, y ∈ M. (6)

A lot of papers were devoted to obtaining fixed point theorems for various classes of contractive
type conditions that do not require the continuity of T ( see [2],[9],[10]). One of them , actually
a sort of dual of Kannan fixed point theorem, due to Chatterjea [3], is based on a condition
similar to (6): there exists a constant c ∈ [0, 1/2) such that

d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)], for all x, y ∈ M. (7)
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For a presentation and comparison of such kind of fixed point theorems, see [2],[6],[7],[8].
Ciric [4] determined the contractive condition: there exists 0 ≤ h < 1 such that for all x, y ∈ M

d(Tx, Ty) ≤ h max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}. (8)

A mapping satisfying (8) is commonly called quasi contraction. It is obvious that each of the
conditions (3),(6) and (7) does imply (8). One of the most general contraction conditions has
been obtained by Berinde [1].

Theorem 1.2 Let (X, d) be a complete metric space and let T : X → X be a Ciric almost
contraction, that is, a mapping for which there exists a constant α ∈ (0, 1] and L ≥ 0 such that

d(Tx, Ty) ≤ αM(x, y) + Ld(y, Tx) for all x, y ∈ X,

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Then

1) Fix(T) = {x ∈ X : Tx = x} �= ∅.
2) For any x0 ∈ X, the Picard iteration (xn) given by (2) converges to some x∗ ∈ Fix(T ).

3) The following estimate holds:

d(xn, x
∗) ≤ αn

(1− α)2
d(x, Tx), n = 1, 2, . . .

2 Illustrative example

Consider the following singular initial value problem

y′(t) = F
(

t, y(t),

∫ t

0+

K(t, s, y(t), y(s))ds,

)
, y(0+) = 0, (9)

where

(I) F : Ω → Rn, F ∈ C0(Ω),
Ω = {(t, u1, u2) ∈ J × Rn × Rn : |u1| ≤ φ(t), |u2| ≤ ψ(t)}, J = (0, t0], t0 > 0,
0 < φ(t) ∈ C0(J), φ(0+) = 0, 0 < ψ(t) ∈ C0(J), | · | denotes the usual norm in Rn,
|F(t, u1, u2)− F(t, u1, u2| ≤ M1|u1 − u1| + M2|u2 − u2| for all (t, u1, u2, ), (t, u1, u2) ∈ Ω,
Mi ≥ 0, i = 1, 2.

(II) K : Ω1 → Rn, K ∈ C0(Ω1),
Ω1 = {(t, s, v1, v2) ∈ J × J × Rn × Rn : |v1| ≤ φ(t) |v2| ≤ φ(t).}, |K(t, s, v1, v2) −
K(t, s, v1, v1| ≤ N1|v1−v1|+N2|v2−v2| for all (t, s, v1, v2), (t, s, v1, v2) ∈ Ω1, Ni ≥ 0, i =
1, 2.
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The initial value problem (9) is equivalent to the system of integral equations

y(t) =

∫ t

0+

F
(

s, y(s),

∫ s

0+

K(s, w, y(s), y(w))dw,

)
ds. (10)

We want to solve singular initial problem (9) along with the iteration method

yn+1(t) =

∫ t

0+

F
(

s, yn(s),

∫ s

0+

K(s, w, yn(s), yn(w))dw

)
ds, n = 0, 1, . . . , (11)

where y0(x) ≡ 0.

Theorem 2.1 Let the functions F(t, u1, u2), K(t, s, v1, v2) satisfy conditions (I), (II) and,
moreover

(i)

|F| ≤ g1(t)|u1|+ g2(t)|u2|, 0 < gi(t) ∈ C0(J), i = 1, 2,

∫ t

0+

g1(s)φ(s)ds ≤ αφ(t),

∫ t

0+

g2(s)ψ(s)ds ≤ βφ(t), α + β ≤ 1.

(ii) Let H be the Banach space of continuous vector-valued functions

h : J0 → Rn, J0 = [0, t0], |h(t)| ≤ φ(t)

on J with the norm

||h||λ = max
t∈J0

{e−λt|h(t)|},

where λ > 0 is an arbitrary parameter.

(iii) There is a real number k such that k =
(

M1+t0M2N1

λ
+ M2N2+M2N1

λ2

)
< 1.

Then the following hold true:

Singular initial value problem (9) has a unique solution y(t), t ∈ J .

The sequence (yn) constructed by (11) converges to y(x) .

For all n = 0, 1, . . . we get the following error estimates:

||yn − y|| ≤ kn(1− k)−1||y1||,

||yn+1 − y|| ≤ k(1− k)−1||yn+1 − yn||.
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Proof. Define the operator T by the right-hand side of (10)

T (h) =

∫ t

0+

F
(

s, h(s),

∫ s

0+

K(s, w, h(s), h(w))dw,

)
ds,

where h ∈ H. The transformation T maps H continuously into itself because

|T (h)| ≤
∫ t

0+

∣∣∣∣F (
s, h(s),

∫ s

0+

K(s, w, h(s), h(w))dw,

)∣∣∣∣ ds

≤
∫ t

0+

[
g1(s)|h(s)|+ g2(s)

∫ s

0+

|K(s, w, h(s), h(w))|dw

]
ds

≤
∫ t

0+

(g1(s)φ(s) + g2(s)ψ(s)) ds ≤ (α + β)φ(t) ≤ φ(t)

for every h ∈ H. We shall prove that

||T (h2)− T (h1)||λ ≤ ||h2 − h1||λ
(

M1 + t0M2N1

λ
+

M2N2 + M2N1

λ2

)
for all h1, h2 ∈ H. Using (I), (II) and the definition ||.||λ we have

|T (h2)− T (h1)| ≤
∫ t

0+

∣∣∣∣F (
s, h2(s),

∫ s

0+

K(s, w, h2(s), h2(w))dw,

)

− F
(

s, h1(s),

∫ s

0+

K(s, w, h1(s), h1(w))dw,

)∣∣∣∣ ds

≤
∫ t

0+

(
M1|h2(s)− h1(s)|+ M2

∫ s

0+

|K(s, w, h2(s), h2(w))−K(s, w, h1(s), h1(w))|dw

)
ds

≤
∫ t

0+

(
M1|h2(s)− h1(s)|+ M2

∫ s

0+

(N1|h2(s)− h1(s)|+ N2|h2(w)− h1(w)|)dw

)
ds

≤ M1||h2 − h1||λ
∫ t

0+

eλsds + M2N1||h2 − h1||λ
∫ t

0+

seλsds + M2N2||h2 − h1||λ
∫ t

0+

∫ s

0+

e(λw)dwds

= ||h2 − h1||λ
(

M1(
eλt

λ
− 1

λ
) + M2N1(

teλt

λ
− eλt

λ2
+

1

λ2
) + M2N2(

eλt

λ2
− 1

λ2
− t

λ
)

)
< ||h2 − h1||λeλt

(
M1 + t0M2N1

λ
+

M2N2 + M2N1

λ2

)
.

Thus

||T (h2)−T (h1)||λ = max
t∈J0

{e−λt|T (h2)−T (h1)|} ≤ ||h2−h1||λ
(

M1 + t0M2N1

λ
+

M2N2 + M2N1

λ2

)
.

Now we choose λ > 0 so that(
M1 + t0M2N1

λ
+

M2N2 + M2N1

λ2

)
< 1

volume 3 (2010), number 2 57



Aplimat - Journal of Applied Mathematics

and define

k :=

(
M1 + t0M2N1

λ
+

M2N2 + M2N1

λ2

)
.

The assertions of Theorem 2.1. follow now from Theorem 1.1.
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NON-NEGATIVITY PRESERVATION
OF THE DISCRETE NONSTATIONARY HEAT EQUATION

IN 1D AND 2D

FARAGÓ István, (HU), KOROTOV Sergey, (FI), SZABÓ Tamás, (HU)

Abstract. In this paper we analyse the preservation of the non-negativity property for
the semidiscrete and fully discretized (by finite differences and finite elements) numerical
solutions of the linear parabolic problem in one and two space dimensions. In particular,
we derive the exact (necessary and sufficient) conditions for the 1D problem, and also give
sufficient conditions for the 2D case, under which the non-negativity preservation property
of the fully discretized problem is valid.
Key words and phrases. parabolic problems, semidiscretization, fully discretized prob-
lem, linear and bilinear finite elements, finite differences, non-negativity preservation,
tridiagonal matrix, block-tridiagonal matrix.
Mathematics Subject Classification. 15A06, 65M06, 65M60

1 Introduction

Besides the covergence, another natural requirement in the process of numerical solution of
partial differential equations, is a presevation of basic qualitative properties of the original
(physical) solution, assuming that they are inherent to the continuous mathematical model.
As an example, consider the advection-diffusion-reaction equation arising, e.g., in the large
air-pollution modeling [22]:

∂c

∂t
= −div (vc) + div (D grad c) + R(c), t ∈ (0, T ], c(0, x) = c0(x), (1)

where the vector-valued function c(t, x) denotes the concentration of compounds, v = v(t, x)
presents the current velocity of the medium, D is the so-called diffusion coefficient matrix,
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and the function R describes the chemical reactions between the compounds and includes the
parametrized deposition and emission. (As a rule, we use equation (1) in the componentwise
sense.) We solve the above problem by suitably chosen numerical method. Since c denotes the
concentration, which is always non-negative, it is natural to require the non-negativity from
the numerical approximations of c as well.

The technique, often used to solve problems like (1) (based on several physical processes)
is the so-called operator splitting method, see e. g. [4]: we choose a suitable time-step Δt > 0,
and for j = 1, 2, ... solve the sequence of subproblems

∂u
(j)
1

∂t
= −div (vu

(j)
1 ), u

(j)
1 ((j − 1)Δt, x) = u

(j−1)
3 ((j − 1)Δt, x), (2)

∂u
(j)
2

∂t
= div (D grad u

(j)
2 ), u

(j)
2 ((j − 1)Δt, x) = u

(j)
1 (jΔt, x), (3)

∂u
(j)
3

∂t
= R(u

(j)
3 ), u

(j)
3 ((j − 1)Δt, x) = u

(j)
2 (jΔt, x), (4)

on the intervals [(j − 1)Δt, jΔt], where u
(0)
3 (0, x) = c0(x). In this procedure, u

(j)
3 yields an

approximation to c(jΔt, x).
For numerical solution of each of the above subproblems, we can choose a certain suitable

numerical method (naturally, all three may be completely different each from other). Obviously,
if all numerical techniques used for solving (2)–(4) are non-negativity preserving, then the whole
computational scheme, used for solving (1), is non-negativity preserving.

In the above sequence of subproblems (2)–(4), the central role belongs to subproblem (3),
which, in the simplest setting, has the following form

∂u

∂t
= �u in ΩT = (0, T )× Ω, (5)

u = 0 on ΓT = (0, T )× ∂Ω, (6)

u|t=0 = u0 on Ω, (7)

where Ω ⊂ IRd is a segment (for d = 1, and the problem is referred to as the one-dimensional),
or a rectangle (for d = 2, and the problem is called two-dimensional), the symbol � denotes
the Laplace operator, and u0 is the initial function defined from the splitting procedure.

This equation has an importance of its own. For instance, it describes the heat conduction
process, therefore hereafter we refer to it as the heat conduction equation. For this equation,
the non-negativity preservation principle reads as follows: for any non-negative initial function
u0, the solution u has to be non-negative in ΩT as well, see, e.g. [19].

A typical numerical technique for solving (5)–(7) presents a combination of separate dis-
cretizations in space and time. For the first one, we can employ the finite element method
(based e.g. on the linear elements in the one-dimensional case, and on bilinear elements - for
the two-dimensional case), or the standard finite difference method with the mesh-size h. As a
result, we get the following Cauchy problem for the semidiscrete solution uh

duh

dt
(t) = �huh(t), t ∈ (0, T ), (8)
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where the initial value uh(0) is given and �h denotes the corresponding discrete Laplace op-
erator (represented by a matrix). Applying some suitable time discretization method with the
time-step τ to problem (8), we finally arrive at the fully discretized problem, presenting the
following algebraic iterative procedure

X1y
j+1 = X2y

j, (9)

where X1 and X2 are given matrices, and the vector yj represents the approximation to uh(jτ).

Our aim is to formulate, for a fixed standard parameter θ ∈ [0, 1], such conditions on
the discretization parameters h and τ , under which the corresponding semidiscrete and fully
discretized solutions preserve the non-negativity property.

In this paper we study these problems. We show that in the one-dimensional case, the exact
(necessary and sufficient) conditions (with respect to τ and h, for any fixed θ) can be obtained.
The results are based on finding the exact represenation of the matrix X = X−1

1 X2, where the
crucial point consists of computing the inverse X−1

1 .

In the two-dimensional case, a similar problem is more difficult, due to more complicated
structures of the corresponding matrices. A certain sufficient condition is given in [8] and it is
based on the following requirements: X2 ≥ 0 and X1 is a monotone matrix. However, finding
the necessary and sufficient condition is still an open problem.

In our paper, we analyse first the non-negativity preservation for the semidiscrete solutions
of (8), and, additionally, we establish direct connection between the non-negativity preservation
of the semidiscrete solutions (8) for the one and two-dimensional cases. In Section 3 we give
the exact condition for the non-negativity preservation in 1D and we give “the bounds” for the
finite difference and linear finite element methods. In Section 4 we formulate the conditions
under which the discrete problems are non-negativity preserving in 2D. In the final section we
illustrate numerically the theoretically derived results.

We note that the non-negativity preservation property has a close relation to the validity of
the discrete maximum principle. This topic is addressed, e.g., in [10], [5], [6] for the parabolic
problem, and in [12], [13] - for the elliptic problems.

2 Non-negativity preservation for the semidiscrete solutions

In this section, we consider the non-negativity preservation for the Cauchy problem (8), where
�h arises from the space uniform discretization of the Laplace operator on rectangular mesh.
The solution has a form

uh(t) = exp(�ht)u0, t ∈ (0, T ), (10)

where exp(�ht) denotes the exponent of the matrix �ht. Therefore, the problem of the non-
negativity preservation is equivalent to finding conditions on dicretization methods for which
the matrix exponential exp(�ht) is non-negative.

The following useful lemma holds (cf. [1, p. 172]).
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Lemma 2.1 Let A be an arbitrary square matrix with the entries aij. Then exp(At) is non-
negative for any t ≥ 0 if and only if the condition

aij ≥ 0 for all i �= j (11)

holds.

Proof: By the definition of the exponential, we have

exp(At) = I + At + ...,

where I denotes the identity matrix. This series immediately shows the necessity of condition
(11). Let now s be a scalar such that A + sI is a non-negative matrix. Then, obviously,
exp((A + sI)t) is non-negative if t ≥ 0. Moreover, exp(−sIt) is also non-negative, and the
matrices (A + sI)t and −sIt commute. Therefore, due to the identity

exp(At) = exp((A + sI)t− sIt) = exp((A + sI)t) · exp(−sIt),

the sufficiency of condition (11) is also proven.
�

In the following we consider the application of this lemma to the one-dimensional case.

2.1 One-dimensional case

If problem (5)–(7) is considered in the one-dimensional case, the structure of the matrix �h

is well-known for the both finite difference and finite element (space) discretizations. Namely,
using the standard denotations

Q = tridiag(1,−2, 1), M =
1

6
tridiag(1, 4, 1), (12)

we have:

for the finite difference method

�h =
1

h2
Q, (13)

for the linear finite element method

�h =
1

h2
M−1Q. (14)

The matrix �h from (13) obviously satisfies the condition (11), at the same time, the matrix
�h from (14) (which can be computed explicitly) is known to have its entries changing the sign
chessboard-likely [7], i.e., it does not satisfy the condition (11).

Thus, using Lemma 2.1, we obtain the following result.

Theorem 2.1 For the one-dimensional problem (8), the semidiscrete numerical solutions, ob-
tained by the finite difference discretization, preserve the non-negativity property. However, this
property is not preserved, in general, for the numerical solutions resulting from the linear finite
element discretization.
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Remark 2.1 The lumped mass method for the linear finite element method results in the
semidiscrete problem which coincides with the finite difference semidiscrete problem. There-
fore, this approach makes possible to improve the qualitative property of the finite element
discretization.

Remark 2.2 In [2] there is given the condition of the positivity of the time derivative of the
semidiscrete solutions. Clearly, this condition can be regarded as a sufficient condition of the
non-negativity preservation of the semidiscrete solutions.

Remark 2.3 Let us introduce the following denotation

T1(p) = tridiag(1, p, 1), (15)

where p ∈ IR, i.e., Q = T1(−2). Then, the semidiscretization in the form

duh

dt
(t) =

1

h2
T1(p)uh(t), t ∈ (0, L), (16)

is non-negativity preserving for any value of the parameter p. Therefore, instead of (5), we can
consider a more general equation

∂u

∂t
= �u + ku in ΩL = (0, L)× Ω, (17)

where k is any constant, and prove that the finite difference semi-discretization for such an
equation is non-negativity preserving, because the approximation of the new term effects only
the diagonal elements of the matrix in (16).

Remark 2.4 However, the non-negativity property for the above problem is known to hold
only for some k ≥ k0 for the original continuous problem (see, e.g., [19]), and, of course, the
preservation of this property in the numerical realization is somewhat meaningless for certain
values of k.

2.2 Two-dimensional case

We now consider the discretization on the uniform mesh (of the step-size h) of problem (5)–(7)
in the two-dimensional case. We introduce the following denotation

T2(p) = tridiag(I, T1(p), I) (18)

for a block tridiagonal matrix (from IRn2×n2
), where p ∈ IR.

We consider the both semidiscretization methods. Clearly, if we apply the usual finite difference
method, then in the Cauchy-problem (8) the matrix �h has the form

�h =
1

h2
T2(−4),
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that is, all its off-diagonal elements are non-negative. If we use the linear finite element method,
then we get �h = (1/h2)M−1T2(−4).

In what follows, we establish the relation between the exponentials of the matrices T1(p) from
IRn×n and T2(p) from IRn2×n2

, i.e., the matrix exponential between the 1D and 2D discrete
Laplacians. Using the denotation

A(p) = tridiag(1, p + 2, 1) = T1(p) + 2I, (19)

we have

T2(p) = tridiag(I, A(p)− 2I, I) =

= tridiag(0, A(p), 0) + tridiag(I,−2I, I) = I ⊗ A(p) + Q⊗ I, (20)

where ⊗ denotes the Kronecker product of matrices, see e.g. [9, 17]. In order to attribute the
matrix exponential of the matrix T2(p) ∈ IRn2×n2

to the matrix exponentials of the matrices
A(p) and Q from IRn×n, i.e., the two-dimensional problem to the one-dimensional one, we prove
the folowing lemma.

Lemma 2.2 For the matrices T2(p), A(p), and Q, the relation

exp(T2(p)) = exp(Q)⊗ exp(A(p)) (21)

holds.

Proof: For any matrices A,B,C,D of the same size, we have [9, p. 228],

(A⊗B)(C ⊗D) = AC ⊗BD.

Therefore

(I ⊗ A(p))(Q⊗ I) = Q⊗ A(p),

(Q⊗ I)(I ⊗ A(p)) = Q⊗ A(p). (22)

Consequently, the corresponding exponential can be written by use of the binomial rule as
follows

exp(T2(p)) = exp((I ⊗ A(p)) + (Q⊗ I)) = (23)

=
∞∑

n=0

1

n!
(I ⊗ A(p) + Q⊗ I)n =

=
∞∑

n=0

n∑
k=0

1

k!(n− k)!
(I ⊗ A(p))k(Q⊗ I)n−k =

=
∞∑

n=0

n∑
k=0

1

k!(n− k)!
Qk ⊗ A(p)n−k.
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On the other hand, by the definition of the tensor product, we have

exp(Q)⊗ exp(A(p)) =
∞∑
i=0

1

i!
Qi ⊗

∞∑
j=0

1

j!
A(p)j =

∞∑
i=0

∞∑
j=0

1

i!j!
Qk ⊗ A(p)j. (24)

Since the right-hand sides in (23) and (24) are equal, we obtain the relation (21). �
Obviously, the tensor product of two matrices is non-negative if and only if both involved

matrices are non-negative. Moreover, exp(Q) is non-negative and exp(A(p)) is non-negative
if and only if exp(T1(p)) is non-negative. Based on Lemma 2.1, we obtained the following
statement.

Theorem 2.2 For the two-dimensional problem on rectangular mesh, the semidiscrete numeri-
cal solution, obtained by the regular finite difference discretization, preserves the non-negativity
property. However, this property is not preserved, in general, for the linear finite element
discretization.

Remark 2.5 Clearly, the statement of Theorem 2.2 is also valid for the more general equation
(17).

3 The non-negativity preservation in 1D case

We consider the non-negativity preservation property of the discretization of the one-dimensional
heat conduction problem with first homogeneous boundary conditions. (For the simplicity, the
constant coefficient is assumed to be equal one.) Then we get problem (9) with the matrices
from IRN×N in the form:

X1 =
1

Δt
M − θQ, X2 =

1

Δt
M + (1− θ)Q, (25)

where M = I for the finite difference method and it has the form from (12) for the linear finite
element method. Hence, these matrices have the following entries:

• for the finite difference method

X1 = tridiag

[
− θ

h2
,

1

Δt
+ 2

θ

h2
,− θ

h2

]
,

X2 = tridiag

[
1− θ

h2
,

1

Δt
− 2

1− θ

h2
,
1− θ

h2

]
,

(26)

• for the linear finite element method the corresponding matrices are

X1 = tridiag

[
1

6Δt
− θ

h2
,

2

3Δt
+ 2

θ

h2
,

1

6Δt
− θ

h2

]
,

X2 = tridiag

[
1

6Δt
+

1− θ

h2
,

2

3Δt
− 2

1− θ

h2
,

1

6Δt
+

1− θ

h2

]
.

(27)
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For the non-negativity preservation property we require the condition

X = X−1
1 X2 ≥ 0. (28)

Let us notice that the matrices in (26) and (27) have special structure: only the entries of
the main-, super- and sub-diagonals differ from zero and the elements standing on the same
diagonal are equal. Moreover, these matrices are symmetric, too. Such kind of matrix is called
uniformly continuant, symmetrical tridiagonal matrix and they have some special qualitative
properties, which will be considered in the sequel.

3.1 Non-negativity of the iteration matrix in general form

We consider the real, uniformly continuant, symmetrical tridiagonal matrices

X1 = z · tridiag[−1, 2w,−1]; X2 = s · tridiag[1, p, 1] (29)

with the assumptions

z > 0, s > 0; w > 1. (30)

Our aim is to define for this case those conditions under which the iteration matrix X is
non-negative.

We introduce the following one-pair matrix G = (Gij), depending on the parameter w:

Gi,j =

{
γi,j, if i ≤ j
γj,i, if j ≤ i

(31)

(i, j = 1, 2, . . . , N), where

γi,j =
sh(iϑ)sh(N + 1− j)ϑ

shϑsh(N + 1)ϑ
, ϑ = arch(w), with w > 1. (32)

We have the relation X−1
1 = (1/z)G (see [17]), thus a direct computation verifies the validity

of the following

Lemma 3.1 For the matrices X1 and X2 of the form (29) the iteration matrix X = X−1
1 X2

can be expressed as

X =
s

z
[(2w + p)G− I] . (33)

Hence, taking into the account the conditions (30), we get the following statement.

Lemma 3.2 Under the condition (30) the iteration matrix X ∈ IRN×N for arbitrary fixed N
is non-negative if and only if the conditions

2w + p > 0 (34)

and

γi,i ≥ 1

2w + p
, i = 1, 2, . . . , N (35)

are fulfilled.
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Now we analyze the expression on left hand side in condition (35).

Lemma 3.3 For the diagonal elements of the matrix X the relation

min {γi,i, i = 1, 2, . . . , N} = γ1,1 = γN,N (36)

holds.

Proof. Introducing the functions h1(y) = K1sh(Cy) sh(C(N + 1− y)) and h2(y) =
K2y(N + 1− y) on the interval [1, N ], (where K1 , K2 and C are some positive constants), one
can check that both functions take their maxima at the same point y=(N+1)/2. Moreover, on
the interval [1,(N+1)/2) they are monotonically increasing, while on the interval ((N+1)/2,N]
they are monotonically decreasing. Using this fact and the expressions for γi,i, we get the
statement.

Combining Lemma 3.2 and Lemma 3.3, we obtain

Theorem 3.1 Under the conditions (30), for arbitrary fixed N the iteration matrix X ∈ IRN×N

is non-negative if and only if the conditions (34) and

a(N) :=
sh(Nϑ)

sh((N + 1)ϑ)
≥ 1

2w + p
(37)

are satisfied.

Obviously, (34) and (37) are necessary and sufficient conditions of the non-negativity for some
fixed dimension N . Let us turn to the examination of the varying N . Due the relations

sh(Nϑ)

sh((N + 1)ϑ)
= ch(ϑ)− coth((N + 1)ϑ)sh(ϑ), (38)

we have

sup { sh(Nϑ)

sh((N + 1)ϑ)
; N ∈ IN} = ch(ϑ)− sh(ϑ) = exp(−ϑ). (39)

Since the sequence a(N) is monotonically increasing, it converges to its limit (which is its
superior) monotonically. Thus, the conditions (34) and (37), that is, the necessary and sufficient
conditions for some fixed N , serve as sufficient condition of the non-negativity of the matrices
X ∈ IRN1×N1 for all N1 ≥ N .

Let us observe that

exp(−ϑ) = exp(−arch(w)) = exp (ln
[
w +

√
w2 − 1

]−1

)

=
[
w +

√
w2 − 1

]−1

.

(40)

Therefore, from some sufficiently large N0 ∈ IN the relation X ≥ 0 may be true only if the
condition [

w +
√

w2 − 1
]−1

>
1

2w + p
, (41)
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i.e., the condition

p > −w +
√

w2 − 1 (42)

is fulfilled. This proves the following

Theorem 3.2 Assume that the conditions in (30) are satisfied. If, for some number N0 ∈ IN,
the conditions (34) and (37) are satisfied, then, all matrices X ∈ IRN×N with N ≥ N0, are
non-negative. Moreover, there exists such a number N0, if and only if the condition (42) holds.

Remark 3.1 Since

a(1) =
shϑ

sh(2ϑ)
=

1

2chϑ
=

1

2w
,

therefore, (37) results in the condition

p ≥ 0. (43)

Remark 3.2 Due to the relation

a(2) =
sh(2ϑ)

sh(3ϑ)
=

2ch(ϑ)

4ch2(ϑ)− 1
=

2w

4w2 − 1
,

condition (37) results in the assumption

p ≥ − 1

2w
. (44)

That is, X ∈ IRN×N is non-negative for all N = 2, 3, . . . , if and only if X1 is an M-matrix and
(44) is valid.

Remark 3.3 The conditions (43) and (44) (corresponding to the cases N = 1 and N =
2, respectively) are sufficient conditions for the non-negativity of the matrix X in any larger
dimension. For increasing N, the new conditions, which we obtain, are approaching to the
necessary condition of non-negativity. Using (38) and (39) we can characterize the rate of the
convergence: it is equal to the rate of convergence of the sequence {coth(Nϑ), n = 1, 2, . . . } to
one. Clearly,

coth(Nϑ) = 1 +
2

[exp(ϑ)]2N − 1
.

Using (40),

exp(ϑ) = w +
√

w2 − 1 =: β. (45)

Hence, the sequence of the bounds of the sufficient conditions converges linearly with the ratio
1/β2 to the bound of the necessary condition.
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3.2 Non-negativity of difference schemes in 1D

The results of the previous part can be used in the qualitative analysis of the finite difference
and linear finite element mesh operators in 1D, given by the formula (26) and (27), respectively.

First we investigate the finite difference method. According to (26), the corresponding matrices
are uniformly continuant and, using the notation q = Δt/h2, they can be written in the form
(29) with the choice

z =
θq

Δt
, s =

(1− θ)q

Δt
, w =

1 + 2θq

2θq
, p =

1− 2(1− θ)q

(1− θ)q
. (46)

First we consider two special choices for the parameter θ. For the case θ = 0, according to
(26), we have X1 = 1

Δt
I and X2 = 1

Δt
I − (1− θ)Q. Hence, X is non-negative if and only if the

condition

q ≤ 1

2
(47)

is satisfied. For the case θ = 1 we get X1 = 1
Δt

I + Q and X2 = 1
Δt

I. Because such X1 is
monotone matrix, therefore we do not have any condition for the choice of the parameters h
and Δt.

In what follows we pass to the analysis of the case θ ∈ (0, 1). For this case, the conditions
of (30) clearly are satisfied. Moreover, let us notice, that, under the choice (46) we have
2w + p = 1/θ(1− θ)q, hence the condition (34) is always satisfied.

Using (43), we directly get that the condition of the non-negativity preservation for all N =
1, 2, . . . is the condition

q ≤ 1

2(1− θ)
. (48)

However, the non-negativity preservationfor all N = 2, 3, . . . should be guaranteed by the
weaker condition (44), which, in our case yields the inequality

1− 2(1− θ)q

(1− θ)q
≥ − θq

1 + 2θq
. (49)

Solving this problem, we get the upper bound

q ≤ −1 + 2θ +
√

1− θ(1− θ)

3θ(1− θ)
, (50)

which is larger than the bound in (47).

Our aim is to get the largest value for q under which the non-negativity preservation for
sufficiently large values N still holds. Therefore we put the values w and p from (46) into
the necessary condition (42). Then we should solve the inequality

1− 2(1− θ)q

(1− θ)q
≥ −1 + 2θq

2θq
+

√
1 + 4θq

2θq
. (51)
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θ N = 1 N = 2 N = ∞
0 0.5 0.5 0.5

0.5− (12q)−1 0.8333 0.9574 0.9661

0.5 1 2
√

3/3 2(2−√
2)

1 no bound no bound no bound

Table 1: Upper bounds for q in several finite difference methods providing the non-negativity.

The solution of (51) gives the bound

q ≤ 1−√
1− θ

θ(1− θ)
. (52)

We can summarize our results in the following

Theorem 3.3 The finite difference method is non-negativity preserving for each N ≥ 1 if and
only if the condition (48) holds. It is non-negativity preserving for each N ≥ 2 only under
the condition (50). There exists a number N0 ∈ IN such that the method is non-negativity
preserving for each N ≥ N0, if and only if the condition (52) is satisfied.

We demonstrate our results on some special choice of θ. Namely, we define the upper bounds
for

• explicit Euler method (θ = 0);

• fourth order method θ = 1/2− 1/(12q), q > 1/6;

• Crank-Nicolson second order method (θ = 0.5);

• implicit Euler method (θ = 1).

The results are shown in Table 1.

We pass to the investigation of the linear finite element mesh operator. According to (27), the
corresponding matrices are also symmetric, uniformly continuant, tridiagonal.

First we consider the special choices θ = 0 and θ = 1.

For θ = 0 we get X1 = (1/6Δt)tridiag[1, 4, 1], i.e., we are not able to guarantee the monotonicity
of X1, which is required in the Remark 3.2. When θ = 1, then X2 = (1/6Δt)tridiag[1, 4, 1],
hence, the monotonicity of X1 is the necessary and sufficient condition of the non-negativity
preservation of the of the method. Hence, we get the condition q ≥ 1/6.

Now we assume that θ ∈ (0, 1).
When q = 1/(6θ) then X1 = (1/Δt)I, hence the only condition of the non-negativity preser-
vation is X2 ≥ 0. This can be guaranteed only by the condition q ≤ (3(1 − θ))−1. When
q = (3(1−θ))−1 then X2 = (1/6Δt)tridiag[1, 4, 1], hence the only condition is the monotonicity
of X1. As we can see, for this case this matrix is M-matrix, therefore, there is no additional
condition for the non-negativity preservation.
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In what follows we may assume that θ ∈ (1/3, 1) and

1

6θ
< q <

1

3(1− θ)
. (53)

Then we can use the form (29) with the choice

z =
1

6Δt
− θ

h2
, s =

1

6Δt
+

1− θ

h2
,

w =
1
3

+ θq

θq − 1
6

, p =
2
3
− 2(1− θ)q

(1− θ)q + 1
6

.

(54)

For this choice the assumption (30) is valid and 2w + p = [(θq − 1/6)((1 − θ)q + 1/6)]−1 > 0.
Therefore (34) is always satisfied. Let us notice that under the condition (53) the condition
z > 0 is also satisfied.

Using (43), we get that the condition of the non-negativity preservation for all N = 1, 2, . . . is
(43), which results in the upper bound

q ≤ 1

3(1− θ)
. (55)

The non-negativity preservation for all N = 2, 3, . . . should be guaranteed by the weaker
condition (44), which, in our case yields the upper bound

q ≤ 3(−1 + 2θ) +
√

9− 16θ(1− θ)

12θ(1− θ)
, (56)

which is larger than the bound in (55).

Our aim is to get the largest value for q under which the non-negativity preservation for
sufficiently large values N is still valid. Therefore we put the values w and p from (54) into the
necessary condition (42). Hence, we obtain that for any fixed θ ∈ (0, 1)) the suitable q are the
solution of the inequality

θ(1− θ)q2 − 1/6(θ + 4)q + A ≤ 0;

A =
√

qθ + 1/12[1/6 + (1− θ)q].

(57)

We can summarize our results in the following

Theorem 3.4 The linear finite element method is non-negativity preserving for any θ ∈ [1/3, 1],

• for each N ≥ 1 if and only if the condition

1

6θ
≤ q ≤ 1

3(1− θ)
; (58)
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θ N = 1 N = 2 N = ∞
0 not allowed not allowed not allowed

0.5 1/3 ≤ q ≤ 2/3 1/3 ≤ q ≤ √
5/3 1/3 ≤ q ≤ 0.748

1 1/6 ≤ q 1/6 ≤ q 1/6 ≤ q

Table 2: Upper and lower bounds for q in several linear finite element methods providing the
non-negativity.

• for each N ≥ 2 if and only if the condition

1

6θ
≤ q ≤ 3(−1 + 2θ) +

√
9− 16θ(1− θ)

12θ(1− θ)
(59)

holds. There exists a number N0 ∈ IN such that the method is non-negativity preserving for
each N ≥ N0 if and only if the condition (57) is satisfied.

We demonstrate our results again on some special choice of θ. The results are shown in Table
2.

4 The non-negativity preservation in 2D FEM case

We consider the non-negativity preservation property of the discretization of the two-dimensional
heat conduction problem with pure homogenous Dirichlet boundary conditions. For the sim-
plicity, the constant coefficient is assumed to be equal one, however, a more general analysis
was done in a previous work [20].

The general form of the two-dimensional heat conduction equation on Ω × (0, T ), where
Ω := (0, Lx)× (0, Ly), is

∂u

∂t
= �u, (x, y) ∈ Ω, t ∈ (0, T ),

u|ΓΩ
= 0, t ∈ [0, T ) (60)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

where u is the temperature of the analyzed domain, t and x, y denote the time and space
variables, respectively.

In the course of the analysis of the problem the space was divided into 2 · (nx + 1) · (ny + 1)

triangle elements. Then we get the problem (9) with the matrices from IRn2
x×n2

y in the form for
the linear finite element method the corresponding matrices are

X1 =
1

Δt
M − θQ, (61)

X2 =
1

Δt
M + (1− θ)Q, (62)
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where, for bilinear shape functions [15]

Q = tridiag(QI , QA, QI) (63)

and

M = hxhytridiag(MT
D,MA,MD) (64)

respectively, where

QA =
hy

hx

tridiag

(
1,−2

[
1 +

h2
x

h2
y

]
, 1

)
, (65)

QI =
hx

hy

tridiag(0,−1, 0), (66)

MA =
1

12
tridiag(1, 6, 1), MD =

1

12
tridiag(0, 1, 1), (67)

moreover, hx and hy are the lengths of the spatial approximations. For one dimensional linear
spline functions see [11].
It is clear that for non-negativity preservation property we require the condition

X = X−1
1 X2 ≥ 0. (68)

The sufficient conditions of the non-negativity of X are the following:

X−1
1 ≥ 0 and X2 ≥ 0. (69)

Remark 4.1 The decomposition of X1 −X2 = ΔtQ with the property (69), is called a regular
matrix splitting [16].

For X2 it is easy to give a condition that guarantees its non-negativity by analyzing the elements
of the matrix. By a direct computation we get the condition

hyhx

2Δt
− 2

(
hx

hy
+

hy

hx

)
(1− θ) ≥ 0, (70)

which yields the upper bound

hxhy

4

(
hx

hy

+
hy

hx

)
(1− θ)

≥ Δt. (71)

It is not possible to obtain a sufficient condition for the non-negativity of the matrix X−1
1 by

the so-called M-matrix method [21]. This also follows from the fact that X1 contains positive
elements in its off-diagonal. Therefore, a sufficient condition for the inverse-positivity of matrix
X1 will be obtained by some other criteria.
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Lemma 4.1 [14] Let A be an n-by-n matrix, denote Ad and A− the diagonal and the negative
off-diagonal part of the matrix A, respectively.
Let A− = Az + As = (az

ij) + (as
ij). If

aij ≤
n∑

k=1

az
ika

−1
kk as

kj, for all aij, i �= j, (72)

then A is a product of two M-matrices, i.e., A is monotone.

We will analyze the monotonicity of X1 with the help of this lemma. We can do it because it
is a square matrix and it can be decomposed into the diagonal part, the positive off-diagonal
part, the upper triangular and lower triangular negative parts. All the conditions of the lemma
are satisfied if

1

12
≤

(
1

12
− Δtθ

h2
x

)(
1

12
− Δtθ

h2
y

)
1

12
+ 2

(
hx

hy

+
hy

hx

)
Δtθ

hxhy

, (73)

which implies the lower bound

h2
y

12θ

(
3

2

(
h2

x

h2
y

+ 1

)
+

√
9

4

(
h4

x

h4
y

+ 1

)
+

19

2

(
h2

x

h2
y

))
≤ Δt. (74)

Hence, the next statement is proven.

Theorem 4.3 Let us assume that the conditions (71) and (74) hold. Then for the problem
(60) on a rectangular domain with an arbitrary non-negative initial condition the linear finite
element method results in a non-negative solution on any time level.

Remark 4.2 If θ = 1, there is no upper bound for the time-step size, nor any condition for
the ratio of the lengths of the spatial approximations.

Remark 4.3 If the conditions of the theorem hold, then the following complementary condi-
tions are also satisfied:

• For the ratio of the lengths of the spatial approximations√
ω −

√
ω2 − 1 ≤ hx

hy

≤
√

ω +
√

ω2 − 1, (75)

where

ω =

10

9
T 2 + 2T − 1

−10

9
T 2 − 2T

(76)
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Figure 1: Condition for the choice of the discretization step-sizes for FDM in 1D.

and

T =
1− θ

θ
. (77)

This yields a geometrical restriction for the shape of the partition of the space domain in
the linear FEM.

• For θ, which is the parameter of the applied numerical method, we have the bound

θ ≥ 1√
63

50
+

1

10

. (78)

Since the right-hand side is greater than 0.818, this implies that for the Crank-Nicolson
method (θ = 0.5) we cannot guarantee the non-negativity by this principle [3].

5 Numerical experiments

In the following figures we illustrate the possible choice of the discretization step-sizes
q = Δt/h2 in the one-dimensional case for finite difference and for linear finite element methods,
for different values of θ.

In the course of the numerical experiments in 2D (nx = 20, ny = 25, hx = 0.1, hy = 0.04) for
the homogenous initial condition u0(x, y) = 300K was considered. For the numerical experi-
ments, the tridiagonal matrix algorithm (TDMA) was used for the inversion of the sparse tridi-
agonal matrices [18]. The following figures are in three dimensions, in Fig. 3 the first two dimen-
sions are the spatial ones (x, y) and the third is the temperature at the nodes. First, we apply
the Crank-Nicolson method and a relatively long time step (θ = 0.5, Δt = 10−2, Timesteps = 1),
which results in a negative X2.

For the sake of completeness, in Fig. 4 we applied the time-step size from the interval (71)
and (74) (θ = 1, Δt = 0.02, Timesteps = 10) , and it can be seen we have got a more realistic
solution.
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Figure 2: Condition for the choice of the discretization step-sizes for linear FEM in 1D.
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Figure 3: The solution obtained by the Crank-Nicolson method and relatively long time step.
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Figure 4: The solution obtained by applying a time step from the interval (71) and (74).

6 Conclusions

In this paper, we have considered the non-negativity preservation property for the linear
parabolic PDE’s. We established the direct connection of the non-negativity preservation for
the semidiscrete solutions between the one and two-dimensional cases. Namely, we proved that
the two-dimensional problem has this property if the corresponding one-dimensional problem
is non-negativity preserving. The conditions posed are satisfied for all arbitrary (linear FEM
and FDM) methods. Moreover, we gave the explicit formula for the inversion of the block-
tridiagonal matrices with scalar tridianal matrices placed along their diagonals.
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(eds. P. Neittaanmäki, M. Kř́ıžek), GAKUTO Sci. Appl., Tokyo (2001), 78–86.

[9] FIEDLER, M.: Special Matrices and Their Application in the Numerical Mathematics,
Martinus Nijhoff Publishers, 1986.

[10] FUJII, H.: Some remarks on finite element analysis of time-dependent field problems.
In: Theory and Practice in Finite element Structural Analysis, Univ. Tokyo Press, Tokyo
(1973), 91–106.

[11] HARITON, H.: Some Qualitative Properties of The Numerical Solution to the Heat Con-
duction Equation, PhD thesis, Budapest Eötvös Loránd University, 1995.
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e-mail: smkorotov@gmail.com

Department of Mathematics
Tampere University of Technology
P.O. Box 553, FIN–33101 Tampere, Finland
e-mail: sergey.korotov@tut.fi

Tamás Szabó
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CHAOS,   ANTI-CHAOS   AND   RESOURCES: 

 DEALING   WITH   COMPLEXITY 

 

FILIPE  José António (P),   FERREIRA  Manuel Alberto M. (P),  

COELHO  M., (P),   PEDRO  Maria Isabel (P) 

 

 

Abstract: Chaos is ordinarily disorder or confusion; scientifically it represents a disarray 

connection, but basically it involves much more than that. Change and time are closely linked 

and they are essential when considered together to understand the foundations of chaos theory. 

The theories of dynamic systems have been applied to numerous areas of knowledge. In the 

80's, several exact sciences (physics, chemistry or biology, for example) and some social 

sciences (economics or management or even the sociology) still had their own objects of study 

and their own methods of analysis and each one of them was different from the others. The 

Science has been branched and specialized, so that each one uses to have its own world. 

Recently new forms of analysis, looking for an integrated study have emerged (Filipe, 1). It is 

the case of chaos theory, which is applied here to natural resources, in order to understand the 

complexity of natural phenomena following this perspective. Anti-chaos theory is also 

introduced to show how systems in nature often tend to self-organization. 

 

Keywords:  Chaos theory, anti-chaos theory, complexity, dynamical systems, complex adaptive 

systems 

 

 

1 Introduction 

Chaos theory and complexity theory itself reflect the phenomena that in many activities (such as 

fisheries) are translated into dynamic forms of analysis and reflect a very complex and widespread 

reality, specific of complex systems. That reality falls within a range of situations integrated in a 

broader context, which is expressed in the theory itself but also in terms of their own realities 

(fisheries, for example), dynamic, complex and often chaotic features in its essence. 

The chaos theory stresses that the world does not necessarily work as a linear relationship with 

perfectly defined or with direct relations in terms of expected proportions between causes and 

effects. The chaos occurs when a system is very sensitive to the initial conditions. These initial 

conditions are the measured values for a given initial time. The presence of chaotic systems in 

nature seems to place a limit on our ability to apply physical deterministic laws to predict 

movements with any degree of certainty. Indeed, one of the most interesting subjects in the study of 
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chaotic systems is the question of whether the presence of chaos may or may not produce ordered 

structures and patterns on a wider scale. In past times, the dynamic systems showed up completely 

unpredictable and the only ones who could aspire to be understood were those that were represented 

by linear relationships, which are not the rule.  

Complexity science has the potential
 

to strengthen many areas of several sciences. The use of 

complexity theory concepts is changing the focus of research in all scientific disciplines and is 

leading to important
 

practical outcomes. 

This century theoretical physics is coming out from the chaos revolution. The study of complexity 

is the way and the computer the main tool. Thermodynamics, as a vital part of theoretical physics, 

will be involved in the transformation. In this complexity analysis, Anti-chaos theory conducts to 

the understanding of how systems perform a self organization and a structured system. 

 

2 Chaos, Complexity and Dynamical Systems 

 

The chaos theory allows realizing the endless alternative ways leading to a new form or new ways 

that will be disclosed and that eventually emerge from the chaos as a new structure. The reality is a 

process in which structure and chaos rotate between form and deformation in an eternal cycle of 

death and renewal. Conditions of instability seem to be the rule and, in fact, a small inaccuracy in 

the departure conditions tends to grow to a huge scale. Basically, two insignificant changes in the 

initial conditions for the same system tend to end in two situations completely different. This 

situation is known as the "butterfly wing effect". A small movement of the wings of a butterfly can 

have huge consequences.  

It is the microscopic turbulence having effects in a macroscopic scale - an effect called by Grabinski 

(3) as “hydrodynamics”. Mathematically, the "butterfly wing effect" corresponds to the effect 

of chaos, which can be expressed as follows. 

Given the initial conditions  

1 2 3

, , ,...,

N

x x x x  

it is possible to calculate the final condition given by  

final result = f (x
1
, x

2
, x

3
,… x

N
) 

If the initial conditions x
i
 have a margin of error (variation), the final result will be influenced by 

the existence of this margin. If these margins in x
i
 are as small as the margin of error in the final 

result, we have a non-chaotic situation. Otherwise if the margins of error in x
i
 are small but the final 

result has a big variation, there is a chaotic situation. Therefore, small variations in initial conditions 

can lead to a major effect in the final outcome. Sometimes small changes in 
i

x  have exponential 

effects on the final result due to the passage of time.  

This effect can be demonstrated mathematically
1

 using the Lyapunov Exponent
2

 (see Grabinski, 4). 

Given the initial value x
0
 and being ε its arbitrarily small variation, we are conducted to an initial 

value between x
0
 and x

0
+ ε. The general form of Lyapunov indicator is presented by 

                                                 
1

 Several statistics may indicate chaos and can express how chaotic a system is. One of the most important statistics to 

measure the magnitude of chaos is at present Lyapunov exponents. Other statistics could be presented such as the 

Kolmogorov-Sinai entropy or the mutual information or redundancy. 
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1

( )
n n

x f x
+

=  

that after N  iterations leads to a value for 
N

x  between 

0

( )
N

f x   and  
0

( )
N

f x
ε+

 

being the difference between these two values 

0 0

( ) ( )
N N

f x f x
ε+

−  Ξ 
0

( )

.

N x

e

λ

ε  

where λ  is a parameter depending on 
0

x .  

Dividing both sides by the variation ε and assuming the limit 0ε → , we have a differential 

quotient. Making its logarithm and assuming the limit N →∞ , we get the final definition of the 

Lyapunov Exponent  

0

0

0

( )1

( ) lim log

N

N

d f x

x

N dx

λ

→∞

=

  

and there is chaos when λ > 0. 

Through this function, the chaos exists when arbitrary small variations in initial conditions grow 

exponentially with a positive exponent. 

Grabinski also points that the nonlinearity is the main characteristic of a chaotic situation. 

Mathematically, the nonlinear functions to be considered chaotic should be based on variables with 

some resistance. The author also argues that it is not enough to describe the chaotic situations, such 

as turbulence, but it is necessary to find ways to better cope with the nonlinearity. A smooth flow of 

a river (non-chaotic) that can be described in quantities like the flow velocity can reach a chaotic 

behavior with variations of many situations. The best example is a waterfall where the speed of the 

flow reaches a certain point. In a smoothly flowing river it is easy to calculate or predict the flow 

velocity of the river at any point. However, to calculate it in a river with a waterfall, it is necessary 

to introduce chaos. In an attempt to make this calculation, man has focused on the construction of 

super computers that have shown to be useless due the infinity of factors that may cause turbulence 

in the flow of the river. Thus, the analysis of frequency on the change of flow’s velocity is much 

more promising than the analysis of velocities themselves. 

Moreover, Grabinski shows the situation in which there is chaos on a microscopic scale but not on a 

macroscopic scale - the hydrodynamics. An example is a glass of water resting on a table, a non-

chaotic event. A slight disturbance on the table causes a small flow on a macroscopic level in the 

water. However, a microscopic observation reveals a great agitation of millions of molecules, a 

chaotic event. This is a situation where there is chaos on the microscopic scale but a smooth flow on 

the macroscopic scale. 

Mathematically Grabinski presents hydrodynamics equations which combine the chaos theory with 

business situations. For that, he presents the value function of a company (v) depending on two 

variables, the revenue (r) and the number of employees (n). Its general form is 

                                                                                                                                                                  
2

 A Lyapunov Exponent is a number that reflects the rate of divergence or convergence, averaged over the entire 

attractor, of two neighbouring phase space trajectories. Trajectories divergence or convergence have to follow an 

exponential law, for the exponent to be definable. 
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2 2

0 10 01 11 20 02

( , ) . . . . . . ...v r n v a r a n a r n a r a n= + + + + + +  

being 
ij
a  general parameters. For 0n =  (no employees) or 0r =  (no revenue) the company doesn’t 

exist because the function value is equal to 0. So some terms of the function must be removed 

(
0 10 01 20 02

... 0v a a a a= = = = = = ). The general form comes as 

2 2 2 2

11 21 12 22

( , ) . . . . . . . . ...v r n a r n a r n a r n a r n= + + + +  

Now, because of symmetry, r and n may be negative. A negative employee means that the 

employee is paying to work and negative revenue means that the company is paying the customer to 

consume. So the previous formula can lead to negative results if r and n change signs 

simultaneously. Only these terms are allowed for which the sums of the powers of r and v are even 

numbers. Thus the general expression of the equation is 

2 2

11 22

( , ) . . . . ...v r n a r n a r n= + +  

 

3 Complexity and Ecological Systems 

 

It is usual to consider that the really complex systems could be the biological ones, particularly the 

systems in which people are present: human body, human groups, society itself or people culture.  

Many scientists see today, with particular interest, the chaos theory as a way to explain 

environment. Therefore, the chaos theory stresses the fundamental laws of nature and natural 

processes and requires a course for a constant evolution and recreation of nature. 

In biological area and in order to frame some methodological developments, it must be mentioned, 

first of all, that some characteristics associated with some species support strategic survival features 

that are exploited by the present theory. Its aim is to find the reasons and the way in which these 

strategies are developed and the resulting consequences. The species use their biological 

characteristics resulting from evolutionary ancient processes to establish defense strategies. It is 

particularly interesting to see the behavior of schooling species and the way they delineate a 

consistent strategy for the group and specie as a whole, which is self-organizing, an anti-chaos 

feature, and which can be understood according to a focus based on the systems properties. 

The ecology where many things are random and uncertain, in which everything interacts with 

everything at the same time is, itself, a fertile area for a cross search to the world explanations 

(Filipe et al, 2). 

Lansing (5) states that the initial phase of the research of nonlinear systems was based on the 

deterministic chaos, and it was later redirected to new outbreaks of research focusing on the systems 

properties, which are self-organizing, the so called anti-chaos. It also says that the study of complex 

adaptive systems, discussed in the context of non-linear dynamic systems, has become a major 

focus of interest resulting from the interdisciplinary research in the social sciences and the natural 

sciences. 

The theory of systems in general represents the natural world as a series of reservoirs and streams 

governed by various feedback processes. However, the mathematical representations were ignoring 

the role of these adjustment processes. 
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The theory of complex adaptive systems, part of the theory of systems, has in specific account the 

diversity and heterogeneity of systems rather than representing them only by reservoirs. It explicitly 

considers the role of adaptation on the control of the dynamics and of the responses of these 

heterogeneous reservoirs. This theory allows ecologists to analyze the reasons inherent to the 

process at the lower levels of the organization that lead to patterns at higher levels of organization 

and ecosystems. The adaptive systems represent one of the means to understand how the 

organization is produced to a large scale and how it is controlled by processes that operate at lower 

levels of organization. According to Lansing (5), came to be a general idea involving physical and 

mathematical complexity that is hidden behind very simple systems. 

Considering a system composed by many interactive parts, if it is sufficiently complex, it may not 

be practical or even not be possible to know the details of each interaction place. Moreover, the 

interactions can generate local non-linear effects that, often, it becomes impossible to find a solution 

even for simple systems. However, diverting us from causal forces that move the individual 

elements, if we focus on the system behavior as a whole we can highlight certain global behavior 

standards. However, these behavior standards may hide an associated cost: it can not be expected to 

understand the causes at the level of individual behavior. 

Indeed, the systems do not match the simple decomposition of the whole into parts. Therefore do 

not correspond to the mere sum of the parts, as living systems are not the juxtaposition of molecules 

and atoms. Since the molecule to the biosphere, the whole is organized and each level of integration 

leads to properties that can not be analyzed only from mechanisms that have explanatory value in 

the lower levels of integration. This corresponds to the appearance of new features to the level of 

the set that does not exist at the level of the constituent elements. Lansing (5) believes that the 

adoption in the social sciences of the idea that complex global patterns can emerge with new 

properties from local interactions had a huge impact here. 

The ecological systems are comparable to systems self-organized as they are open systems which 

arise far from thermodynamic equilibrium. On self-organized and self-regulated systems, the 

reciprocal interactions within the system between the structures and the processes contribute to the 

regulation of its dynamics and the maintenance of its organization; partly due to the phenomena of 

feedback (see Lévêque, 6). These systems seem to develop themselves in accordance with the 

properties referred to the anti-chaotic systems. Indeed, we have auto-regulated systems that channel 

different initial conditions for the same stage, instead of what is happening with chaotic systems, 

which are very sensitive to initial conditions (see Kauffman, 7). These systems would be relatively 

robust for a particular type of disturbance, to which the components of the system fit, creating a 

meta-stability that depends not only on the internal interactions within the system but also on 

external forces that can regulate and strengthen the internal factors of cohesion (see Lévêque, 6). 

 

4 Some Notes about Fisheries 

 

Some people see nature as not casual and unpredictable. The natural processes are complex and 

dynamic, and the causal relations and sequential patterns may extend so much in time that may 

seem to be non-periodical. The data appear as selected random works, disorderly, not causal in their 

connections and chaotic. In nature, for example, for live resources in the sea, the vision provided by 

nature leads to consider the  fish stocks, time, the market and the various processes of fisheries 

management as likely to be continuously in imbalance rather than behave in a linear fashion and in 
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a constant search for internal balance. It is this perspective that opens the way for the adoption of 

the chaos theory in fisheries. However, the models of chaos do not deny, for themselves, some of 

the linearity resulting from the application of usual bionomic models. What is considered is that 

there are no conditions to implement all significant variables in a predictive model. Moreover, in 

finding that a slight change in initial conditions caused by a component of the system may cause 

major changes and deep consequences in the system itself.  

As it has been explained previously, the butterfly effect represents the more sensitive dependence 

on initial conditions in chaos theory. Small variations on initial conditions in a dynamical system 

may produce large variations in the system long term behavior. 

So, the application of chaos theory to fisheries is considered essential, by many researchers. The 

chaos theory depends on a multitude of factors, all major (and in the prospect of this theory all very 

important at the outset) on the basis of the wide range of unpredictable effects that they can cause. 

Given the emergence of new forms of predation, species got weaker and weaker because they are 

not prepared with mechanisms for effective protection for such situations. In fisheries there is a 

predator, man, with new fishing technologies who can completely destabilize the ecosystem. By 

using certain fisheries technologies, such as networks of siege, allowing the capture of all 

population individuals which are in a particular area of fishing, the fishers cause the breakdown of 

certain species, particularly the pelagic, the ones normally designated by schooling species. 

To that extent, with small changes in ecosystems, this may cause the complete deterioration of 

stocks and the final collapse of ecosystems, which in extreme cases can lead to extinction. These 

species are concentrated in high density areas in small space. These are species that tend to live in 

large schools. 

Usually, large schools allow the protection against large predators. The mathematical theory, which 

examines the relationship between schools and predators, due to Brock and Riffenburgh (see Clark, 

8), indicates that the effectiveness of predators is a reverse function of the size of the school. Since 

the amount of fish that a predator can consume has a maximum average value, overcoming this 

limit, the growth of school means a reduction in the rate of consumption by the predator. Other 

aspects defensive for the school such as intimidation or confusing predators are also an evidence of 

greater effectiveness of schools. 

However this type of behavior has allowed the development of very effective fishing techniques. 

With modern equipment for detecting schools (sonar, satellites, etc.) and with modern artificial 

fibers’ networks (strong, easy to handle and quick placement), fishing can keep up advantageous for 

small stocks (Bjorndal, 9; Mangel and Clark, 10). As soon as schools become scarce, stocks become 

less protected. Moreover, the existence of these modern techniques prevents an effect of stock in the 

costs of businesses, as opposed to the so-called search fisheries, for which a fishery involves an 

action of demand and slow detection. Therefore, the existence of larger populations is essential for 

fishermen because it reduces the cost of their detection (Neher, 11). However, the easy detection by 

new technologies means that the costs are not anymore sensitive to the stock size (Bjorndal and 

Conrad, 12). 

This can be extremely dangerous due to poor biotic potential of the species subject to this kind of 

pressure. The reproductive capacity requires a minimum value below which the extinction is 

inevitable (Filipe et al, 13). Since the efficiency of the school is proportional to its size, the losses 

due to the effects of predation are relatively high for low levels of stocks. This implies non-

feedback in the relation stock-recruitment, which causes a break in the curves of income-effort, so 



 

 

 

�������	
	������	��	�������	�����������	

 

�������	�
��������������� �

 

 

89 

that an infinitesimal increase on fishing effort leads to an unstable condition that can lead to its 

extinction (Filipe et al, 14). 

Considering the fished value function of a company (v) depending on two variables, the fishing 

effort (r) and the fish stock (n), a simple model for fisheries, analogous to the presented in section 2, 

can be built 

2 2

0 10 01 11 20 02

( , ) . . . . . . ...v r n v a r a n a r n a r a n= + + + + + +  

 

being 
ij
a  general parameters. Now it makes no sense to consider negative values for the variables. 

For 0n =  (no fish stock) or 0r =  (no fishing effort) the company fished value doesn’t exist 

because the function value is equal to 0. 

Consequently, 
0 10 01 20 02

... 0v a a a a= = = = = =  and now 

2 2 2 2

11 21 12 22

( , ) . . . . . . . . ...v r n a r n a r n a r n a r n= + + + +  

 

5 Conclusion 

�

Chaos theory got its own space among sciences and has become itself an outstanding science. 

However there is much left to be discovered. Anyway, many scientists consider that chaos theory is 

one of the most important developed sciences on the twentieth century.  

Aspects of chaos are shown up everywhere around the world and chaos theory has changed the 

direction of science, studying chaotic systems and the way they work.  

It is not possible to say yet if chaos theory may give solutions to problems that are posed by 

complex systems. Nevertheless, understanding the way chaos discusses the characteristics of 

complexity and analyzes open and closed systems and structures is an important matter of present 

discussion. 

Finally, some words to say that anti-chaos theory is directed to research focusing on the systems 

properties, which are self-organizing. In nature, systems seem to look for a durable organization and 

stability. This may be seen, for example, in ecological systems (see schooling fish species, for 

example).  

This work shows in fact how natural resources are complex and how complexity theory deals with 

ecological phenomena.  
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ADOMIAN DECOMPOSITION METHOD
FOR CERTAIN SINGULAR INITIAL VALUE PROBLEMS

FILIPPOVA Olga (CZ), ŠMARDA Zdeněk, (CZ)

Abstract. In this paper an efficient modification of Adomian decomposition method is
introduced for singular initial value problems. Solutions are constructed in the form of a
convergent series. The approach is illustrated with few examples.

Key words and phrases. Adomian decomposition method, singular initial problem .
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1 Introduction

In the recent years the studies of singular initial value problems in the second-order ordinary
differential equations have attracted the attention of many mathematicians and physicists. A
large amount of literature developed concerning Adomian decomposition method [1,2,3] and the
related modifications [9,14,15] to investigate various scientific models. One of singular equations
is the Lane-Emden type equations formulated as

y′′ +
2

x
y′ + f(y) = 0, y(0) = A, y′(0) = B, 0 < x ≤ 1, (1)

where A,B are constants, f(y) is a continuous function. Equation (1) with specializing f(y)
is a model several phenomena in the theory of stellar structure, isothermal gas spheres and
theory of therminionic currents [5,11]. Most algorithms currently in use for handling solving
of the Lane-Emden equations are based on either series solutions or perturbation techniques.
Wazwaz [15] has given a general study to construct exact a series solutions to (1) by employing
the Adomian decomposition method.
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On the other hand, studies have been carried out on another class of singular initial value
problems of the form

y′′ +
2

x
y′ + f(x, y) = g(x), y(0) = A, y′(0) = B, 0 < x ≤ 1, (2)

where f(x, y) is a continuous function, g(x) ∈ C[0, 1]. It is important to note that (2) with
boundary conditions has attracted many mathematicians and has been studied from various
points of view. Russel and Shampine [12] have investigated (2) for the linear function f(x, y) =
ky+h(x). Three-point difference methods of second order have been used by Chawla and Katti
[6], Iyengar and Jain [10], El-Sayed [4].

2 Adomian decomposition method

Now we recall basic principles of the Adomian decomposition method [1] for solving differential
equations. Consider the general equation Tu = g , where T represents a general nonlinear
differential operator involving both linear and nonlinear terms. The linear term is decomposed
into L + R where L is easily invertible and R is the reminder of the linear operator. For
convenience, L may be taken as the highest order derivation. Thus the equation may be
written as

Lu + Ru + Nu = g, (3)

where Nu represents the nonlinear terms. From (3) we have

Lu = g −Ru−Nu. (4)

Since L is invertible the equivalent expression is

u = L−1g − L−1Ru− L−1Nu. (5)

A solution u can be expressed as following series

u =
∞∑

n=0

un, (6)

with reasonable u0 which may be identified with respect to the definition of L−1 , g and
un, n > 0 is to be determined. The nonlinear term Nu will be decompsed by the infinite series
of Adomian polynomials

Nu =
∞∑

n=0

An, (7)

where An’s are obtained by writing

v(λ) =
∞∑

n=0

λnun (8)

N(v(λ)) =
∞∑

n=0

λnAn. (9)
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Here λ is a parameter introcuded for convenience. From (8) and (9) we have

An =
1

n!

dn

dλn

[
N

∞∑
k=0

λkuk

]
λ=0

, n ≥ 0. (10)

The An’s are given as

A0 = F (u0)

A1 = u1F
′(u0)

A2 = u2F
′(u0) +

u2
1

2!
F ′′(u0) (11)

A3 = u3F
′(u0) + u1u2F

′′(uo) +
u3

1

3!
F ′′′(u0)

...

Now substituting (6) and (7) into (5) we get

∞∑
n=0

un = u0 + L−1R

( ∞∑
n=0

un

)
− L−1

∞∑
n=0

An. (12)

Consequently, with a suitable u0 we can write

u1 = −L−1Ru0 − L−1A0

...

un+1 = −L−1Run − L−1An

...

3 Modification ADM for singular differential equations of the second order

Consider equation(2) then according to the above mentioned method we can rewrite equationn
(2) as

Ly = −f(x, y) + g(x), (13)

where the differential operator L is defined by

L = x−2 d

dx

(
x2 d

dx

)
. (14)

The inverse operator L−1 is therefore considered a two-fold integral operator defined by

L−1(.) =

∫ x

0

x−2

∫ x

0

x2(.)dxdx. (15)
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Operating with L−1 on (13) it follows

y(x) = A + Bx + L−1g(x)− L−1f(x, y). (16)

The Adomian decomposition method introduces the solution y(x) by an infinite series of com-
ponents

y(x) =
∞∑

n=0

yn(x), f(x, y) =
∞∑

n=0

An, (17)

where the components yn(x) of the solution y(x) will be determined recurrently, and An are
Adomian polynomials that can be constructed for various classes of nonlinearity according to
specific algorithms set by Adomian [1] and recently calculated by Wazwaz [15].

Substituting (17) into (16) we obtain

∞∑
n=0

yn(x) = A + Bx + L−1g(x)− L−1

∞∑
n=0

An. (18)

To determine the components yn(x), we use Adomian decomposition method that suggests the
use of the recursive relation

y0(x) = A + Bx + L−1g(x),

yk+1(x) = −L−1(Ak), k ≥ 0,

which gives

y0(x) = A + Bx + L−1g(x),

y1(x) = −L1(A0),

y2(x) = −L1(A1), (19)

y3(x) = −L1(A2),
...

Combining (19) with (11) will enable us to determine the components yn(x) recursively. For
numerical purposes the n-th approximant

φn =
n−1∑
k=0

yk,

can be used to approximate the solution.
In the above discussion it was shown that with the proper choice of the differential operator L ,
it is possible to overcome the singularity question and to attain practically a series solution by
computing components of y(x) as far as we like. The convergence concept has been discussed
by Cherruault [7,8] among others.
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4 Numerical illustration

Example 1. Consider the following singular initial value problem:

y′′ +
2

x
y′ − 10y = 12− 10x4, y(0) = y′(0) = 0. (20)

Then we obtain the operator form of (20)

Ly = 12− 10x4 + 10y. (21)

Applying L−1 on both sides of (21) we get

Ly = 2x2 − 5

21
x6 + 10L−1(y). (22)

With respect to the above mentioned method we obtain recursive relationship

y0(x) = 2x2 − 5

21
x6

yk+1(x) = 10L−1(yk), k ≥ 0. (23)

Consequently, the first few components are as follows:

y0 = 2x2 − 5

21
x6

y1 = x4 − 25x8

756

y2 =
5x6

21
− 25x10

8316

y3 =
25x8

756
− 125x12

648648

y4 =
25x10

8316
− 625x14

3243240
(24)

Other components can be evaluated in a similar manner. It is obvious that the noise terms
− 5

21
x6, −25x8

756
and −25x10

8316
appear in y2, y3 and y4 with the opposite signs. Canceling these therm

we get the exact solution
y(x) = 2x2 + x4.

Example 2. Consider the nonlinear singular initial value problem:

y′′ +
2

x
y′ + 4(2ey + ey/2) = 0, y(0) = y′(0) = 0.

We obtain the operator form
Ly = −4(2ey + ey/2) (25)

Applying L−1 on both sides of (25) we get

y = −4L−1(2ey + ey/2)
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Using the decomposition series for the linear function y(x) and the polynomial series for the
nonlinear term , we obtain the recursive relationship

y0(x) = 0

yk+1(x) = −4L−1(Ak), k ≥ 0. (26)

The Adomian polynomials for the nonlinear term 2ey + ey/2 are computed as follows:

A0 = 2ey0 + ey0/2

A1 = y1

(
2ey0 +

1

2
ey0/2

)
A2 = y2

(
2ey0 +

1

2
ey0/2

)
+

y2
1

2!

(
2ey0 +

1

2
ey0/2

)
(27)

A3 = y3

(
2ey0 +

1

2
ey0/2

)
+ y1y2

(
2ey0 +

1

2
ey0/2

)
+

y3
1

3!

(
2ey0 +

1

2
ey0/2

)
...

Substituting (27) into (26) we get

y0 = 0

y1 = −4L−1(A0) = −2x2

y2 = −4L−1(A1) = x4

y3 = −4L−1(A2) = −2

3
x6

y4 = −4L−1(A3) =
1

2
x8

y5 = −4L−1(A4) = −2

5
x10

y6 = −4L−1(A5) =
1

3
x12

...

Then the solution in a series form is given by

y(x) = −2

(
x2 − 1

2
x4 +

1

3
x6 − 1

4
x8 +

1

5
x10 − 1

6
x12 + . . .

)
.

Hence the exact solution has the form

y(x) = −2 ln(1 + x2).
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BISECTION METHOD FOR FINDING INITIAL DATA
GENERATING BOUNDED SOLUTIONS

OF DISCRETE EQUATIONS

HLAVIČKOVÁ Irena, (CZ)

Abstract. Numerous papers are devoted to the asymptotic behavior of solutions of
discrete equations. In many papers, one can find sufficient conditions guaranteeing the
existence of at least one solution the graph of which stays in a prescribed domain. Not
so much attention has been paid to the problem of determining corresponding initial data
generating such solutions. Here we will try to find such data with help of a numeri-
cal method which resembles the well-known bisection method used for solving nonlinear
equations.
Key words and phrases. Discrete equation, bounded solutions, initial data, bisection
method.
Mathematics Subject Classification. Primary 39A10, 39A11.

1 Introduction

Throughout this paper, we use the following notation: for integers s, q, s ≤ q we define
Z

q
s := {s, s + 1, . . . , q}, where the possibility q = ∞ is admitted, too.

We investigate the asymptotic behavior for k →∞ of the solutions of the equation

Δu(k) = f(k, u(k)) (1)

where k ∈ Z
∞
a , a ∈ N is fixed, Δu(k) = u(k + 1)− u(k), and f : Z

∞
a × R → R.

The solution of Eq. (1) is defined as an infinite sequence of numbers

{u(a), u(a + 1), u(a + 2), . . . }
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such that for any k ∈ Z
∞
a , equality (1) holds.

The existence and uniqueness of the solution of Eq. (1) with a prescribed initial condition

u(a) = ua ∈ R (2)

on Z
∞
a is obvious. If f is continuous with respect to its second argument then the initial

problem (1), (2) depends continuously on initial data.
Let b(k), c(k) be real functions defined on Z

∞
a such that b(k) < c(k) for every k ∈ Z

∞
a . We

define

ω := {(k, u) : k ∈ Z
∞
a , u ∈ ω(k)} with ω(k) := {u : b(k) < u < c(k)}

and the closure

ω := {(k, u) : k ∈ Z
∞
a , u ∈ ω(k)} with ω(k) := {u : b(k) ≤ u ≤ c(k)}.

The aim is to find a solution u = u(k) of Eq. (1) such that

u(k) ∈ ω(k) for every k ∈ Z
∞
a .

Similar problems are studied in many papers, e.g. [1], [3] or [6].

2 The Existence Theorem

The following theorem concerning asymptotic behavior of solutions of Eq. (1) is a particular
case of more general results in [4, Theorem 2] and [5].

Theorem 2.1 Let us suppose that f : ω → R is continuous with respect to its second argument.
If, moreover,

f(k, b(k))− b(k + 1) + b(k) < 0 (3)

and

f(k, c(k))− c(k + 1) + c(k) > 0 (4)

for every k ∈ Z
∞
a , then there exists an initial condition

u(a) = u∗ ∈ ω(a) (5)

such that the corresponding solution u = u∗(k) satisfies the relation

u∗(k) ∈ ω(k) for every k ∈ Z
∞
a . (6)

Let us explain the geometrical meaning of conditions (3) and (4):
Consider a solution u = u(k) of Eq. (1) such that u(s) = b(s) for some s ∈ Z

∞
a . Then, due to

Eq. (1), the next member of this solution, u(s + 1), is

u(s + 1) = u(s) + f(s, u(s)) = b(s) + f(s, b(s)).
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According to (3), b(s) + f(s, b(s)) < b(s + 1), i.e. u(s + 1) < b(s + 1). This means that
u(s + 1) /∈ ω(s + 1).

Analogously we can show that if we have a solution u = u(k) such that u(s) = c(s) for some
s ∈ Z

∞
a then for this solution, u(s + 1) > c(s + 1), i.e. u(s + 1) /∈ ω(s + 1).

The proof of Theorem 2.1 is done by contradiction. It is supposed that no solution stays in
ω and under this supposition a continuous mapping of the interval [b(a), c(a)] onto the set
{b(a), c(a)} is found which is impossible.

Unfortunately, Theorem 2.1 just states that there exists a solution staying in the domain ω
but it does not give us any recipe how to find the appropriate initial condition (5). This gap is
particularly filled e.g. in [2] where the case of linear equation is studied. Here we present another
approach which is more general. Our method will be applicable to any equation satisfying the
conditions of Theorem 2.1.

3 Bisection Method for Finding the Initial Data

We will describe an algorithm how to find u∗ so that the solution generated by the initial
condition (5) stays in the domain ω. The value u∗ will be found as a limit of an infinite
sequence {ua

i }∞i=1 (although sometimes the process can be finite).

The method of finding u∗ will be similar to the well-known bisection method for solving non-
linear equations of the form f(x) = 0. Let us start with an interval that certainly contains the
sought “root” u∗. According to Theorem 2.1, it is the interval [b(a), c(a)]. Denote

ua
L,1 := b(a) and ua

U,1 := c(a).

(L as “lower”, U as “upper” bound). So we have the interval [ua
L,1, u

a
U,1] and, similarly as in the

bisection method, we will construct a sequence of intervals [ua
L,i, u

a
U,i], i = 1, 2, . . . , containing

the “root” u∗. The next interval will be obtained by bisecting the previous one and choosing
the correct half of it.

Denote the solutions of Eq. (1) given by the initial conditions u(a) = ua
L,i and u(a) = ua

U,i as
u = uL,i(k) and u = uU,i(k), respectively.

Due to conditions (3) and (4), we have

uL,1(a + 1) < b(a + 1) and uU,1(a + 1) > c(a + 1).

Now we will bisect the interval [ua
L,1, u

a
U,1]. Denote its center as

ua
1 :=

ua
L,1 + ua

U,1

2
.

Consider the solution u = u1(k) of Eq. (1) given by the initial condition u(a) = ua
1. There are

three possibilities:

I) u1(k) ∈ ω(k) for every k ∈ Z
∞
a . In this case u∗ = ua

1, we have a solution with the desired
property (6) and we can stop the process.
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II) There exists an r ∈ Z
∞
a such that u1(k) ∈ ω(k) for k = a, . . . , r − 1, but u1(r) ≤ b(r), i.e.

u1(r) /∈ ω(r). In this case we set

ua
L,2 := ua

1, ua
U,2 := ua

U,1.

III) There exists an s ∈ Z
∞
a such that u1(k) ∈ ω(k) for k = a, . . . , s− 1, but u1(s) ≥ c(s). This

time we change the upper bound of the interval:

ua
U,2 := ua

1, ua
L,2 := ua

L,1.

Now, either we have the desired u∗, or we have a new interval [ua
L,2, u

a
U,2] with the property

that the solution u = uL,2(k) exceeds the lower bound b(r) of the domain ω for some r ∈ Z
∞
a ,

meanwhile the solution u = uU,2(k) exceeds the upper bound c(s) for some s ∈ Z
∞
a . Such

interval has to contain a point u∗ for which the corresponding solution u = u∗(k) stays in ω.

Further, we will proceed inductively. Having the interval [ua
L,i, u

a
U,i], we bisect it and denote its

center as

ua
i :=

ua
L,i + ua

U,i

2
.

For the solution u = ui(k) given by the initial condition u(a) = ua
i , we have three possibilites:

either it stays in ω, or it exceeds its lower bound, or it exceeds its upper bound. According to
this, either we have found u∗ = ua

i , or we set ua
L,i+1 := ua

i , u
a
U,i+1 := ua

U,i, or we set ua
U,i+1 :=

ua
i , u

a
L,i+1 := ua

L,i, respectively.

Continuing this process, either we get the sought initial point u∗ in a finite number of steps,
or we get infinite sequences {ua

L,i}∞i=1, {ua
U,i}∞i=1 and {ua

i }∞i=1. These sequences are obviously
convergent as {ua

L,i}∞i=1 is a nondecreasing sequence bounded from above by c(a), {ua
U,i}∞i=1 is a

nonincreasing sequence bounded from below by b(a) and ua
L,i < ua

i < ua
U,i for every i ∈ N. In

this case, u∗ = limi→∞ ua
i .

4 Practical Implementation of the Algorithm

Programming the above described method, we are limited by the possibilities of computers. In
the ideal case, we would bisect the intervals until either we find a solution with property (6),
or the length of the interval [ua

L,i, u
a
U,i] is less than some chosen ε > 0. But, practically, for a

given initial condition (2), we can compute the values of the corresponding solution of Eq. (1)
for k = a, a + 1, . . . , but it is clear that it is impossible to compute to infinity. We have to stop
sometimes. Thus, given a fixed n ∈ Z

∞
a , we are able to find a point ũ∗ such that the solution

u = ũ∗(k) satisfies the condition

ũ∗(k) ∈ ω(k), k ∈ Z
n
a . (7)

The algorithm (in C++ similar pseudocode) is as follows:
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inside = false; //indicates whether the solution stays inside ω
uL = b(a);
uU = c(a);
while ( !inside && (uU − uL) > ε) {

ũ∗ = (uL + uU)/2;
ũ∗(a) = ũ∗;
for (k = a; k < n; k++) {

ũ∗(k + 1) = ũ∗(k) + f(k, ũ∗(k));
if (ũ∗(k + 1) < b(k + 1)) {

uL = ũ∗;
break;

}
else if (ũ∗(k + 1) > c(k + 1)) {

uU = ũ∗;
break;

}
}
if (n == k) // the whole for-cycle passed without breaking

inside = true;
}
if ( !inside)

ũ∗ = (uL + uU)/2;

If the while-cycle ends due to the condition uU − uL < ε then we are sure that |ũ∗− u∗| < ε/2.
But if the cycle ends because of the “inside” condition, then we just have a solution for which (7)
holds. But the validity for every k ∈ Z

∞
a cannot be guaranteed and neither is guaranteed that

the numerically obtained point ũ∗ is close to the precise value of u∗.

5 Numerical Experiment

Example 5.1 Consider the equation

Δu(k) = −3

2
k +

√
u2(k) + k2, k ∈ Z

∞
3 . (8)

First we will prove that there exists a solution u = u∗(k) such that for every k ∈ Z
∞
3

k < u∗(k) < 2k, (9)

and then we will find the approximate value of the initial condition u∗ generating this solution.
We will show that the assumptions of Theorem 2.1 are satisfied. Put

a := 3, b(k) := k, c(k) := 2k, f(k, u) := −3

2
k +

√
u2 + k2

and
ω(k) := {u : k < u < 2k}
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Function f is obviously continuous. Let us verify conditions (3) and (4).
Substituting into inequality (3), we get

f(k, b(k))− b(k + 1) + b(k) = −3

2
k +

√
k2 + k2 − (k + 1) + k = k(

√
2− 3

2
)− 1 < 0

which holds for every k ∈ N.
Substituting into (4), we get

f(k, c(k))− c(k + 1) + c(k) = −3

2
k +

√
4k2 + k2 − (2k + 2) + 2k = k(

√
5− 3

2
)− 2 > 0.

This is fulfilled for k ∈ Z
∞
3 .

Hence, all the assumptions of Theorem 2.1 are satisfied and thus there exists an initial condition
u(3) = u∗ such that the corresponding solution satisfies (9).

Now let us find the approximate value of u∗ with help of the method described in Section 3.
Put ε = 0.01.

Starting values: uL = 3, uU = 6, ũ∗ = 4.5 New values: uL = 4.5, uU = 6, ũ∗ = 5.25
k b(k) ũ∗(k) c(k) k b(k) ũ∗(k) c(k)
3 3 4.5 6 3 3 5.25 6
4 4 5.40833 8 4 4 6.79669 8
5 5 6.13514 10 5 5 8.68308 10
6 6 6.54968 12 6 6 11.2028 12
7 7 6.43215 14 7 7 14.9113 14

Stop, ũ∗(7) < b(7) Stop, ũ∗(7) > c(7)

Analogously we continue, until we get the interval [uL, uU ] ≈ [4.763; 4.769] the length of
which is less than ε. Thus we get u∗ ≈ 4.766.

We can also slightly change the algorithm by leaving out the stop criterion uU − uL < ε.
Then we stop only in the case that we find a solution satisfying (7) for some chosen n ∈ Z

∞
a .

For such changed algorithm with n = 50, we get the approximate value u∗ ≈ 4.76748736115405.

References
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1 Introduction

In the present paper we consider the nonlinear neutral differential delay systems of the form

[x1(t)− a(t)x1(t− τ)]
′

= p1(t)|x2(t)|α−1x2(t),

x
′
2(t) = −p2(t)|x1(t− σ)|β−1x1(t− σ), t ≥ t0, (1)

where a, pi ∈ C([t0,∞), [0,∞)), pi(t) �≡ 0, i = 1, 2, α > 0, β > 0, σ > τ > 0.
By a solution of the system (1) we mean a function x = (x1, x2) ∈ C([t1 − σ,∞), R2) for some
t1 ≥ t0 + σ such that x1(t)− a(t)x1(t− τ) and x2(t) are continuously differentiable on [t1,∞)
and such that the system (1) is satisfied for t ≥ t1.
By W we denote the set of all solutions x = (x1, x2) of (1). A component x1(t) or x2(t) of x is
said to be oscillatory if it has arbitrarily large zeros; otherwise it is called nonoscillatory.
In the recent years many autors are studying the differential systems similar to (1). However
they are mostly interesting about the asymptotic behaviour of such systems, e.g. in [3,5,7] and
in the papers cited therein. It seems that only in a few articles the oscillatory properties are
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treated, e.g. in [2,4]. Thus our aim is to study the oscillation of components of the solutions of
the systems (1).
In addition the nonlinear neutral differential systems can be interpreted as the models for the
population biology [6]. It is recognised that time delays are natural components of the processes
of biology, ecology, physiology, economics, mechanics, etc. This is due to influence of the past
history of the processes on their evolution.
We shall need the following lemma in the next section.

Lemma 1.1 [2, 4] Suppose that P ∈ C([t0,∞), [0,∞)), δ > 0 and

lim
t→∞

inf

∫ t

t−δ

P (s) ds >
1

e
.

Then the following inequality

u
′
(t) + P (t)u(t− δ) ≤ 0, t ≥ t0,

has no eventually positive solutions.

2 The oscillatory properties

In this section we establish two oscillatory theorems.

Theorem 2.1 Suppose that x = (x1, x2) ∈ W and the component x2(t) is oscillatory. Then
x1(t) is also oscillatory.

Proof. Assume that x1(t) is a nonoscillatory component of x. Let x1(t) > 0 for t ≥ t0. Then
by the second equation of (1) we have

x
′
2(t) ≤ 0, t ≥ t1 ≥ t0,

where t1 is sufficiently large. This implies that x2(t) > 0 or x2(t) < 0 for t ≥ t2 ≥ t1, i.e. x2(t)
is nonoscillatory. Let now x1(t) ≤ 0, t ≥ t0. Then using the same argument as previously we
get x

′
2(t) ≥ 0, t ≥ t1, which implies a nonoscillatory character of x2(t). Thus the theorem is

proved.

Theorem 2.2 Suppose that 0 < a(t) ≤ 1, αβ = 1, and∫ ∞

t0

pi(t) dt = ∞, i = 1, 2,

lim
t→∞

inf

∫ t

t+τ+γ−σ

p1(s)

(∫ s+γ

s

p2(ξ) dξ

)α

ds >
1

e
, (2)

where 0 < γ < σ − τ . Then x1(t) is oscillatory.
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Proof. Without loss of generality we may assume that x1(t) > 0 for t ≥ t0, i.e. x1(t) is
nonoscillatory. Then the second equation of (1) implies

x
′
2(t) ≤ 0, t ≥ t1 ≥ t0,

where t1 is sufficiently large. So the next two cases are possible:

1. x2(t) < 0, t ≥ t2 ≥ t1,

2. x2(t) > 0, t ≥ t2.

Next for the simplicity we will use the notation

y(t) = x1(t)− a(t)x1(t− τ), t ≥ t2.

Case 1. We have x2(t) < 0 for t ≥ t2. Then

y
′
(t) = p1(t)|x2(t)|α−1x2(t) ≤ 0, t ≥ t2.

It follows that for y(t) there are two possible cases:

(i) y(t) < 0, t ≥ t3 ≥ t2,

(ii) y(t) > 0, t ≥ t3.

If the case (i) holds, then there are constants c > 0 and 0 < a1 ≤ 1 such that

x1(t)− a(t)x1(t− τ) ≤ −c, t ≥ t3,

x1(t) ≤ −c + a1x1(t− τ), t ≥ t3.

By induction we obtain

x1(t2 + nτ) ≤ −c

n−1∑
i=0

ai
1 + an

1x1(t2).

We conclude that x1(t2 + nτ) < 0 for large n, which contradics the fact that x1(t) > 0 for
t ≥ t0. Hence the case (ii) holds, i.e. y(t) > 0, t ≥ t3 and the function y(t) is nonincreasing on
[t3,∞). Integrating the first equation of (1) from t3 to ∞ we get

−y(t3) ≤
∫ ∞

t3

p1(s)|x2(s)|α−1x2(s) ds,

y(t3) ≥ −
∫ ∞

t3

p1(s)|x2(s)|α−1x2(s) ds ≥ |x2(t3)|α
∫ ∞

t3

p1(s) ds.

It implies that ∫ ∞

t3

p1(s) ds < ∞,

which contradicts the condition of theorem. The Case 1 cannot occur.

Case 2. Let x2(t) > 0 for t ≥ t2. Then y
′
(t) ≥ 0 and y(t) is nondecreasing on [t2,∞).

Thus for function y(t) two cases are possible:
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(j) y(t) > 0, t ≥ t3 ≥ t2,

(jj) y(t) < 0, t ≥ t3.

Consider the case (j). From relation x1(t)−a(t)x1(t−τ) = y(t) we obtain that x1(t) ≥ y(t), t ≥
t3. For sufficiently large t3 ≥ t2 the second equation of (1) implies that

x
′
2(t) = −p2(t)x

β
1 (t− σ) ≤ −p2(t)y

β(t− σ),

−x
′
2(t) ≥ p2(t)y

β(t− σ), t ≥ t3.

Integrating the last inequality form t3 to ∞ we get

x2(t3) ≥
∫ ∞

t3

p2(s)y
β(s− σ) ds ≥ yβ(t3 − σ)

∫ ∞

t3

p2(s) ds,

which is a contradiction.
Finally consider the case (jj). Then for sufficiently large t3 ≥ t2 we obtain

−a(t)x1(t− τ) < y(t), x1(t− τ) > −y(t)

and
x1(t− σ) > −y(t + τ − σ).

So we have

x
′
2(t) = −p2(t)x

β
1 (t− σ) ≤ −p2(t)|y(t + τ − σ)|β,

−x
′
2(t) ≥ p2(t)|y(t + τ − σ)|β, t ≥ t3.

Integrating the last inequality from t to ∞ we obtain

x2(t) ≥
∫ ∞

t

p2(s)|y(s + τ − σ)|β ds,

p1(t)x
α
2 (t) ≥ p1(t)

(∫ ∞

t

p2(s)|y(s + τ − σ)|β ds

)α

,

y
′
(t) ≥ p1(t)

(∫ ∞

t

p2(s)|y(s + τ − σ)|β ds

)α

, t ≥ t3.

Then it follows that

y
′
(t) ≥ p1(t)

(∫ t+γ

t
p2(s)|y(s + τ − σ)|β ds

)α

≥ p1(t)
(
|y(t + τ + γ − σ)|β

∫ t+γ

t
p2(s) ds

)α

,

−y
′
(t) + p1(t)

(∫ t+γ

t
p2(s) ds

)α

|y(t + τ + γ − σ)|αβ ≤ 0,

−y
′
(t) − p1(t)

(∫ t+γ

t
p2(s) ds

)α

y(t + τ + γ − σ) ≤ 0, t ≥ t3. (3)

Set

v(t) = −y(t), δ = σ − τ − γ, p(t) = p1(t)

(∫ t+γ

t

p2(s) ds

)α

.
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Then the inequality (3) can be written as follows

v
′
(t) + p(t)v(t− δ) ≤ 0, t ≥ t3. (4)

With regard to condition (2), the Lemma 1.1 implies that the inequality (4) cannot have a
positive solution v(t). Thus the case (jj) is also impossible. The proof of theorem is complete.

Example 1. Consider the nonlinear neutral differential system

[x1(t)− 1

2
x1(t− 1)]

′
= |x2(t)|α−1x2(t),

x
′
2(t) = −|x1(t− 3)|β−1x1(t− 3), t ≥ 0,

where α = 2, β = 1
2
. The conditon (2) has a form

lim
t→∞

inf

∫ t

t+γ−2

γ2 ds = (2− γ)γ2 >
1

e
,

and e.g. for γ = 1 is satisfied. Other conditions of Theorem 2.2 are also satisfied. Thus the
component x1(t) is oscillatory.

Example 2. Consider the nonlinear neutral differential system

[x1(t)− 1

2t
x1(t− 1)]

′
= 4|x2(t)|α−1x2(t),

x
′
2(t) = −|x1(t− 2)|β−1x1(t− 2), t ≥ 1,

where α = 1
3
, β = 3. The conditon (2) has a form

lim
t→∞

inf

∫ t

t+γ−1

4γ
1
3 ds = 4(1− γ)γ

1
3 >

1

e
,

and e.g. for γ = 1
2

is satisfied. Other conditions of Theorem 2.2 are also satisfied. Thus the
component x1(t) is oscillatory.
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pp. 9–18.
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Abstract. In the paper we investigate the asymptotic behavior of special solutions of certain 

systems of linear differential equations with constant coefficients in two dimensional space. We 

show that in, so called, non-critical cases the solution with a given property always exists, as 

well as in critical cases, except one.    

 

Key words: differential system, differential equation, geodetics, eigenvalues and vectors, 
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1 Introduction 

 

Let’s consider two systems of linear differential equations of the form  

 

   
( ) ( ) ( )ttt vwAw +⋅=′  (1)

 

   
( ) ( )tt vBv ⋅=′  (2) 

   
( ) 0w =0  (3) 

 

where BA,
 
are square 2x2 matrices with constant coefficients. Moreover we assume BA + to be 

a skew-symmetric matrix, i.e. the condition 

 

   
( )

T

BABA +−=+  (4) 

 

holds. We call the solutions of (1) satisfying the initial condition (3)
 
special solutions. Our aim is to 

prove the existence of at least one special solution of (1) with the property ( ) 0inflim >

−

∞→

te

t

t

w

ω

, 

where  denotes the Euclidean norm and ω  is the maximum of real parts of all eigenvalues of the 

matrices .BA,  Since we assume (4) to hold, there are four possible cases:  
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ii

μλω RemaxRemax0 ===  (5) 

   
ii

μλω RemaxRemax0 ==<  (6) 

   
ii

λμω RemaxRemax0 >=<  (7) 

   
ii

μλω RemaxRemax0 >=<     (8) 

 

where 
ii

λμ ,

 
denote the eigenvalues of ,BA, respectively. We call the cases (5) and (6) critical and 

the cases (7) and (8) noncritical. The above given systems (1) - (3) originate from differential 

geometry and under certain conditions they represent a linearized Jacobi equation of a vector field 

along a geodesic curve [2].  

 

 

2 Special solution 

 

We derive the explicit solution of (1) under the assumption that no eigenvalues are multiple and the 

spectra of the matrices are disjoint.  

 

Lemma 1. Let 
21

,μμ  be the eigenvalues of A and let 
21

,λλ  be the eigenvalues of B. Let 
21

,aa be 

the eigenvectors of A and 
21

,bb be the eigenvectors of B, then the special solution of (1) is of the 

form 

 

   

( )
k

k i

iik

ki

tt

cd

ee

t

ki

aw ∑ ∑
= =

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−

=

2

1

2

1
μλ

μλ

 (9) 

 

 

Proof. The general solution of (1) is of the form ( ) ( ) ( )ttt
pc

www += , where ( )t
c

w  denotes the 

solution of ( ) ( )tt wAw ⋅=′  and ( )t
p

w  denotes any particular solution of (1). The general solution of 

(2) has the form ( )
t

i

i

i

i

ect

λ

bv ∑
=

=

2

1

.  

Let’s set the eigenvectors 
21

,aa as the basis of
2

E . Now
k

k

iki
d ab ∑

=

=

2

1

, for 2,1=i , where 
ik

d  are real 

or complex numbers. We find the required particular solution by the method of undetermined 

coefficients. Let  

 

   

( )
t

i

ip

i

et

λ

∑
=

=

2

1

uw =
t

i k

kik

i

e

λ

α∑ ∑
= =

⎟

⎠

⎞

⎜

⎝

⎛
2

1

2

1

a , where 
ik

α  are unknown numbers. 

 

Upon differentiation and plugging into (1) we get 

 

t

i k

kiki

t

i k

kik

t

k

kik

i

i

iii

edcee

λλλ

ααλ ∑ ∑∑ ∑∑∑
= == ===

⎟

⎠

⎞

⎜

⎝

⎛

+⎟

⎠

⎞

⎜

⎝

⎛

⋅=⎟

⎠

⎞

⎜

⎝

⎛
2

1

2

1

2

1

2

1

2

1

2

1

aaAa . 
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Since 
k

a  are eigenvectors of A, we have
kkk

aAa μ= , for .2,1=k
 
Hence  

 

t

i k

kiki

t

i k

kkik

t

k

kik

i

i

iii

edcee

λλλ

μααλ ∑ ∑∑ ∑∑∑
= == ===

⎟

⎠

⎞

⎜

⎝

⎛

+⎟

⎠

⎞

⎜

⎝

⎛

=⎟

⎠

⎞

⎜

⎝

⎛
2

1

2

1

2

1

2

1

2

1

2

1

aaa , 

 

from which 
iikikkiki
cd+= αμαλ , and 

ki

iik

ik

cd

μλ

α

−

= , for 2,1, =ik . 

 

The general solution of (1) then assumes the form 

 

( ) ( ) ( )
t

i k

k

ki

iikt

k

k

kpc

ik

e

cd

esttt

λμ

μλ
∑ ∑∑
= ==

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

+=+=

2

1

2

1

2

1

aawww , 

 

where 
k
s  are real or complex numbers. Now we impose the condition ( ) 0w =0 , then 

 

2 2 2

1 1 1

0
ik i

k k k

k i k i k

d c

s

λ μ
= = =

⎛ ⎞

= + ⎜ ⎟
−

⎝ ⎠

∑ ∑ ∑a a , 

 

from which ∑
=

−

−=

n

i ki

iik

k

cd

s

1
μλ

 , for .2,1=k  

 

The system (1) with the initial condition ( ) 0w =0
 
has the solution   

 

( )
t

n

i

n

k

k

ki

iikt

k

n

k

n

i ki

iik
ik

e

cd

e

cd

t

λμ

μλμλ
∑ ∑∑ ∑
= == =

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−=

1 11 1

aaw  , 

 

which is equivalent to (9). 

 

 

3 Results in Euclidean space 
2

E  

 

3.1. The case of real eigenvalues 

 

Let RR ∈>∧∈>
2121

λλμμ . According to the abovementioned restrictions (see Lemma 1), 

the case of real eigenvalues is always noncritical. We distinguish two sub cases, namely (7) and (8). 

In case of (7) we have
i

λμω Remax0
1
>=< . From (9) for 0,0

21

≠≠ cc we get 

 

( ) ( )

( ) ( )

k

k i

iik

ki

tt

t

cd

ee

tet

k
i

aww ∑ ∑
= =

−

−

−

⎟

⎟

⎠

⎞

⎜

⎜

⎝

⎛

−

−

==

2

1

2

1

1
1

1

μλ

μμμλ

μ

 

 and upon neglecting the exponential terms of the form 
tk

e

−

for ∞→t  we are left with  
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   ( )
1221

12

111

11

11
~

aw

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−

+

−

−

= cdcdt

μλμλ

 (10) 

 

In order to have ( ) ( ) 0
~

inf liminflim >=

∞→

−

∞→

tte

t

t

t

ww

ω

, at least one of the coefficients 
11

d or 
21

d  must 

be nonzero, but this is assured by the skew – symmetry of the matrices. The condition 

( ) 0
~

inf lim >

∞→

t

t

w is equivalent to the statement that the curve ( )tw

~

doesn’t pass through the origin 

for any 
0

tt > , where 
0

t  is arbitrary preset real number. 

 

From the geometric viewpoint (10) represents a point off the origin on a straight line generated by 

the vector
1
a . So in this case the condition ( ) 0inflim >

−

∞→

te

t

t

w

ω

is fulfilled. 

 

Now let’s consider 
i

μλω Remax0
1

>=< (8). If in (9) 0
2

=c we get  

 

( ) ( )

( )

k

k

k

k

t

t

cd

e

tet

k

aww ∑
=

−

−

−

−

==

2

1

11

1

1

1

1

μλ

λμ

λ

 and 

 

   ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

+

−

=
212

21

111

11

1

11

aaw ddct
~

μλμλ

 (11) 

 

Obviously, we again have a point lying off the origin and automatically 00
1211

≠∨≠ dd , otherwise 

the vector 
1

b would be zero. Note that in this case it is necessary to set 0
1

≠c . If 00
21

≠∧= cc , we 

would have a solution with ( ) 0inflim

t

=

−

∞→

te

t

w

α

. But for 0
1

≠c   the condition 

( ) 0>

α−

∞→

te

t

t

winflim  always holds.  

 

 

3.2. The case of complex eigenvalues 

 

Let δγλβαμ ii
2,12,1

±=∧±= . In this case αγ −=  due to the skew-symmetry of the matrices. 

The case of complex eigenvalues with nonzero real parts is always non-critical.  

We consider the case γαω >=<0 . From (9) for 0
2

=c  we get  
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( ) ( )

k

k

k

k

tt

t

cd

ee

tet

k

aww ∑
=

−−

−

−

−

==

2

1

11

1

1

μλ

αμαλ

α

 and 

   ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

+

−

−=

−

212

21

i

111

11

i

1

~

aaw d

e

d

e

ct

tt

μλμλ

ββ

 (12) 

where 00
1211

≠∨≠ dd , otherwise the vector 
1

b would be zero. In (12) we are dealing with a 

complex function. Upon decomposition into real and imaginary parts, necessary simplifications and 

taking ( ){ }tw

~
Re  we get  
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( ){ } ( )ttct ββ sincos
~

Re
211

uuw +−=  (13) 

 

Equation in (13) represents parametric equations of an ellipse centered at the origin, hence 

( ) 0>

α−

∞→

te

t

t

winflim holds for any 0
1

≠c . It can be shown that the vectors 
21

,uu  in (13) are 

linearly independent provided that BA + is skew-symmetric. The case αγω >=<0 leads to 

similar results; the real solution is again an ellipse centered at the origin.  

 

 

3.2.1. The case of pure imaginary eigenvalues 

 

In this case βμ i
21

±=
,

and δλ i
21

±=
,

. We show that in this case no solution has the property 

( ) 0inflim

t

>

−

∞→

te

t

w

ω

. We have 
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Now for 
tttt

eeee

βδβδ iiii −

=∧= we get ( ) 0=tw . This pair of equalities is equivalent to 

0sinsin0coscos =±∧=− tttt βδβδ . If 

δ

β

 is rational, it is possible to find such  0
0

>t , 

for which ( ) 0
0

=tw , so the curve periodically returns to the origin. From (14) we see that for 0=t  

the curve starts from the origin and for Z∈

+

=

δβ

π
0

0

2k

t  it returns back. So  ( )tw is a closed curve 

passing through the origin and hence ( ) 0inflim

t

=

−

∞→

te

t

w

ω

. In case of 

δ

β

is irrational, the curve 

( )tw doesn’t have a finite period but it is bounded around the origin. It can be proved that for any 

0>ε there exists such 
ε

t that ( ) ε
ε

<tw , which implies ( ) 0inflim

t

=

−

∞→

te

t

w

ω

. So in case of pure 

imaginary eigenvalues no solution has the property ( ) 0inflim

t

>

−

∞→

te

t

w

ω

. 

 

 

3.3. The case of real and complex eigenvalues 

 

When the eigenvalues of the matrices are combined, the critical cases (5) and (6) are interesting. 

Let δγλμμ i,
2,121

±=∧∈R  and γμ =

1

. Let 0
1

≠c , 0
2

=c , then  
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( )

i i

11 1 1 12 1 2

1 1 1 1

1

,

3

t t

e e

t d c d c

δ δ

λ μ λ μ

−

= +

− +

w a a�
 

 

where 
1211

,dd  are non-zero complex conjugates, otherwise the vector 
1

b would be zero. Since 

0

i

≠

t

e

δ

, it implies that ( ) 0
~

≠tw  and ( ) 0inflim

t

>

−

∞→

te

t

w

ω

. In this case ( ){ }tw

~
Re represents 

parametric equations of an ellipse shifted in direction of the vector 
1

a . The case 

βαμλλ i,
2,121

±=∧∈R and αλ =
1

 is for 0
1

=c , 0
2

≠c trivial and yields the same result as in 

(13). 

 

 

3 Conclusion 

 

The abovementioned analysis in two-dimensional space can be interpreted as follows: Let’s have 

a Lie group with left invariant metric. Each geodetic curve is associated with two matrices with a 

skew-symmetric sum. If the eigenvalues of the matrices are not pure imaginary and 

( ) 0inflim

t

>

−

∞→

te

t

w

ω

is true, it is possible to find a system of geodesic curves which have 

a common origin with a given geodesic curve and are exponentially unstable.  
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COMPUTER SIMULATIONS OF LINEAR
STOCHASTIC DIFFERENTIAL EQUATIONS

KOLÁŘOVÁ Edita, (CZ)

Abstract. This paper deals with linear scalar stochastic differential equations. We present
three examples, find their analytic solutions using the Itô formula and present the numeri-
cal simulations of the solutions. We also compute the confidence intervals for the solutions
of these equations.
Key words and phrases. Stochastic differential equation, Itô formula, numerical simu-
lation, confidence interval.
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1 Introduction

Stochastic differential equations (SDEs) describe physical systems by taking into account some
randomness of the system. A general scalar SDE has the form

dX(t) = f(t,X(t)) dt + g(t,X(t)) dW (t), X(0) = X0,

where f : 〈0, T 〉×R → R is the drift coefficient and g : 〈0, T 〉×R → R is the diffusion coefficient.
W (t) is the so called Wiener process, a stochastic process representing the noise. (A stochastic
process W (t) is called the Wiener process if it has independent increments, W (0) = 0 and
W (t) − W (s) distributed N(0, t − s), 0 ≤ s < t). We can represent the SDE in the integral
form

X(t) = X(t0) +

∫ t

t0

f(s,X(s)) ds +

∫ t

t0

g(s,X(s)) dW (s), (1)

where the first integral is an ordinary Riemann integral. Since the sample paths of a Wiener
process do not have bounded variation on any time interval, the second integral cannot be a
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Riemann-Stieljtes integral. K. Itô proposed a way to overcome this difficulty with the definition
of a new type of integral, a stochastic integral which is now called the Itô integral (see [6]).
The solution of a stochastic differential equation is a stochastic process.
Although the Itô integral has some very convenient properties, the usual chain rule of classical
calculus doesn’t hold. Instead, the appropriate stochastic chain rule, known as Itô formula,
contains an additional term, which, roughly speaking, is due to the fact that the square of the
stochastic differential (dW (t))2 is equal to dt.

The 1-dimensional Itô formula. Let the stochastic process X(t) be a solution of the stochas-
tic differential equation dX(t) = f(t,X(t)) dt + g(t,X(t)) dW (t) for some suitable functions
f, g (see [4], p.44). Let h(t, x) : (0,∞)×R → R be a twice continuously differentiable function.
Then

Y (t) = h(t,X(t))

is a stochastic process, for which

dY (t) =
∂h

∂t
(t,X(t)) dt +

∂h

∂x
(t,X(t)) dX(t) +

1

2

∂2h

∂x2
(t,X(t))( dX(t))2,

where ( dX(t))2 = ( dX(t)) · ( dX(t)) is computed according to the rules

dt · dt = dt · dW (t) = dW (t) · dt = 0, dW (t) · dW (t) = dt.

2 Linear SDEs

The general form of a scalar linear Itô stochastic differential equation is

dX(t) =
(
a1(t)X(t) + a2(t)

)
dt +

(
b1(t)X(t) + b2(t)

)
dW (t), X(0) = X0 (2)

where the coefficients a1(t), a2(t), b1(t), b2(t) are functions of time or constants. If a2(t) ≡ 0 and
b2(t) ≡ 0, the equation (2) reduces to the homogeneous bilinear Itô SDE. A general solution
of a linear stochastic differential equation, like in the case of a deterministic linear differential
equation, can be determined explicitly with the help of an integrating factor or a fundamental
solution of an associated homogeneous differential equation.

2.1 Moment equations

Let us suppose, that the initial condition X(0) = X0 has a finite second moment, then we can
compute the first and second moment of X(t), the solution of (2). First we take the expectation
of the integral form of the equation (2) and use the zero expectation property of the Itô integral.
We obtain an ordinary differential equation for the expected value m(t) = E[X(t)]

dm(t)

dt
= a1(t)m(t) + a2(t), m(0) = E[X0].
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Similarly we can compute the second moment of the solution X(t).
p(t) = E[X2(t)] is the unique solution of the ordinary linear differential equation

dp(t)

dt
=
(
2a1(t) + b2

1(t)
)
p(t) + 2m(t)

(
a2(t) + b1(t)b2(t)

)
+ b2

2(t), p(0) = E[X2
0 ],

where m(t) = E[X(t)].

2.2 Confidence intervals

If b1(t) ≡ 0, we say that (2) is a linear stochastic differential equation with additive noise. If
moreover the initial condition X(0) = X0 is normally distributed or constant, the solution of
(2) is a Gaussian stochastic process. That means, that X(t) is distributed N(m(t), σ2(t)) for
every t ∈ 〈0, T 〉, where m(t) = E[X(t)] and σ2(t) = E[X(t)2]−m2(t). Based on the properties
of the normal distribution, we can compute for any t

P (|X(t)−m(t)| < 1.96 σ(t)) = 2 Φ(1.96)− 1 = 0.95,

where

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2
s2

ds.

As we are able to compute p(t) = E[X(t)2] and m(t) = E[X(t)], we can predict the interval
(m(t)− ε,m(t) + ε), where the trajectories of the solution lie with a probability 95 %.

3 Simulations of the stochastic solution

To simulate the solution of a stochastic differential equation numerical techniques have to
be used (see [4]). The simplest numerical scheme, the stochastic Euler scheme, is based on
numerical methods for ordinary differential equations.
Let us consider an equidistant discretisation of the time interval 〈0, T 〉 as

tn = nh, where h =
T

n
= tn+1 − tn =

∫ tn+1

tn

dt

and the corresponding discretisation of the Wiener process as

ΔWn = W (tn+1)−W (tn) =

∫ tn+1

tn

dW (s).

To be able to apply any stochastic numerical scheme, first we have to generate the ran-
dom increments of W as independent Gauss random variables with mean E[ΔWn] = 0 and
E[(ΔWn)2] = h.
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The Euler scheme for the scalar stochastic differential equation (1) has the form

Xn+1 = Xn + f(tn,Xn)h + g(tn,Xn)ΔWn.

For measuring the accuracy of a numerical solution to an SDE we use the strong order of
convergence. We say that a stochastic numerical scheme converges with strong order γ, (γ > 0)
if there exist real constants K > 0 and δ > 0, so that

E[|XT −Xh
T |] ≤ Khγ, h ∈ (0, δ)

where the numerical solution is denoted by Xh
T .

The Euler scheme converges with strong order γ = 1
2
.

4 Some examples

Example 1. We want to solve the following linear Itô stochastic differential equation with
constant coefficients (a1(t) = A, a2(t) = C, b2(t) = B; A < 0, B, C > 0) and with additive
noise (b1(t) ≡ 0):

dX(t) =
(
AX(t) + C

)
dt + B dW (t), X(0) = 0. (3)

We find the solution of (3) using the Itô calculus. Denote h(t, x) = e−Atx, and compute its
derivative at point (t,X(t)) using the Itô formula.

dh(t,X(t)) = d
(
e−AtX(t)

)
= e−At(−A)X(t) dt + e−At dX(t) + 0 ( dX(t))2 =

−AX(t)e−At dt + e−At
((

AX(t) + C
)

dt + B dW (t)
)

= Ce−At dt + Be−At dW (t).

This in integral form gives us the solution

e−AtX(t)−X(0) = C

∫ t

0

e−As ds + B

∫ t

0

e−As dW (s),

and after some trivial computations we get

X(t) =
C

A

(
eAt − 1

)
+ B

∫ t

0

eA(t−s) dW (s). (4)

We can compute the expectation directly from the stochastic solution (4) and we get

m(t) =
C

A

(
eAt − 1

)
.

The second moment of the solution is the solution of the ordinary first order linear differential
equation

dp(t)

dt
= 2 Ap(t) + 2C m(t) + B2, p(0) = 0,
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One sample path of the solution
Some trajectories of the solution and
the 95 % prediction interval

where m(t) = C
A

(
eAt − 1

)
.

Example 2. Let us solve the linear Itô SDE:

dX(t) = −X(t) dt + e−t dW (t), X(0) = 0. (5)

Denote h(t, x) = etx, and compute the derivative of this function at point (t,X(t)).

dh(t,X(t)) = d
(
etX(t)

)
= etX(t) dt+et dX(t) = etX(t) dt+et

(−X(t)
)

dt+et dW (t) = et dW (t).

The integral form of this equation is

etX(t)−X(0) =

∫ t

0

dW (s) ⇒ X(t) = e−t W (t).

Since X(0) = 0, we have the expectation E[X(t)] = 0 and the second moment E[X2(t)] = te−2t.

Example 3. Let us consider the linear Itô SDE:

dX(t) = dt− 1

4
X(t) dW (t), X(0) = 0. (6)

The solution of this equation is more complicated, then in the examples 1 or 2 with additive
noises. We use the method, described in [6], page 77., exercise 5.16. We define a function

F (t) = e
1
32

t+ 1
4
W (t), called integrating factor, and compute d

(
F (t)X(t)

)
= F (t) dt. This way for

the function Y (t) = F (t)X(t) we got an ordinary differential equation. We solve it and then
compute X(t) = F−1(t)Y (t). So we have

X(t) =

∫ t

0

e
1
32

(s−t)+ 1
4
(W (s)−W (t) ds. (7)

Since X(0) = 0, we have E[X(t)] = t. The solution isn’t a Gaussian process and we are not able
to fined the 95 % prediction interval the way, as in the examples 1 or 2. Here the Chebyshev‘s
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One sample path of the solution
Three trajectories of the solution and
the 95 % prediction interval

One sample path of the stochastic solution
Three trajectories of the stochastic
solution and its expectation

inequality can be used to predict such an interval (see. [5]).
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AUTOREGRESSIVE   MODELS   OF   RISK   PREDICTION   AND 

ESTIMATION   USING   MARKOV   CHAIN   APPROACH 

 

MATVEJEVS  Andrejs,  (LV),   SADURSKIS  Karlis,  (LV) 

 

 

Abstract. The possibility of identifying nonlinear time series using nonparametric estimates of 

the conditional mean and conditional variance is studied. Most nonlinear models satisfy the 

assumptions needed to apply nonparametric asymptotic theory. Sampling variations of the 

conditional quantities are studied by simulation and explained by asymptotic arguments for the 

first-order nonlinear autoregressive processes. The paper deals with the identification and 

prediction problems of the autoregressive models of nonlinear time series using nonparametric 

estimates of the conditional mean and conditional variance. 

 

Key words. Time series, Markov chain, transition probability, regression model, statistical 

estimation 

 

Mathematics Subject Classification:  60J10, 62F12, 11K45 

 

 

1 Introduction 

 

Predictive modelling has attracted significant attention from the most if not all of risk management 

researchers. Especially the methods and algorithms of time series analysis remain an important tool 

and is widely applicable in financial econometrics for assessment and prediction of risk. As it well 

known the time series analysis is limited by the choice of regressive model and even for the 

simplest Markov model requires identifying multivariate distribution function.  The proposal project 

is devoted to analysis of semiparametric stationary Markov dynamical systems used in the 

contemporary applications of mathematics for risk control and prediction with the help of auto 

regressive models. Our identification strategy uses a nonlinear auto regressive model with no 

classical heteroskedastic errors. Whereas the classical approach to regression analysis assumes that 

the form of the relationship between collections of variables is known apart from a few unknown 

parameters that must be estimated from the data, our approach uses more modern techniques that 

employ copula based nonparametric curve fitting to produce estimators as well as to assess the 

validity of parametric models. Owing to coupling different marginal distributions with different 

copula functions, copula-based auto regressive processes help us to model not only a wide variety 
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of marginal behaviours but also such dependence properties as clusters, positive or negative tail 

dependence and so on. These tools of stochastic dynamical systems analysis are characterized by 

nonparametric marginal distributions and parametric copula functions, while the copulas capture all 

the scale-free temporal dependence of the processes.  Given the estimators of the marginal 

distribution and the copula dependence parameter, one can easily construct an estimator of the 

transition distribution of the time series and hence estimators of nonlinear conditional moment and 

conditional quintile functions.  Besides we intend to combine nonparametric auto regressive process 

estimation with Monte Carlo simulation and an empirical analysis of stochastic dynamics. Because 

of this flexibility, our approach may be very relevant in the finance and insurance community, 

where modelling and estimating the dependence structure between several univariate time series are 

of great interest. 

 

 

2 Preliminaries 

 

One of main problems of modern econometrics is development of time series{ }Ζ∈tx
t

,  methods of 

analysis through regression models without a priori information about the form of dependence of 

the conditional expected value from its past values. Therefore it is necessary to deal with the 

estimation of unknown function in nonlinear difference equation of the first order with usual kind of 

information about the distribution law. In many applied problems of regression analysis for time 

series { }Ntx
t

∈,   already in simplest case [1,3,4,5] 

 

   
1

( )
t t t

x f x h
−

= + , (1) 

 

where 
t

h  are the uncorrelated tailings, on the average equal to the zero. 

 

The problem of analysis of time series described higher got the name of nonparametric estimation 

of autoregression. The needed function can be defined through the conditional expected value 

1

1

}( ) : { |
t

t t

f x E x
−

−

= � . To use the sequence of sigma-algebra { , }
t

t∈Z�  and conditional dispersion 

2 2 1

: { | }
t

t t

E hσ

−

= � , tailings 
t

h  can be present [7] in form work of “white noise” { , }
t

tξ ∈Z  in 

equation (1), (i.e. sequences of the independent identically distributed (i.i.d.) random values with 

zero mean and by single dispersion) and with conditional standard deviation: :
t t t

h σ ξ= . 

This property of tailing’s dispersion is called [7] as conditional heteroskedasticity and can be 

modulate through linear difference equations with coefficients, linearly depending on white noise 

(GARCH (p,q) processes).  

 

 

3 Description of model 

 

We will suppose that is observed random process of type 

 

  
11 ++

+=
nnnn

xfx ξσ)( , (2) 
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n

ξ   is a random error of observations, (i.i.d.) . { }Ε 0,
n

ξ = )(
n

xf  is a nonlinear function of the 

elements of chain . 

Equation (2) can be interpreted so, that a random sequence  depends on the «history». Also we can 

write that the conditional expected value of random variable looks like 

 

  { } { }
1 1

E | E | ( , ) ( )
n

n n n n n

y

x F x x p x y y f x
+ +

= = ⋅ =∑  (3) 

 

that determines non-linearity of functional dependence 
1+n

x  from 
n

x . The purpose of our researches 

is to describe the dynamics of chain {
n

x }. This means to find the functional dependence )(
n

xf , due 

to equation (3). 

For searching for of function )(
n

xf  we need to create separate discrete intervals of values and then 

on every interval we can use either least-squares or minimize specially built functional as an 

integral with the kernels of different form. We will consider the model of phase space discretization 

and presentation of him in form eventual number of no splitting areas  { }rkS
k

,...,, 1=  which can be 

examined as the states of some Markov chain. 

 

The probabilistic behaviour of a Markov chain is determined by the transition probability matrix P 

and a probability distribution over the initial state X
0
  , if we are given X

0
  and P, we may want to 

determine the probability distribution for each random variable 
n

X  or possibly we may be 

interested in the limiting distribution of 
n

X  as ,∞→n , if such a distribution exists. Within this 

context, if a chain is irreducible and aperiodic and thus ergodic, then there exists a unique row 

vector ),...,,(π
r

πππ
21

= , such as 

,,...,,,,lim
)(

rjip
j

m

ij

m

21==

∞→

π  

where 
)(m

ij
p  is the (i,j)th element of P

 t

,   )|(
0

)(

iXjXPp
m

m

ij
===  

and 

10 ≤≤
j

π ;      ∑ ==

j

j
rj ,...,,, 211π  

and 

Pππ = . 

When these probabilities 
)(m

ij
p  are not depending on „m”, they are called as stationary probabilities 

and the Markov chain is homogeneous.  She is fully determined by the matrix of transition 

probabilities. 

 

 

4 Unbiased estimations of the transitions probabilities 

 

Most of users wish to use the maximum likelihood estimations for the stationary transitions 

probabilities ([6], [8]). But maximum likelihood estimations are consistent, but not unbiased 

estimations.  In this article we consider the possibility of constructing the consistent unbiased 

estimations of the transition probabilities of the Markov chain.    
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Let us consider the homogeneous Markov chain with a number of states }1,...,2,1,{ += siE
i

 and 

with the positive matrix of transition probabilities )1,...,2,1,( +== sjipP
ij

, 
ij
p >0 .  Then this 

Markov chain will be ergodic, and there is a unique set of positive final probabilities }{
ij

p , not 

depending on initial vector of probabilities ).1(
i

p  

Let us denote mi is a number of appearances of state Ei after n  tests, and mij is a number of 

transitions from the state  of Ei   to the state of Ej  after n  tests.  We will count up a number of 

different chainlets of length n, made from the s+1 states, having the set number of transitions of mij 

and beginnings in the state Ei and endings in the state  Ej. 

 

The numbers of mi and mij meet the following conditions:  

i

s

j

ij
mm =∑

+

=

1

1

,   for  
0

ji ≠ ;              1
00

1

1

−=∑

+

=

j

s

j

jj
mm  

j

s

i

ij
mm =∑

+

=

1

1

,   for  
0

ij ≠ ;              1
00

1

1

−=∑

+

=

i

s

i

ii

mm  

Count of number K different chainlets of length n can be calculated  on induction on the number of 

the states  of Markov chain. 

 

For  n=2:   

0 0 0 0 0 0

0 0 0 0

1 1(2)

1 1
.

i i i i i i

i j

m m m m

i j m m
K c C
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For n>2 (
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For n>2 at 
00

ji =  the line of determinant with this number will assume the following:  
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and other line will remain back. 

 

So, we are continued to consider the homogeneous Markov chain with a number of states 

}1,...,2,1,{ += siE
i

 and with the matrix of transition probabilities 

)1,...,2,1,( +== sjipP
ij

.  Indeed, we assume that Markov chain is situated in state E
i
 at initial 

moment of time. Looking after the homogeneous Markov chain during n steps, will get some 

sequence of events
0

10

jii
EEE →→→ � , so called as transitions trajectories. In the case of 

Markov chain with the fixed number of steps of n, the results of observations can be written down 

as a matrix of observations ( ),1,1, +== sjimM
ij

 where mij is a number of transitions of Markov 

process from the state Ei  in the state  Ej  . Thus it should be noted that the matrix of observations 

and initial state of Markov chain fully determines the final state of the observed process. On results 

of observations it is required to estimate an unknown matrix
ij
pP = . 

Transition probabilities )(
)(

00

MP

n

ji
 from the state 

0

i

E    in the state 
0

j
E  after n steps with the matrix 

of observations of M can be calculated by the formula. 

 

   
0 0 0 0

1

( )

, 1

( ) ( ) ,
k j

s

mn

i j i j k j

k j

P M K M p

+

=

= ∏  (4) 

 

where )(
00

MK
ji

 is number of trajectories, which come from the state 
0

i

E  in the state 
0

j
E  The 

formula (4) is true due the following probabilities.. 

 

   ∏
=

−

=

n

t

ttn

xxPxPxxxP

1

1010

)|()(),...,,(  (5) 

   ∏=

ji

m

jin

ji

pxPMxxxP

,

010
)()|,...,,(  (6) 

 

The next formula allow to calculate the number of trajectories by the following kind,  

   
1

, 1

!

( ) ( )

!

m

k

k

k j jk m

kj

k j

K N A S

n

ω

=

=

= ⋅

∏

∏

, (7) 

where )(SA
jk

 is algebraic addition  of element with indexes (j,k) in a matrix 

   ),...,,( mjisS
ij

1== , where  

   

, 0,

, 0.

ij i

ijij

ij i

i

if

ns

if

δ ω

δ ω

ω

=⎧

⎪
= ⎨

− >
⎪

⎩

 (8) 
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In the formula (8)
ij

δ  is the “kroneker” character, and −=∑
=

n

j

iji
n

1

ω  number of exits from the state of 

Ei . 

Another kind of formulas for estimation of matrix 
ij
pP =  can be concluded by the following. We 

will denote )(lR  for the set of matrix of observation ),,...,,( mjklL
jk

1==  with the 

property ll

m

jk

jk
=∑

=1,

, which present realization of Markov chain with the initial state Ei. 

The unbiased estimation of transition probability takes place from the state of Ek in the state of Ej 

after l steps for the Markov chain:  

 

,)(,

)()(

ˆ

)(

)(

)()(

)(

nRN

P

LNPLP

P
n

jk

lRL

ln

jk

l

jk

l

jk

n

n

∈

−⋅

=

∑
∈

−

 

where  jn 

 - is the index of final state  of the Markov chain. 

 

 

5 Conclusions  

 

And so, we can show two following conclusions. 

 

Conclusion 1.  The unbiased estimation of transition probability 
)(

ˆ

l

jk
P  can be also calculated by the 

following formula: 

�

( )
( )

( ). ( )

, ( )

( )

n

kj kj

l
L R l

kj

kj

K L K N L

P N R n

K N

∈

−

= ∈

∑

. 

 

Conclusion 2.    The unbiased estimation of the element 
kj

pˆ  of the transition probability matrix is 

the following. 

),(,

)(

)(
ˆ

nRN

NK

LNK

n

n

jk

jk

jk
∈

−

=Θ  

Where the matrix L has the dimension  m , and the element 1=
kj
l , and all other elements are equal 

to zero. 
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THE STEP METHOD
FOR A FUNCTIONAL-DIFFERENTIAL EQUATION

FROM PRICE THEORY

MUREŞAN Anton S., (RO)

Abstract. In this paper we consider the following functional-differential equation which
appears in the price theory for a single commodity market and in the dynamics of some
economical systems

x′(t) = f(t, x(t), x(t− h), x(t + h)), t ∈ [a, b] ⊂ R
∗
+, (1)

with the conditions

x(t) = ϕ(t), t ∈ [a− h, a], x(t) = ψ(t), t ∈ [b, b + h], (2)

where f, ϕ and ψ are given continuous functions, f ∈ C([a, b]× R
3
+, R), ϕ ∈ C[a− h, a],

ψ ∈ C[b, b + h] and h > 0.
By using the step methods we give some new results about existence and uniqueness of
the solution x of this Wheeler-Feynman problem, x ∈ C([a− h, a], R+)∩C1([a, b], R+)∩
C([b, b + h], R+).

Key words and phrases. functional-differential equations, Picard operator, step
method, price fluctuation.

Mathematics Subject Classification. 34K05, 34K15, 90A12, 90B24, 30B62.

1 Introduction

The fluctuations of the price and supply of various commodities have been studied by many
authors and have attracted the attention of economists. Some authors often attributed these
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fluctuations of price and supply to random factors (for example, weather for agricultural com-
modities). Other authors considered that economic cycling or fluctuations might be a dynamical
behavior characteristic of unstable economic systems.

The possibility that economic may reflect underlying periodic or chaotic dynamic in non-
linear economic systems has been explored in various context.

The interest about the potential role of production delays in generating fluctuations in
economic indicators in the techniques from dynamical systems theory has almost exclusively
ignored.

But it is known that many problems from economics and biology lead to mathematical
models described by functional-differential equations. For example we have the Malthus’ model
(x′(t) = ax(t), x(t0) = x0, a > 0), the Verhulst’s model (x′(t) = [a − bx(t)]x(t), x(t0) = x0, a >
0, b > 0), or with delay model (x′(t) = [a− bx(t− h)]x(t), x(t0) = x0, a > 0, b > 0, h > 0), and
so on.

The developments in nonlinear dynamics and in applied mathematics have played an im-
portant role in obtaining of many results.

In [2], (1989), J.B. Bélair and M.C. Mackey, considered a model in order to study the
dynamics of price, production and consumption for a particular commodity governed by the
equation

1

P

dP

dt
= f(D(PD), S(PS)), (3)

where P is the function which means the price of commodity and D and S, respectively
denote the demand and supply functions for this commodity. They assumed that, for market
price, P (t), the relative variations ( 1

P
dP (t)

dt
) are go-verned by the equation (3), where f is a

given function (price change function). The arguments of functions D and S are given by
PD (demand price) and PS (supply price), respectively, rather than simply the current market
price P .

They compared this model with other models, that have been studied in economic literature,
and arrived at the conclusion that the following Haldane’s model

dp

dt
= −Ap−B

∫ ∞

0

g(x)p(t− x)dx, (4)

where p is the deviation of commodity price of equilibrium value, is a special case of the model
(3).

In the paper ([10], 1989) M.C. Mackey developed a price adjustment model for a single
commodity market with state dependent production and storage delays. Conditions for the
equilibrium price to be stable are derived in terms of a variety of economic parameters.

A special case of the general model was considered by A.M. Farahani and E.A. Grove in [3],
(1992):

P ′(t)
P (t)

=
a

b + P n(t)
− cPm(t− τ)

d + Pm(t− τ)
, t ≥ 0, (5)

where a, b, c, d, σ,m ∈ R+ and n ≥ 1. The authors gave sufficient and necessary and sufficient
conditions in which there exist positive solutions of the equation (5) that oscillate to the unique
positive equilibrium solution of the problem (5) with the condition P (t) = ϕ(t), t ∈ [−τ, 0].
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In [12] we studied a special case of fluctuation model for the price with retard of the form

p′(t) = p(t)

(
a

b + pq(t)
− cpr(g(t))

d + pr(g(t))

)
(6)

and proved that there exists a positive, bounded, unique solution.
I. A. Rus and C. Iancu in [23] studied a more general model of the form

x′(t) = F (x(t), x(t− τ))x(t), t ∈ R, (7)

x(t) = ϕ(t), t ∈ [−τ, 0]. (8)

They proved the existence and uniqueness for the solution x∗ of the problem (7)+(8) and
established some relations between the equilibrium solution and the coincidence points.

Some mathematical models that appear in price theory have been considered in the papers
[14], [22], [26]. For other results in this field we quote here the papers of A.C. Fowler and M.C.
Mackey [4], (2002) and D. Moreno [11], (2002).

The aim of this paper is to study and to present some existence and uniqueness results for
the solution of following problem, which appears in dynamics of both economical and biological
systems:

x′(t) = x(t)[D(x(t))− S(x(t− h), x(t + h))], t ∈ [a, b] ⊂ R
∗
+, (9)

x(t) = ϕ(t), t ∈ [a− h, a], x(t) = ψ(t), t ∈ [b, b + h], (10)

where h > 0, D ∈ C(R+, R+), S ∈ C(R+ × R+, R+), linebreak ϕ ∈ C([a − h, a], R+),
ψ ∈ C([b, b + h], R+).

These results are obtained by using the Picard operators’ technique (see I.A. Rus [18]-[20])
and an abstract model for the step methods (see I.A.Rus [21]).

2 Basic needed results from Picard and weakly Picard operators’ theory

Let (X, d) be a metric space and A : X → X an operator. We denote by FA the fixed point set
of A.

Definition 2.1 (I.A. Rus [19]) The operator A is a Picard operator if there exists x∗ ∈ X
such that

1) FA = {x∗}; 2) the successive approximation sequence (An(x0))n∈N converges to x∗, for all
x0 ∈ X. �

Definition 2.2 (I.A. Rus, [18]) The operator A is a weakly Picard operator if the sequence
(An(x0))n∈N converges for all x0 ∈ X and its limit (which may depend on x0) is a fixed point
of A. �

Theorem 2.3 (Contraction principle) Let (X , d) be a complete metric space and A : X → X
a contraction. Then A is a Picard operator. �
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Theorem 2.4 (Fibre contraction theorem) (M.W. Hirsch and C.C. Pugh [7], I.A. Rus [20])
Let (X, d) be a metric space, (Y, ρ) be a complete metric space and T : X × Y → X × Y . We
suppose that:

(i) T (x, y) = (T1(x), T2(x, y));
(ii) T1 : X → X is a weakly Picard operator;
(iii) there exists c ∈]0, 1[ such that

ρ(T2(x, y), T2(x, z)) ≤ cρ(y, z), (11)

for all x ∈ X and all y, z ∈ Y .
Then the operator T is a weakly Picard operator. Moreover, if T1 is a Picard operator, then

T is a Picard operator. �

3 Abstract models of step method

In the paper [21] Ioan A. Rus deals with some abstract models of step method which imply the
convergence of succesive approximations sequences.

We use this results for the problem (9)+(10) to obtain existence and uniqueness of the
solution with forward and backward step methods.

For these reasons we decompose our problem into two problems of the following form:

x′(t) = x(t)[D(x(t))− S(x(t− h), ψ(b))], t ∈ [a, b], (12)

x(t) = ϕ(t), t ∈ [a− h, a], (13)

x ∈ C([a− h, b], R+) ∩ C1([a, b], R+),

and
x′(t) = x(t)[D(x(t))− S(ϕ(a), x(t + h))], t ∈ [a, b], (14)

x(t) = ψ(t), t ∈ [b, b + h], (15)

x ∈ C1([a, b], R+) ∩ C([b, b + h], R+).

We suppose that the following conditions are satisfied:
(C 1 ) D ∈ C(R+, R+), S ∈ C(R+×R+, R+), ϕ ∈ C([a−h, a], R+), ψ ∈ C([b, b+h], R+);
(C 2 ) (∃) LS > 0 : |S(v1, .)− S(v2, .)| ≤ LS|v1 − v2|, (∀) v1, v2 ∈ R+;
(C 3 ) (∃) LD > 0 : |D(u1)−D(u2)| ≤ LD|u1 − u2|, (∀) u1, u2 ∈ R+.

Let m ∈ N
∗ be such that:

a + (m− 1)h < b and a + mh ≥ b.

We denote t−1 := a− h, t0 := a, ti := a + ih, i = 1,m− 1, tm := b.
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On C([t−1, tm], R+) we consider the Bielecki norm

||x||B := max
t−1≤t≤tm

(|x(t)|e−τ |t−t0|),

and on C([ti−1, ti], R+) the norm

||x||iB := max
ti−1≤t≤ti

(|x(t)|e−τ |t−ti−1|).

The equation (12) is equivalent with the fixed point equation

x = ED,S(x), x ∈ C([t−1, tm], R+),

and the problem (12)+(13) is equivalent with the fixed point equation

x = BD,S(x), x ∈ C([t−1, tm], R+),

where

ED,S(x)(t) :=

⎧⎨⎩
x(t), t ∈ [t−1, t0]

x(t0) +
∫ t

t0
x(s)[D(x(s))− S(x(s− h), ψ(b))]ds,

t ∈ [t0, tm],

and

BD,S(x)(t) :=

⎧⎨⎩
ϕ(t), t ∈ [t−1, t0]

ϕ(t0) +
∫ t

t0
x(s)[D(x(s))− S(x(s− h), ψ(b))]ds,

t ∈ [t0, tm].

The following results are well known:

Theorem 3.1 In the conditions (C 1 )− (C 3 ) we have:
(i) the problem (12)+(13) has in C([t−1, tm], R+) a unique solution x∗ and

x∗ ∈ C([t−1, tm], R+) ∩ C1([t0, tm], R+);

(ii) the succesive approximations sequence

xn+1(t) :=

⎧⎨⎩
ϕ(t), t ∈ [t−1, t0]

ϕ(t0) +
∫ t

t0
xn(s)[D(xn(s))− S(xn(s− h), ψ(b))]ds,

t ∈ [t0, tm],

converges to x∗, for all x0 ∈ C([t−1, tm], R+);
(iii) the operator ED,S is a weakly Picard operator and BD,S is a Picard operator. �

In what follows we suppose that we are in the conditions (C 1 )− (C 3 ).
The forward steps method for the problem (12)+(13) consists in:

(e0) x0(t) = ϕ(t), t ∈ [t−1, t0]

(e1) x1(t) = ϕ(t0) +

∫ t

t0

x1(s)[D(x1(s))− S(ϕ(s− h), ψ(b))]ds, t ∈ [t0, t1],
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(e2) x2(t) = x∗
1(t1) +

∫ t

t1

x2(s)[D(x2(s))− S(x∗
1(s− h), ψ(b))]ds, t ∈ [t1, t2],

........................

(em) xm(t) = x∗
m−1(tm−1) +

∫ t

tm−1

xm(s)[D(xm(s))− S(x∗
m−1(s− h), ψ(b))]ds,

t ∈ [tm−1, tm],

where x∗
i ∈ C([ti−1, ti], R+) is the unique solution of the equation (ei), i = 1,m.

Remark 3.2 We can put xn
i−1 instead of x∗

i−1, i = 2,m, in the conclusion (ii) of the previous
theorem (see [21]). �

So we have the following result:

Theorem 3.3 In the conditions (C 1 )− (C 3 ) the problem (12)+(13) has in C([t−1, tm], R+)
a unique solution x∗, given by

x∗(t) :=

⎧⎪⎪⎨⎪⎪⎩
ϕ(t), t ∈ [t−1, t0],
x∗

1(t), t ∈ [t0, t1],
...

x∗
m(t), t ∈ [tm−1, tm],

and the functions x∗
i , i = 1,m, are the limit of the successive approximations sequences

xn+1
i (t) := xn

i−1(ti−1) +

∫ t

ti−1

xn
i (s)[D(xn

i (s))− S(xn
i−1(s− h), ψ(b))]ds, t ∈ [ti−1, ti],

in (C([ti−1, ti], R+), ||.||B), i = 1,m. �

Now we consider the Cauchy problem (14)+(15).
Let m ∈ N

∗ be such that

b− (m− 1)h > a and b−mh ≤ a.

We denote
t0 := a, t1 := b− (m− 1)h, ..., tm := b, tm+1 := b + h,

and let be the Banach spaces C([ti−1, ti], R+), i = 1,m + 1.
The equation (14) is equivalent with the fixed point equation

x = FD,S(x), x ∈ C([t0, tm+1], R+)
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and the problem (14)+(15) is equivalent with the fixed point equation

x = GD,S(x), x ∈ C([t0, tm+1], R+),

where

FD,S(x)(t) :=

⎧⎨⎩
x(t), t ∈ [tm, tm+1]

x(tm) +
∫ t

tm
x(s)[D(x(s))− S(ϕ(a), x(s + h))]ds,

t ∈ [t0, tm]

and

GD,S(x)(t) :=

⎧⎨⎩
ψ(t), t ∈ [tm, tm+1]

ψ(tm) +
∫ t

tm
x(s)[D(x(s))− S(ϕ(a), x(s + h))]ds,

t ∈ [t0, tm].

The backward steps method for the problem (14)+(15) consists in the following:

xm+1(t) = ψ(t), t ∈ [tm, tm+1],

xm(t) = ψ(tm) +

∫ t

tm

xm(s)[D(xm(s))− S(ϕ(a), ψ(s + h))]ds,

t ∈ [tm−1, tm]

xm−1(t) = x∗
m(tm−1) +

∫ t

tm−1

xm−1(s)[D(xm−1(s))− S(ϕ(a), x∗
m(s + h))]ds,

t ∈ [tm−2, tm−1],

..........................................

x1(t) = x∗
2(t1) +

∫ t

t1

x1(s)[D(x1(s))− S(ϕ(a), x∗
2(s + h))]ds,

t ∈ [t0, t1],

where x∗
m−i is the unique solution of the integral equation in the i-step.

The following results hold:

Theorem 3.4 In the conditions (C 1 )− (C 3 ) we have that:
(i) the problem (14)+(15) has in C([t0, tm+1], R+) a unique solution x∗, where

x∗(t) :=

⎧⎪⎪⎨⎪⎪⎩
ψ(t), t ∈ [tm, tm+1]
x∗

m(t), t ∈ [tm−1, tm]
...

x∗
1(t), t ∈ [t0, t1],
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(ii) the functions x∗
i are the limits of succesive approximations sequences

xn+1
m+1(t) = ψ(t), t ∈ [tm, tm+1],

xn+1
m (t) = ψ(tm) +

∫ t

tm

xn
m(s)[D(xn

m(s))− S(ϕ(a), ψ(s + h))]ds,

t ∈ [tm−1, tm],

xn+1
m−1(t) = x∗

m(tm−1) +

∫ t

tm−1

xn
m−1(s)[D(xn

m−1(s))− S(ϕ(a), x∗
m(s + h))]ds,

t ∈ [tm−2, tm−1],

.......................................

xn+1
1 (t) = x∗

2(t1) +

∫ t

t1

xn
1 (s)[D(xn

1 (s))− S(ϕ(a), x∗
2(s + h))]ds,

t ∈ [t0, t1].

�
Remark 3.5 We can put xn

i+1 instead of x∗
i+1, i = 1,m in the conclusion (ii) of the

previous theorem (see [21]). �
Theorem 3.6 In the conditions (C 1 )− (C 3 ) the problem (14)+(15) has in C([t0, tm+1], R+)
a unique solution x∗,

x∗(t) :=

⎧⎪⎪⎨⎪⎪⎩
ψ(t), t ∈ [tm, tm+1]
x∗

m(t), t ∈ [tm−1, tm]
...

x∗
1(t), t ∈ [t0, t1],

and the functions x∗
i , i = 1,m, are the limits of the succesive approximations sequences

xn+1
m+1(t) = ψ(t), t ∈ [tm, tm+1],

xn+1
m (t) = ψ(tm) +

∫ t

tm

xn
m(s)[D(xn

m(s))− S(ϕ(a), ψ(s + h))]ds,

t ∈ [tm−1, tm],

xn+1
m−1(t) = xn

m(tm−1) +

∫ t

tm−1

xn
m−1(s)[D(xn

m−1(s))− S(ϕ(a), xn
m(s + h))]ds,

t ∈ [tm−2, tm−1],

................................

xn+1
1 (t) = xn

2 (t1) +

∫ t

t1

xn
1 (s)[D(xn

1 (s))− S(ϕ(a), xn
2 (s + h))]ds,

t ∈ [t0, t1].

�
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4 Existence and uniqueness: case of naive consumer

In the paper [3] (1992), A.M. Farahani and E.A. Grove studied the following special case of a
general model of the dynamics of price, productions and consumption commodity

x′(t) =

[
a

b + xα(t)
− cxβ(t− h)

d + xβ(t− h)

]
x(t), t ∈ [0, T ] (16)

x(t) = ϕ(t), t ∈ [−h, 0], (17)

where a, b, c, d, h, β ∈ R+, α ∈ [1,∞).

Using the results of Section 3 we can state the following theorems:

Theorem 4.1 The problem (16 ) + (17 ) has in C[t−1, tm] a unique solution x∗

and x∗ ∈ C[t−1, tm] ∩ C1[t0, tm]. Moreover, the successive approximation sequence

xn+1(t) :=

⎧⎪⎪⎨⎪⎪⎩
ϕ(t), t ∈ [t−1, t0]

ϕ(t0) +

∫ t

t0

[
a

b + (xn(s))α
− c(xn(s− h))β

d + (xn(s− h))β

]
xn(s)ds,

converges to x∗, for all x0 ∈ C[t−1, tm].

Proof. The conditions of Theorem 5 are satisfied.
The forward steps method for the problem (16 ) + (17 ) consists in:

(e0) x0(t) = ϕ(t), t ∈ [t−1, t0]

(e1) x1(t) = ϕ(t0) +

∫ t

t0

[
a

b + xα
1 (s)

− cϕβ(s− h)

d + ϕβ(s− h)

]
x1(s)ds, t ∈ [t0, t1]

(e2) x2(t) = x∗
1(t) +

∫ t

t1

[
a

b + xα
2 (s)

− cx
β

1(s− h)

d + x∗β
1 (s− h)

]
x2(s)ds, t ∈ [t1, t2],

. . . . . . . . . . . . . . . . . .

(em) xm(t) = x∗
m−1(t) +

∫ t

tm−1

[
a

b + xα
m(s)

− cx∗β
m−1(s− h)

d + x∗β
m−1(s− h)

]
xm(s)ds,

t ∈ [tm−1, tm], where x∗
i ∈ C[ti−1, ti] is the unique solution of the equation (ei), i = 1,m.�

Theorem 4.2 We have that:

(i) the problem (16 ) + (17 ) has in C[t−1, tm] a unique solution x∗ where

x∗(t) =

⎧⎪⎪⎨⎪⎪⎩
ϕ(t), t ∈ [t−1, t0],
x∗

1(t), t ∈ [t0, t1],
. . .
x∗

m(t), t ∈ [tm−1, tm]
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(ii) the function x∗
i is the limit of the successive approximations sequence

xn+1
i (t) := x∗

i−1(ti−1) +

∫ t

ti−1

[
a

b + (xn
i (s))α

− c(x∗
i−1(s− h))β

d + (x∗
i−1(s− h))β

]
xn

i (s)ds,

in C([ti−1, ti], ‖ · ‖B), i = 1,m. �

Consider the problem

x′(t) = x(t)[D(x(t)− S(x(t− h), x(t + h))], t ∈ [a, b] ⊂ R
∗
+, (9)

x(t) = ϕ(t), t ∈ [a− h, a], x(t) = ψ(t), t ∈ [b, b + h], (10)

where h > 0, D ∈ C(R+, R+), S ∈ C(R+ × R+, R+), ϕ ∈ C([a − h, a], R+),
ψ ∈ C([b, b + h], R+).
Here

D(x(t)) =
δ

ζ + xα(t)
,

S(x(t− h), x(t + h)) = S1(x(t− h))− S2(x(t + h)),

S1(x(t− h)) =
ηxβ(t− h)

θ + xβ(t− h)
,

S2(x(t + h)) =
υxγ(t + h)

ω + xγ(t + h)
,

t ∈ [a, b] ⊂ R
∗
+, h > 0, δ, ζ, η, θ, υ, ω, β, γ > 0, α ≥ 1.

In the relationship of S1 we take the relative speed of variation for supply function before
the reference moment t, with the lenght h > 0. In the relationship of S2 we take the
relative speed of variation for supply function that can be after the same lenght h > 0 after
the reference moment t.

In this model E(t, x(t)) = x(t)D(x(t)) represents the elasticity function of demand, in
respect to price, when demand has a linear dependence in respect to the price. Consequently,
D(x(t)) is the relative speed of variation for the demand function and has the economic
semnification as the elasticity of monetary unity for price (E(t, x(t))/x(t)).

Our model (9)+(10) is more general as that studied in [12], in which appear only the retard
argument, by considering a retard and an advanced argument. Thus one obtains the model
which have been studied in [24]

x′(t) = f(t, x(t), x(t− h), x(t + h)), t ∈ [a, b] ⊂ R
∗
+, (18)

with the conditions

x(t) = ϕ(t), t ∈ [a− h, a], x(t) = ψ(t), t ∈ [b, b + h], (19)

where f, ϕ and ψ are given continuous functions, f ∈ C(R× R
3
+, R), ϕ ∈ C([a− h, a], R+),

and ψ ∈ C([b, b + h], R+), h ∈ R
∗
+.

Using the results of previous sections we conclude that:
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Theorem 4.3 In the conditions (C 1 )− (C 3 ) the problem (9)+(10) has a unique solu-
tion which can be obtained by the succesive approximation method starting from any element
x0 ∈ C([a− h, b + h], R+). �

Remark 4.4 The new problem of naive consumer (9)+(10) has a unique solution. �

Remark 4.5 We can consider some questions about the smoothness of the solution and some
aspects relative to the stability and oscillarity of the equilibrium solution for the extended naive
consumer model of the form (9)+(10). �
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Babeş-Bolyai University of Cluj-Napoca
Faculty of Economic Sciences and Business Administration
Department of Statistics, Forecasting and Mathematics
e-mail: anton.muresan@econ.ubbcluj.ro

146 volume 3 (2010), number 2



A FREDHOLM-VOLTERRA
INTEGRO-DIFFERENTIAL EQUATION

WITH LINEAR MODIFICATION OF THE ARGUMENT

MUREŞAN Viorica, (RO)

Abstract. In this paper we study existence, uniqueness and data dependence for the
solution of the following problem:

x′(t) = f(t, x(t), x(λt),
∫ t

0
K1(t, s, x(s), x(λs))ds,

∫ 1

0
K2(t, s, x(s), x(λs))ds),

t ∈ [0, 1], 0 < λ < 1 ; x(0) = 0.

The continuity and the differentiability of solution with respect to parameter are also
studied.
Key words and phrases. integro-differential equations, fixed points, Picard operators.

Mathematics Subject Classification. 34K05, 34K15, 47H10

1 Introduction

In the past fifty years several papers have been devoted to the study of initial value problems for
differential and integro-differential equations with or without modifications of the arguments
(see [2]-[8], [16]). Integro-differential equations and integro-differential equations of mixed type
have been studied in [5], [6], [10], [12], [15]. Some singular integro-differential equations were
presented in [22] and some singular Fredholm-Volterra integro-differential equations were stud-
ied in [9]. For an application of integro-differential equations to problems arising from physics
see [1] and [7]. The fundamental tools used in the existence and in the existence and uniqueness
proofs are essentially fixed point theorems.
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In this paper we deal with the following problem:

x′(t) = f

(
t, x(t), x(λt),

∫ t

0

K1(t, s, x(s), x(λs))ds,∫ 1

0

K2(t, s, x(s), x(λs))ds

)
,

t ∈ [0, 1], 0 < λ < 1; x(0) = 0.

By using the Picard operators’ technique (see I.A.Rus [17],[18]), we obtain existence, uniqueness
and data dependence results for the solution of the above problem. The differentiability of
solution with respect to parameter is also studied.

Let (X, d) be a metric space and A : X → X an operator. We denote
FA := {x ∈ X|A(x) = x} - the fixed point set of A;
A0 := 1X , A1 := A,An+1 := A ◦ An, n ∈ N, P (X) = {Y ⊆ X /Y �= ∅}, I(A) = {Y ∈ P (X)/
A(Y ) ⊆ Y }, OA(x) = {x,A(x), A2(x), ..., An(x), ...} - the A-orbit of x ∈ X.

Definition 1.1 (I.A.Rus [18]) The operator A is a Picard operator if there exists x∗ ∈ X
such that:

(i) FA = {x∗};
(ii) the sequence (An(x0))n∈N converges to x∗, for all x0 ∈ X.

Definition 1.2 (I.A.Rus [19]) The operator A is a weakly Picard operator if the sequence
(An(x0))n∈N converges for all x0 ∈ X and its limit (which may depend on x0) is a fixed point
of A.

The following results are useful in what follows:

Theorem 1.1. (I.A.Rus [17]) (data dependence theorem) Let (Y, d) be a complete metric
space and A, B : Y → Y two operators. We suppose that:

(i) A is a contraction with the constant a and FA = {x∗
A};

(ii) B has fixed points and x∗
B ∈ FB;

(iii) there exists η > 0 such that d(A(x), B(x)) ≤ η, for all x ∈ Y .

Then d(x∗
A, x∗

B) ≤ η
1−a

.

Theorem 1.2. (I.A.Rus [20]) (the continuity with respect to parameter) Let (X, d) be a
metric space, (Λ, τ) a topological space and A : X ×Λ → X an operator. We suppose that:

(i) there exists α ∈ (0, 1) such that
d(A(x, μ), A(z, μ)) ≤ α d(x, z), for all x, z ∈ X and all μ ∈ Λ;
(ii) A(x, .) : Λ → X is continuous, for all x ∈ X.
Then:
(a) FA( . , μ ) = { x∗

μ } ,for all μ ∈ Λ;
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(b) the operator P : Λ → X , P (μ) = x∗
μ is continuous.

Theorem 1.3. (Hirsch and Pugh [11], I.A.Rus [21]) (fibre contraction theorem) Let (X, d)
be a metric space, (Y, ρ) be a complete metric space and T : X × Y → X × Y . We suppose
that:

(i) T (x, y) = (T1(x), T2(x, y) );

(ii) T1 : X → X is a weakly Picard operator ;

(iii) there exists c ∈ (0, 1) such that

ρ (T2(x, y), T2(x, z)) ≤ c ρ(y, z), for all x ∈ X and all y, z ∈ Y.

Then the operator T is a weakly Picard operator. Moreover, if T1 is a Picard operator,
then T is a Picard operator.

2 Existence and uniqueness

We consider a Banach space (X, ||.||). Let ||.||B and ||.||C be, the Bielecki and the Tchebyshev
norms on C([0, 1], X), defined by

||x||B = max
t∈[0,1]

||x(t)||e−τt, τ ∈ R+,

respectively

||x||C = max
t∈[0,1]

||x(t)||.

We denote dB and dC their corresponding metrics.

We consider the following set

CL([0, 1], X) := {x ∈ C([0, 1], X) | ||x(t1) − x(t2)|| ≤ L|t1 − t2|, for all t1, t2 ∈ [0, 1] },
where L > 0.

If d ∈ { dB , dC }, then (C([0, 1], X), d) and (CL([0, 1], X), d) are complete metric spaces.

We denote I = [0, 1], D2 = I × I and D1 = {(t, s) ∈ D2| 0 ≤ s ≤ t ≤ 1}.

It is well known that x ∈ C1(I,X) is a solution of the problem

x′(t) = f

(
t, x(t), x(λt),

∫ t

0

K1(t, s, x(s), x(λs))ds,∫ 1

0

K2(t, s, x(s), x(λs))ds

)
,

t ∈ [0, 1], 0 < λ < 1; (2.1)

x(0) = 0,
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if and only if x ∈ C(I,X) is a solution of the following integro-differential equation:

x(t) =

∫ t

0

f

(
ξ, x(ξ), x(λξ),

∫ ξ

0

K1(ξ, s, x(s), x(λs))ds,∫ 1

0

K2(ξ, s, x(s), x(λs))ds

)
dξ,

t ∈ [0, 1], 0 < λ < 1. (2.2)

In what follows we will study the equation (2.2). We suppose that:
(C1) f ∈ C(I ×X4, X) , Ki ∈ C(Di ×X ×X, R), i = 1, 2;
(C2) there exists L0 > 0 such that

|| f(t, u1, u2, u3, u4)− f(t, v1, v2, v3, v4)|| ≤ L0

4∑
i=1

||ui − vi||,

for all ui, vi ∈ X, i = 1, 4 and all t ∈ I;
(C3) there exists M > 0 such that ||f(t, u1, u2, u3, u4)|| ≤ M , for all ui ∈ X, i =

1, 4 and all t ∈ I;
(C4) there exists Li > 0, i = 1, 2 such that
|| Ki(t, s, v, w) − Ki(t, s, v, w)|| ≤ Li (|| v − v|| + || w − w|| ), for all t, s ∈ I and all

v, v, w, w ∈ I, i = 1, 2.

Consider the continuous operator

A : (CL(I,X), || . ||C) → (CL(I,X), || . ||C)

defined by

A(x)(t) : =

∫ t

0

f

(
ξ, x(ξ), x(λξ),

∫ ξ

0

K1(ξ, s, x(s), x(λs))ds,∫ 1

0

K2(ξ, s, x(s), x(λs))ds

)
dξ.

So, we obtain the following fixed point problem:

x = A(x).

We have

Theorem 2.1. If the conditions (C 1)-(C 4) are satisfied with M ≤ L and

(C 5) 2L0(1 + L1 + L2) < 1,
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then the problem (2.1) has a unique solution x∗ in CL(I,X) and this solution can be obtained
by the successive approximations method starting from any element of CL(I,X).

Proof We have

||A(x)(t1) - A(x)(t2) || ≤ M |t1 − t2| ≤ L|t1 − t2|,
for all t1, t2 ∈ I, that ensures the invariance of CL(I,X) by the operator A. By using

(C2) and (C4) we obtain:

||A(x)(t) − A(z)(t) || ≤

≤
∫ t

0

|| f(ξ, x(ξ), x(λξ),

∫ ξ

0

K1(ξ, s, x(s), x(λs))ds,

∫ 1

0

K2(ξ, s, x(s), x(λs))ds)−

−f(ξ, z(ξ), z(λξ),

∫ ξ

0

K1(ξ, s, z(s), z(λs))ds,

∫ 1

0

K2(ξ, s, z(s), z(λs))ds)|| dξ ≤

≤ L0

∫ t

0

[||x(ξ)− z(ξ)|| + ||x(λξ)− z(λξ)|| +

+L1

∫ ξ

0

(||x(s)− z(s)|| + ||x(λs)− z(λs)|| ) ds+

+L2

∫ 1

0

(||x(s)− z(s)|| + ||x(λs)− z(λs)|| ) ds] dξ ≤

≤ 2 L0 (1 + L1 + L2) || x− z ||C ,

for all x, z ∈ CL(I,X) and all t ∈ I.

It follows that

||A(x)− A(z) || C ≤ 2 L0 (1 + L1 + L2) || x− z ||C ,

for all x, z ∈ CL(I,X).

By applying Contraction principle, we have that A is a Picard operator.�

Now we consider

A : (CL(I,X), || . ||B) → (CL(I,X), || . ||B)

Then the condition (C5) can be replaced by

(C ′
5) there exists τ > 0 such that

L0

τ
[ 1 +

1

λ
+

L1

τ
(1 +

1

λ2
) + L2 eτ (1 +

1

λ
) ] < 1.
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3 Data dependence

Now, we consider both (2.2) and the following equation:

x(t) =

∫ t

0

g

(
ξ, x(ξ), x(λξ),

∫ ξ

0

K1(ξ, s, x(s), x(λs))ds,∫ 1

0

K2(ξ, s, x(s), x(λs))ds

)
dξ,

t ∈ [0, 1], 0 < λ < 1 (3.1)

where g ∈ C (I × X4, X) and Ki ∈ C(Di × X2, R) , i = 1, 2, 0 < λ < 1 are the same as in
(2.2).

We have

Theorem 3.1. We suppose that:
(i) all the conditions in Theorem 2.1 are satisfied and x∗ ∈ CL(I,X) is the unique solution

of (2.1);
(ii) there exists M1 > 0 such that || g(s, u1, u2, u3, u4) || ≤ M1, for all ui ∈ X, i = 1, 4

and all s ∈ I;
(iii) M1 ≤ L;
(iv)

|| g(s, u1, u2, u3, u4)− g(s, v1, v2, v3, v4)|| ≤ L0

4∑
i=1

||ui − vi||,

for all ui, vi ∈ X, i = 1, 4 and all s ∈ I, with L0 > 0 as in (C 2);
(v) there exists η > 0 such that:

|| f(s, u1, u2, u3, u4)− g(s, u1, u2, u3, u4)|| ≤ η,

for all ui ∈ X, i = 1, 4 and all s ∈ I.
If y∗ is the solution of the equation (3.1), then

|| x∗ − y∗||C ≤ η

1− 2 L0 (1 + L1 + L2)
.

Proof Consider the operators
A, B : (CL(I,X), || . ||C) → (CL(I,X), || . ||C), defined by

A(x)(t) : =

∫ t

0

f

(
ξ, x(ξ), x(λξ),

∫ ξ

0

K1(ξ, s, x(s), x(λs))ds,∫ 1

0

K2(ξ, s, x(s), x(λs))ds

)
dξ
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B(x)(t) : =

∫ t

0

g

(
ξ, x(ξ), x(λξ),

∫ ξ

0

K1(ξ, s, x(s), x(λs))ds,∫ 1

0

K2(ξ, s, x(s), x(λs))ds

)
dξ

We have
|| A(x)(t)−B(x)(t) || ≤ η, for all t ∈ I and consequently
|| A(x)−B(x) ||C ≤ η. So, we apply Theorem 1.1.�

4 Continuity and differentiability with respect to parameter

We denote J = [α, β] and consider the following integro-differential equation with parameter:

x(t, μ) =

∫ t

0

f

(
ξ, x(ξ), x(λξ),

∫ ξ

0

K1(ξ, s, x(s), x(λs))ds,∫ 1

0

K2(ξ, s, x(s), x(λs))ds, μ

)
dξ,

(t, μ) ∈ I × J, 0 < λ < 1 (4.1)

We suppose that:
(D1) f ∈ C(I ×X4 × J,X), Ki ∈ C(Di ×X ×X, R), i = 1, 2;
(D2) there exists S0 > 0 such that

|| f(t, u1, u2, u3, u4, μ)− f(t, v1, v2, v3, v4, μ)|| ≤ S0

4∑
i=1

||ui − vi||,

for all ui, vi ∈ X, i = 1, 4 and all t ∈ I, μ ∈ J ;
(D3) there exists Γ > 0 such that ||f(t, u1, u2, u3, u4, μ)|| ≤ Γ, for all ui ∈ X, i = 1, 4

and all t ∈ I, μ ∈ J ;
(D4) there exists Si > 0, i = 1, 2 such that
||Ki(t, s, v, w) − Ki(t, s, v, w)|| ≤ Si(|| v − v|| + || w − w||), for all t, s ∈ I and all

v, v, w, w ∈ X , i = 1, 2.

Here CL(I × J, X) : = {x ∈ C(I × J,X) | ||x(t1, μ)− x(t2, μ)|| ≤ L | t1− t2| , for all t1,
t2 ∈ I and μ ∈ J}, where L > 0.

Consider the continuous operator

A : CL(I × J,X) → CL(I × J,X)

defined by

A(x)(t, μ) :=

∫ t

0

f

(
ξ, x(ξ), x(λξ),

∫ ξ

0

K1(ξ, s, x(s), x(λs))ds,
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0

K2(ξ, s, x(s), x(λs))ds, μ

)
dξ.

We have

Theorem 4.1. If the conditions (D1)-(D4) are satisfied with Γ ≤ L, and
(D5) 2S0(1 + S1 + S2) < 1,
then the equation (4.1) has a unique solution x∗ in CL(I × J,X) and this solution can be

obtained by the successive approximations method starting from any element of CL(I × J,X).

By applying Theorem 1.2 we obtain:

Theorem 4.2. If all the conditions in Theorem 4.1 are satisfied and moreover f(t, u1, u2, u3, u4, .) :
J → X is continuous for all t∈ I and all ui ∈ X, i = 1, 4, then the operator P : J →
CL(I × J,X), P (μ) = x∗

μ is continuous.

Remark 4.1 In the paper [9] has been investigated the continuous dependence of solutions with
respect to a parameter for a Fredholm-Volterra integro-differential equation without modification
of the argument. The method used there can be applied to (4.1) too.

To prove the differentiability with respect to parameter we use the fibre contraction theorem
(Theorem 1.3). So, we have:

Theorem 4.3. Suppose that all the conditions in Theorem 4.1 are satisfied and moreover the
following conditions hold:

(D6) f(t, ., ., ., ., .) ∈ C1(X4 × J,X), for all t ∈ I and | ∂f
∂ui

(t, u1, u2, u3, u4, μ)| ≤ Q, i = 1, 4,

for all t ∈ I, ui ∈ X, i = 1, 4 and all μ ∈ J ;
(D7) Ki(ξ,s, ., .) ∈ C1(X ×X), for all (ξ,s) ∈ Di, i = 1, 2 and |∂Ki

∂v
(ξ, s, v, w)| ≤ V, i = 1, 2

and |∂Ki

∂w
(ξ, s, v, w)| ≤ V, i = 1, 2;

(D8) 2Q(1 + 2V ) < 1.
Then x∗(t, .) ∈ C1(J), for all t ∈ I.

Proof. If we suppose that there exists ∂x∗
∂μ

(t, .) then from (4.1) we obtain

∂x∗

∂μ
(t, μ) =

∫ t

0

{
∂f

∂u1

(ω)
∂x∗

∂μ
(ξ, μ) +

∂f

∂u2

(ω)
∂x∗

∂μ
(λξ, μ) +

+
∂f

∂u3

(ω)

[∫ ξ

0

(
∂K1

∂v
(α)

∂x∗

∂μ
(s, μ) +

∂K1

∂w
(α)

∂x∗

∂μ
(λs, μ))ds

]
+

+
∂f

∂u4

(ω)

[∫ 1

0

(
∂K2

∂v
(α)

∂x∗

∂μ
(s, μ) +

∂K2

∂w
(α)

∂x∗

∂μ
(λs, μ))ds

]
+
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+
∂f

∂μ
(ω)

}
dξ

Here ω = (ξ, u1, u2, u3, u4, μ), where u1 := x∗(ξ, μ), u2 := x∗(λξ, μ),

u3 :=
∫ ξ

0
K1(ξ, s, x

∗(s, μ), x∗(λs, μ))ds ,u4 :=
∫ 1

0
K2(ξ, s, x

∗(s, μ), x∗(λs, μ))ds and
α = (ξ, s, v, w),where v := x∗(s, μ), w := x∗(λs, μ).

Consider the operators

T1 : CL(I × J,X) → CL(I × J,X),

T1(x)(t, μ) : =

∫ t

0

f

(
ξ, x(ξ, μ), x(λξ, μ),

∫ ξ

0

K1(ξ, s, x(s, μ), x(λs, μ))ds ,∫ 1

0

K2(ξ, s, x(s, μ), x(λs, μ))ds, μ

)
dξ,

and

T2 : CL(I × J,X)× CL(I × J,X) → CL(I × J,X)

T2(x, z)(t, μ) :=

∫ t

0

{
∂f

∂u1

(ω̃)z(ξ, μ) +
∂f

∂u2

(ω̃)z(λξ, μ) +

+
∂f

∂u3

(ω̃)

[∫ ξ

0

(
∂K1

∂v
(α̃)z(s, μ) +

∂K1

∂w
(α̃)z(λs, μ))ds

]
+

+
∂f

∂u4

(ω̃)

[∫ 1

0

(
∂K2

∂v
(α̃)z(s, μ) +

∂K2

∂w
(α̃)z(λs, μ))ds

]
+

+
∂f

∂μ
(ω̃)

}
dξ

Here

ω̃ :=

(
ξ, x(ξ, μ), x(λξ, μ),

∫ ξ

0

K1(ξ, s, x(s, μ), x(λs, μ))ds,

∫ 1

0

K2(ξ, s, x(s, μ), x(λs, μ))ds, μ

)
and α̃ := (ξ, s, x(s, μ), x(λs, μ)).

We have

||T2(x, z1)− T2(x, z2)|| ≤
∫ t

0

|| ∂f

∂u1

(ω̃)(z1(ξ, μ)− z2(ξ, μ)) +

+
∂f

∂u2

(ω̃)(z1(λξ, μ)− z2(λξ, μ))+
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+
∂f

∂u3

(ω̃)

[∫ ξ

0

(
∂K1

∂v
(α̃)(z1(s, μ)− z2(s, μ)) +

+
∂K1

∂w
(α̃)(z1(λs, μ)− z2(λs, μ)))ds

]
+

+
∂f

∂u4

(ω̃)

[∫ 1

0

(
∂K2

∂v
(α̃)(z1(s, μ) −

− z2(s, μ)) +
∂K2

∂w
(α̃)(z1(λs, μ)− z2(λs, μ))ds

]
||dξ ≤

≤ (2Q + 4QV ) ||(z1 − z2||,
for all z1, z2 ∈ CL(I × J,X) and all x ∈ CL(I × J,X).

The condition (D8) insures us that T2 is a contraction with respect to the second argument.

If we take the operator

T : CL(I × J,X)× CL(I × J,X) → CL(I × J,X)× CL(I × J,X), T = (T1, T2)

then we are in the conditions of Theorem 1.3. From this theorem we obtain that T is a Picard
operator and the sequences (xn)n∈N , (zn)n∈N , where

xn+1(t, μ) : =

∫ t

0

f

(
ξ, xn(ξ, μ), xn(λξ, μ),

∫ ξ

0

K1(ξ, s, xn(s, μ), xn(λs, μ))ds,∫ 1

0

K2(ξ, s, xn(s, μ), xn(λs, μ))ds, μ

)
dξ,

and

zn+1(t, μ) :=

∫ t

0

{
∂f

∂u1

(ω̃n)zn(ξ, μ) +
∂f

∂u2

(ω̃n)zn(λξ, μ) +

+
∂f

∂u3

(ω̃n)

[∫ ξ

0

(
∂K1

∂v
(α̃n)zn(s, μ) +

∂K1

∂w
(α̃n)zn(λs, μ))ds

]
+

+
∂f

∂u4

(ω̃n)

[∫ 1

0

(
∂K2

∂v
(α̃n)zn(s, μ) +

∂K2

∂w
(α̃n)zn(λs, μ))ds

]
+

+
∂f

∂μ
(ω̃n)

}
dξ

converge uniformly (with respect to (t, μ)) to (x∗, z∗) ∈ FT , for all x0, z0 ∈ CL(I × J,X).

Here ω̃n and α̃n are the corresponding arguments:

ω̃n : = (ξ, xn(ξ, μ), xn(λξ, μ),

∫ ξ

0

K1(ξ, s, xn(s, μ), xn(λs, μ))ds,∫ 1

0

K2(ξ, s, xn(s, μ), xn(λs, μ))ds, μ)
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and α̃n := (ξ, s, xn(s, μ), xn(λs, μ)).

If we take x0 = 0, z0 = 0, then z1(t, μ) = ∂x1

∂μ
(t, μ). By mathematical induction method we have

that zn(t, μ) = ∂xn

∂μ
(t, μ). Thus (xn)n∈N converges uniformly to x∗ as n → ∞ and (∂xn

∂μ
)n∈N

converges uniformly to z∗ as n → ∞. Using a Weierstrass argument, we conclude that ∂x∗
∂μ

exists and ∂x∗
∂μ

= z∗. �
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THE SOLOW-SWAN GROWTH MODEL
WITH BOUNDED POPULATION

PŘIBYLOVÁ Lenka, (CZ), VALENTA Petr, (CZ)

Abstract. In this paper we tried to show that constant rate of population growth in
classic theories of economic growth can be replaced by general bounded growth. It is
obvious that labor force cannot grow exponentially in infinite time horizon because of the
environmental carrying capacity. We have shown that the long run capital/labor ratio is
greater in the labor bounded case than in the standard model, we also compared the short
run capital/labor ratio results. As in the standard economy model, the only way how to
increase the economy level in the long run is to increase the level of technology.

Key words and phrases. Solow-Swan model, population growth, stability

Mathematics Subject Classification. 91B62.

1 Introduction

The main purpose of this short paper is to introduce general growth of population instead
of the constant growth rate into standard neoclassical theory of economic growth, which is
more realistic and more suitable for example in the long run. In the short run the population
and labor can be estimated exponentially (with constant rate), but it is quite unrealistic to
expect it in the long run horizon. The population and labor tends to carrying capacity of
the environment. We try to reformulate simple Solow-Swan model of economic growth using
this general assumptions to labor dynamics and concretely with generalized logistic growth
equation that covers most of commonly used growth equations, following the paper of Accinelli
[1] with Richards population growth law. We analyse the stability of the model and compare
the long run equilibrium with the short run estimation with constant labor growth rate. We
also describe the solution of this modified model with Cobb-Douglas production function.
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2 The Solow-Swan model

Assumptions are common

1. we consider the production function F (K,L) ∈ C2 with properties:

(a) it is linearly homogenous of degree one (constant returns to scale):

F (λF, λL) = λF (K,L), ∀λ,K,L > 0

(b) it satisfies Inada conditions: the marginal product of capital and labor approaches
infinity as capital or labor goes to 0 and approaches 0 as capital or labor goes to
infinity:

lim
K→0

(FK) = lim
L→0

(FL) = ∞, lim
K→∞

(FK) = lim
L→∞

(FL) = 0. (1)

(c) if K = 0 or L = 0 ⇒ F (K,L) = 0

(d) ∂F
∂K

> 0, ∂F
∂L

> 0, ∂2F
∂K2 < 0, ∂2F

∂L2 < 0

2. the capital stock changes equally to the gross investment I = s · F (K,L) (s ∈ (0, 1) is
propensity to save) minus the capital depreciation δK

K̇ = s · F (K,L)− δK, (2)

3. the labor force L(t) satisfies the following properties: L(0) = L0 ∈ (0, L∞), L̇(t) > 0,
limt→∞ L(t) = L∞ (population is strictly increasing and bounded).

Notice that the growth rate n(t) = L̇(t)
L(t)

> 0 and

lim
t→∞

n(t) = lim
t→∞

L̇(t)

L(t)
= 0.

Once the population reaches the level of L∞, which is the carrying capacity, the population
cannot grow. The population growth rate is therefore equal zero. Generally, the labor dynamics
can be described by an equation

L̇ = n(t)L

with asymptotically stable equilibrium L∞.

3 Analysis of the reformulated model

If k = K
L

is the capital per worker then f(k) = F (K
L
, 1) = F (k, 1) is the production function in

the intensive form. Since
k̇

k
=

K̇

K
− L̇

L
,
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we get from (2) reformulated Solow-Swan model in the intensive form

k̇ = s · f(k)− (δ + n(t)) · k,

L̇ = n(t)L
(3)

Note that in the standard Solow-Swan model the labor force grows exponentially, that is
n(t) = n > 0 is constant and the equation of the motion is k̇ = s · f(k) − (δ + n) · k. In this
case there is a non zero globally asymptotically stable steady state k̃ of the first equation, that
satisfies

sf(k̃)

k̃
= δ + n.

In contrast, in the modified model, the second equation gives necessary conditions for equilib-
rium

sf(k)

k
= δ + n(t) and n(t) = 0.

Consequently we have the following statement for the capital dynamics:

Theorem 3.1 The capital steady state k̂ of the equation (3) satisfies

sf(k̂)

k̂
= δ.

Conditions to the production function in the intensive form guarantee existence of exactly one
non-trivial equilibrium and the steady state is globally asymptotically stable.

Proof. The long-run dynamics of (3) is described by the dynamics on the attractor L = L∞,
that is by the equation k̇ = sf(k)− δk. Consequently

sf(k̂)

k̂
= δ

is satisfied for the steady state, while the left hand side is decreasing since conditions to the
production function in the intensive form imply that the capital share kf ′(k)

f(k)
∈ (0, 1) for k > 0.

The Inada conditions then guarantee existence and uniqueness of the non-zero equilibrium.

The eigenvalue is negative, since λ = sf ′(k̂) − δ = s
(
f ′(k̂)− f(k̂)

k̂

)
< 0, the non-zero steady

state is asymptotically stable, the zero steady state is unstable.

Corollary 3.2 The long run equilibrium k̃ of the standard Solow-Swan model with constant
labor growth rate n > 0 is less then the long run equilibrium k̂ of the Solow-Swan model (3)
with bounded labor growth.

Proof. Conditions to the production function imply that the function sf(k)
k

is decreasing. Since

from equilibrium conditions we have sf(k̃)

k̃
= δ + n > sf(k̂)

k̂
, for the long run equilibria we get

k̃ < k̂.
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Example 3.3 When the production function is of the Cobb-Douglas type

F (K,L) = AKαL1−α, 0 < α < 1,

where A is the level of technology and we expect general non-constant growth, then the equation
of motion for the modified Solow-Swan model is:

k̇ = s · Akα − (δ + n(t)) · k. (4)

Equation (4) is a Bernoulli type equation that can be transformed by the change of variables

x = k1−α

into the linear equation

ẋ = a(t)x + b, (5)

where

a(t) = −(1− α)(δ + n(t)) = −(1− α)

(
δ +

L̇(t)

L(t)

)
, (6)

b = s · A · (1− α) > 0. (7)

The solution of the linear differential equation (5) is given by

x(t) = eC(t)(x0 +

∫ t

0

be−C(τ) dτ),

where x0 =
(

K0

L0

)1−α

and

C(t) =

∫ t

0

a(τ) dτ = −(1− α)

∫ t

0

δ +
L̇(τ)

L(τ)
dτ = −(1− α)δt− (1− α) ln

L(t)

L0

.

Consequently

lim
t→∞

C(t) = −∞,

since L(t) is bounded and α ∈ (0, 1). The solution (3.3) is globally asymptotically stable. As for
horizontal asymptote, it is necessary that ẋ(t) = 0 for t →∞, i.e. a(t)x(t) + b = 0 for t →∞,
in this case

lim
t→∞

x(t) = lim
t→∞

− b

a(t)
= lim

t→∞
sA(1− α)

(1− α)(δ + n(t))
=

sA

δ
.

So all the solutions of (5) have asymptote x = sA
δ

for t →∞. Now we can substitute this back
to x = k1−α and get the value of capital/labor ratio (and capital) in the long run:

k̂ =

(
sA

δ

) 1
1−α

⇒ K̂ =

(
sA

δ

) 1
1−α

L∞. (8)
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This is not a steady state value, because it is not the solution of equation (4) but it is a value
to which k tends in a long run. In comparison with the model with constant population growth
rate n, in which the long run value of capital/labor ratio is k̃:

k̃ =

(
sA

δ + n

) 1
1−α

<

(
sA

δ

) 1
1−α

= k̂. (9)

Obviously using logistic growth gives also greater output/labor ratio in the long run. It is clear
that when taking L∞ constant, the only possible way how to increase long run capital/labor
ratio is to increase the level of technology (in whole article arbitrarily given). This, according
to properties of production function, will also ensure greater output and output per capita.

Comparing results (8) and (9) with the Theorem 1 and Corollary 2, we see they are the
same.

4 Generalized logistic growth of the labor force

Following [3] we define the generalized logistic growth dynamics as

L̇ = rLa

(
1−

(
L

L∞

)b
)c

, (10)

where a, b, c > 0 are real positive parameters, r > 0 is the intrinsic growth rate per capita and
L∞ is a carrying capacity.

You can see that this equation for various parameters a, b, c covers a wide range of standard
population growth equations as Richards (the Richards growth of labor in Solow-Swan model
was already studied in [1] with corresponding results), Gompertz, Smith’s and others (See [3]).
Generally it has a sigmoid or concave shape with the carrying capacity L∞. It is necessary to
mention that this equation does not have analytic solution for arbitrarily chosen parameters
a, b, c, but it is solvable for specific parameters (for further analysis see [3]). The relative
population growth rate is obviously

n(t) =
L̇

L
= rLa−1

(
1−

(
L

L∞

)b
)c

.

With respect to the parameter a we should distinguish two cases:
1. for a > 1 we can find the maximum of n(t) at L∗ (that implies also existence of an in-

flection point Linf of L(t)) that satisfies:

L∗ = L∞

(
1 +

bc

a− 1

)− 1
b

, 0 < L∗ < L∞, (11)

while n(t) is increasing to

nmax(t) = rLa−1
∞

(
a− 1

a− 1 + bc

)a−1
b
(

bc

a− 1 + bc

)c

,
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then decreasing to zero. The inflection point of L(t) is given by

Linf = L∞

(
1 +

bc

a

)− 1
b

> L∗, 0 < L∗ < Linf < L∞. (12)

2. for a ≤ 1 ṅ(t) < 0, which means that relative population growth rate n(t) is strictly
decreasing for any L ∈ (0, L∞), tending to zero level.

From the practical point of view this is very useful information. The dynamics of the
labor equation is much more slower than the capital one (that’s probably why the constant
estimate of n(t) is used in the standard economic theory). But if the growth rate of labor
n(t), ṅ(t) respectively, is measured and viewed as a function of t, nmax can be estimated. We
may distinguish the case before nmax as a case where use of the constant labor growth rate
estimation will give higher k̃ in the short run and after nmax and for a ≤ 1, where the k̃ will
be lower. The long run value of capital/labor ratio is the maximum level never reached - a
trend. Population (and labor) has already passed the inflection point (Linf > L∗) at both less
and more developed regions (see [4]), consequently the short run capital/labor ratio estimated
with the constant labor growth rate will be lower than the short and long run estimates of the
reformulated model with bounded labor.

5 Conclusions

In this paper we tried to show that constant rate of population growth in classic theories of
economic growth can be replaced by more general growth. It is obvious that labor force cannot
grow exponentially in infinite time horizon because of the environmental carrying capacity. We
have shown that the long run capital/labor ratio is greater in the labor bounded case than
in the standard model, we also compared the short run capital/labor ratio results. As in the
standard economy model, the only way how to increase the economy level in the long run is to
increase the level of technology.
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Abstract. Investigation of structure of the linear system of differential equations with
constant delay is based on the concept of the delayed exponential of matrix. The purpose
of this contribution is to find the matrix such that exponential of this has the same
asymptotic properties. This problem is solved in a special case.
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1 Introduction

For the investigation of the structure of solution of the systems of linear differential equations
with constant delay and a constant matrix is important the concept of delayed exponential of
matrix which is defined in [2]. Moreover the utilization of this concept is given also in mentioned
paper and the obtained results are analogous as for systems of ordinary linear differential
equations with the constant matrix. These results are obtained by ”step by step” method and
due to it the definition of delayed exponential matrix is given according to intervals. The aim
of this contribution is to find the exponential matrix which has the asymptotical behavior like
delayed exponential matrix. At the first we recall terms and the main results obtained in [2].
The delayed exponential of matrix is defined as follows:

eBt
r =

⎧⎨⎩
0, −∞ < t < −r;
I, −r ≤ t < 0;

I + B t
1!

+ B2 (t−r)2

2!
· · ·+ Bk (t−(k−1)r)k

k!
, (k − 1)r ≤ t < kr.

(1)
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The defined matrix is together with an initial condition eBt
r ≡ I for −r ≤ t ≤ 0 the solution of

the equation
ẋ(t) = Bx(t− r). (2)

Let the matrices A,B be permutable, i.e. AB = BA, then the equation ẋ(t) = Ax(t)+Bx(t−r)
has a solution satisfying the initial condition x(t) = ϕ(t) for −r ≤ t ≤ 0 in the form

x(t) = eA(t−r)eB1(t−r)
r ϕ(−r) +

0∫
−r

eA(t−r−s)eB1(t−r−s)
r eAr[ϕ̇(s)− Aϕ(s)]ds, where B1 = e−ArB.

The structure of solutions is in [2] studied also for the equation

ẋ(t) = Ax(t) + Bx(t− r) + f(t).

2 Asymptotic form

Our motivation for the next consideration are results (published in [4] and [3]) for one delayed
differential equation with a constant delay

ẋ(t) = x(t− r). (3)

In these papers it is shown that of value of unbounded solution at nr over exp(λnr) has finite
limit for n →∞, where λ is positive solution of semicharacteristic equation

λ = exp(−rλ),

of the equation (3). It means that the function exp(λt) is a solution of the equation (3). It is
possible to interpret the positive solution λ as the function of the delay r, so

λ(r) =

(
lim sup

n→∞
n
√

An(r)

)−1

, where An(r) =
n∑

m=0

(n−m)m

m!
rm.

This function is for small r (i.e. |r| < 1/e) analytical and has the form

λ(r) = 1 +
n∑

i=1

(−1)n(n + 1)n−1

n!
ri.

In what follows, we assume that there exists a constant matrix such that the exponential
of the matrix eCt has the same asymptotic properties as the matrix eBt

r . Moreover, we suppose
that lim

t→∞
(eCt − eBt

r ) = 0 and that for the derivative of these matrices the analogous assertion

holds too. It means that for t = nr we obtain the relation eBrn
r ∼ eCrn. Furthermore, we

assume that for the matrices

eBrn
r = I +

Brn

1!
+

B2r2(n− 1)2

2!
· · ·+ Bnrn

n!

there is a constant matrix C such that there exists the limit

lim
n→∞

e
Br(n+1)
r

eBrn
r

= eCr. (4)
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Lemma 2.1 Let the constant C has at least one characteristic number with positive real part,
then the exponential of matrix C i.e. eCt is the solution of the matrix equation (2).

Proof. By using the relation (2) for differentiation of function eBt
r we obtain for a difference

of derivatives of functions eBt
r , eCt the limit

lim
t→∞

(
B

e
B(t−r)
r

eC(t−r)
− CeCr

)
eC(t−r) = 0.

Therefore lim
t→∞

eCt �= 0 and lim
t→∞

e
B(t−r)
r

(
eC(t−r)

)−1
= 1 then the matrix C is a solution of the

equation B − CeCr = 0 which is possible to rewrite in the form of so called semicharacteristic
equation

C = Be−Cr (5)

and the exponential of the matrix C is a matrix solution of the equation (2).

3 Combinal identity

In 1826 A. Cauchy brought in ”Exercises de Mathmatique” on the page 53 the following formula

(x + α + n)n − (x + n)n

α
=

n−1∑
ν=0

(
n

ν

)
(α + n− ν)n−ν−1(x + ν)ν ,

which is known as Cauchy’s formula (for more details see [1, page 274]). We want to derive the
similar identity by using the well known Abel’s extension of binomial theorem. This theorem
can be for α �= 0 rewrite into the form

(x + α)n = α
n∑

j=0

(
n

j

)
(x− βj)i−j(α + βj)j−1.

So, after the substitution x = x− k, α = a, n = k we have the identity

(x− k + a)k = a
k∑

j=0

(
k

j

)
(x− k − βj)k−j(a + βj)j−1.

If we put β = −1 and rearrange the sum by j = k − j we get also

(x− k + a)k = a

(
k−1∑
j=0

(n− k + k − j)j(a− k + j)k−j−1 +

(
k

k

)
(x− k)ka−1

)
.

After simple adaptation of this formula we obtain the modification of the Cauchy’s formula in
the form:

(x + a− k)k − (x− k)k

a
=

k−1∑
j=0

(
k

j

)
(x− j)j(a− k + j)k−j−1. (6)
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4 Main result

In this section we study the system (2) with matrix B such that the Jordan canonical form is
diagonal with real numbers λi, i.e. there is regular matrix D such that

B = D

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 · · · 0 λn

⎞⎟⎟⎟⎠D−1.

Theorem 4.1 Let the canonical form of matrix B is a diagonal matrix with real number λi

satisfying the condition |λir| < 1

e
. Then the sequence of matrices in (4) is convergent and the

exponential matrix eCr has the form

eCr = D

⎛⎜⎜⎜⎝
Λ1 0 · · · 0
0 Λ2 · · · 0
...

...
. . .

...
0 · · · 0 Λn

⎞⎟⎟⎟⎠D−1, (7)

where numbers Λi depend on λir and the Λi are analytic functions of λir:

Λi = 1 + λir +
∞∑
i=2

(1− i)i−1

i!
(λir)

i.

Proof.: First we note that the k-power of the matrix B is possible to write as

Bk = D

⎛⎜⎜⎜⎝
λk

1 0 · · · 0
0 λk

2 · · · 0
...

...
. . .

...
0 · · · 0 λk

n

⎞⎟⎟⎟⎠D−1

and for eBt
r we obtain

eBrn
r = D

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
m=0

(n−m)m

m!
(rλ1)

m 0 · · · 0

0
n∑

m=0

(n−m)m

m!
(rλ2)

m · · · 0

...
...

. . .
...

0 · · · 0
n∑

m=0

(n−m)m

m!
(rλn)m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
D−1.

Second we obtain
(
e

Br(n+1)
r

)−1

in the form

e−Br(n+1)
r = D

⎛⎜⎜⎜⎜⎝
. . . · · · 0

0

(
n∑

m=0

(n−m)m

m!
(rλ1)

m

)−1

0

0 · · · . . .

⎞⎟⎟⎟⎟⎠D−1

170 volume 3 (2010), number 2



Aplimat - Journal of Applied Mathematics

and finally using the notation for one equation we get the limit

lim
n→∞

e
Br(n+1)
r

eBrn
r

= D

⎛⎜⎜⎝
. . . · · · 0

0 lim
n→∞

An+1(λir)
An(λir)

0

0 · · · . . .

⎞⎟⎟⎠D−1.

The properties of the fraction in the diagonal can be studied by using the modification of
known Cauchy’s formula (6).

We express the fraction
An+1(λir)

An(λir)
as a power series with respect to (rλi) and for the first

n + 1 terms this expansion has the form En(x) = 1 + (rλi) +
n∑

k=2

(1− k)k−1

k!
(rλi)

k. By the

notation 00 = 1 we obtain En(x) =
n∑

k=0

(1− k)k−1

k!
(rλi)

k. This fact can be proved as follows:

We rewrite the product En(λir)An(λir) as polynomial in (λir) and for 0 ≤ k ≤ n+1 we obtain:

En(λir)An(λir) = · · ·+ (rλi)
k

k∑
j=0

(n− j)j

j!

(1− k + j)k−j−1

(k − j)!
+ . . . .

If we compare the coefficients with the same power of (rλi)
k, we obtain for x = n, a = 1 the

identity (6):

(n + 1− k)k =
k−1∑
j=0

(
k

j

)
(n− j)j(1− k + j)k−j−1 + (n− k)k.

Terms containing the power (λir)
k can be omitted for k > n + 1 and for enough small λir

(λir < 1/e). The assertion is proved as a limit of this equality.

Theorem 4.2 Let the assumptions of Theorem 4.1 are satisfied, then the matrix

C = D

⎛⎜⎜⎜⎝
Λ̂1 0 · · · 0

0 Λ̂2 · · · 0
...

...
. . .

...

0 · · · 0 Λ̂n

⎞⎟⎟⎟⎠D−1

is the solution of the equation (5), where

Λ̂i =
λi

Λi

= λi

∞∑
n=0

(−1)n(n + 1)n−1

n!
(λir)

n (8)

and moreover the next equality holds:

lim
n→∞

(eCrn − eBrn
r ) = 0.
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Proof. From relation (5) we obtain the matrix C substituting e−Cr by the inverse matrix from
the Theorem 4.1:

e−Cr = D

⎛⎜⎜⎜⎝
(Λ1)

−1 0 · · · 0
0 (Λ2)

−1 · · · 0
...

...
. . .

...
0 · · · 0 (Λn)−1

⎞⎟⎟⎟⎠D−1.

It means Λ̂i =
λi

Λi

. Applying the same technique as in proof of the Theorem 4.1 we obtain the

relation
λi

Λi

= λi

∞∑
n=0

(−1)n(n + 1)n−1

n!
xn, therefore we omit the calculation.

Remark 4.3 Let us note that there exists the hypothesis that the limit lim
n→∞

An+1(λir)

An(λir)
converges

for the product λir satisfying λir > −1/e and we may also formulate the analogous problem for
the system of delayed linear differential equations with constant coefficients as a modification
of Theorem 4.1 and Theorem 4.2 where the assumption |λir| < 1/e is changed by λir > −1/e.
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1 Introduction

Consider the following initial problem

x′(t) = A(t)x(t) +

∫ t

0

K(t, u)x(u)du + f(t), x(0) = x0, (1)

where A(t) and K(t, u) are n × n continuous matrices for t ∈ R+ and (t, s) ∈ R+ × R+, f ∈
C[R+, Rn].

Grossman and Miller [6] defined the matrix function R(t, s), called the resolvent, and used
it for determinination of a solution of (1) in the form

x(t) = R(t, 0)x0 +

∫ t

0

R(t, s)f(s)ds.

They formally defined R(t, s), 0 ≤ s ≤ t < ∞

R(t, s) = I +

∫ t

s

R(t, u)Ψ(u, s)du, (2)
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where I is the identity matrix and

Ψ(t, s) = A(t) +

∫ t

s

K(t, v)dv. (3)

They proved that R(t, s) exists and is continuous for 0 ≤ s ≤ t and satisfies the equation

∂

∂s
R(t, s) = −R(t, s)A(s)−

∫ t

s

R(t, u)K(u, s)du, R(t, t) = I (4)

on interval [0, t] for each t > 0.
In 1979 Becker [1] obtained results for (1) by means of the principal matrix solution Y (t, s)

of the homogeneous Volterra equation

x′(t) = A(t)x(t) +

∫ t

0

K(t, u)x(u)du (5)

Its definition looks exactly like the definition of the principal matrix solution of the homogeneous
vector differential equation

x′(t) = A(t)x(t)

that is given by Hale [9]: Z(t, s) is a matrix solution of () with columns that are linearly
indendent such that Z(s, s) = I. Using Z(t, s) instead of R(t, s) , the variation of parameters
formula

x(t) = Z(t, 0)x0 +

∫ t

0

Z(t, s)f(s)ds (6)

for (1) is a natural extension of the variation of parameters formula for the nonhomogeneous
vector differential equation

x′(t) = A(t)x(t) + f(t).

The principal matrix version of the resolvent equation (4), namely,

∂

∂s
Z(t, s) = A(t)Z(t, s) +

∫ t

s

K(t, u)Z(u, s)du, Z(s, s) = I (7)

has been instrumental in a number of papers for obtaining results that might not have otherwise
been obtained with (4) alone.

The principal matrix solution Z(t, s), the variation of parameters formula (6), and the
principal matrix equation (7) are used and cited in papers Becker [2],[3], Burton [4],[5], Raffoul
[10], Hino and Muramaki [7],[8] and Zhang [12].

We can also use the classical variation of parameters formula for linear differential systems to
obtain an integral equation for the solutions of (1). Fot this purpose, let Y (t) be a fundamental
matrix solution of the equation x′(t) = A(t)x(t). Now any solution of (1) with the initial
function φ on [t0, τ ], t0 ≥ 0 is given

x(t, τ, φ) = Y (t)Y −1(τ)φ(τ) +

∫ t

τ

Y (t)Y −1(s)

[∫ s

t0

K(s, u)x(u)du + f(s)

]
ds.
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2 Preliminaries

Consider the operator equation
u = Tu, u ∈ X, (8)

where X is a complete metric space. Solve (8) by means of the following iteration method:

un+1 = Tun, n = 0, 1, . . . , (9)

where u0 ∈ X. Each solution of (8) is called a fixed point of the operator T.

Theorem 2.1 (Banach fixed point theorem [11]). Let (X, d) be a complete metric space M ⊆
X and T : M → M be a map satisfying

d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ M, (10)

where 0 ≤ k < 1 is a constant. Then, the following hold true:

(i) Existence and uniqueness. Equation (8) has exactly one fixed point u ∈ M .

(ii) Convergence of the iteration method. For each given u0 ∈ M the sequence (un) con-
structed by (9) converges to the unique solution u of equation (8).

(iii) Error estimates. For all n = 0, 1, . . . we have so-called a priori error estimate

d(un, u) ≤ kn(1− k)−1d(u1, u0), (11)

and the so-called a posteriori error estimate

d(un+1, u) ≤ k(1− k)−1d(un+1, un). (12)

(iv) Rate of convergence. For all n = 0, 1, . . . we have

d(un+1, u) ≤ kd(un, u).

Let |.| be any vector norm in Rn. Let |.| also denote the matrix norm induced by the vector
norm, that is, for an n× n matrix A

|A| = sup{|Ax| : |x| ≤ 1}.
Let C[a, b] be the vector space of continuous functions ϕ : [a, b] → Rn. For a fixed real number
r, let |.|r be the norm on C[a, b] that is defined as follows: for ϕ ∈ C[a, b],

|ϕ|r := sup{|ϕ(t)|e−r(t−a) : a ≤ t ≤ b}.
Let dr denote the induced norm metric, that is, for ϕ, η ∈ C[a, b],

dr(ϕ, η) := |ϕ− η|r = sup{|ϕ(t)− η(t)|e−r(t−a) : a ≤ t ≤ b}. (13)

The space C[a, b] with the metric dr is complete which we denorte by (C[a, b], dr).

Definition 2.2 Let x0 ∈ Rn. A solution of (1) on the interval [0, T ), 0 < T ≤ ∞) with the
initial value x0 at t = 0 is a differentiable function x : [0, T ) → Rn that satisfies (1) on [0, T )
and the initial condition x(0) = x0.
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3 Main results

Consider

x′(t) = A(t)x(t) +

∫ t

s

K(t, u)x(u)du + f(t), x(s) = x0. (14)

on the interval [s,∞). Integrating (14) from s to t and replacing x(s) with x0 we get

x(t) = x0 +

∫ t

s

A(v)x(v)dv +

∫ t

s

∫ v

s

K(v, u)x(u)dudv +

∫ t

s

f(v)dv. (15)

Interchangin the order of integration in (15) we have

x(t) = x0 +

∫ t

s

[
A(u) +

∫ t

u

K(u, v)dv

]
x(u)du +

∫ t

s

f(u)du. (16)

This shows that a differentiable function x(t) that satisfies (14) and the initial conditions
x(s) = x0 also satisfies integral equation (16).
We want to solve initial problem (14) by means of the following iteration method

xn+1(t) = x0 +

∫ t

s

[
A(u) +

∫ t

u

K(u, v)dv

]
xn(u)du +

∫ t

s

f(u)du, n = 0, 1, . . . . (17)

Define the operator P by

(Pϕ)(t) := x0 +

∫ t

s

[
A(u) +

∫ t

u

K(u, v)dv

]
x(u)du +

∫ t

s

f(u)du. (18)

Theorem 3.1 Suppose that:

(i) M = {ϕ ∈ C[s, T ] : ϕ(s) = x0, T > s} with the metric dr is the complete metric space.

(ii) The operator P : M → M is k-contractive, where 0 ≤ k < 1.

Then the following hold true:

Initial value problem (14) has a unique solution x(t), t ∈ [s,∞).

The sequence (xn) constructed by (17) converges to y(x) .

For all n = 0, 1, . . . we get the following error estimates:

||xn − x|| ≤ kn(1− k)−1||x1 − x0||,

||xn+1 − x|| ≤ k(1− k)−1||xn+1 − xn||.
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Proof. With respect to Theorem 2.1 it is sufficient to proved that P is a contraction mapping
on M . For any ϕ, η ∈ M we obtain

|(Pϕ)(t)− (Pη)(t)| =

∣∣∣∣∫ t

s

[
A(u) +

∫ t

u

K(v, u)dv

]
(ϕ(u)− η(u))du

∣∣∣∣
≤

∫ t

s

[
|A(u)|+

∫ t

u

|K(v, u)|dv

]
|ϕ(u)− η(u)|du.

Since A(t) and K(t, u) are continuous for s ≤ u ≤ t ≤ T, there is an r > 1 such that

|A(u)|+
∫ t

u

|K(v, u)|dv ≤ r − 1.

For such an r

|(Pϕ)(t)− (Pη)(t)| ≤
∫ t

s

(r − 1)|ϕ(u)− η(u)|du.

Hence

|(Pϕ)(t)− (Pη)(t)|e−r(t−s) ≤
∫ t

s

(r − 1)e−r(t−s)+r(u−s)|ϕ(u)− η(u)|e−r(u−s)du.

≤ |ϕ− η|r
∫ t

s

(r − 1)e−r(t−u)du ≤ r − 1

r
|ϕ− η|r. (19)

Put

k =
r − 1

r
.

Then from (19) we get
dr(Pϕ, Pη) ≤ kdr(ϕ, η).

The assertions of Theorem 3.1. follow now from Theorem 2.1.
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NEW ASPECTS IN PARAMETER IDENTIFICATION

AL ZOUKRA Kristine, (DE), SCHMIDT Werner H., (DE)

Abstract. We presented a paper on parameter identification in biological problems de-
scribed by ODEs with parameters which are to find in order to a best approximation of
measured data in APLIMAT 2007. The approximation can be in the least square norm
or in the max-norm. We want to add some new results and ideas on this topic. The iden-
tification is modeled as an optimization problem as well as an optimal control problem.

1 Motivation

Many processes in natural sciences are described by a differential equation or a system of
differential equations for instance the spreading of an illness or the reaction of several substances.
These differential equations often include parameters, which influence the behaviour of the
equation, but which are unknown. Scientists then make experiments trying to get informations
about the time-dependent behaviour of their model. A special meaning for biomathematicians
then turns into the determination of the parameters, which have to be interpreted biologically.
In order to calculate the parameters we take the measured data from experiments.

In the diploma thesis [5] an enzyme-kinetical model has been investigated. The examined
reaction in that case was the transformation of alcohol and NAD+ to acetaldehyde, NADH
and H+ effected by the enzyme alcoholdehydrogenase (ADH). With the help of the reagent
semicarbonite the backward-reaction could be suppressed so that we got an irreversible reaction
as considered in studies of Michaelis and Menten.

E + S � C → E + P

ADH + alcohol + NAD+ � Complex → ADH + acetaldehyde + NADH + H+

From the equation of reaction results a system of ordinary differential equations consist-
ing of four ODEB4s for the four substances enzyme E, substrate S, complex C and product
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P , together with three unknown parameters k1, k2, k−1 , the rate constants. With suitable
transformations the system can be reduced to a system of two ODEB4s with three unknown
parameters whereby two initial conditions are included.

dS

dt
= −k1E0S(t) + (k1S(t) + k−1)C(t)

dP

dt
= k2(S0 − S(t)− P (t)).

S(0) = S0, P (0) = 0.

But as it appears frequently in applications not all substances could be measured in the
time course. Only the concentration of NADH could be recorded with a spectrophotometer that
measures the extinction. The aim was to reconstruct the parameters from that information.

2 The Problem

The enzyme-kinetical problem desribed above is a special case of the topic we are discussing in
this paper. First of all the particularity is the measurement of only one substance, the amount
of NADH, from what we were able to conclude to the amount of NAD+ in the time period.
That implied the difficulty that we have no information about the product acetaldehyde. The
other hurdle was the stiffness of the system. This property is very often for chemical reactions.
For solving the system of ODE’s we used a method from Hairer and Wanner, see [3] .

In a more general view the process is modelled by an ODE

ẋ = f(x, P1, . . . , PK) in [0, T ], x(t) ∈ R
n (1)

with (unknown) parameters P1, . . . , PK . At time points 0 = t0 ≤ t1 ≤ . . . ≤ tM = T we have
corresponding measured data m1, . . . ,mM from experiments.

We want to determine the parameters such that the solutions of (1) minimizes a cost func-
tional

‖(x(t1)−m1, . . . x(tM)−mM)‖RnM

We discuss three possibilities to choose the norms: Euclidian norm, Tschebyschev norm, 1
norm, and obtain three different extremal problems:

M∑
i=1

‖x(ti, P1, . . . , PK)−mi‖2
Rn = min

P1,...,PK

and
max

i=1,...,M
‖x(ti, P1, . . . , PK)−mi‖∞ = min

P1,...,PK

and
M∑
i=1

‖x(ti, P1, . . . , PM)−mi‖Rn = min
P1,...,PK

respectively.
Without any loss of generality and only for simplicity we consider the case n=1 in the next

subsection.
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2.1 The Linearization

The usual approach to solve such kinds of problems is to combine an ordinary differential equa-
tion solver with an iterative optimization method. As optimization methods Gauss-Newton-
methods are common, for the ODE solver the properties of the ODE-system have to be payed
attention to. Systems from chemical reactions for instance are often stiff. A multiple shooting
method is recommended to prevent the space out of the solution, see [1].
We need the derivatives of the state x with respect to all Pj. Instead of calculating the partial
derivatives numerically for instance as

∂x

∂Pj

(t, P ) =
x(t, P1, . . . , Pj + ΔPj, . . . , PK)− x(t, P1, . . . , PK)

ΔPj

we recommend to solve the partial derivatives as additional ordinary equations. The idea is to
bring in a new function

yj(t, P ) =
∂x

∂Pj

.

Differenciating the function with respect to time t and permuting the derivates gives

ẏj(t, P ) =
d

dt

∂x

∂Pj

=
∂

∂Pj

h(t, x, P )

= hx(t, x, P ) · yj(t, P ) + hPj
(t, x, P )

with the initial value yj(0, P ) = ∂x
∂Pj

(0, P ), that means yj(0, P ) = 0 if the initial values of x are

independent of the parameters.

3 The Optimal Control Attempt

We now consider the function f(P ) as extended Mayer-type costfunctional with constant control
P = (P1, . . . , PK)

f(P ) = g(t1, x(t1), . . . , tM , x(tM)) =
M∑
i=1

(x(ti)−mi)
2,

with 0 = t0 ≤ t1 ≤ . . . ≤ tM = T . The state equation x(t) is given as

ẋ = h(t, x, P ), x(t0) = x0.

As the controls are constant the ordinary Maximum-Principle can not be applied. We use
necessary optimality conditions derived in [6]. We define the Hamilton-Function H : R

n ×
R

K × R
n → R as the righthandside of the state equation multiplied by the adjoint function

λ : R → R
n

H(x, P, λ) = λ · h(t, x, P ).
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If P̂ = (P̂1, . . . , P̂K) is optimal then there exists a solution λ̂(t) of the adjoint equation

λ̇(t) = −λ(t) · hx(t, x, P )

with jumps

λ(ti + 0) = λ(ti) + gxi
(x̂(t1), . . . , x̂(tM)), i = 1, . . . ,M,

= λ(ti) + 2(x(ti)−mi),

such that ∫ T

0

HP (x̂(t), P̂ , λ̂(t))dt = 0

which is equivalent to ∫ T

0

λ̂(t) · hP (t, x̂(t), P̂ )dt = 0.

We use this necessary optimality conditions to obtain the following recipe:

1. Choose initial parameter vector P 0 = (P 0
1 , . . . , P 0

K).

2. Solve the state equation with the current P to obtain x(t; P ).

3. Solve the adjoint equation with the current P to obtain λ(t; P ).

4. Compute H(x, P, λ) where λ and hP are solved for the current P

5. Define G(P ) =
∫ T

0
HP (x̂(t), P̂ , λ̂(t))dt = 0.

6. Improve G(P ) by applying an adaptive Newton‘s method (see [2]).

In case of the Tschebyschev norm the problem is more difficult, as the functional is not dif-
ferentiable and has to be transformed, which includes the occurence of inequalities. But the
necessary optimality conditions can be used to prove optimal parameters received by lineariza-
tion as shown in the next section.

4 Necessary Optimality Conditions

We consider the parameter identification in the sense of the Tschebyschev norm. Then we have
the optimal control problem:

min
P

max
i=1,...,M

|x(ti; P )−mi|
with respect to

ẋ = h(t, x(t), P ), P ∈ R
K .

The problem will be transformed into a classical one. We define the constant function z(t) ≥
maxi=1,...,M |x(ti, P )−mi|. Then we can prove:

z(T ) = min!
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such that

ẋ = h(t, x(t), P ), x(t0) = x0

ż = 0

z(T )− x(ti) + mi ≥ 0,

z(T ) + x(ti)−mi ≥ 0, i = 1, . . . , M.

Define H(t, x, z, P, λ) = λ · h(t, x(t), P ). Assume P̂ is the optimal parameter (vector). Then
there exist multipliers αi ≥ 0, βi ≥ 0, i = 1, . . . ,M , such that∫ T

0

HP (x̂(t), ẑ(t), P̂ , λ̂(t))dt = 0,

where λ̂(·) is the solution of the adjoint equation

λ̇(t) = −λ(t) · hx(t, x̂(t), P̂ ).

λ(t) has discontinuities at the time points ti with jumps βi−αi. The complimentary conditions

αi(z(T )− x(ti) + mi) = 0 and

βi(z(T ) + x(ti)−mi) = 0 are valid.

This results are not useful to find the optimal parameters as we do not know the multipliers αi

and βi. But they can be used to prove the optimality of a given parameter vector.
The necessary optimality conditions can be assigned to the case of the 1-norm in the cost
functional g(x(t1), . . . , x(tM)) =

∑M
i=1 |x(ti) − mi|. We have to introduce M additional state

variables zi(t) with żi(t) = 0. We then get the new cost functional
∑M

i=1 zi(T ) = min! and 2 ·M
inequality coonstraints

zi ≥ x(ti)−mi),

zi ≥ −(x(ti)−mi), i = 1, . . . ,M

and we can prove with the necessary optimality conditions a derived P .
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APPLICATION   OF  NON-EUKLIDIAN   METRICS  

IN  DISCRETE   EVENT   SIMULATION 
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Abstract. The paper concerns application of non-Euclidian metrics in discrete event simulation, 

namely in case a pseudo-graphic animation is be very promptly implemented contrary to curved 

motions of the objects mapped at the display. 
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1 Role of Animation in Simulation 

 

Simulation experiment is a certain image of what could happen in the world. Thus, animation of a 

simulation experiment is a suitable technique for displaying certain results, and – in parallel – for 

the verification of the computer model (frequently strange motions at the display tell much more on 

an error occurrence than tables of results). When simulation experiments are iterated into a so called 

simulation study [1,2], e.g. for optimizing a designed system, the study is a certain image of a 

physically creative activity in which one creates a certain entity P1 of the real world, observes it, 

then – instructed by that watching – destroys it and replaces it by a different entity P2, observes it, 

etc. until being satisfied during observing an entity Pk. Note that the entities should exist and be 

observed all in the same world time and thus the process of their changing does not correspond to 

any visible or imaginable by the humans living in real time and therefore, the animation of a very 

simulation study does not help at all.   

The animation by means of fine multicolor graphics became very popular in computer games and 

animated cartoons generated at digital systems. It is of no use in computer simulation of all sorts 

(digital, analog, hybrid, real time, etc.), but its position is double-edged in that domain: as it was 

mentioned above, in some situation, the animation serves as good technique of displaying results, 

but in the other situation the simulation is extremely slowed down/delayed when joined with the 

animation. The conclusion is that the animation is suitable at the starting works on a simulation 

project (debugging the computer model, verifying it and possibly determining its validity domain). 

But in longer simulation experiments and/or in sophisticated simulation studies demanding 
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extremely long sequences of simulation experiments, the animation is not of use and should be 

eliminated in all its factors. 

This phenomenon leads to extremes that are not agreeable for the constructors of simulation 

models. There are special simulation software products with a rather flexible apparatus for 

animation. When using them, the constructor of a simulation model directly describes the 

computing process as a complement of what should happen at the display. In general, such a 

software product is always specialized to certain class of systems, so that it is difficult or even 

impossible to simulate the other ones. But also in case the system that is to be simulated belongs to 

the class for which the software product was designed, there are the following obstacles. In that 

case, the constructor’s work is rather easy but problems arise when the animation should be 

eliminated; often it happens that the animation has to be present during the computing that realizes 

the simulation model, but is hidden “inside the computer intestines” and only their end results are 

shown at the display. The demands on the rate of simulation experiments are then violated. 

The mentioned software products are designed especially for the situations when a customer 

demands a very prompt reaction of an operator, i.e. demands him to construct a running simulation 

model as soon as possible and demonstrates what it really runs. Naturally, in a great number of 

cases, the customer anticipates the model to be later fast and included in sophisticated simulation 

studies.  

In such a situation, there is no time enough to prepare a rather independent animation based on 

(fine) computer graphics, while applying a special animation software product mentioned above 

carries a real danger of fatal slowing down the following simulation studies. 

One of the techniques to clear the mentioned difficulty consists in applying pseudo-graphics, i.e. 

when animating the experiment only by means of alphanumerically structured display. For the 

model constructor, such a technique is of no use, particularly because of discovering a lot of 

programming errors. But a certain fine obstacle should be solved for it. The obstacle and its solving 

are described in the following sections. 

 

 

2 Inaccuracy of the Alphanumeric Display Grid 

 

The animation at the alphanumerically structured display in not as beautiful as that using full 

graphics but is a satisfying and simple tool used by the professionals in simulation. Among the 

aspects mentioned in the preceding section, it extremely satisfies a (psychologically conditioned) 

demand that the animation should give only such information that is necessary for the 

understanding of the simulation model behavior. 

Nevertheless, pseudo-graphics has an essential drawback, which consists in rounding space 

coordinates to a small set of values that are proportional to (i,j), where e.g. i passes through the 

integers 1 to 50 (line indexes) and j through the integers 1 to 80 (column indexes). Although for the 

human eyes such a rounding is not important it can introduce serious deviations into the computing 

process and thus into the results (data collected during the simulation experiments). Although the 

deviations may seem rather small (in percentage relations) they can essentially violate the 

information carried by the simulation, namely when it is to optimize some parameters or to 

anticipate some conflicts in the simulated system. Let the places of a simulation model, the 

coordinates of which are exactly proportional to the coordinates related to the places at the display, 

be called c-places, while the corresponding places at the display be called d-places. 

Note that in a rather superficial view, the rounding errors may seem irrelevant, because one could 

suppose the computing to pass in the most exact arithmetic of the applied computer while the 
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animation rounding would exist as the terminal phase which has no back influence on the 

previously passing exact computation. Nevertheless, in general that is often violated; the reason is a 

consequence of the offers to the operator to give some data directly through the animated scene at 

the display (e.g. to complete a traffic network by a – sometimes almost straight – way defined either 

by dragging a mouse or by giving display coordinates of some of its places). For example, a straight 

way so determined may be represented by a set of c-places that approximate the way from both 

sides and the sum of the distances between the mutually neighboring c-places can rather differ from 

the intended length of the way (namely in case the direction of the way image at the display is 

neither horizontal nor vertical).  

In any case, the objective is to make the programming of animation simple and both animation itself 

and the data arisen during the simulation experimenting clear as much as possible. 

 

 

3 Solving the Problem 

 

The problem can be solved by introducing special 

metrics that differs from the Euclidian one, 

proportional to that applied among the images 

appearing at the display. Note that such a technique can 

be simply applied to discrete event simulation, while it 

should be more elaborated in case of continuous 

systems simulation. 

If an entity E of the simulation model is introduced by 

an operator in a form of a set of c-places, the operator 

should declare also the extent (length,…) of E as a real 

number, independently of his drawing at the display. 

The simulation model then introduces a metrics into E 

in a form of an algorithm for computing the distances 

between mutually neighboring c-places so that the 

declaration expressed by the operator is respected. For 

example, if E is a way, the length of which is declared 

by the operator as D, the distances between the c-

places related to the d-places that represent E at the 

display are 

computed as D/(n –1) where n is the number of the d-

places that represent E at the display. Note that such a 

technique has a very large spectrum of possible applic-

ation, as the semantics of modern programming 

languages does not respect the axiom of extensionality. 

(In other words: in contrast to the conventional 

geometry, two pairs <q1,r1> and <q2,r2>, where q1 and 

q2 have the same values and so r1 and r2, can have 

different distances Di between their members qi and ri,, 

namely in case the pairs belong to the internal comput-

er representations of different entities E1 and E2.) In 

Fig. 1 an illustration (a snapshot of the display) of a 

rather simple animation is presented. Along the ways 

 

Fig. 1. A snapshot of the animation 

Fig. 2. Ground plan of the ways 
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displayed by means of their d-places represented by points, two sorts of objects (represented by # 

and romb) move and are served at places represented by letter O. Note that the real form of the 

ways is outlined in Fig. 2, where the double line represents a way where the objects can move in 

both orientations without conflicts.  

 

 

4 Conclusion 

 

The metrics can change in time; that can be applied for more detailed simulation of systems where 

the moving objects have a rather great freedom of motion at some places and an object moving in 

one orientation can limit (but not disable) the inverse motion of another object.  

Until recently, the authors have had no occasion and free time to analyze the implications of the 

described sort of the non-Euclidian metrics for the whole (two-dimensional) domains. It would be 

interesting to study e.g. what frontiers of such applications are given by commonly respected 

axioms introduced for metric spaces.         
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STABILITY   ANALYSIS   OF  STATE-SPACE   MODELS   IN  MATLAB 

 

KVAPIL  David,  (CZ) 

 

 

Abstract. Stability analysis is a very important task in the mathematical control theory and its 

practical application. Stability and performance are two of the fundamental issues in the design, 

analysis and evaluation of control systems. In engineering practice the control systems are 

designed so that stability is preserved in various classes of uncertainties – this property is known 

as the robust stability.  

During physics modelling and identification of the heat distribution and consumption in 

COMSOL® we build state-space models of elements of heat plant and of distribution network. 

We need to check or guarantee the stability of system matrices and polynomials. We present 

several own created m-files in MATLAB®. These procedures are useful for stability analysis of 

state matrices and polynomials. We demonstrate their using in concrete examples. 

 

Key words. Mathematical Control Theory, Stability, Robustness, State-Space Model, 

MATLAB  

 

Mathematics Subject Classification:  Primary 93D05, 93D09; Secondary 93A30. 

 

 

1 Classic Approach 

 

Consider continuous time (CT) or discrete time (DT), respectively, linear time-invariant (LTI) state-

space system  

( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

= +

= +

�

   

( ) ( ) ( )

( ) ( ) ( )

1x k Ax k Bu k

y k Cx k Du k

+ = +

= +

 

where t∈R , k∈Z , with diagonalizable matrix A . Consider homogenous (undriven, 0u ≡ ) 

system with unique equilibrium point at 0x = , provided A  has no eigenvalues at 0 or at 1, 

respectively, in CT or DT case. Then 

( ) ( ) ( )

1

e

e 0 0

e
n

t

At

t

x t x V Wx

λ

λ

⎛ ⎞

⎜ ⎟

= =
⎜ ⎟

⎜ ⎟

⎝ ⎠

� � ,      ( ) ( ) ( )

1

0 0

k

k

k

n

x k A x V Wx

λ

λ

⎛ ⎞

⎜ ⎟

= =
⎜ ⎟

⎜ ⎟

⎝ ⎠

� . 
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System is asymptotically stable iff (i.e. if and only if) (see [4.][5.][7.][8.][11.]) 

( )Re 0
i

λ <   or  1
i

λ < ,  

where 1,...,i n= , respectively, for CT or DT case. For ( )Re 0
i

λ =  or 1
i

λ =  is the system on 

stability domain boundary. Matrix A  is called Hurwitz or Schur (convergent) matrix, respectively, 

if all their eigenvalues have negative real part (for CT case) or their absolute values are less than 1 

(for DT case). Similarly for polynomials, all their roots must lie in the open left complex half plane 

or in the open unit disc. 

For stability analysis we can use direct Lyapunov method. [7.][8.] For undriven LTI system with 

Hurwitz matrix A  consider quadratic Lyapunov function 

( )
T

V x x Px= , 
n

x∈R , 

where P  is a symmetric matrix. Then ( )V x  is a positive definite function iff all eigenvalues of P  

are positive.  

The Lyapunov function of CT LTI system is  

( ) ( )
T T T T T T T T

V x x Px x Px x A Px x PAx x A P PA x x Qx= + = + = + = −
�

� �  

where ( )
T

Q A P PA= − +  is a symmetric matrix. If 0Q ≥ , then the equilibrium point at the origin is 

stable in the sense of Lyapunov; if 0Q > , then it’s globally asymptotically stable. In practice, the 

Lyapunov equation 
T

A P PA Q+ = −  is most often solved using properly chosen symmetric matrix 

0Q >  and then the positive definite solution P  is found. 

The Lyapunov function for DT LTI system is  

( ) ( ) ( )
T T T

V x V Ax V x x A PAx x PxΔ = − = −  

and then the Lyapunov equation is  
T

A PA P Q− = − . 

Input-output stability [4.] is defined for a system with input signal u  and output signal y  that is 

obtained from input through the action of an arbitrary operator H , so ( )y H u= . This system is 
p

l -

stable, { }1,2,p∈ ∞ , if there exists a finite C∈R  such that  

p p

y C u≤    for u∀ . 

 

The next two own created m-files in MATLAB – StabilSpoj.m, StabilDisk.m – find out all 

eigenvalues of the given matrix and determines about its stability for continuous-time case or 

discrete-time case, respectively. For example, if we have two matrices  

>> A = [1 2 1; -3 -2 -1; 1 2 -1]; B = [-1 -2 1; 3 2 1; 1 -2 -1]; 

then we obtain 

>> [lam] = StabilSpoj(A) 

lam = 

 -0.240803845501574 + 2.282705433037461i 

 -0.240803845501574 - 2.282705433037461i 

 -1.518392308996851                      

and 

>> [lam] = StabilDiskr(B) 

!!! Pozor, nestabilni vlastni cislo: !!! 

lam = 

  1.000000000000001 + 2.645751311064593i 

  1.000000000000001 - 2.645751311064593i 

 -2.000000000000000                      
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Consider now a real polynomial of degree n : 
2

0 1 2

( ) ...
n

n

p s p p s p s p s= + + + + . The even and odd 

parts of a polynomial ( )p s  are defined as 

2 4

0 2 4

( ) : ...
even

p s p p s p s= + + + ,  
3 5

1 3 5

( ) : ...
odd

p s p s p s p s= + + + . 

Define 

( )
2 4

0 2 4

( ) : ...
e even

P p j p p pω ω ω ω= = − + − ,   ( )
2 4

1

1 3 5

( ) : ...
o odd

j
P p j p p p

ω

ω ω ω ω= = − + − . 

( )
e

P ω  and ( )
o

P ω  are both polynomials in 
2

ω  and their root sets are symmetric with the respect to 

the origin of the complex plane. If the polynomial ( )p s is even, then 2n m=  and  

( ) ( )
2 4 2

0 2 4 2

... 1

m
e m

m

P p p p pω ω ω ω= − + − + − ,  ( ) ( )
1

2 4 2 2

1 3 5 2 1

... 1

m
o m

m

P p p p pω ω ω ω

−

−

−

= − + − + − ,  

if ( )p s  is odd, then 2 1n m= +  and
 

( ) ( )
2 4 2

0 2 4 2

... 1

m
e m

m

P p p p pω ω ω ω= − + − + − ,    ( ) ( )
2 4 2

1 3 5 2 1

... 1

m
o m

m

P p p p pω ω ω ω
+

= − + − + − .
 

We say that ( )p s  satisfies the interlacing property if 

a) 
2m

p  and 
2 1m

p
−

 (
2 1m

p
+

 and 
2m

p  for odd degree) have the same sign, 

b) all the roots of ( )
e

P ω  and ( )
o

P ω  are real and distinct and the m  positive roots of ( )
e

P ω  

together with the 1m −  (m  for odd degree) positive roots of ( )
o

P ω  interlace in the 

following manner: 
,1 ,1 ,2 , 1 , 1 ,

0
e o e e m o m e m

ω ω ω ω ω ω
− −

< < < < < < <…  

 ( 
,1 ,1 ,2 , 1 , 1 , ,

0 ...
e o e e m o m e m o m

ω ω ω ω ω ω ω
− −

< < < < < < < <  for odd degree). 

It is true that polynomial ( )p s  is Hurwitz iff satisfies the interlacing property. [1.] 

0 0.5 1 1.5
-50

0

50

100

150

200

 

Fig.1: Interlacing Property 

 

We can create MATLAB m-file prolozeni.m for visual check of interlacing property of the given 

polynomial p ; it shows the plot of even and odd part on chosen interval [ , ]a b . For polynomial 

( )
9 8 7 6 5 4 3 2

11 52 145 266 331 280 155 49 6p s s s s s s s s s s= + + + + + + + + +  we obtain 

>> [ZN,MatKor]=prolozeni(p,0,1.5) 

Lichy stupen polynomu 

Stejna znamenka pilotnich prvku 

ZN = 

   1 

MatKor = 



 

 

 

�������	
	������	��	�������	�����������	

 

�� �������	�
��������������

 

 

192 

 0.467310293305617   0.206141479511966 

 1.067193472969362   0.758664022543542 

 2.060665492162864   1.462642769866516 

 6.811488597247398   3.228688418057410 

 

Let now ( )p s  be a real polynomial with positive coefficients 
0 1

( ) ...
n

n

p s p p s p s= + + + , 0
i

p >  for 

0,1,...,i n= . With 
1n n

p pμ
−

= , we define a polynomial q  of degree 1n −  

( ) ( )
1 2 3 4

1 2 3 3 4 5

( ) ...
n n n n

n n n n n n

q s p s p p s p s p p sμ μ

− − − −

− − − − − −

= + − + + − + . 

If ( )p s  has all its coefficients positive, then ( )p s  is stable iff ( )q s  is stable. [1.] 

This lemma shows how the stability of polynomial ( )p s  can be checked by successively reducing 

its degree as follows: 

1. Set ( ) ( )
0

p s p s= . 

2. Verify that all the coefficients of ( )
i

p s  are positive. 

3. Construct ( ) ( )
1i

p s q s

+

= . 

4. Go back to step 2 until you either find that any 2 is violated (then ( )p s  is not Hurwitz) or 

until you reach the polynomial which is of degree 2 and in which case condition 2 is also 

sufficient (then ( )p s  is Hurwitz). 

We created MATLAB m-file HurwStabTest.m which implements the previous algorithm. 

>> [q] = HurwStabTest(p) 

q = 

   59.348073576796203  30.397036437968922   6.000000000000000 

Reseni: Polynom je stabilni 

 

 

2 Alternative Approach 

 

If we have large-scale systems, where exists very big matrices and many eigenvalues, we can solve 

this stability problem by application of the next theorem and using Linear Matrix Inequalities 

(LMI), without computing eigenvalues. 

Let 
n n

A

×

∈R . The following statements are equivalent: [11.] 

1. A  is Hurwitz. 

2. For each 
n n

Q
×

∈R , there is the unique solution P  of the Lyapunov matrix equation 

T

A P PA Q+ = ; and if 0Q <  then 0P > . 

3. There is some 0P >  such that 0

T

A P PA+ < . 

4. There is some 0P >  such that ( ) :
T

V x x Px=  is a Lyapunov function for the system x Ax=� . 

A linear matrix inequality (LMI) has a form [2.]  

( )
0

1

: 0

m

i i

i

F x F x F

=

= + >∑ , 

where ( )
1

,...,

m

x x x=  is the variable and the symmetric matrices 
T n n

i i

F F

×

= ∈� , 0,1,...,i m= , are 

given. The inequality symbol means that ( )F x  is positive definite. The nonstrict LMI has a form 

( ) 0F x ≥ . The LMI is a convex constraint on x  (i.e. the set ( ){ } | 0x F x >  is convex).  
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We can create MATLAB m-files LjapC.m (for CT case) and LjapD.m (for DT case) and apply an 

elementary algebraic test to determine whether the matrix is Hurwitz. Given a real matrix A , set up 

the linear matrix equation 
T

A X XA I+ = −  and solve for symmetric X . If no solution exists, then 

A  is not Hurwitz. If a solution X  is found, we check whether it is positive definite. If 0X > , then 

A  is Hurwitz. If not, either the solution is not unique or the unique solution is not positive definite, 

so we know that A  is not Hurwitz. 

 

 

3 Robust Stability 

 

In dynamic models of real systems we usually need to consider some uncertainties that occur 

because of the uncertain physical parameters and the unstructured or structured dynamic 

uncertainty. We understand the uncertainty as a discrepancy between the mathematical model and 

the real object. Reasons for uncertainty may be different. Models of uncertainty can be divided into 

parametric, dynamic unstructured, structured and mixed. The dynamic uncertainty is usually 

expressed by the transfer of uncertainty ( )W ω Δ , where Δ  is arbitrary stable transfer function 

satisfying ( )sup 1j

ω

ω

∞

Δ = Δ ≤  and the stable proper rational weighting term W  is used to 

represent any information about the accuracy of the nominal plant model varies as a function of 

frequency. Additive or multiplicative characterization of uncertainty, respectively, is [5.] 

( ) ( ) ( )
n a a

G s G s W s= + Δ ,  ( ) ( )( ) ( )1
m m n

G s W s G s= + Δ , 

where 
n

G  is the nominal model transfer. Consider a feedback system with an open-loop transfer 

function  

( ) ( ) ( ) ( ) ( )
n

L s G s W s s K s= + Δ⎡ ⎤
⎣ ⎦

  or  ( ) ( )( ) ( ) ( )1
n

L s W s G s K s= + Δ  

in additive uncertainty case or in multiplicative uncertainty case, respectively, where 

( ) ( ) ( )
n n

L s G s K s=  is the nominal open-loop transfer function.  

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.5

1

1.5
Prubeh absolutni hodnoty

 

Fig.2: Multiplicative Robust Stability 

 

We realize stability analysis using the Nyquist criterion (see [6.][14.]): A robust stability can be 

guaranteed if the system is stable for the nominal plant 
n

G  and (for additive or multiplicative 

uncertainty case, respectively) 



 

 

 

�������	
	������	��	�������	�����������	

 

�� �������	�
��������������

 

 

194 

( ) ( )

( ) ( )

1

 1
n

W j K j

G j K j

ω ω

ω ω

<

+

   or  
( ) ( ) ( )

( ) ( )

1

1

n

n

W j G j K j

G j K j

ω ω ω

ω ω

<

+

   for ω∀ ∈R .  

It is used in the following MATLAB procedures AditRob.m and MultRob.m. We created them for 

determination and visual test of stability for additive and multiplicative structures of uncertainties, 

respectively. Consider transfer functions  

( )

( )

a s

W

b s

= , 
( )

( )

c s

K

d s

= , 
( )

( )

e s

G

f s

=  

where , , , , ,a b c d e f  are polynomials of the same degree. Then for the input 

>> a=[0 5 -1];b=[1 -1 2];c=[0 0 1];d=[1 0 -2];e=[0 0 2];f=[2 2 3]; 

we obtain (see Fig.2) 

>> MultRob(a,b,c,d,e,f) 

Neni stabilni 

 

 

4 Parametric Uncertainty 

 

The vector of real indeterminate (perturbative) parameters 
k

q∈R  is used for the description of a 

system with a parametric uncertainty. If the parameter q  is bounded by the given set Q  we speak 

about a family of systems. The family of polynomials has a form ( ) ( ){ }, , :P s q p s q q Q= ∈  and we 

assume that it has invariant degree and is continuous with respect to q  on a fixed interval. There 

exist several possible structures of parameters. [1.] 

Let S  be an open set in the complex plane representing the stability region and let S∂  denote its 

boundary. Suppose ( )
1

sδ  and ( )
2

sδ  are real polynomials of the degree n . Let  

( ) ( ) ( ) ( )
1 2

: 1s s s
λ

δ λδ λ δ= + −  

and consider the following one-parametric family of polynomials  

( ) ( ) ( ) [ ]{ }
1 2

, :  0,1s s s
λ

δ δ δ λ= ∈⎡ ⎤
⎣ ⎦

 

called a segment of polynomials. We say that the segment is stable iff every polynomial in the 

segment is stable.  

Bounded Phase Lemma says: [1.] Let ( )
1

sδ  and ( )
2

sδ  be stable with respect to S  and assume that 

degree of ( )s
λ

δ  is n  for all [ ]0,1λ∈ . Then the following are equivalent: 

1. The segment ( ) ( )
1 2

,s sδ δ⎡ ⎤
⎣ ⎦

 is stable with respect to S . 

2. ( ) 0s
λ

δ

∗

≠  for all s S

∗

∈∂ ; [ ]0,1λ∈ . 

3. ( ) ( )
1 2

s s
δ δ

φ φ π
∗ ∗

− ≠  for all s S

∗

∈∂ . 

4. The complex plane plot of ( ) ( )
1 2

s sδ δ

∗ ∗

, for s S

∗

∈∂ , does not cut the negative real axis. 

In creation of m-file SegmentTest.m we use the part 3 of the previous theorem and construct visual 

test of stability of polynomial segment. For two polynomials ( )
3 2

1 4 3 1p s s s s= + + +  and 

( )
3 2

2 6 4 2p s s s s= + + +  we obtain  

>> [r1,r2] = SegmentTest(p1,p2); 
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and we can see (Fig.3) that our polynomials create stable segment. If the difference between phases 

reaches π , the m-file warns us. 

 

0 100 200 300 400 500 600
-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 

Fig.3: Phase difference of the endpoints of a stable segment 

 

Segment Lemma says: [1.] Let ( )
1

sδ  and ( )
2

sδ  be the real Hurwitz polynomials of degree n  with 

leading coefficients of the same sign. Then the line segment of polynomials ( ) ( )
1 2

,s sδ δ⎡ ⎤
⎣ ⎦

 is 

Hurwitz stable iff there exist no real 0ω >  such that  

( ) ( ) ( ) ( )
1 2 2 1

0

e o e o

δ ω δ ω δ ω δ ω− = ,  ( ) ( )
1 2

0

e e

δ ω δ ω ≤ ,  ( ) ( )
1 2

0

o o

δ ω δ ω ≤ . 

This is used in m-file SegmentLemma.m where we test the stability of our two polynomials ( )1p s  

and ( )2p s . This procedure returns the polynomial 
1 2 2 1

e o e o

P p p p p= −  and its roots. 

>> [P,rP] = SegmentLemma(p1,p2) 

Pilotni prvky obou polynomu maji stejne znamenko 

Neexistuji realne koreny polynomu P = P1even*P2odd – P2even*P1odd 

P = 

   -2     0     3     0    -2 

rP = 

  0.935414346693486 + 0.353553390593273i 

  0.935414346693486 - 0.353553390593273i 

 -0.935414346693485 + 0.353553390593274i 

 -0.935414346693485 - 0.353553390593274i 

Reseni: Usecka polynomu je stabilni 

 

Let now have given a stability region in the complex plane and a nominal stable polynomial. We 

want to find the largest region in the coefficient space around the nominal polynomial where the 

stability property is maintained. Now we describe the procedure to determine the maximal stability 

region in the space of coefficients of a polynomial. [1.] Let the stability region S  be any given open 

set of the complex plane C , S∂  its boundary and 
0

U  the interior of the closed set U S= −C . 

Assume that these three sets S , S∂  and 
0

U  are nonempty. For any given n , the set 
n

P  of real 

polynomials of degree less than or equal to n  is a vector space of dimension 1n + . Let  .  be an 

arbitrary norm defined on 
n

P . The open balls induced by this norm or hypersphere, respectively, are 

of the form 

( )( ) ( ) ( ) ( ){ }
0 0

, :
n

B P s r P s P P s P s r= ∈ − < ,     ( )( ) ( ) ( ) ( ){ }
0 0

, :
n

S P s r P s P P s P s r= ∈ − = . 
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For the given polynomial ( )sδ  of degree n  with all its roots in S , there exists a positive real 

number ε  such that every polynomial contained in ( )( ),B sδ ε  is of degree n  and has all its roots 

in S . Thus let ( )
0

.d  denotes the degree of a polynomial, we have the following property 

( ) ( ) ( )( ) ( )
0

     has all its roots in s s d s n s Sβ δ ε β β− < ⇒ = ∧ .             (*) 

For the stable polynomial ( )sδ  consider the subset of all positive real numbers having property (*) 

{ }: : 0,   satisfies property (*)R t t t
δ

= > . 

R
δ

 is in fact an interval ( )(0,ρ δ ⎤
⎦

 where ( ) sup  

t R

t

δ

ρ δ

∈

= ; ( )ρ δ  is finite and satisfies property (*).  

It can be shown (see [1.]) that for the given polynomial ( )sδ , of degree n , having all its roots in 

S , there exists a positive real number ( )ρ δ  such that: 

a) Every polynomial contained in ( ),B δ ρ  has all its roots in S  and is of degree n . 

b) At least one polynomial on the hypersphere ( ),S δ ρ  has one of its roots in S∂  or is of 

degree less than n . 

c) However, no polynomial lying on the hypersphere can ever have a root in 
0

U . 

 

Consider on 
n

P  for polynomials ( )
0 1

...

n

n

p s p p s p s= + + +  and ( )
0 1

...

n

n

r s r r s r s= + + +  the usual 

inner product and associated Euclidian norm  

( ) ( )
0 0 1 1

0

, ...

n

n n i i

i

p s r s p r p r p r p r

=

= + + + =∑ ,       ( ) ( ) ( )
2

2 2 2

0 1
2

, ...

n

p s p s p s p p p= = + + + . 

Let 
0

Δ  be the subset of elements ( )p s  on 
n

P  such that ( )0 0p = . Dually, let 
n

Δ  be the subset of 

all elements ( )p s  on 
n

P  that are of degree less than n . For each real 0ω ≥  we can consider the 

subset 
ω

Δ  of all elements of 
n

P  which are divisible by 
2 2

s ω+ . For the given stable polynomial 

( )
0 1

...

n

n

s s sδ δ δ δ= + + +  we denote 
0

d , 
n

d  and d
ω

 the distances (orthogonal projection)  from 

( )sδ  to the subspaces 
0

Δ , 
n

Δ  and 
ω

Δ  respectively. Finally let us define 
min

0

: infd d
ω

ω≥

= . 

It can be shown (see [1.]) that the radius of the largest stability hypersphere around a stable 

polynomial ( )sδ  is given by  

( ) ( )
0 min

min , ,
n

s d d dρ = . 

It is easy to prove that 
0 0

d δ=  and 
n n

d δ= . The main problem is to compute 
min

d ; but d
ω

 can be 

obtained in closed-form for any degree n . [1.] For arbitrary stable polynomial ( )sδ  of degree n , 

consider separation ( ) ( ) ( )
even odd

s s sδ δ δ= + . Then the distance 
min

d  between ( )sδ  and 
ω

Δ  is 

given by: 

for 2n p= :  

( ) ( )

( )

2 2

2

4 4 4 14

1 ... 1 ...

e o

p p

d
ω

δ ω δ ω

ω ω ω ω

−

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

= +

+ + + + + +

, 

for 2 1n p= + :  

( ) ( )

2 2

2

4 4

1 ...

e o

p

d
ω

δ ω δ ω

ω ω

⎡ ⎤ ⎡ ⎤+
⎣ ⎦ ⎣ ⎦

=

+ + +

. 
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Having this expressions for d
ω

, the next step is to find 
min

d . It can be shown (see [1.]) that we do 

not need to minimalize on the infinity interval but we can confine to the interval [ ]0,1 . It is true that  

[ ] [ ]

2 2 2

min 1

0,1 0,1

min inf , infd d d
ω ω

ω ω∈ ∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

. 

Supposing we have a procedure ( )DMIN δ  which takes the vector coefficients δ  as input and 

returns the minimum of 
2

d
ω

 over [ ]0,1 . Then the following algorithm will compute 
min

d : 

1. Set ( )
0 1 1

, ,..., ,

n n

δ δ δ δ δ
−

= . 

2. First call: ( )
1

=DMINd δ . 

3. Switch: set ( )
1 1 0

, ,..., ,

n n

δ δ δ δ δ
−

= . 

4. Second call: ( )
2

=DMINd δ . 

5. ( )
min 1 2

=min ,d d d . 

The previous algorithm was used in creation of m-file StabBall.m which finds out the stability 

range of the given stable polynomial. For our polynomial ( )p s  we obtain  

>> [rho] = StabBall(p) 

rho = 

1 

 

Consider now the set ( )P s  of real polynomials of the degree n  of the form 

( )
0 1

...

n

n

p s q q s q s= + + +  where the coefficients lie within the given ranges, 

0 0 0

,q q q

− +

⎡ ⎤∈
⎣ ⎦

, 
1 1 1

,q q q

− +

⎡ ⎤∈
⎣ ⎦

, …, ,

n n n

q q q

− +

⎡ ⎤∈
⎣ ⎦

. 

Kharitonov’s theorem says (see [1.]) that every polynomial in the family ( )P s  is Hurwitz iff the 

following four (Kharitonov) polynomials are Hurwitz: 

( )
2 3 4 5 6

1 0 1 2 3 4 5 6

...K s q q s q s q s q s q s q s
− − + + − − +

= + + + + + + + , 

( )
2 3 4 5 6

2 0 1 2 3 4 5 6

...K s q q s q s q s q s q s q s
− + + − − + +

= + + + + + + + , 

( )
2 3 4 5 6

3 0 1 2 3 4 5 6

...K s q q s q s q s q s q s q s
+ − − + + − −

= + + + + + + + , 

( )
2 3 4 5 6

4 0 1 2 3 4 5 6

...K s q q s q s q s q s q s q s
+ + − − + + −

= + + + + + + + . 

We create m-file ParamRobu.m for determination of the stability of the polynomials from the 

family ( )P s . Input is ( )1 2n + × -matrix where i -th row corresponds with the coefficient 
( )1n i

q
+ −

. 

>> mat = [0.5 1.5; 3 4; 1 2; 0.5 1]; 

This means that we have the polynomial ( ) [ ] [ ] [ ] [ ]
3 2

0.5 ;  1.5 3 ;  4 1 ;  2 0.5 ;  1p s s s s= + + + . 

Outputs are Kharitonov polynomials and their eigenvalues. 

>> [K1,K2,K3,K4,rK1,rK2,rK3,rK4] = ParamRobu(mat); 

K1 stabilni 

K2 stabilni 

K3 stabilni 

K4 stabilni 

For example, the polynomial K1 and its eigenvalues: 

>> K1 

K1 = 

   1.500000000000   4.000000000000   1.000000000000   0.500000000000 
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>> rK1 

rK1 = 

 -2.450096589027711                      

 -0.108285038819478 + 0.352595247452171i 

 -0.108285038819478 - 0.352595247452171i 

 

 

Conclusion 

Stability is very important for the subsequent analysis of practical systems, such as structured 

singular values or Hankel analysis. Primarily the last three own created m-files in MATLAB® – the 

test of stability of a polynomial segment, the determination of a sphere of stability and the usage of 

Kharitonov Theorem – could be very useful for many practical tasks and real situations. This 

advanced and perspective approach could play a significant role in the applied mathematical control 

theory. 
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Abstract. When employing spatial data and information in decision-making processes, complex 

knowledge of their values is the prerequisite for assessing the credibility and accuracy of 

decisions made. By implementing the methods of value analysis and mathematical modeling it 

is possible to create an assessment system of spatial data complex usability. Based on input 

characteristics of the used spatial data and databases, quality characteristics and their changes 

can be calculated with the help of analytical methods. By comparing costs necessary for 

different variants of enhancement or for adjustment of database quality it is possible to optimize 

both the total usability and the costs put in securing the required.  

 

Key words. spatial data, GIS, quality assessment, utility value, mathematical modeling  
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1 Introduction 

 

Rather extensive databases of area-localized data utilized in a number of fields are created in the 

Czech Republic. Data model objects and phenomena of both natural and social character (water 

courses, settlement structure, atmospheric pressure, etc.). The created and utilized data always 

encompass a position element, which localizes objects and phenomena in a given reference 

coordinate system, and a thematic element, which describes qualities of the given objects and 

phenomena (e.g. the speed of a water course, number of inhabitants in a settlement, actual 

atmospheric pressure readings). The actual data may then be of both geographic and non-

geographic character (data on water courses contrasted with data on the transported cargo). The 

following text therefore uses predominantly the general term “spatial data” or “spatial information”. 

Basic localization databases are created by state administration bodies (Czech Office for Surveying, 

Mapping and Cadastre - COSMC, Army of the Czech Republic – ACR) and are intended for 

activities related to state functions, including command and control systems implemented in armed 

forces and in crisis management of individual components of the Integrated Rescue System (IRS). 

Spatial data are used not only for basic orientation in space but also as data for solving tasks 
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connected with actual decisions, e.g. geographic impact on combat and non-combat army activities 

in given environments, predictions of landscape damage under extreme meteorological conditions 

or emergencies, in cases of military threats to the state, etc. In a number of tasks the source data 

combine and based on mathematically or procedurally described processes, new data are created. 

 

 

2 Quality and Reliability of Spatial Data Concept   

 

Users of both source and newly created data should always obtain the actual spatial information and 

information on its quality. When assessing the quality, we may draw on the general scheme of 

quality components which assesses the production-technological aspects which affect technical 

functionality and the operational, security as well as reliability aspects related to the given 

utilization of a product or service (see Figure 1). 

When assessing spatial data and information it is necessary to modify the initial 

understanding of quality with regard to spatial determination of modeled objects and phenomena. 

The existing systems of spatial data assessment differ in relation to whether they assess technical 

parameters of data or technological impacts at play during their collection or whether they assess 

the resulting utility value determined by the quality of used information. Assessed technical 

parameters of data include the positional accuracy of information which is frequently determined by 

the mean positioning error or mean error in each co-ordinate axes. Thematic accuracy is also 

assessed. However, the actual assessment may be further complicated by the fact that thematic 

information may differ and that not all the assessed parameters may be known for a given object. 
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Fig.1: General components of quality assessment 

 

Generally, when formulating the issue of spatial data quality assessment and the resulting geo-

spatial information, one must draw on recommendations issued by international organizations, such 

as ISO, OGC and DGIWG which consistently deal with the development of geo-information 

science, as well as follow the INSPIRE (2) directive. These organizations and pools develop quality 

assessment systems for geo-spatial data. For example, according to the Guidelines for Implementing 

the ISO 19100 Geographic Information Quality Standards (1), it is necessary to assess quality as a 

complex issue which encompasses both production and customers/users (see Fig.2). 
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Figure 2: Reasons for Implementing Geographic Information Quality Standards  

(according to Jacobsson & Giversen, 2007) 

 

Technical functionality of spatial data is affected primarily by technological processes of geo-

spatial data preparation and production, which are determined by the used systems of data 

collecting and processing, the formats of recorded data, etc. Data included in a single database do 

not necessarily have to be collected by a single organization and with the help of a single 

technology. On the contrary, databases defined by a single conception are frequently created under 

various national and international co-operations but in reality these conceptions may be adjusted by 

production organizations to comply with standards on the one hand and to take into account the 

production organization’s technical and technological conditions on the other hand. This trend is 

apparent particularly in international projects (e.g. in cross-border spaces or such global projects as 

Vector Smart Map, Multinational Geospatial Co-Production Program and others) whose approaches 

to defining and modeling objects differ. An example of such different understanding of the 

significance of communications may be seen in the conditions of Central Europe and Afghanistan. 

 

The produced data are intended for consumption, which means they are to be used in concrete 

spatial analyses, planning and management. From the user’s perspective, systems for data 

evaluation are also highly important, particularly for their feature of utility value assessment (3). 

Technical functionality can be assessed generally without knowing the particular task, methodology 

or spatial information use. Other quality components, particularly reliability, must be assessed with 

relation to the given implementation in a given process. The paper (5) lists a definition of 

characteristics and quality parameters with regard to information on communication network which 

draws on ISO 19113 but is adapted to given purposes. According to (3), it is possible to assess the 

quality of spatial data and information according to the following criteria (see Table 1): 
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Table 1: Criteria of spatial data and information quality 

 

 

3  Mathematical Model of Quality Assessment   

 

From the previous text it follows that spatial data can be regarded as a product, which has its own 

purpose. However, for product evaluation purposes it is not sufficient to assess the product’s quality 

but also the degree of meeting user’s needs. In practice, method of value analysis (4), which 

objectifies the specification of meeting these needs both for products and services, is frequently 

used. Value analysis methods thus can be used for evaluating final products as well as for designing 

new products to assess individual variants. The analysis does not evaluate purely the degree of 

meeting consumer needs but also the costs inherent in securing them (financial, capacity, temporal 

and other costs). 

 

If value analysis is implemented in assessing the usefulness of spatial databases, it is necessary to 

be aware of all the relevant data characteristics as well as of relevant cost items. Should the 

publication’s recommendations (1) be fully accepted, the listed data characteristics should always 

constitute a part of meta-information on given used data and files in future. In case of inferred data, 

the characteristics should be automatically generated in the process of analyses. 

 

Data quality and their utility value will not be fully revealed until they are implemented. In this case 

it is necessary to assess not only their technical characteristics but also the reliability of their 

security (see Table 1). In processes which combine spatial data with another services, such as 

positioning services provided by global satellite-based navigation systems (GNSS, GPS) or inertial 

navigation systems (INS), it is necessary to asses both the reliability of the data themselves but also 

the reliability of securing the provided service. 
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4 Functionality of spatial data database 

 

For the analytical solution itself we may draw on combined methods applied from value analysis 

theory, reliability theory and contemporary mathematical, particularly from the fields of probability, 

mathematical statistics, differential calculus and applied theory of fuzzy logic.  

 

With regard to the application of value analysis theory, we may assess the utility value as a degree 

of digital spatial data database functionality (°F), which can be expressed by the following 

aggregate function: 

( )
552211664433
kpkpkpkpkpkpF ++=°  

 

where variable k
i 

expresses the main quality criteria and p
i
 represents the weights of individual 

criteria. As a rule, the main criteria are expressed as a set of partial criteria, which also have their 

own weights (for more refer to (3)). 

 

When assessing the utility of used part of a database, the ideal level of quality must be defined at 

first. This ideal level then works as a comparative etalon for expressing the level of meeting the 

individual criteria in the given assessed part of spatial database. Upon implementing the 

comparative etalon, the level of meeting the individual criteria may be assessed and consequently 

also the total utility value, or the degree of user function F. 

 

The level of meeting individual criteria can be generally expressed by the following formula: 

,

*

s

s

s

k

k

u =  

• k
s
 represents the value of meeting the s’th partial criterion, 

• k
s
* is the degree of meeting the s’th partial criterion or criteria of its sub-group under the 

comparative etalon. 

 

For example, the criterion of “technical quality of database” will reach the ideal value if all the 

relevant data are faultless, accurate and consistent. Individual parameters of partial criteria must 

have the following values: 

• α
211 

= α
212

 = 0, where α
211 

and α
212 

are percentage ratios of unknown or incomplete 

information on used source materials and methods of creating derived information; 

• 

s

i

h

n

n

−≥100100
22

 

• n is the declared number of all objects and phenomena recorded in the database, 

• n
22i 

is the number of objects and phenomena in the database whose horizontal and 

vertical accuracy meets the criteria of a given category, 

• h
s 
is the selected level of reliability in %; 

• 

s

h

n

n

−≥100100
23

 

• n is the declared number of all objects and phenomena in the database, 

• n
23

 is the number of objects and phenomena in the database whose attribute accuracy 

meets the criteria of a given category; 

• h
s
 is the selected level of reliability in %; 
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• n
24i 

= n, where n
24i  

represents the numbers of objects and phenomena in the database 

which are consistent with respect to individual tested topology characteristics; 

• n
25i

= n, where n
251  

represents the number of actually accomplished objects and 

phenomena in the database and n
252  

is the number of objects and phenomena with fully 

complemented attributes. 

 

Ideal values of individual partial criteria will then always equal 100 and the level of meeting 

criterion k
2 

for the used section of the database ( x
th  

recordable unit, e.g. a map sheet, used part of 

the database from a given area, etc.) can be calculated according to the following relation: 
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Reliability level expresses the degree of an individual service’s availability in a given time and 

space for a specific task or used service. Unlike other quality components, it is essential to always 

focus on reliability in terms of its specific use. For instance, for navigation systems it is necessary to 

draw on both correct geospatial data and the available GPS service, which enables to determine the 

immediate position of a GPS receiver. If the data are incomplete or incorrect, or if GPS signal is not 

available, navigation is interrupted or terminated. Other quality components can be dealt with either 

generally, i.e. for general use, or with regard to particular cases. Reliability level can be expressed 

by the following formula:  

100

6

66

x

x

pu

α

=  

 

where α
6
/100  is a percentage expression of the degree of unreliability for the availability of a given 

service or system as a whole. In this case, the entire used system is concerned. Should the reliability 

of individual system components be considered (e.g. GIS thematic layers, such as the layer of water 

bodies, settlements or road network), possibly also that of complementary services (reception of 

GPS signal), the ensuing formula shall be more complex. 

 

The total individual utility value (individual functionality) of a database’s used part is defined by 

the aggregate function: 

 

).(
552211664433

xxxxxxxx

upupupupupupFU ++=°=  

 

 

5 Change in Functionality of Spatial Database 

 

Owing to the fact that spatial databases can never be ideal, it is recommendable to assess the impact 

of the aggregate function’s individual components on changes in the database. In this case we may 

use derivatives of the U
x

 (°F) function according to individual variables, which express the levels of 
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meeting the given criteria. Generally, the impact of changes in meeting the main i
th  

criterion can be 

expressed in the following way: 

i

du

dU

Fd =°  

However, the degrees of meeting the main criteria are represented by functions of more variables. 

In order to express the value du
i
, it is possible to employ two methods depending on the required 

information structure. If the impact of individual variables on the total individual utility value 

should be assessed upon an assumption that all other variables are constant, derivations of function 

U must be expressed in the following way: 

dx

du

du

dU

Fd
i

i

=°  

where x is one of the given variables. 

 

In practice, a situation may arise that a number of factors may be changed at a time, e.g. the 

technical quality of database is changed in all its parameters – used methods of secondary data 

inference are improved, localization and attribute accuracy and data complexity are enhanced and 

simultaneously data are placed in a geo-database accessible to authorized users where all 

topological, thematic and temporal relations are well treated.  In this case it is recommended to 

express the value of du
i
 as the total differential of all the variables. 

 

Through mathematical modeling it is then possible to solve tasks of the following types: 

 

• how a change in a given partial parameter or several parameters of a database is reflected 

in its total usability; 

• which parameters need to be changed to achieve the required product functionality; 

• which parameters may be “degraded” owing to the fact that the product’s functionality is 

unnecessarily high. 

 

If economic calculations (e.g. by expressing investment value – financial, personnel or temporal) 

are added in the assessment system, it is possible to determine the optimal degree of product 

functionality for achieving the highest possible functionality while minimizing costs necessary for 

securing it. 

 

 

6 Relative cost efficiency 

 

Data base functionality degree is comparable to the cost necessary for provisions – direct material, 

direct wages, other direct expenditures (HW, SW, amortisation, costs for co-operations, tax and 

social payments etc.), research and development cost, overhead cost and others. Functionality and 

cost imply relative cost efficiency (RCE) calculated as follows: 

∑
=

°

=
n

i

i

N

F

RCE

1

. 

It is possible to find the most suitable option using RCE. The presented model functionality is 

shown in the following table and diagrams (Table 2 and Figure 2). 
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In the conditions of the Military Geographic and Hydro Meteorological Institute of the Army of the 

Czech Republic the working time and expenses for database up-dating are precisely specified. Next 

example is based on its standards.  

In the initial stage, the database degree of functionality is 0.5238. In cases 1 to 5, there are various 

attitudes to improve its properties – more database update (case 1), increased stored features amount 

(case 2), completing all missing features (case 3), completing all missing thematic properties (case 

4) and completing all missing features and thematic properties (case 5). The cases 4 and 5 proved as 

the most functional ones. But if expenses are calculated, case 3 is the most effective output. 

The described model doesn’t bring absolute solution, but it can represent a useful tool for DGI 

utility value assessment as well as for finding economic ways how to increase this value even under 

personnel or financial restrictions.  
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Table 2: Model of RCE calculation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: DGI functionality and RCE comparing 

 

The presented process is applicable to evaluation of present products as well as planned products. 

When this model is used for a present product, it is possible to optimise its characteristics. In the 

case of a planned product, it is possible to assess various variants. 
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Relative cost efficiency (in 

currency units)
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7 Conclusion   

 

The proposed solution aims to enhance the efficiency of activities related to the use of non-

homogenous data and information in command and control systems to provide operation bodies not 

only with their own databases but also with a relevant base concerning the quality and credibility of 

the used data. This information allows them to draw on such data in their decision making and 

possibly to adjust their decisions correspondingly. 
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REALIZABITY OF THE ENDOMORPHISM MONOID
OF A SEMI-CASCADE FORMED

BY SOLUTION SPACES OF LINEAR ORDINARY
N-TH ORDER DIFFERENTIAL EQUATIONS

CHVALINA Jan, (CZ), CHVALINOVÁ Ludmila, (CZ)

Abstract. In this contribution there is solved a certain modification of the so called
“realization problem” discussed between C. J. Ewerett, J. von Neumann, E. Teller and
S. M. Ulam in the year 1948 coming from the field of the Einstein’s special relativity
theory. More precisely we construct a certain minimal extension of the action of the
aditive monoid of all non-negative integers on the phase set formed by n-dimensional
solution spaces of n-th order linear homogeneous ordinary differetnial equations allowing
to endowe the mentional phase set with a structure of an extensive join space, good-
endomorphism monoid of which coincides with the endomorphism monoid of the obtained
semi-cascade.
Key words and phrases. Linear n-th order ordinary differential operator, semi-cascade,
solution space of n-th order linear ordinary homogeneous differential equation.
Mathematics Subject Classification. Primary 34A30, 47D03, 47E05; Secondary 20N20.

This contribution is motivated by one classical realization problem following — according to
considerations due to R. Z. Domiaty [8] — from one discussion between Cornelius J. Ewerett,
John von Neumann, Edward Teller and Stanislaw M. Ulam in the year 1948 which core is lying
in the Einstein’s special relativity theory. In general, the classical realization problem can be
simply formulated in this way:

Given a concrete category C, a set X and a group G of permutations of the set X. Does
there exists an object (X, Ξ) ∈ C such that the automorphism group Aut(X, Ξ) = G? ([8, 9]). A
certain importand impuls cames from the relativity theory as the question whether it is possible
to change locally euclidean topologies in mathematical models of space-time by metrics or more
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generaly by topologies under the supposition of preservation of corresponding homeomorphism
groups.

The above mentioned problem can be considered as a question in the sense Felix Klein’s
“Erlangener Program” and, clearly, it can be modified for any concrete category or for arbitrary
pairs of concrete categories. It is to be noted as a certain specification of the above realization
problem — consists in the question under which conditions one mathematical structure can
be substituted by the other one with the same carrier such that actual monoids of mappings
carying morphisms of different categories coincide. More concretely in the book [13] there is
solved the following problem on pages 40–84:

Find a characterization of a set transformation f : X → X (or in another words a charac-
terization of a mono-unary algebra (X, f)) such that there exists a quasi-ordering ≤ on X with
the property

C(f) = SI(X,≤)

(or End(X, f) = SI(X,≤)), where C(f) = {g : X → X | g◦f = f ◦g} is the centralizer of f (i.e.
the endomorphism monoid of the mono-unary algebra (X, f)) within the full transformation
monoid of the set X and SI(X,≤) is the monoid of all strongly isotone self maps of the quasi-
ordered set (X,≤), i.e. such mappings f : (X,≤) → (X,≤) that for an arbitrary pair of elements
[x, y] ∈ X × Y we have f(x) ≤ y if and only if there is an element x′ ∈ X with property x ≤ x′

and f(x′) = y. Denoting by [x)≤ = {y ∈ X | x ≤ y} i.e. the principal end generated by the
element x ∈ X it can be easily shown that f is a strongly isotone self maps of (X,≤) if and only
if f

(
[x)≤

)
=
[
f(x)

)
≤ for any element x ∈ X. This concept is motivated by investigations of

Saul Aaron Kripke — [21, 22, 47] and the answer of the above formulated question is contained
in the below presented theorem. It is to be noted that professor Kripke has made fundamental
contributions to a variety areas of logic, and his name is attached to a corresponding variety of
objects and results.

Kripke semantics (also known as relational semantics or frame semantics) is a formal se-
mantics for non-classical logic systems created in the late 1950s and early 1960s by Saul A.
Kripke. A Kripke frame or modal frame is a pair 〈W,R〉, where W is a non-empty set, and R is
a binary relation on W . Elements of W are called nodes or worlds, and the relation R is known
as the accessibility relation. This is a binary relation between possible words which has very
powerful uses in both the formal/theoretic aspects of modal logic as well as in its applications
to thinks like epistemology and value theory ([47]). As in the classical model theory, there are
methods for constructing a new Kripke model from other models.

The natural homomorphisms in Kripke semantics are called p-morphisms (or pseudo-epi-
morphisms, but the latter term is rarely used). A p-morphism of Kripke frames 〈W,R〉 and
〈W ′, R′〉 is a mapping f : W → W ′ such that f preserves the accessibility relation, i.e. xRy
implies f(x)R′f(y), and whenever f(x)R′y there is a node y′ ∈ W such that xRy′ and f(y′) = y.
Notice that p-morphisms are special kind of so called bisimulations – [47].

In monography [13] chapt. I, § 3 p-morphisms are called strongly isotone mappings or strong
homomorphisms and such mapping can be characterized ([13], Proposition 3.3) as mappings
satisfying the condition:

For any x ∈ W , there holds R′(f(x)
)

= f
(
R(x)

)
. In words – the f -image of principal R-end

generating by the node x equals to the R′-end generated by the image f(x).
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Let us recall a realization theorem which is crucial for the main result of this contribution.
By SI(A, p) we denote the moniod of all strong endomorphisms of the quasi-ordered set (A, p),
i.e. ϕ ∈ SI(A, p) whenever ϕ(p(x)) = p(ϕ(x)) for any x ∈ A.

Let A �= ∅ be an infinite set and f : A → A be a mapping. Thus (A, f) is an infinite mono-
unary algebra, i.e. a unar – [44, 45]. It can be shown easily — see [13], p.23, that the relation
∼f on A defined by x ∼f y if and only if there exists a pair of nonnegative integers m,n ∈ N0

such that fm(x) = fn(y) is an equivalence (called also the Kuratowski-Whyburn equivalence
in literature). Here, as usually, N stands for the set of positive integers, N0 = N ∪ {0} and
Z denotes the set of all integers. The classes of this equivalence are called orbits of f . The
transformation f is connected if it has the only orbit. The following notation is overtaken from
[13].

Let f have only one orbit; for the transformation f we introduce realization types denoted
ret (f) and defined as there follows:

The transformation f is of realization type

1. ret = τ1 if the set X has one element, i.e., (X, f) is a loop;

2. ret = τ2 if (X, f) is two elements cyclic unar, i.e., X = {a, b}, f(a) = b, f(b) = a;

3. ret = τ3 if f is a constant mapping and card X ≥ 2;

4. ret = τ4 if (X, f) ∼= (Z, v) where v is an unary operation v : Z → Z defined as follows:
v : (m) = m + 1 for each m ∈ Z;

5. ret = τ5 if f is an acyclic surjection which is not a bijection;

6. ret = τ6 if
(
f(X), f � f(X)

) ∼= (Z, v) and f(X) �= X;

7. ret = τ7 if
(
f(X), f � f(X)

) ∼= (N, v) and f−1
(
f(x)

)
= X\f(X) for any x ∈ X\f(X).

If the transformation f is not of any type τ1, . . . , τ7 we put ret(f) = τ0. Let the transfor-
mation f is not connected and (X, f) =

∑
α∈A

(Xα, fα) is its orbital decomposition. Then we set

ret(f) =
7∑

i=0

κiτi, where κi is a cardinal number of all components (Xα, fα) of unar (X, f), for

which ret(fα) = τi or κi = 0 if
{
α ∈ A; ret(fα) = τi

}
= ∅.

Example 1 Let p : R → R, q : R → R be functions defined as follows: p(x) = 2x+1, q(x) = x2

for all x ∈ R. It is easy to verify that ret(p) = 2ℵ0τ4 = cτ4, ret(q) = τ1+τ3+2ℵ0τ6 = τ1+τ3+cτ3

holds.

Example 2 As usually, let us denote by R2[x] the three-dimensional space of all real polynomi-
als of at most second degree. Define a linear first-order differential operator L : R2[x] → R2[x]
by L(f) = df

dx
+ f for any polynomial f ∈ R2[x]. On pages 187, 188 in the book [13] there is

verified that ret(L) = 2ℵ0τ1 +2ℵ0τ4 = cτ1 + cτ4. Moreover, it follows from analysis of the orbital
structure of the operator L : R2[x] → R2[x] that it is conjugated to the function ϕ : R → R

defined by ϕ(x) = x for x ∈ R, x < 0 and ϕ(x) = x2, x ∈ R, x ≥ 0, i.e. mono-unary algebras
(R2[x], L), (R, ϕ) are isomorphic. Thus ret(L) = ret(ϕ). Notice, that literature devoted to this
field is [44, 45, 46].
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For an unar (A, f) we define a binary relation pf ⊂ A×A in this way: For x, y ∈ A there is
[x, y] ∈ pf whenever there exists a non-negative integer n �= 1 such that y = fn(x). It is easy
to see that p is a reflexive and transitive relation on A, i.e., a quasi-ordering. Moreover the
relation pf is antisymmetric, i.e. an ordering on A if and only if the transformation f : A → A
has at most one-element cycles.

The following theorem is contained in [13] Theorem 5.1 and Theorem 7.1.

Theorem 3 Let f : A → A be a mapping of the realization type ret(f) =
7∑

i=0

κiτi. Let T be a

tolerance relation on the set N(8) (= {1, 2, . . . , 7}, which is a reflexive and symmetrical cover
of the binary relation {

[n, 1]; n ∈ N(8)
} ∪ {[2, 3]

} ∪ {[4,m]; m = 5, 6, 7
}

.

The following conditions are equivalent:

1◦ The coefficient κ0 = 0 and for each pair of non-zero coefficient κi, κj from the combination
7∑

i=0

κiτi we have [i, j] ∈ T .

2◦ There holds End (A, f) = SI(A, pf ).

3◦ There exists a preorder p ⊂ A×A (i.e. a reflexive and transitive binary relation p on the
set A) such that End (A, f) = SI(A, p).

4◦ There exists a binary hyperoperation ∗ : A×A → P(A) such that (A, ∗) is a commutative
extensive hypergroup with the property End (A, f) = Gend(A, ∗).

Now recall some basic concepts from the hyperstructure theory and some facts about linear
ordinary second order differential operators.

Hypergroups and in particular join spaces play an important role in theories of various
mathematical structures and their applications. The concept of a join space was introduced
by Walter Prenowitz and used by him and James Jantosciak to reconstruct several branches of
geometry — [30], [31], [32]. The other fields of applications of join spaces are lattices, graphs,
ordered sets and automata. Noncommutative join spaces form an interesting subclass of the
class of transposition hypergroups which satisfies a postulated property of transposition [30],
[31]. More precisely, if H is a set, P(H) is the family of all subsets of H then a mapping
∗ : H ×H → P(H) is called a hyperoperation or join operation in H and the pair (H, ∗) is said
to be a hypergroupoid. The join operation is extended to subsets of H in a natural way, so that
for ∅ �= A ⊂ H, ∅ �= B ⊂ H the hyperproduct A∗B is given by A∗B =

⋃{a∗ b; a ∈ A, b ∈ B}.
The relational notation A ≈ B (read A meets B) is used to assert that the sets A and B have
nonempty intersection.

In H two hypercompositions right extension “/” and left extension “\” each being an inverse
to ∗ are defined by a/b = {x; a ∈ x ∗ b} and b\a = {x, a ∈ b ∗ x} . Hence x ≈ a/b if and only if
a ≈ x ∗ b and x ≈ b\a if and only if a ≈ b ∗ x.

Now a hypergroupoid (H, ∗) is called a hypergroup if it satisfies these axioms:
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1. a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ H (Associativity),

2. a ∗H = H = H ∗ a for all a ∈ H (Reproduction).

Moreover a hypergroup (H, ∗) is called a transposition hypergroup or a noncommutative join
space if

3. b\a ≈ c/d implies a ∗ d ≈ b ∗ c for all a, b, c, d ∈ H (Transposition).

Notice that the hypergroups (H, ∗) is said to be extensive if {a, b} ⊂ a ∗ b for any pair
a, b ∈ H.

By a quasi-ordered semigroup we mean a triple (G, •,≤), where (G, •) is a semigroup and
binary relation ≤ is a quasi-ordering (i.e is reflexive and transitive) on the set G such that for
any triple x, y, z ∈ G with the property x ≤ y also x • z ≤ y • z and z • x ≤ z • y hold. By
an ordered (semi) group we mean (as usually) a triple (G, •,≤), where (G, •) is a (semi)group
and ≤ is a reflexive, anti-symmetrical and transitive binary relation on G such that for any
triple x, y, z ∈ G property x ≤ y also x • z ≤ y • z and z • x ≤ z • y hold. By an inclusion
homomorphism we mean a mapping f : (G, •G) → (H, •H) such that f(a •G b) ⊂ f(z) •H f(b)
for all pairs a, b ∈ G and by Gend(H, ∗) we mean the monoid of all good endomorphisms of the
hypergroupoid (H, ∗), i.e ϕ ∈ Gend(H, ∗) if and only if ϕ(a ∗ b) = ϕ(a) ∗ ϕ(b). If the equalities
hold instead of inclusions the corresponding morphism is termed as a good homomorphism. A
bijective good homomorphism is an isomorphism.

Application of algebraic topological and geometrical methods of investigation of ordinary
differential equations and thier transformations belongs to characteristic approaches of the
school founded by Professor Otakar Bor̊uvka — [5], [38] – [43]. The outstanding representative
of the mentioned school Professor Frantǐsek Neuman wrote in his paper [40]: “Algebraic, topo-
logical and geometrical tools together with the methods of the theory of dynamical systems
and functional equations make it possible to deal with problems concerning global properties
of solutions by contrast to the previous local investigations and isolated results.” Influence of
mentioned ideas is a certain motivating factor of our investigations.

So, we consider linear ordinary differential operators of the form

Ln =
n∑

k=0

pk(x)Dk ,

where Dk = dk

dxk , pk(x) is a continuous function on some open interval J ⊂ R, k = 0, 1, . . . , n−1,
pn(x) ≡ 1, created equations Ln(y) = 0 which are linear homogeneous ordinary differential
equations of the form

y(n)(x) +
n−1∑
k=0

pk(x) y(k)(x) = 0 .

As usually, R stands for the set of all reals, J ⊂ R is an open interval (bounded or unbounded) of
real numbers, C

k(J) is the ring (with respect to usual addition and multiplication of functions)
of all real functions with continuous derivatives up to the order k ≥ 0 including. We write C(J)
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instead of C
0(J). For a positive integer n ≥ 2 we denote by An the set of all linear homogeneous

differential equations of the n-th order with continuous real coefficients on J , i.e.

y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y = 0 ,

(cf. [38] – [43]), where pk ∈ C(J), k = 0, 1, . . . , n − 1, po(x) > 0 for any x ∈ J (this is
not essential restriction). Denote L(p0, . . . , pn−1) : C

n(J) → C
n(J) the above defined linear

operator defined by

L(p0, . . . , pn−1)(y) = y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y

and put

LAn(J) =
{
L(p0, . . . , pn−1); pk ∈ C(J), p0 > 0

}
.

Further N0(n) = {0, 1, . . . , n − 1} and δij stands for the Kronecker δ, δij = 1 − δij. For any
m ∈ N0(n) we denote by LAn(J)m the set of all linear differential operators of the n-th order
L0(p0, . . . , pn−1) : C

n(J) → C(J), where pk ∈ C(J) for any k ∈ N0(n), pm ∈ C+(J), (i.e.
pm(x) > 0 for each x ∈ J). Using the vector notation �p(x) =

(
p0(x), . . . , pn−1(x)

)
, x ∈ J we

can write Ln(�p)y = y(n) +
(
�p(x), (y, y′, . . . , y(n−1))

)
(i.e. a scalar product).

We define a binary operation “◦m” and a binary relation “≤m” on the set LAn(J)m in this
way:

For arbitrary pair L(�p), L(�q) ∈ LAn(J)m, �p = (p0, . . . , pn−1), �q = (q0, . . . , qn−1) we put
L(�p) ◦m L(�q) = L(�u), �u = (u0, . . . , un−1), where

uk(x) = pm(x) qk(x) + (1− δkm) pk(x), x ∈ J

and L(�p) ≤m L(�q) whenever pk(x) ≤ qk(x), k ∈ N0(n), pm(x) = qm(x), x ∈ J .
Evidently,

(
LAn(J)m,≤m

)
is an ordered set. The paper [17] contains a sketch of the proof

of the following lemma.

Lemma 4 The triad (LAn(J)m, ◦m ≤m) is an ordered (noncommutative) group.

Denote by P(LAn(J)m

)∗
the power set of LAn(J)m consisting of all nonempty subsets of

the last set and define a binary hyperoperation

∗m : LAn(J)m × LAn(J)m → P(LAn(J)m

)∗
by the rule

L(�p) ∗m L(�q) =
{
L(�u); L(�p) ◦m L(�q) ≤m L(�u)

}
for all pairs L(�p), L(�q) ∈ LAn(J)m. More in detail, if �u = (u0, . . . , un−1), �p = (p0, . . . , pn−1),
�q = (q0, . . . , qn−1), then pm(x)qm(x) = um(x), pm(x)qk(x) + pk(x) ≤ uk(x) if k �= m, x ∈ J .
From results of [17] or from [13], Theorems 1.3 and 1.4 it follows that

(
LAn(J)m, ∗m

)
is a

(noncommutative) hypergroup.
Moreover, there holds the following Theorem [17] p. 283.
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Theorem 5 Let J ⊂ R be an open interval, 2 ≤ n be a positive integer. Let

LAn(J)m =
{
L(p0, . . . , pn−1); pk ∈ C(J), pm > 0

}
.

Then the hypergroup (LAn(J)m, ∗m) is a transposition hypergroup (i.e a non-commutative join
space) of linear ordinary differential operators of the n-th order.

By a semi-cascade is usually considered an action of the monoid (N0, +) (called a phase
semigroup) on a set X (called a phase set or a phase space) of this discrete dynamical system
i.e. it is a triad

(
X, (N0, +), δ

)
, where δ : X × N0 → X is a transition or evolution function

satisfying the usual conditions:

1. δ(x, 0) = x,

2. δ(δ(x,m), n) = δ(x,m + n),

for all x ∈ X and m, n ∈ N0. If f : X → X is an arbitrary transformation then the triad(
X, (N0, +), δf

)
, where δf (x,m) = fm(x) is called the semi-cascade determined by the unar

(X, f). Notice that a semi-cascade is a certain modification of the concept of an algebraic
space considered in [5].

We are going to construct a semi-cascade from the system of solution spaces of linear ho-
mogeneous ordinary differential equations. It is to be noted that from the general theory of
ordinary linear differential equations there is known that there exists one-to-one correspon-
dence between the set LAn(J) and the system VAn(J) of all n-dimensional solution spaces of
differential equations L(p0, . . . , pn−1)y = 0, L(p0, . . . , pn−1) ∈ LAn(J), i.e.

y(n) + pn−1(x)y(n−1) + · · ·+ p0(x)y = 0 ,

(cf. also results in the monography [39]). This correspondence can be used for the defining of
binary hyperoperation on the system VAn(J) such that this system endowed with the men-
tioned hyperoperation is a noncommutative semihypergroup (in particular the system VAn(J)m

corresponding to the hypergroup of n-order differential operators LAn(J)m creates a transpo-
sition hypergroup, i.e. a noncommutative join space). These multistructures are constructed in
papers [17, 25].

Now choose an arbitrary n-tuple Φ = [ϕ1, . . . , ϕn] ∈ C(J) × · · · × C(J) = C(J)n of lin-
early independent functions and denote by V0(ϕ1, . . . , ϕn) the (at most) n-dimensional linear
space with the above base ϕ1, . . . , ϕn over the field R. Denote by V

Φ
1 An the system of all

n-dimensional solution spaces V (p0, . . . , pn−1) of differential equations L(p0, . . . , pn−1)y = 0,
where pk ∈ V0(ϕ1, . . . , ϕn), k = 0, 1, . . . , n− 1, i.e.

V
Φ
1 An =

{
V (1)(p0, . . . , pn−1); pk ∈ V0(ϕ1, . . . , ϕn), k = 0, 1, . . . , n− 1

}
.

Further, let V
Φ
mAn be defined. Then define

V
Φ
m+1An =

{
V (q0, . . . , qn−1); qk ∈ V (m)(u0, . . . , un−1), k = 0, 1, . . . , n− 1,

V (m)(u0, . . . , un−1) ∈ V
Φ
mAn

}
.
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Put T
Φ
An =

{
V0(p0, . . . , pn−1)

} ∪
m∈N

V
Φ
mAn and consider a sequence of n-dimensional vector

spaces of continuous functions

V0(p0, . . . , pn−1) = V Φ
0 (J), V Φ

1 (J1), . . . , V
Φ
m (Jm), . . .

where {Jk; k ∈ N0} is a sequence of open intervals J0 = J , Jk+1 ⊆ Jk, Jk+1 �= Jk such that⋂
k∈N0

Jk is an open interval, and the space V Φ
m+1(Jm+1) is formed by all continuous functions

f : Jm+1 → R which are restrictions of functions g ∈ V Φ
m (Jm), m ∈ N0. Further denote

ET
Φ
An = T

Φ
An ∪ {V Φ

m (Jm); n ∈ N0} .

Define

FΦ : ET
Φ
An → ET

Φ
An by

FΦ(U) = V for all U ∈ T
Φ
An, V �= V0(p0, . . . , pn−1) ,

where V ∈ V
Φ
mAn is such a space that for some n-tuple of functions [u0, . . . , un−1], uk ∈ V

Φ
mAn

the space V is the solution space of the differential equation L(u0, . . . , un−1)y = 0, i.e. of the
equation

y(n) + un−1(x)y(n−1) + · · ·+ u1(x)y′ + u0(x)y = 0 .

Defining further

FΦ

(
V0(p0, . . . , pn−1)

)
= FΦ

(
V Φ

0 (J)
)

= V Φ
1 (J1)

and

FΦ

(
V Φ

m (Jm)
)

= V Φ
m+1(Jm) ,

then we obtain a mono-unary algebra (i.e. a unar) (ET
Φ
An, FΦ) with the below described

“realization” property.
Further, for any n-tuple Φ = [ϕ1, . . . , ϕn] ∈ C(J)n we construct the tree ET

Φ
An and the

mono-unary algebra (ET
Φ
An, FΦ). Put

(ET
Φ
An, F ) =

∑
Φ∈C(J)n

(ET
Φ
An, FΦ) ,

i.e. ET
Φ
An =

⋃
Φ∈C(J)n

ET
Φ
An with disjoint summands on the right-hand side of the equality and

FΦ is the restriction of the mapping F : ETAn → ETAn onto ET
Φ
An. As above we construct

the semi-cascade
(
ETAn, (N0, +), δF

)
by the putting

δF (V, 0) = V and δF (V,m) = Fm(V )

for any linear space V ∈ ETAn and any integer m ∈ N. Denoting by End
(
ETAn, (N0, +), δF

)
the endomorphism monoid of the semi-cascade

(
ETAn, (N0, +), δF

)
we get the following the-

orem. (Notice that a mapping h : ETAn → ETAn is an endomorphism of the semi-cascade
(ETAn, (N0, +), δF ) if for any pair [V,m] ∈ ETAn×N0 there holds h

(
δF (V,m)

)
= δF

(
h(V ),m

)
.)
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Theorem 6 There exists a binary hyperoperation “∗” on the phase set ETAn of the semi-
cascade (ETAn, (N0, +), δF ) with the following properties:

1◦ The hypergroupoid (ETAn, ∗) is an extensive commutative transposition hypergroup, i.e.
an extensive join space.

2◦ End(ETAn, (N0, +), δF ) = Gend(ETAn, ∗) (it is the monoid of all good endomorphisms
of the hypergroup (ETAn, ∗).)
Proof. Let J ⊂ R be an open interval. Since

card C(J) = card C(J)n = 2ℵ0 = c

and ret(ET
Φ
An, FΦ) = τ5 for any n-tuple Φ = [p0, p1, . . . , pn−1] ∈ C(J)n of functions we have

ret(ETAn, F ) = ret
( ∑

Φ∈C(J)n

(ET
Φ
An, FΦ)

)
= c · τ5 .

Then by Theorem 3 there exists a binary hyperoperation “∗” on the set ETAn such that
(ETAn, ∗) is an extensive commutative hypergroup with the property

End(ETAn, F ) = Gend(ETAn, ∗) .

Evidently End(ETAn, F ) = End
(
ETAn, (N0, +), δF

)
and from the proof of Theorem 5.1, p.

85–86 [13], i.e. Theorem 3 there follows that we can define V1 ∗ V2 =
{
F k(V1); k = 2, 3, . . .

} ∪{
F k(V2); k = 2, 3, . . .

} ∪{V1, V2}. By Theorem 6.1, p. 182, [13] the hypergroup (ETAn, ∗) is a
join space. �

Remark 7 If we consider a non-prolongated semi-cascade, say
(
T

Φ
An, (N0, +), δFΦ

)
, where

Φ = [ϕ1, . . . , ϕn] ∈ C(J)n, TΦ
An =

⋃
m∈N0

VmAn ,

V0(ϕ1, . . . , ϕn) =
{ n∑

k=1

λkϕk; [λ1, . . . , λn] ∈ R
n
}

,

and the mapping F : T
Φ
An → T

Φ
An is defined similarly as above with the only difference that

the space V0(ϕ1, . . . , ϕn) is its fixed point, i.e. F
(
V0(ϕ1, . . . , ϕn)

)
= V0(ϕ1, . . . , ϕn) then it is

not difficult to show (which also there follows immediately from Theorem 3) that for any binary
hyperoperation “◦” on the set T

Φ
An monoids

End
(
T

Φ
An, (N0, +), δFΦ

)
, Gend(TΦ

An, ◦)
are different. Of course, here as above δFΦ

(V,m) = Fm
Φ (V ) for any pair [V,m] ∈ T

Φ
An × N0.

Remark 8 Semi-cascades or cascades (actions of the group of all integres on phase spaces) are
special types of infinite automata called quasi-automata or automata without outputs. This is
why in References are papers belonging to the mentioned field — [1, 2, 11, 15, 16, 18, 19, 20,
23, 24, 25, 27, 29, 33, 34, 35, 36, 37].
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[3] BERÁNEK, J., CHVALINA, J.: From groups of linear functions to noncommutative trans-
position hypergroups. In: Dept. Math. Report Series Vol. 7, Univ. South Bohemia, České
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SOLVABILITY CONCEPTS
FOR INTERVAL SYSTEMS
IN MAX-PLUS ALGEBRA

MYŠKOVÁ Helena, (SK)

Abstract. In the algebraic structure (B,⊕,⊗), where

B = R ∪ {−∞}, a⊕ b = max{a, b}, a⊗ b = a + b,

the notation A⊗ x = b represents an interval system of linear max-plus equations, where
A = 〈A, A〉 and b = 〈b, b〉 are given matrix interval and vector interval, respectively.
Several types of solvability of interval systems are known. We summarize knowledge
about them and deal with relations among particular solvability concepts. In conclusions,
we describe the set of all solvability concepts by Hasse diagram.
Key words and phrases. max-plus algebra, interval system, solvability concepts

Mathematics Subject Classification. 15A06, 65G30.

1 Introduction

The last decades have seen a lot of attention given to study of simple systems of linear equations
in the form A⊗x = b, where A is a matrix, b and x are vectors of suitable dimensions, and one
or both of classical addition, and multiplication operations are replaced by maximum and/or
minimum. If addition and multiplication are replaced by maximum and addition, respectively,
we call this algebraic structure the max-plus algebra. One of questions, which we can deal with
in the max-plus algebra, is solving systems of linear equations. Systems of linear equations over
the max-plus algebra are used in several branches of applied mathematics. They can assist in
modelling and analysis of discrete event systems. Among interesting real-life applications let
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us mention, e.g., a large scale model of Dutch railway network or synchronizing traffic lights in
Delft [9].

However, when the matrix and vector entries are estimated incorrectly, the obtained the-
oretical results may become useless in practice, due to imprecise results. A possible method
of restoring solvability is to replace matrix A and vector b by a matrix interval and a vector
interval. Then we talk about an interval system of linear equations. The theory of interval
computations and in particular of interval systems in the classical algebra is already quite de-
veloped, see, e.g., the monograph [5] or [10, 11]. In the max-plus algebra, interval systems of
linear equations have been studied by K. Cechlárová and R. A. Cuninghame-Green [1, 3]. They
dealt with the weak, strong and tolerance solvability. An extension of their work are our papers
[6] -[8].

2 Preliminaries

Let (B,⊕,⊗) be an algebraic structure with two binary operations. (B,⊕,⊗) is called the
max-plus algebra, if

B = R ∪ {ε}, a⊕ b = max{a, b}, a⊗ b = a + b,

where ε = −∞.
Let m,n be given positive integers. Denote by M,N the sets of indices {1, 2, . . . , m},

{1, 2, . . . , n}, respectively. The set of all m×n matrices over B is denoted by B(m,n) and the
set of all column n-vectors over B by B(n).

If we multiply a matrix A ∈ B(m,n) by some vector x ∈ B(n) we get [A⊗ x]i = max
j∈N

{aij +

xj}. We shall consider the ordering ≤ on the sets B(m,n) and B(n) defined as follows:

• for A,B ∈ B(m,n) : A ≤ B if aij ≤ bij for all i ∈ M, j ∈ N ,

• for x, y ∈ B(n) : x ≤ y if xj ≤ yj for all j ∈ N .

It is easy to see that for each A,B ∈ B(m,n) and for each x, y ∈ B(n) holds:

if A ≤ B and x ≤ y, then A⊗ x ≤ B ⊗ y.

We call this property the monotonicity of the operation ⊗.
For the given matrix interval A = 〈A,A〉 with A,A ∈ B(m,n), A ≤ A and the given vector

interval b = 〈b, b〉 with b, b ∈ B(m), b ≤ b the notation

A⊗ x = b (1)

represents the set of all systems of linear max-plus equations of the form

A⊗ x = b (2)

such that A ∈ A, b ∈ b.
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The set A ⊗ x = b will be called an interval system of max-plus linear equations. Each
system of the form (2) is said to be a subsystem of system (1), if A ∈ A, b ∈ b. We say, that
an interval system has a constant matrix if A = A and has a constant right-hand side, if b = b.
A subsystem is called extremal, if each equation has the form [A ⊗ x]i = bi (LU equation) or
[A⊗ x]i = bi (UL equation).

The crucial role for the solvability of (2) plays the so called principal solution. Before its
definition, we add some conditions.

At first, we shall suppose that bi > ε for all i ∈ M in (2). To justify this assumption, we
show how to get rid of ε-s. Namely, denote by M0 = {i ∈ M ; bi = ε}. Then any solution x
of (2) has xj = ε for each j ∈ N0, where N0 = {j ∈ N ; aij �= ε for some i ∈ M0}. Therefore
it is possible to omit the equations with indices from M0 and columns of A with indices from
N0 and the solutions of the original and reduced systems correspond to each other by setting
xj = ε for j ∈ N0 in the former.

Secondly, we shall suppose thatA does not contain a column with full ε-s. Namely, denote
by N1 = {j ∈ N ; aij = ε for each i ∈ M}. Then xj can be arbitrary for each j ∈ N1. Therefore
it is possible to omit the columns of A with indices from N1 and the solutions of the original
and reduced systems correspond to each other by setting xj = x, x for all j ∈ N1, where x is
an arbitrary element from B.

By now, we can use the definition of the principal solution as follows:

x∗
j(A, b) = min

i∈M
{bi − aij} (3)

for each j ∈ N . The following assertions describe the importance of the principal solution for
the solvability of (2).

Lemma 2.1 [4, 13] Let A ∈ B(m,n) and b ∈ B(m) be given.

i) If A⊗ x = b for x ∈ B(n), then x ≤ x∗(A, b).

ii) A⊗ x∗(A, b) ≤ b.

Theorem 2.2 [3, 4] Let A ∈ B(m,n) and b ∈ B(m) be given. Then the system
A⊗ x = b is solvable if and only if x∗(A, b) is its solution.

To use the above arguments we shall suppose for interval system (1) that

• bi �= ε for each i ∈ M ,

• for each j ∈ N there exists i ∈ M such that aij �= ε.

3 Solvability concepts

We shall consider over the solvability of interval system on the ground of the solvability of
its subsystems. If we ask for the solvability of at least one subsystem we say about the weak
solvability which has been studied by K. Cechlárová [1]. K. Cechlárová and R. A. Cuninghame-
Green [3] dealt with the strong solvability which requires solvability of all subsystems. Another
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possibility studied in [1] is the tolerance solvability which asks for the existence a vector x ∈
B(n) such that for each A ∈ A the product A⊗ x belongs b. In this way we can define various
solvability concepts. Table 1 contains the list of all up to now defined types of a solvability in
the max-plus algebra. Some of them were defined in the classical algebra [10].

Table 1

Solvability concept Condition

Weak solvability (∃x∈B(n))(∃A∈A)(∃b∈b) :A⊗x=b
Strong solvability (∀A∈A)(∀b∈b)(∃x∈B(n)) :A⊗x=b

Tolerance solvability (∃x∈B(n))(∀A∈A)(∃b∈b) :A⊗x=b
Weak tolerance solvability (∀A∈A)(∃x∈B(n))(∃b∈b) :A⊗x=b
Control solvability (∃x∈B(n))(∀b∈b)(∃A∈A) :A⊗x=b
Weak control solvability (∀b∈b)(∃x∈B(n))(∃A∈A) :A⊗x=b
Universal solvability (∃x∈B(n))(∀b∈b)(∀A∈A) :A⊗x=b
Weak universal solvability (∀b∈b)(∃x∈B(n))(∀A∈A) :A⊗x=b
T4 solvability (∃b∈b)(∃x∈B(n))(∀A∈A) :A⊗x=b
T5 solvability (∃b∈b)(∀A∈A)(∃x∈B(n)) :A⊗x=b

These solvability concepts exclusive of the weak, strong and tolerance solvability are our defi-
nitions, studied in the papers [6, 7, 8].

3.1 Weak, strong and tolerance solvability

K. Cechlárová and R. A. Cuninghame-Green gave necessary and sufficient conditions for the
weak, strong and tolerance solvability.

Theorem 3.1 [1] Interval system (1) is weakly solvable if and only if

A⊗ x∗(A, b) ≥ b. (4)

Theorem 3.2 [2] Interval system (1) is strongly solvable if and only if all its extremal subsys-
tems with exactly one LU equation are solvable.

Theorem 3.3 [1] Interval system (1) is tolerance solvable if and only if

A⊗ x∗(A, b) ≥ b. (5)

3.2 Universal, weak universal and weak tolerance solvability

These solvability concepts have been studied by H. Myšková [6, 7]. The following lemma gives
a necessary condition for the universal solvability.

Lemma 3.4 [6] If interval system (1) is universally solvable then b = b.
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Theorem 3.5 [6] Interval system (1) with a constant right-hand side b = b = b is universally
solvable if and only if

A⊗ x∗(A, b) = b, (6)

and in this case x∗(A, b) is the maximum universal solution.

To formulate a necessary and sufficient condition for the weak universal and weak tolerance
solvability we assign for each p ∈ M the matrix A(p) defined as follows:

a
(p)
ij =

{
aij for i = p, j ∈ N,

aij for i ∈ M, i �= p, j ∈ N.
(7)

Theorem 3.6 [7] Interval system (1) is weakly universally solvable if and only if

A⊗ x∗(A, b(p)) = b(p) (8)

for each p ∈ M .

Theorem 3.7 [6] Interval system (1) is weakly tolerance solvable if and only if

A(p) ⊗ x∗(A(p), b) ≥ b (9)

for each p ∈ M .

3.3 Control and weak control solvability

Control solvability over the classical algebra were defined and studied by S. P. Shary [12].

Theorem 3.8 [7] Interval system (1) is control solvable if and only if

A⊗ x∗(A, b) ≥ b. (10)

For each p ∈ M denote by b(p) the vector with the following entries

b
(p)
i =

{
bi for i = p,

bi for i �= p, i ∈ M.
(11)

Theorem 3.9 [7] Interval system (1) is weakly control solvable if and only if

A⊗ x∗(A, b(p)) ≥ b(p) (12)

for each p ∈ M .

All above given necessary and sufficient conditions can be verified in a polynomial time.
The residual solvability concepts – T4 and T5 solvability can be tested using pseudopolynomial
algorithms.
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3.4 T4 and T5 solvability

We dealt with T4 and T5 solvability in [8]. Some assertions adduced there are improved in this
subsection.

Definition 3.10 A vector b ∈ b is called a T4-vector of interval system (1) if there exists
x ∈ B(n) such that A⊗ x = b for each A ∈ A.

By definition, T4 solvability of interval system (1) means that there exists a vector b ∈ b such
that b is T4-vector of (1).

Lemma 3.11 [8] A vector b ∈ b is a T4-vector of interval system (1) if and only if

A⊗ x∗(A, b) = b. (13)

Lemma 3.11 implies the following necessary, but not sufficient condition for the T4 solvability.
Denote Mj = {i ∈ M : aij = aij} for each j ∈ N .

Lemma 3.12 If interval system (1) is T4 solvable, then ∪
j∈N

Mj = M .

Proof. Suppose that ∪
j∈N

Mj �= M , i.e., there exists r ∈ M such that arj < arj for each j ∈ N .

Let b ∈ b be an arbitrary vector. Then

[A⊗ x∗(A, b)]r = max
j∈N

{arj + x∗
j(A, b)} = max

j∈N
{arj + min

i∈M
{bi − aij}} ≤

max
j∈N

{arj + br − arj} ≤ br + max
j∈N

{arj − arj} < br.

As equality (13) is not fulfilled in the r-th row, the vector b is not T4-vector of (1). By reason
of the vector b was chosen arbitrarily, there does not exist a T4-vector of interval system (1),
so it is not T4 solvable.

Lemma 3.11 does not give the method for finding a T4-vector. For this reason, we define a
sequence {c(k)}∞k=0 as follows:

c(k) =

{
b for k = 0,

A⊗ x∗(A, c(k−1)) for k ≥ 1.
(14)

Lemma 3.13 [8] Let b ∈ b be a T4-vector of interval system (1). Then

i) the sequence {c(k)}∞k=0 is nonincreasing,

ii) for each nonnegative integer k the inequality b ≤ c(k) is satisfied.

Theorem 3.14 [8] Interval system (1) is T4 solvable if and only if there exists a positive integer
l such that c(l) ∈ b and c(l+1) = c(l).
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The previous theorem implies the following algorithm:

Algorithm 1
Input: A, b
Output: YES, if the given interval system is T4 solvable and NOT, if it is not T4 solvable.

Step 1. If ∪
j∈N

Mi �= M , then write NOT, go to END.

Step 2. c(0) = b, k = 0.
Step 3. c(k+1) = A⊗ x∗(A, c(k)).
Step 4. If b ≤ c(k+1) does not hold, then write NOT, go to END.
Step 5. If c(k+1) = c(k), then write YES, c∗ = c(k), go to END.
Step 6. k = k + 1, go to Step 3.
END

Corollary 3.15 If interval system (1) is T4 solvable, then the vector c∗ given by Algorithm 1
is the maximum T4-vector of (1).

Now, we shall deal with the computational complexity of this algorithm. The most time-
consuming is Step 3 which requires O(mn) operations. The question which arise is the number
of repetitions of the loop 3–6 till the algorithm gives answer. This number is bounded by the
number of different vectors b(k). Suppose that elements of matrices A,A and vectors b, b are
integers. As the sequence b(k) is nonicreasing, the number of repetitions of the loop 3 – 6 is
bounded by K ·m, where K = max

i∈M
{bi−bi}. Hence the complexity of Algorithm 1 is O(K ·m2n).

So Algorithm 1 is pseudopolynomial.

Definition 3.16 A vector b ∈ b is called a T5-vector of interval system (1) if for each A ∈ A
system A⊗ x = b is solvable.

Realise that the T5 solvability of interval system (1) is equivalent to the existence of a T5-vector
of (1).

Lemma 3.17 [8] A vector b ∈ b is a T5-vector of interval system (1) if and only if

A(k) ⊗ x∗(A(k), b) = b (15)

holds for each k ∈ M .

To suggest an algorithm for T5 solvability, we define the sequence {d(k)}∞k=1 as follows:

d
(k)
i =

{
bi for k = 0,

min
r∈M

{[A(r) ⊗ x∗(A(r), d(k−1))]i} for k ≥ 1,
(16)

for each i ∈ M.

Lemma 3.18 [8] Let b ∈ b be a T5-vector of interval system (1). Then

i) the sequence {d(k)}∞k=1 is nonincreasing,
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ii) for each nonnegative integer k the inequality b ≤ d(k) is satisfied.

Theorem 3.19 [8] Interval system (1) is T5 solvable if and only if there exists a positive integer
l such that d(l+1) ∈ b and d(l+1) = d(l).

Theorem 3.19 gives the following algorithm.

Algorithm 2
Input: A,b
Output: YES, if the given interval system in the max-plus algebra is T5 solvable and NOT, if

it is not T5 solvable.

Step 1. d(0) = b, k = 0.
Step 2. For each i ∈ M compute d

(k+1)
i = min

r∈M
{[A(r) ⊗ x∗(A(r), d(k))]i}.

Step 3. If b ≤ d(k+1) does not hold then write NOT, go to END.
Step 4. If d(k+1) = d(k) then write YES, d∗ = d(k), go to END.
Step 5. k = k + 1, go to Step 2.
END

Corollary 3.20 If interval system (1) is T5 solvable, then the vector d∗ given by Algorithm 2
is the maximum T5-vector of (1).

Similarly as Algorithm 1, Algorithm 2 is pseudopolynomial, too.

Example 3.21 Examine all solvability concepts for the given interval system
A⊗ x = b with

A =

⎛⎝ 〈3, 10〉 〈4, 7〉 〈8, 10〉
〈5, 7〉 〈5, 9〉 〈7, 10〉
〈6, 8〉 〈7, 10〉 〈4, 7〉

⎞⎠ , b =

⎛⎝ 〈4, 7〉
〈3, 6〉
〈4, 6〉

⎞⎠ .

At first, we check the universal solvability and the weak solvability.
The given interval system is not universally solvable, because b �= b (necessary condition

for the universal solvability is not fulfilled).
As x∗(A, b) = (0,−1,−1)T , we have A⊗ x∗(A, b) = (10, 9, 9)T ≥ b which implies that given

interval system is weakly solvable.
To verify the control solvability we compute x∗(A, b) = (−2,−3,−4)T , then

A⊗x∗(A, b) = (8, 6, 7)T ≥ b, which means that the given interval system is control solvable.
Then this is weakly control solvable, too.

By Step 1 of Algorithm 2 we can deduce that the given interval system is not T4 solvable.
Then it is not weakly universally solvable.

For checking the tolerance solvability caculate x∗(A, b) = (−3,−4,−4)T ,
A ⊗ x∗(A, b) = (4, 3, 3)T . As inequality (5) is not fulfilled, the given interval system is not
tolerance solvable.

We shall need matrices

A(1) =

⎛⎝ 3 4 8
7 9 10
8 10 7

⎞⎠ , A(2) =

⎛⎝ 10 7 10
5 5 7
8 10 7

⎞⎠ , A(3) =

⎛⎝ 10 7 10
7 9 10
6 7 4

⎞⎠ .
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Because of

A(1) ⊗ x∗(A(1), b) = A(1) ⊗ (−2,−2,−4)T = (4, 6, 6)T ≥ b,

A(2) ⊗ x∗(A(2), b) = A(2) ⊗ (−3,−4,−3)T = (7, 4, 6)T ≥ b,

A(3) ⊗ x∗(A(3), b) = A(3) ⊗ (−3,−3,−4)T = (7, 6, 4)T ≥ b,

the given interval system is weakly tolerance solvable.

We can use the previous products for checking the T5 solvability. We get d(1) = (4, 4, 4). As

A(1)⊗x∗(A(1), d(1)) = A(1)⊗ (−4,−6,−6)T = (2, 4, 4)T , using Algorithm 2 we get d
(2)
1 ≤ 2 < b1,

which follows that the given interval system is not T5 solvable. Then this is not strongly
solvable.

Result: The given interval system is weakly, control, weakly control and weakly tolerance
solvable.

4 Graphical representation

Definitions of solvability concepts imply relations among them. For example, if interval sys-
tem (1) is control solvable, then it is weak control solvable, or the weak universal solvability
of (1) implies the weak control solvability of (1). It is easy to see, that universal solvabil-
ity implies all other solvability concepts and on the other hand, the weak solvability follows
from all solvability concepts. For each solvability concept Si denote by [Si] the set of all as-
sertions which are equivalent to the solvability concept Si. Let us define on the set [S] of
all sets [Si] a relation R such that [Si]R[Sj] if and only if Sj implies Si. Realise, that if
[Si]R[Sj] then for each assetions Ai ∈ [Si] and Aj ∈ [Sj] holds Aj implies Ai. It is easy
to see that relation R is reflexive and transitive. Antisymmetry follows from the the fact
that if Sj implies Si and Si implies Sj then Si and Sj are equivalent which follows that
[Si] = [Sj]. In consequence of these properties of relation R the set [S] of all [Si] with re-
lation R is a partially ordered set. So we can describe its by Hasse diagram, see Figure 1.

volume 3 (2010), number 2 233



Aplimat - Journal of Applied Mathematics

��
��
[W]

��
��
[WT]

��
��

[T] ��
��
[T5] ��

��
[CW]

��
��
[T4] ��

��
[S]

��
��
[C]��

��
[WU]

��
��
[U]

�
�

�
�

�
�

���
�

�
�

�
�

�
�

���

� � �

�
�

�
�

�
�

���

�
�

�
�

�
�

���

�

�

�
�

�
�

�
�

���

�
�

�
�

�
�

�
�

�
�

���

�

Used abbreviations:

W – weak solvability

WU – weak universal solvability

WT – weak tolerance solvability

CW – weak control solvability

T – tolerance solvability

C – control solvability

S – strong solvability

T4 – T4 solvability

T5 – T5 solvability

U – universal solvability

Figure 1

For all pairs of solvability concepts such that Sj implies Si we can prove that Si does not
imply Sj. This means that there arent solvability concepts Si and Sj defined in this paper
such that [Si] = [Sj]. For example tolerance solvability implies weak tolerance solvability, but
contrariwise it does not hold. In Example 3.21 we have given the interval system which is
weakly tolerance solvable, but it is not tolerance solvable. For each pair of incomparable sets
[Si], [Sj] we can find an interval system such that Si holds, but Sj does not hold and another
interval system for which Sj holds, but Si does not hold. For example, the strong solvability
and the T4 solvability are incomparable in the sense of the relation R.
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THE NOTION OF SUBHYPERSTRUCTURE
OF ”ENDS LEMMA” – BASED HYPERSTRUCTURES

NOVÁK Michal, (CZ)

Abstract. The article deals with hyperstructure theory. There exists a way of cre-
ating semi-hypergroups and hypergroups (or rather transposition hypergroups) from
partially/quasi–ordered semigroups and groups. Even though it has been widely used by
some authors, properties of hyperstructures created in this way have not yet been compre-
hensively studied. In this article the concept of subhyperstructure of such hyperstructures
is discussed. The article may be regarded as a sequel to an earlier article of mine which
discusses the issue of identities and inverses of ”Ends lemma”–based hyperstructures.
Key words and phrases. hyperstructure, subhyperstructure, partially ordered group,
quasi-ordered group
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1 Motivation

A number of articles and contributions in the hyperstructure theory (especially by Czech au-
thors such as Chvalina, Chvalinová, Hošková – e.g. in [5, 6], Račková – e.g. in [9], Moučka or
Novák) make use of the construction first used in [3] as Theorems 1.3 and 1.4 (chapter IV), pp.
146–147. Using these results known as the ”Ends lemma” (or ”Ending lemma”) we can form
hyperstructures from quasi / partially ordered structures. Even though the lemma has been
widely used, its possibilities and limits have been comprehensively studied for the first time
only in [7]. This article can be regarded as a sequel to [7]. It deals with substructures of both
single–valued and multi–valued structures. The question it answers is very simple: What is
the relation (if any) between the substructures of the underlying single–valued structure and the
subhyperstructures of the associated hyperstructure? First of all, however, the article discusses
the question of whether the converse of the ”Ends lemma” holds.
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2 Preliminaries

Recall first some basic definitions and ideas from the hyperstructures theory. A hypergrupoid
is a pair (H, •), where H �= 0 and • : H × H → P∗(H) is a binary hyperoperation on H.
Symbol P∗(H) denotes the system of all nonempty subsets of H. If the associativity axiom
a • (b • c) = (a • b) • c holds for all a, b, c ∈ H, then the pair (H, •) is called a semihypergroup.
If moreover the reproduction axiom: for any element a ∈ H equalities a • H = H = H • a
hold, is satisfied, then the pair (H, •) is called a hypergroup. A hypergroup (H, •) is called a
transposition hypergroup if it satisfies the following transposition axiom: For all a, b, c, d ∈ H
the relation b\a ≈ c/d implies a • d ≈ b • c, where X ≈ Y for X,Y ⊆ H means X ∩ Y �= ∅.
Sets b\a = {x ∈ H; a ∈ b • x} and c/d = {x ∈ H; c ∈ x • d} are called left and right extensions,
or fractions, respectively. A commutative transposition hypergroup is called a join space.

Let G be a nonempty subset of H. (G, •) is called a subhypergroupoid of (H, •) (or mul-
tiplicatively closed) if G • G ⊆ G. If (G, •) is moreover a (semi)hypergroup, (G, •) is called a
sub(semi)hypergroup of (H, •).

An element of e ∈ H, where (H, •) is a hyperstructure, is called an identity if for ∀x ∈ H
there holds x • e  x ∈ e • x. If for ∀x ∈ H there holds x • e = {x} = e • x, then e ∈ H is called
a scalar identity.

As far as the theory of ordered structures is concerned, we need to recall that by a quasi-
ordered (semi)group we mean a triple (G, ·,≤), where (G, ·) is a (semi)group and ≤ is a reflexive
and transitive binary relation on G such that for any triple x, y, z ∈ G with the property x ≤ y
also x · z ≤ y · z and z · x ≤ z · y hold. We call the semigroup partially ordered1 if the relation
≤ is moreover antisymmetric. Further, [a)≤ = {x ∈ G; a ≤ x} is a principal end generated by
a ∈ G.

We are going to examine the ”Ends lemma”, which has the form of the following Theorems:

Theorem 2.1 ([3], Theorem 1.3, p. 146) Let (S, ·,≤) be a partially ordered semigroup. Binary
hyperoperation ∗ : S × S → P ′(S) defined by

a ∗ b = [a · b)≤
is associative. The semi-hypergroup (S, ∗) is commutative if and only if the semigroup (S, ·) is
commutative.

Proof. Later in the text the proof of this Theorem will be referred to, let me therefore include
its main part here. Suppose a, b, c ∈ S arbitrary. First of all, it is useful to show that the
following equality holds: ⋃

t∈[b·c)≤
[a · t)≤ =

⋃
x∈[a·b)≤

[x · c)≤.

Suppose therefore an abitrary s ∈ ⋃
t∈[b·c)≤

[a · t)≤. This means that s ≥ a · t0 for a suitable t0 ∈ S,

t0 ≥ b · c. Then a · t0 ≥ a · (b · c) = (a · b) · c and if we set x0 = a · b, we get that x0 · c ≤ s,

1In fact, the term ordered is often used in the Czech environment by authors such as Chvalina, Račková or
even myself instead of the correct English term partially ordered.
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x0 ∈ [a · b)≤, i.e. s ∈ [x0 · c)≤ ⊆ ⋃
x∈[a·b)≤

[x · c)≤. The other inclusion may be proved in the

analogous way.

Now we get that

a ∗ (b ∗ c) =
⋃

t∈b∗c
a ∗ t =

⋃
t∈[b·c)≤

[a · t)≤ =
⋃

x∈[a·b)≤
[x · c)≤ =

⋃
x∈a∗b

x ∗ c = (a ∗ b) ∗ c,

which completes the proof of associativity.

In accordance with [7], the hyperstructure (S, ∗) constructed in this way will further on be
called the associated hyperstructure to the structure (S, ·) or an ”Ends lemma”–based hyper-
structure. Instead of S the carrier set will be denoted by H.

Theorem 2.2 ([3], Theorem 1.4, p. 147) Let (S, ·,≤) be a partially ordered semigroup. The
following conditions are equivalent:

10 For any pair a, b ∈ S there exists a pair c, c′ ∈ S such that b · c ≤ a and c′ · b ≤ a

20 The associated semi-hypergroup (S, ∗) is a hypergroup.

Remark 2.3 If (S, ·,≤) is a partially ordered group, then if we take c = b−1 ·a and c′ = a · b−1,
then condition 10 is valid. Therefore, if (S, ·,≤) is a partially ordered group, then its associated
hyperstructure is a hypergroup.

Remark 2.4 The wording of the above Theorems is the exact translation of theorems from [3].
The respective proofs, however, do not change in any way, if we regard quasi-ordered structures
instead of partially ordered ones as the anti-symmetry of the relation ≤ is not needed (with the
exception of the ⇐ implication of the part on commutativity, which does not hold in this case).
The often quoted version of the ”Ends lemma” is therefore the version assuming quasi–ordered
structures.

Remark 2.5 In their article [4] Chvalina and Moučka explore the approach to defining hyper-
operations in similar way as the ”Ends lemma” suggests – further hyperoperations using the
(quasi–) ordering are defined and studied there.

The following theorem extending the ”Ends lemma” was proved by Račková in her Ph.D.
thesis. The proof can be also found in [9]. Notice that if (H, ·) is commutative, then (H, ∗) is
a join space.

Theorem 2.6 (Theorem 4, [9]) Let (H, ·,≤) be a quasi-ordered group and (H, ∗) be the asso-
ciated hypergroupoid. Then (H, ∗) is the transposition hypergroup.

Finally, notice the main result of article [7] and especially its immediate corollary – the fact
that (H, ∗) is not a canonical hypergroup.

Theorem 2.7 (Theorem 3.1 [7]) Let (H, ·,≤) be a non-trivial quasi-ordered group, where the
relation ≤ is not the identity relation, and let (H, ∗) be its associated transposition hypergroup.
Then (H, ∗) does not have a scalar identity.
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3 New results

The ”Ends lemma” gives a way to create hyperstructures from ordered structures. Can it be
reversed? Can we say that if a suitably (i.e. in the ”Ends lemma” way) defined hyperoperation
is associative, the underlying single–valued operation is associative too? Surprisingly, this
question has not long been answered (or rather, asked).

Theorem 3.1 Let (H, ·) be a non-trivial groupoid and ≤ a binary ordering on H such that for
an arbitrary pair of elements a, b ∈ H, a ≤ b, and for arbitrary c ∈ H there holds c · a ≤ c · b
and a · c ≤ b · c. Further define a hyperoperation ∗ : H × H → P∗(H) for an arbitrary pair
of elements a, b ∈ H by a ∗ b = [a · b)≤ = {x ∈ H; a · b ≤ x}. Then if the hyperoperation ∗ is
associative, then the single–valued operation · is associative too. Furthermore, if there exists an
element e ∈ H such that for ∀a ∈ H there holds a ∗ e = e ∗ a = [a)≤, then this element e is the
identity of the semigroup (H, ·).

Proof.

1. If the hyperoperation ∗ defined in the theorem is associative, then the fact that an ar-
bitrary element x ∈ (a ∗ b) ∗ c implies that x ∈ a ∗ (b ∗ c). Conversely, the fact that an
arbitrary element y ∈ a ∗ (b ∗ c) implies that y ∈ (a ∗ b) ∗ c.

(a) If there holds x ∈ (a ∗ b) ∗ c, then there exists an element x1 ∈ a ∗ b such that
x ∈ x1 ∗ c, i.e. there exists an element x1 ∈ H such that a · b ≤ x1 and x1 · c ≤ x.
Thanks to the assumed properties of the relation ≤ we get that (a · b) · c ≤ x1 · c ≤ x,
i.e. (a · b) · c ≤ x, which means that x ∈ [(a · b) · c)≤.

(b) Furthermore, we know that x ∈ a ∗ (b ∗ c), i.e. by analogous reasoning we get that
x ∈ [a · (b · c))≤.

Since x is an arbitrary element of H and since the same reasoning holds for the arbitrary
above mentioned y ∈ H, we get that [(a · b) · c)≤ = [a · (b · c))≤. However, on condition of
antisymmetry of the relation ≤ this implies that (a · b) · c = a · (b · c), which means that
the operation · is associative.

2. If there exists an element e ∈ H such that for ∀a ∈ H there holds a ∗ e = e ∗ a = [a)≤
then there for ∀a ∈ H holds [a ·e)≤ = [e ·a)≤ = [a)≤, which on condition of antisymmetry
of the relation ≤ means that a · e = e · a = a, i.e. e is the identity of (H, ·). Obviously,
the element satisfying the condition of the theorem is unique.

Remark 3.2 If the relation ≤ is not antisymmetric, the above theorem is not true. This is
caused by the fact that only for antisymmetric relations ≤ there holds that [a)≤ = [b)≤ implies
that a = b. Indeed, suppose a simple two element set M = {a, b} where the relation ≤ is
defined as a ≤ a, a ≤ b, b ≤ a, b ≤ b. This reflexive and transitive relation ≤ is obviously not
antisymmetric and there holds [a)≤ = [b)≤ yet a �= b.
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Let me now focus on the issue of subhyperstructures of ”Ends lemma” based hyperstructures
and of substructures of the respective single–valued structures. First of all, however, we must
clarify the concept of a principal end generated by an element, which lies in the subset in
question.

Suppose a hyperstructure (H, ∗) associated to a quasi / partially ordered semigroup (H, ·,≤)
and a non-empty subset G of H. For an arbitrary element g ∈ G we may write

[a)≤G
= {x ∈ G : a ≤ x} (1)

as well as

[a)≤H
= {x ∈ H : a ≤ x}. (2)

Given this notation we may distinguish between (G, ∗G) based on the hyperoperation ∗G such
that for an arbitrary pair of elements a, b ∈ G we set

a ∗G b = [a · b)≤G
= {x ∈ G : a · b ≤ x}

and (G, ∗H), where a ∗H b is defined by

a ∗H b = [a · b)≤H
= {x ∈ H : a · b ≤ x}.

Obviously, properties of (G, ∗G) and (G, ∗H) will not be the same.
Since the notation ∗H reflects the idea of an ”end generated by an element” better, I will

start with examination of subhyperstructures of ”Ends lemma”–based hyperstructures in this
case. Instead of ∗H and ≤H the usual notation ∗ and ≤ is going to be used.

It will be useful to utilize the concept of an upper set. In the following definition I use
the term upper end of a set in order to visually relate the concept to the ”Ends lemma”.
Furthermore, identifying the elements which ”spoil” the property of being an upper set / end
of a set will be useful.

Definition 3.3 Let (H, ·,≤) be a partially ordered semigroup and let G be a nonempty subset
of H. If for an arbitrary element g ∈ G there holds [g)≤ ⊆ G, we call G an upper end of H.
If there exists an element g ∈ G such that there exists an element x ∈ H \ G such that g ≤ x
(i.e. x ∈ [g)≤), we say that G is not an upper end of H because of the element x.

3.1 Subhyperstructures and upper ends

First of all, the issue of (hyper) groupoids must be clarified.

Lemma 3.4 Let (H, ∗) be an associated semihypergroup of a partially ordered semigroup (H, ·,≤
) and G ⊆ H nonempty. If it exists, denote u the identity of (H, ·). Further suppose that (G, ·)
is a subgroupoid of (H, ·).

1. If G is an upper end of H, then (G, ∗) is a subhypergroupoid of (H, ∗).
2. If G is not an upper end of H and there holds u ∈ G, then (G, ∗) is not a subhypergroupoid

of (H, ∗).
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3. The statement in part 2 holds even in case that u �∈ G (or u does not exist) yet for some
a, b ∈ G there holds that a · b = c, where c ∈ G is such that there exists an element xi

because of which G is not an upper end of H such that c ≤ xi.

4. On simultaneous validity of conditions that

(a) u does not exist or u �∈ G

(b) G is not an upper end of H because of elements xi, i ∈ I

(c) for every a, b, c ∈ G there holds a · b = c and all the triples are such that for no xi

there holds c ≤ xi

the couple (G, ∗) is a subhypergroupoid of (H, ∗).

Proof.

1. Since · is an operation on G, for an arbitrary pair a, b ∈ G there holds a · b = c, where
c ∈ G. Thus a ∗ b = [a · b)≤ = [c)≤, which is a subset of G because G is an upper end of
H. Therefore we have that G ∗ G ⊆ G, which means that (G, ∗) is a subhypergroupoid
of (H, ∗).

2. If G is not an upper end of H, then there exists an element g ∈ G such that there exists
an element x ∈ H \ G such that g ≤ x. If furthermore u ∈ G, then if we consider the
above mentioned element g, then g ∗ u = [g · u)≤ = [g)≤ �⊆ G (because of the element
x, the existence of which is assumed), which means that G ∗ G �⊆ G, i.e. (G, ∗) is not a
subhypergroupoid of (H, ∗).

3. Obvious since a ∗ b = [a · b)≤ = [c)≤, for which there by definition holds [c)≤ �⊆ G, i.e.
(G, ∗) is not a subhypergroupoid of (H, ∗). Elements a, b, c have the meaning defined in
part 3.

4. In this case for ∀a, b ∈ G we have that a ∗ b = [a · b)≤ = [c)≤, where c ∈ G is such that
[c)≤ ⊂ G, i.e. we have that G ∗ G ⊂ G, which means that (G, ∗) is a subhypergroupoid
of (H, ∗).

Remark 3.5 In fact parts 2 and 3 of the above Lemma may be written as one. Yet they are
included separately because of uniqueness of the element u. Instead of c ≤ xi we could write
c < xi because we suppose c ∈ G while xi �∈ G, which means that c and xi cannot be equal.
Finally notice that if · is not an operation on G, then (G, ∗) is not a subhypergroupoid of (H, ∗).
Indeed, in this case there exists a triple a, b, c, where a, b ∈ G while c �∈ G, such that a · b = c.
This means that a ∗ b = [a · b)≤ = [c)≤. However since the relation ≤ is reflexive and c �∈ G, we
get that [c)≤ �⊆ G, i.e. G ∗G �⊆ G.

Example 3.6 The set N \ {1, 2, 3, 4, 5, 7, 9} ⊂ N with the operation + and the usual or-
dering of numbers is an example of a set constructed under Lemma 3.4, part 4. Indeed,
N \ {1, 2, 3, 4, 5, 7, 9} = {6, 8, 10, 11, 12, 13, 14 . . .} is not an upper end of N because of el-
ements 7 and 9 (since e.g. 7 ∈ [6)≤ but 7 �∈ N \ {1, 2, 3, 4, 5, 7, 9}). Yet for no couple
a, b ∈ {6, 8, 10, 11, 12, 13, 14 . . .} there holds a + b ≤ 7 or a + b ≤ 9.
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Lemma 3.4 gives a complete description of an arbitrary subset of an arbitrary ”Ends
lemma”–based hyperstructure. Since subsemihypergroup, subhypergroup and other concepts
are defined as special classes of subhypergroupoids, the lemma gives a complete list of candi-
dates for various types of subhyperstructures of ”Ends lemma”–based hyperstructures. Let me
now examine the case of subsemihypergroups.

Theorem 3.7 Let (H, ∗) be the associated semihypergroup of a partially ordered semigroup
(H, ·,≤). Suppose that G is either an upper end of H or such a subset of H that assumptions
of Lemma 3.4, part 4 are fulfilled. Then

1. (G, ·) is a subsemigroup of (H, ·) if and only if (G, ∗) is a subsemihypergroup of (H, ∗).
If furthermore (H, ·) is a monoid, then

2. (G, ·) is a submonoid of (H, ·) if and only if there exists an element u ∈ G such that for
∀g ∈ G there holds g ∗ u = u ∗ g = [g)≤.

Proof. Suppose that (H, ∗) is the associated semihypergroup of a partially ordered semigroup
(H, ·) and G is a nonempty subset of H.

1. ”⇒” The fact that (G, ∗) is a subhypergroupoid of (H, ∗) follows from Lemma 3.4, parts 1
and 4 respectively. For both types of G, the associativity of (G, ∗) follows from the
first part of the ”Ends lemma”, Theorem 2.1 – notice that the proof may be applied
without any changes even when G is not an upper end of H.

”⇐” Suppose that (G, ∗) is a subsemihypergroup of (H, ∗). First we have to prove that
G is closed with respect to the operation · of H. Yet for arbitrary elements a, b ∈ G
the fact that a ∗ b ⊆ G implies that [a · b)≤ ⊆ G, i.e. any element x ∈ H such that
a · b ≤ x belongs to G. Since the relation ≤ is reflexive, we get that a · b ∈ G. As a
result (G, ·) is a groupoid. The fact that it is associative is granted by the reasoning
of the proof of Theorem 3.1, part 1. Altogether we get that (G, ·) is a subsemigroup
of (H, ·).

2. ”⇒” Denote u the identity of (H, ·). If (G, ·) is a submonoid of (H, ·), then u ∈ G and
obviously the statement holds for this identity.

”⇐” Cf. part 2 of the proof of Theorem 3.1, which may be literally repeated.

From this proof, part 1 ”⇐”, we directly get an obvious statement equivalent to the one
included in Remark 3.5. Notice that its validity does not depend on the fact whether G is an
upper end of H.

Corollary 3.8 Let (H, ∗) be the associated hypergroupoid of a quasi–ordered groupoid (H, ·,≤)
and G a nonempty subset of H. If (G, ∗) is a subhypergroupoid of (H, ∗), then (G, ·) is a
subgroupoid of (H, ·).

The issue of subhypergroups seems to be a bit more complicated.
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Theorem 3.9 Let (H, ∗) be the associated semihypergroup of a partially ordered semigroup
(H, ·,≤). Suppose that G is an upper end of H. If (G, ·) is a subgroup of (H, ·), then (G, ∗) is
a subhypergroup of (H, ∗).

Proof. Since we assume that (G, ·) is a subgroup of (H, ·), we have that for an arbitrary
a, b ∈ G there holds a · b−1 ∈ G, b−1 · a ∈ G. Therefore if elements c = b−1 · a and c′ = a · b−1

are regarded, Theorem 2.2 may be directly applied (or rather, its proof literally copied) since
the relations ≤ of Theorem 2.2 and of the above theorem are identical.

As follows from the proof of Theorem 2.6 the subhypergroup is a transposition hypergroup
or (if it is commutative) a join space (i.e. the proof can be directly applied). Unfortunatelly,
due to Theorem 2.7 such a subhypergroup is not a canonical hypergroup.

Remark 3.10 Notice that (G, ∗), where G is such as defined in the assumptions of Lemma 3.4,
part 4, can never be a subhypergroup of (H, ∗). In this case the inclusion G ⊆ a ∗ G of the
reproduction axiom is problematic. Indeed, suppose an arbitrary element a ∈ G and any element
g ∈ G for which there holds g ≤ xi, where xi is an arbitrary of those elements because of which
G is not an upper end of H. In other words, g is such that there holds [g)≤ �⊆ G. Then we
have that a ∗ g = [a · g]≤ = [b)≤ and thanks to the assumption of Lemma 3.4, part 4, g �∈ [b)≤,
which means that G �⊆ a ∗G.

Remark 3.11 Also notice that Theorem 3.9 holds for quasi–ordered groups as well as the
antisymmetry of relation ≤ is not needed in Theorem 3.7, part 1 ⇒.

Proposition 3.12 Let (H, ∗) be the associated semihypergroup of a partially ordered semigroup
(H, ·,≤) and G ⊆ H nonempty. If (G, ∗) is a subhypergroup of (H, ∗), then (G, ·) is a subsemi-
group of (H, ·) and G is an upper end of H such that for any pair a, b ∈ G there exists a pair
c, c′ ∈ G such that b · c ≤ a and c′ · b ≤ a.

Proof. Thanks to Lemma 3.4, Remark 3.5, Theorem 3.9 and Remark 3.10 it is obvious that
all ”Ends lemma”–based subhypergroups (G, ∗) of (H, ∗) are such that G is an upper end of
H. Since every hypergroup is a semihypergroup, we get that (G, ∗) is a subsemihypergroup of
(H, ∗). Yet according to Theorem 3.7, part 1, (G, ·) is in this case a subsemigroup of (H, ·).
The proposition for the arbitrary pair a, b ∈ G is a copy of condition 10 of Theorem 2.2.

What remains to be proved is whether (G, ·) in the above proposition is a subgroup of (H, ·).
This is still an open question. Notice that in Proposition 3.12 there need not at all be u ∈ G,
where u is the identity of (H, ·).

Remark 3.13 Suppose that (H, ·,≤) is a partially ordered group and G is a non-empty subset
of H. If (G, ·) is simultaneously a subgroup of (H, ·) and an upper end of H, then notice the
following:

If we take an arbitrary x ∈ H such that x < g, where g ∈ G is arbitrary, then x < g implies
u < x−1 · g and since (G, ·) is a subgroup of (H, ·), which is a group, and simultaneously G is
an upper end of H, we get that x−1 · g ∈ G. Yet since g ∈ G, there is also x−1 ∈ G, which
implies that x ∈ G.
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As a result we get that if (H, ·,≤) is a linear ordered group, there do not exist any proper
subhypergroups associated to subgroups of (H, ·) because there are no proper subgroups (G, ·)
of (H, ·), where G is an upper end of H. Theorem 3.9 is thus of no practical use for linear
ordered groups. Also cf. Remark 3.10, which states that upper end are the only candidates for
subhypergroups.

However, if (H, ·) is a monoid only, then x < g does not imply u < x−1 · g and consequently
x ∈ G because x need not have the inverse element.

Remark 3.14 The issue of commutativity has already been discussed in the original ”Ends
lemma”, namely in Theorem 2.1. For a partially ordered semigroup (H, ·,≤) there holds that
the hyperoperation ∗ is commutative if and only if the single valued operation · is commutative.
However, if ≤ is not antisymmetric, i.e. if it is only a quasi–ordering, the proof of Theorem 2.1
as included in [3] cannot be repeated. Indeed, suppose that for an arbitrary pair a, b ∈ H there
holds a ∗ b = b ∗ a. This means that [a · b)≤ = [b · a)≤, from which there follows a · b = b · a only
on condition of antisymmetry of the relation ≤.

Example 3.15 Let H = {a, b, c} and define operation · on H by the following table:

· a b c

a a a a
b a b c
c a a a

Define that for an arbitrary pair x, y ∈ H there holds x ≤ y. It can be easily verified that
(H, ·,≤) is a quasi–ordered semigroup (and that ≤ is not antisymmetric). Further define the
hyperoperation in the usual ”Ends lemma” way, i.e. for an arbitrary pair x, y ∈ H define
x∗ y = [x · y)≤. Thanks to the definition of the relation ≤ we get that [a)≤ = [b)≤ = [c)≤, which
means that for an arbitrary pair of elements x, y ∈ H there holds x ∗ y = y ∗ x. Yet despite the
fact that the hyperoperation ∗ is commutative, the single valued operation · is not commutative.

3.2 Other cases

If we define the end generated by an element a ∈ G, where G ⊆ H, as [a)≤G
= {x ∈ G : a ≤ x},

problems of ”holes” caused by elements x ∈ H \ G (cf. Definition 3.3) will not come up.
Technically speaking there are two distinct hyperoperations in the following theorem: ∗ and
∗G. Therefore, the (hyper)structures on G are not called sub(hyper)structures. As far as
commutativity of the below mentioned hyperstructures is concerned, Remark 3.14 is applicable.

Theorem 3.16 Let (H, ∗) be the associated semihypergroup of a partially ordered semigroup
(H, ·,≤). Further, let G ⊆ H be non-empty and such that (G, ·) is a subgroupoid of (H, ·) and
the relation ≤G be a restriction of ≤ on G, i.e. for arbitrary elements a, b ∈ G let a ≤ b ⇒
a ≤G b. Finally – if it exists – denote u the identity of (H, ·) and define a new hyperoperation
∗G : G×G → P ∗(G) for arbitrary elements a, b ∈ G by

a ∗G b = [a · b)≤G
= {x ∈ G; a · b ≤G x}.

Then
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1. (G, ·) is a semigroup if and only if (G, ∗G) is a semihypergroup.

2. (G, ·) is a monoid if and only if (G, ∗G) is a semihypergroup and u ∈ G.

3. If (G, ·) is a group, then (G, ∗) is a transposition hypergroup.

4. If (G, ∗) is a hypergroup, then (G, ·) is a semigroup such that for any pair a, b ∈ G there
exists a pair c, c′ ∈ G such that b · c ≤ a and c′ · b ≤ a.

Proof. The theorem is a simple corollary to the ”Ends lemma”, Theorem 3.1 and Theorem 2.2.

Remark 3.17 The fact that G is closed with respect to · is again essential: suppose a triple
a, b, c such that a, b ∈ G and c ∈ H \G. If now a ∗G b was constructed, we would get a ∗G b =
[a · b)≤G

= [c)≤G
, which is difficult to be assigned with any sense since due to reflexivity of ≤G

there must hold c ∈ [c)≤G
, i.e. c ∈ {x ∈ G; c ≤ x} yet we suppose that c �∈ G.

Remark 3.18 If (H, ∗) is quasi–ordered, then only the ”⇒” implications hold: the fact that
(G, ·) is a semigroup (monoid) implies the fact that (G, ∗G) is a subsemihypergroup (and u ∈ G).
Cf. Remark 3.2 for a counterexample of the ”⇐” implications.
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nická 8, 616 00 Brno, Czech Republic, tel: +420-541143135
email: novakm@feec.vutbr.cz

volume 3 (2010), number 2 247



Aplimat - Journal of Applied Mathematics

248 volume 3 (2010), number 2



 

SOME   QUANTITIES   RELATED   TO  THE  DISTANCE   MATRIX 

 OF  A  SPECIAL   TYPE  OF  DIGRAPHS 
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Abstract. The distance matrix of a digraph is a square matrix which has as its entries the 

lengths of the shortest oriented path between each pair of vertices. It is interesting to investigate 

such digraphs G
n 

, which have the companion matrix as their adjacency matrix. The Wiener 

index of a graph is defined as the sum of the all entries of the distance matrix. In this 

contribution we calculate the Wiener index and the determinant of the distance matrix for a 

special type of the graphs G
n
. 
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1. Introduction 

 

The graphs in this contribution are directed weighted graphs without loops. The distance matrix is 

one of the most useful matrices, which characterize the structure of graphs.  

 

Definition 1 

Let G be a weighted digraph with n vertices v
1
, v

2
, …, vn. Then the distance matrix of G is defined 

as the n × n  matrix D(G) = D = (dij), where 

                                dij =  the distance from the vertex vi  to the vertex vj , 

                                    =  0, if i = j , 

                                    = ∞  , if no path from vi to vj  exists.  

The distance from vi  to vj  is the weight of the shortest path from
 
 vi  to vj. The sum of all 

(nondiagonal) entries of the distance matrix is called the Wiener index W(G) of a graph G.  

The distance polynomial of G is defined as P(G; x) = det(x I – D), where I  is the unit matrix of the 

size n × n. 

 

We will only use strongly connected digraphs which have the companion matrices as their 

adjacency matrices. The companion matrix can be defined, e.g. [3], as the  n × n square matrix 
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where 
n

uuu ,..,.,

21

 are nonnegative integers for our purpose. The corresponding digraphs can be 

denoted by ),...,,(
21 nn

uuuG . 

 

In [4] we found some results for the digraph )1,0...,,0,0(
n

G  which is a cycle with n vertices. 

 

Theorem 1  ([4], Theorem 6 ) 

For a cycle Gn with n ≥ 2 vertices the following statements hold.  

    1. 

 det D(Gn) = (–1)
n-1

 ,

2

2−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
n

n

n
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);( εε
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 where εj,  j = 1, …, n, are the n-th roots of unity,  

    3. the matrix D(Gn) has the eigenvalues  
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 for 2 ≤ j ≤ n.  

 

In [5] we investigated the digraphs )1...,,1,0(
n

G  and we obtained the following results. 

 

Theorem 2 

Let )1...,,1,0(
nn

GG = be an digraph of the given type with n vertices. Then  

a) ([5], Theorem 2)  

The Wiener index is given by the relation  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +

=

3

1

2)(

n

GW
n

 

       for any integer 2≥n . 

 

b) ([5], Theorem 3) 
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For the determinant of the distance matrix of a graph Gn  the following recurrence holds  

1

1

det)!1()1(det
−

+

−−−=

n

n

n

DnnD , where 2≥n , and det D
1 

= 0. 

c) ([5], Corollary) 

For any positive integer n the relation 
n

n

n

aD

1

)1(det
+

−=  holds, where an  is the n-th generalized 

Stirling number. 

 

d) ([5], Theorem 4) 

A recursive formula for the distance polynomial );( xGP
n

has the form 

)1)...(2)(1(det);()();(
11

−+++−++=
−−

nxxxBxxGPnxxGP
nnn

 

      for any integer 2≥n  and .);(
1

xxGP =  The corresponding sequence of the determinants of Bn        

      satisfies the recurrence ),1)...(2)(1(detdet
1

−+++−=
−

nxxxBxB
nn

with 1det
1

−=B . 

 

 

2. The main results 

 

In this paper we are concerned with the digraphs Gn = Gn(0, 1, 2, …, n–1) corresponding to the 

companion matrix  Cn (0, 1, 2, …, n–1). Let { }
n

vvv ...,,

2,1
  be the vertex set of Gn , then the arc 

(v1, vj),  j = 2, 3, …, n,  has the weight j – 1 and the arc (vj, vj–1) has the weight 1. 

 

Fig. 1. 

 

It is easy to see that distance matrix Dn of such digraph Gn has the form   
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Theorem 3 

The Wiener index of the above mentioned digraph Gn has the value  

W(Gn) =  4 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +

3

1n

 – 2 
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2

n

 

for any integer n≥ 2. 

 

Proof 

We can write with respect to the definition of the Wiener index  

 

( ) ( ) ∑∑∑∑ ∑∑∑∑

−

=

−

=

−

= =

−

=

−

=

−

=

−

=

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +

=−+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +

=+=

1

1

1

1

1

1 1

1

1

1

1

1

1

12

1

2

2

1

3

3

1

13

22

1
n

k

n

k

n

k

k

i

n

k

n

k

n

k

k

ki

n

kkn

k

kk

iiGW  

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +

+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +

=

2

2

3

1

4

2

2

3

1

3

3

1 nnnnn

 

 

by using simple combinatorial identities.  

 

To derive a formula for the determinant of the distance matrix Dn  of the digraphs Gn we will use 

the well – known statement.   

 

Proposition 

Let A1, A2, B be the n × n square matrices such that 
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Then det B = det A1 + det A2  and the statement holds for an arbitrary i-th row (or column), where 

i = 1, 2, …, n. 

 

Theorem 4 

For any integer 2≥n the following recurrence relation holds  

 

det Dn = 2 (1–n) det Dn-1 + (–1)
n–1 

2
n–2

 (n–1)! 

with  D1 = 0. 

 

Proof 

Let An be the  n×n matrix obtained from Dn  such that one is subtracted from the each entries of the 

last row of Dn. Then we have successively for any 2≥n  
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It is also possible to calculate det A
n
  by subtracting the (n-1)-st row from the  n-th row. Then 

.det)22(
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The recurrence for det D
n
 immediately  follows after comparing the both obtained expressions.  

 

Theorem 5 

For any positive integer n the identity 

21

2)!1()1()1(det
−−

−−−=

nn

n

nnD  

holds, where det D
1
 = 0. 

 

Proof 

It can be done by induction on n. First, it is easy to see that det D
2
 = –1.  Now, suppose that the 

formula is true for an arbitrary integer 2≥n . Then   

=−+−−−−=−+−=

−−−−

+

1211
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2!)1(2)!1()1()1(22!)1(det2det
nnnnnn

nn

nnnnnDnD
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2!)1()11(2!)1(
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⋅−=+−−=

nnnn

nnnn   

which completes the proof.  

     The sequence from Theorem 5 is A 014479 in Neil Sloane´s On–line Encyclopedia of Integer 

Sequences [6]. Its exponential generating function is 
3

)21(

21

)(

x

x

xf

−

+

= . 

 

 

3. Concluding remarks 

 

In [4] we created the computer program to calculate some quantities which are related to the 

distance matrix of a digraph. We used Floyd's algorithm for calculation of the distance matrix of a 

weighted digraph. After small arrangement the created program works for undirected graphs, too. 

Then the distance matrix can be used to compute another useful invariants of a graph G, that are 

related to the center of the graph. These invariants are for example the eccentricity of a vertex in G, 

the radius and the diameter of a graph G . 
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GIANT BODIES PIECE BY PIECE

SZALAY István, (HU)

Abstract. A three - dimensional set is called giant body if its diameter is not finite.
Giant bodies are described by exploded numbers. The ordered field of exploded numbers
is isomorphic with the ordered field of real numbers such that the set of real numbers is
a proper subset of the set of exploded numbers. In this paper two kinds of examples are
given for giant bodies: super- balls and super-octaeders.

1 Introduction

The c-explosion of real numbers was introduced in [1]. In this paper we use the case c = 1,
only. For the sake of simplicity we repeat the most important facts, illustrated by the complex
model of exploded real numbers which had already been introduced in [2].
For any real number x we say that its exploded is the complex number

|

x
|

= (sgn x) · (area th{|x|} + i · [|x|]); x ∈ R (1.1)

where [x] is the greatest integer number which is less than or equal to x and {x} = x − [x].
The set of exploded numbers is a proper subset of the set of complex numbers:
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Denoting the set of exploded numbers by
|

R
|

the figure shows that R ⊂
|

R
|

. This model is

called complex model because the set
|

R
|

is a subset of the set of complex numbers C. In this

model
|

x
|

<
|

y
|

if Im
|

x
|

< Im
|

y
|

or if Im
|

x
|

= Im
|

y
|

then Re
|

x
|

< Re
|

y
|

.
In the complex model of exploded numbers the compression is

u = Im u + th Re u; u ∈
|

R
|

. (1.2)

By (1.1) and (1.2) we have that for any x ∈ R the first inversion identity

(
|

x
|

) = x (1.3)

holds. Conversely, for any u ∈
|

R
|

the second inversion identity

|

(u)
|

= u (1.4)

is valid. Moreover, we have

Theorem of uniqueness: For any x, y ∈ R,
|

x
|

=
|

y
|

⇐⇒ x = y.

Theorem of ordering: For any x, y ∈ R,
|

x
|

<
|

y
|

⇐⇒ x < y.

Definition of super - addition:
|

x
| |

y
|

=
|

x + y
|

.

Definition of super -multiplication:
|

x
| |

y
|

=
|

x · y
|

.

Property of monotonity of super - addition: ∀u, v, w ∈
|

R
|

,

u < v ⇒ u w < v w.

Property of monotonity of super - multiplication: ∀u, v, w ∈
|

R
|

(u < v) ∧ (0 < w) ⇒ u w < v w.

So, (
|

R
|

, , ) is an ordered field which is isomorphic with the ordered field (R, +, ·). Other
super - operations:

Super - subtraction:
|

x
| |

y
|

=
|

x − y
|

; x, y ∈ R.

Super - division:
|

x
| |

y
|

=
|

x : y
|

=
|

(x
y
)
|

; y ∈ R, y �= 0.

2 The explosion and compression of R3

Let X = (x, y, z) be an arbitrary point of our familiar three - dimensional space R3. We say

that its exploded is
|

X
|

= (
|

x
|

,
|

y
|

,
|

z
|

). The set
|

R3
|

= {
|

X
|

: X ∈ R3} is called exploded three -
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dimensional space. If |x| < 1 then by (1.1)

|

x
|

= (sgn x) · (area th{|x|} + i[|x|]) = area thx ∈ R; area thx =
1

2
ln

1 + x

1 − x
. (2.1)

Hence if X is a point of the open cube R3 = {(x, y, z) ∈ R3 := 1 < x < 1; −1 < y < 1;

−1 < z < 1} then
|

X
|

∈ R3. But if only one of the coordinates of X ∈ R3 has that its absolute

value is greater than or equal to 1 then
|

X
|

�∈ R3. Of course,
|

X
|

∈
|

R3
|

but it is invisible in

the familiar three-dimensional space R3. Considering an U = (u, v, w) ∈
|

R3
|

its compressed is
U = (u, v, w) ∈ R3 and by (1.3) and (1.4) we have the inversion identities

(
|

X
|

) = X; X ∈ R3 (2.2)

and
|

(U )
|

= U ; U ∈
|

R3
|

. (2.3)

If u ∈ R then (1.2) yields

u = th u =
eu − e−u

eu + e−u
; u ∈ R. (2.4)

Hence, we have that U ∈ R3, then U = (th u, th v, th w) ∈ R3. So, the central open cube can

be considered as a compressed model of R3. (See [3].) Similarly, itself R3 can be considered as

a compressed model of
|

R3
|

.

�

�

�

�

�

�

For example, in the case of the closed set

L = {U(u, v, w) ∈
|

R3
|

: u = t, v = t, w = t;
|

1
|

≤ t ≤
|

1
|

} (2.5)

using (2.4) we have that its compressed set

L = {X(x, y, z) ∈ R3 : x = t, y = t, z = t;−1 ≤ t ≤ 1}. (2.6)
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(2.6) shows that it is not situated in the central open cube R3, because its points (−1,−1,−1) �∈
R3 and (1, 1, 1) �∈ R3. Consequently by (2.2) and (2.3) we obtain that L is not situated in our

familiar three - dimensional space R3. Really (
|

− 1
|

,
|

− 1
|

,
|

− 1
|

); (
|

1
|

,
|

1
|

,
|

1
|

) �∈ R3. Following

the analogy of R3 ⊂ R3, by the relation R3 ⊂
|

R3
|

we can say that

R3 = {(x, y, z) ∈
|

R3
|

:
|

− 1
|

< x <
|

1
|

;
|

− 1
|

< y <
|

1
|

;
|

− 1
|

< z <
|

1
|

} (2.7)

is the central open cube of the exploded three - dimensional space
|

R3
|

. Now, we can see
again that the end - points of L (given by (2.5)) are not elements of R3. Considering U0 =

(u0, v0, w0) ∈ R3 such that U0 �= O = (0, 0, 0) the open cube R3
U0

= {(u, v, w) ∈
|

R3
|

:

|

− 1
|

u0 < u <
|

1
|

u0;
|

− 1
|

v0 < v <
|

1
|

v0;
|

− 1
|

w0 < w <
|

1
|

w0}

is another three - dimensional space, different from our familiar three - dimensional space
R3. R3

U0
is called quasi - familiar three-dimensional space. The connection between three -

dimensional spaces R3
U0

and R3 is given by the super-shift transformation

u = x u0

v = y v0

w = z w0

Of course, it is possible that R3 ∩ R3
U0

is empty. If R3 ∩ R3
U0

is not empty we can say that the
quasi - familiar three - dimensional space R3

U0
is a partially familiar three-dimensional space,

too. We remark that at the transformation using super-addition is essential because in the case
of the simple shift transformation

u = x + u0

v = y + v0

w = z + w0

the space R3 does not change.

3 The concept of giant body

A set H ⊆
|

R3
|

is called giant body if there is not a quasi - familiar three - dimensional space

R3
U0

such that H ⊆ R3
U0

. Clearly, the greatest giant body is
|

R3
|

. On the other hand, for any

U0 = (u0, v0, w0) ∈
|

R3
|

, the set R3
U0

is not a giant body. The set L (given by (2.5)) is giant
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body. Considering a set H ⊆
|

R3
|

, the set Hbox = H ∩ R3 is called the box - phenomenon of
H. Of course, it is possible that Hbox is empty. It is not true that if Hbox is unbounded then
H is a giant body. Let us consider the box - phenomenon Λbox of the super - pyramid Λ. Its
description is (discussed in[4]) (see next figure left)

Λ = {(u, v, w) ∈
|

R3
|

: 0 ≤ w ≤
|

1, 5
|

(
|

1
|

((|u| 1) (|v| 1))); (u, v) ∈ B}, (3.1)

where basis

B = {(u, v, 0) : |u| |v| ≤ 1; u, v ∈
|

R
|

} (3.2)

is showed by the figure (See [4.])

v

u

1

1-1

-1

If the points (u, v, 0) satisfy the equation |u| |v| = area th th 1
3

then by (3.2) (u, v, 0) ∈ B is

obtained. Moreover, (3.1) yields that w =
|

1
|

. Hence, the set Λbox does not have any upper

bound in R3. On the other hand, the peak-point (0, 0,
|

1, 5
|

) �∈ Λbox. Where is it? To answer
this question we consider the open cube

R3

(0,0,

|

0,75

|

)

= {(u, v, w) ∈
|

R3
|

: (3.3)

|

− 1
|

< u <
|

1
|

;
|

− 1
|

< v <
|

1
|

;
|

− 1
| |

0, 75
|

< w <
|

1
| |

0, 75
|

}.
Clearly

R3 ∩ R3

(0,0,

|

0,75

|

)

= {(x, y, z) ∈ R3 :
|

− 1
|

< x <
|

1
|

;
|

− 1
|

< y <
|

1
|

;
|

− 0, 25
|

< z <
|

1
|

}

so, R3

(0,0,

|

0,75

|

)

is a partially - familiar three - dimensional space. We can see that the peak-point

(0, 0,
|

1, 5
|

) �∈ R3∩R3

(0,0,

|

0,75

|

)

but (0, 0,
|

1, 5
|

) ∈ R3

(0,0,

|

0,75

|

)

. Let us use another coordinate - system
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[ρ, σ, τ ]

ρ = u

σ = v

τ = w
|

0, 75
|

(3.4)

instead of the coordinate - system [u, v, w]. The origo in this new coordinate - system is

0∗ = (u = 0, v = 0, w =
|

0, 75
|

) = (ρ = 0, σ = 0, τ = 0)

and by (3.3) the space R3

(0,0,

|

0,75

|

)

has the form

R3
0∗ = {(ρ, σ, τ) ∈

|

R3
|

:
|

− 1
|

< ρ <
|

1
|

;
|

− 1
|

< σ <
|

1
|

;
|

− 1
|

< τ <
|

1
|

}.
Moreover, (3.1) and (3.4) yield a new description of super - pyramid Λ.

Λ = {(ρ, σ, τ) ∈
|

R3
|

:

|

− 0, 75
|

≤ τ ≤
|

0, 75
|

(
|

1, 5
|

((|ρ| 1) (|σ| 1))); (ρ, σ) ∈ B}
where

B = {(ρ, σ,
|

− 0, 75
|

) : |ρ| |σ| ≤ 1; ρ, σ ∈
|

R
|

}.
Clearly Λ ⊂ R3

0∗ , so is not a giant body. We can see it in one piece.

σ

ρ1

-1

1

-1

-1

τ

1

O*

O8

O

˚

˚

˚

4 Giant balls

A typical giant body is the super ball (discussed in [5])

G0(
|

1
|

) = {(u, v, w) ∈
|

R3
|

: (u u) (v v) (w w) ≤
|

1
|

} (4.1)
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having the box - phenomenon

z

x

y

By this box - phenomenon it seems that G0(
|

1
|

) has 0∞ = (0, 0,
|

1
|

) ”upper”,

0−∞ = (0, 0,
|

− 1
|

) ”lower” and other ((
|

− 1
|

, 0, 0); (0,
|

− 1
|

, 0); (
|

1
|

, 0, 0); (0,
|

1
|

, 0)) peak-points.
It is not true. For example, in the partially familiar three-dimensional space

R3
0∞ = {(u, v, w) ∈

|

R3
|

:

|

− 1
|

< u <
|

1
|

;
|

− 1
|

< v <
|

1
|

;
|

− 1
| |

1
|

= 0 < w <
|

2
|

=
|

1
| |

1
|

} (4.2)

using the coordinate - system [ξ, η, ζ]

ξ = u

η = v

ζ = w
|

1
|

(4.3)

instead of the coordinate - system [u, v, w], we can see, that G0(
|

1
|

) in the neighborhood

of 0∞ is smooth. By (4.3) the new origo is the point 0∞ = (u = 0, v = 0, w =
|

1
|

) =
(ξ = 0, ζ = 0, ρ = 0).

ζ

ξ

η

Considering the partially familiar three - dimensional space

R3

(0,0,

|

0,5

|

)

= {(u, v, w) ∈
|

R3
|

:
|

− 1
|

< u <
|

1
|

;
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|

− 1
|

< v <
|

1
|

;
|

− 1
| |

0, 5
|

= −
|

0, 5
|

< w <
|

1, 5
|

=
|

1
| |

0, 5
|

} (4.4)

with the coordinate - system [ξ, η, ζ]

ξ = u

η = v

ζ = w
|

0, 5
|

(4.5)

instead of coordinate - system [u, v, w], we can see the point 0∞ = (u = 0, v = 0, w =
|

1
|

) =

(ξ = 0, η = 0, ζ =
|

0, 5
|

) in the ”upper” position again, such that the partially familiar three
- dimensional space R3

(0,0,

|

0,5

|

)

contains the ”original” origo 0 = (u = 0, v = 0, w = 0) =

= (ξ = 0, η = 0, ζ =
|

− 0, 5
|

) which is the origo of our familiar three -dimensional space. By
(4.5) the new origo is

0 |

( 1
2
)

| = (u = 0, v = 0, w =
|

0, 5
|

) = (ξ = 0, η = 0, ζ = 0).

ζ

ξ

η

If r >
|

1
|

then the super ball

G0(r) = {(u, v, w) ∈
|

R3
|

: (u u) (v v) (w w) ≤ r r}

is a giant body again, such that G0(
|

1
|

) ⊂ G0(r). If r ≥
|√

3
|

, then R3 ⊂ G0(r) and
G0(r)box = R3.

5 Super-octaeders

Exploding a familiar octaeder

H = {(x, y, z) ∈ R3 :
|x|
a

+
|y|
b

+
|z|
c

≤ 1; 0 < a, b, c ∈ R}
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the set
|

H
|

= {(
|

x
|

,
|

y
|

,
|

z
|

) ∈
|

R3
|

: (x, y, z) ∈ H} is called super-octaeder. By the computation

|x|
a

+
|y|
b

+
|z|
c

|

=
( |x|

a

)| ( |y|
b

)| ( |z|
c

)|

=

= (|
|

x
|

|
|

a
|

) (|
|

y
|

|
|

b
|

) (|
|

z
|

|
|

c
|

)

with u =
|

x
|

; v =
|

y
|

; w =
|

z
|

and using the identity
|

|x|
|

= |
|

x
|

|; x ∈ R,
|

H
|

= {(u, v, w) ∈
|

R3
|

:

(|u|
|

a
|

) (|v|
|

b
|

) (|w|
|

c
|

) ≤
|

1
|

; 0 < a, b, c ∈ R} (5.1)

is obtained. We consider the special case a = 1, b = 1,
|

c
|

= μ(∈
|

R
|

), only. Now (5.1) with

(1.4) gives that the description of our super-octaeder is

|

H
|

μ
= {(u, v, w) ∈

|

R3
|

: (|u| 1) (|v| 1) (|w| μ) ≤
|

1
|

; 0 < μ ∈
|

R
|

}. (5.2)

Writing w = 0, by (5.2) gives that the basis B (see (3.2)) is a subset of
|

H
|

μ
.

If μ <
|

1
|

then the super octaeder Hμ is small and
|

H
|

box
=

|

H
|

μ
. For example in the case μ = 2.
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A familiar octaeder Hμ (μ ∈ R) is not able to grow out of the familiar three-dimensional space.

(The ”sky” would be the highness μ =
|

1
|

.) The super-octaeder is able to do that. Let us

consider the case μ =
|

3
|

. From (5.2)

|

H
|

|

3

| = {(u, v, w) ∈
|

R3
|

: (|u| 1) (|v| 1) (|w|
|

3
|

) ≤
|

1
|

} (5.3)

is reduced. Let us begin the description of
|

H
|

|

3

|

box
. Now w ∈ R so (5.3) gives

|

H
|

|

3

|

box
= {(u, v, w) ∈ R3 : (|u| 1) (|v| 1) (|w|

|

3
|

) ≤
|

1
|

}. (5.4)

By (1.3) and (2.4) we can write

(|u| 1) (|v| 1) (|w|
|

3
|

) = (|u| 1) + (|v| 1) + (|w|
|

3
|

)

|

=

= ((
|u|
1

)

|

) + ((
|v|
1

)

|

) + ((
|w|
3

)

|

)

|

= (
|u|
1

) + (
|v|
1

) + (
|w|
3

)

|

= (
th |u|
th 1

+
th |v|
th 1

+
th |w|

3
)

|

=

= (
| th u|
th 1

+
| th v|
th 1

+
| th w|

3
)

|

and (5.4) has the form

|

H
|

|

3

|

box
=

{
(u, v, w) ∈ R3 :

| th u|
th 1

+
| th v|
th 1

+
| th w|

3
≤ 1}. (5.5)

Moreover,
|

H
|

|

3

|

box
is illustrated by the figure:
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The super-octaeder
|

H
|

|

3

| is continued in the partially familiar three-dimensional space R3
O∞

.

(See (4.2).) Using the coordinate - system (4.3), by (5.3) we have

|

H
|

|

3

| = {(ζ, η, ζ) ∈
|

R3
|

: (|ξ| 1) (|η| 1) (|ζ
|

1
|

|
|

3
|

) ≤
|

1
|

}.

Hence, (5.6)
|

H
|

|

3

| ∩ R3
0x

= {(ξ, η, ζ) ∈
|

R3
|

:

(|ξ| 1) (|η| 1) (|ζ
|

1
|

|
|

3
|

) ≤
|

1
|

; ξ, η, ζ ∈ R}. (5.6)

Moreover, by (1.3) , (2.4) and the identity
|

|x|
|

= |
|

x
|

|; x ∈ R, we have the computation

(|ξ| 1) (|η| 1) (|ζ
|

1
|

| :
|

3
|

) =
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= |ζ 1 + |η| 1 + |ζ
|

1
|

|
|

3
|
|

= ((
|ξ|
1

)

|

) + ((
|η|
1

)

|

) + ((
|ζ

|

1
|

|
3

)

|

)

|

=

=
|ξ|
1

+
|η|
1

+
|ζ

|

1
|

|
3

|

=
| th ξ|
th 1

+
| th η|
th 1

+
th ζ + 1

3

|

So, (5.6) has the form

|

H
|

|

3

| ∩ R3
0∞ =

{
(ξ, η, ζ) ∈

|

R3
|

:
| th ξ|
th 1

+
| th η|
th 1

+
th ζ + 1

3
≤ 1; ξ, η, ζ ∈ R

}
(5.7)

illustrated by the figure:

This figure shows the joint part
|

H
|

|

3

|

box
∩ (

|

H
|

|

3

| ∩ R3
O∞

) which is a subset of

R3 ∩ R3
O∞

= {(u, v, w) ∈
|

R3
|

:
|

− 1
|

< u <
|

1
|

;
|

− 1
|

< v <
|

1
|

; 0 < w <
|

1
|

}

Especially interesting is a new basis

B∞ = {(u, v,
|

1
|

) = |u| |v| ≤ area th
(2 th 1

3

)
≈ 0, 5596658124}.
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B∞ is invisible in our familiar three - dimensional space R3, but B∞ ⊂ R3
0∞ . The super-octaeder

|

H
|

|

3

| is continued in the quasi- familiar three-dimensional space R3
Ω, where Ω = (0, 0,

|

3
|

) ∈
|

R3
|

.

Moreover,

R3
Ω = {(u, v, w) ∈

|

R3
|

:

|

− 1
|

< u <
|

1
|

;
|

− 1
|

< v <
|

1
|

;
|

− 1
| |

3
|

=
|

2
|

< w <
|

4
|

=
|

1
| |

3
|

}. (5.8)

using the coordinate - system [α, β, γ]

α = u

β = v

γ = w
|

3
|

(5.9)

instead of the coordinate - system [u, v, w], (5.3) yields

|

H
|

|

3

| = {(α, β, γ) ∈
|

R3
|

: (|α| 1) (|β| 1) (|γ
|

3
|

|
|

3
|

) ≤
|

1
|

} (5.10)

Hence, (5.11)
|

H
|

|

3

| ∩ R3
Ω = {(α, β, γ) ∈

|

R3
|

:

(|α| 1) (|β 1) (|γ
|

3
|

|
|

3
|

) ≤
|

1
|

; α, β, γ ∈ R}.

Moreover, by (1.3) , (2.4) and the identity
|

|x|
|

= |
|

x
|

|; x ∈ R, we have the computation

(|α| 1) (|β| 1) (|γ
|

3
|

|
|

3
|

) =
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= |α 1 + |β| 1 + |γ
|

1
|

|
|

3
|
|

= ((
|α|
1

)

|

) + ((
|β|
1

)

|

) + ((
|γ

|

1
|

|
3

)

|

)

|

=

= (
|α|
1

) + (
|β|
1

) +
|γ

|

3
|

|
3

|

=
|α|
1

+
|β|
1

+
|
|

y + 3
|

|
3

|

=
|α|
1

+
|β|
1

+
|γ + 3|

3

|

=

th |α|
th 1

+
th |β|
th 1

+
| th γ + 3|

3

|

=
| th α|
th 1

+
| th β|
th 1

+
th γ + 3

3

|

So, (5.11) has the form

|

H
|

|

3

| ∩ R3
Ω =

{
(α, β, γ) ∈

|

R3
|

:
| th α|
th 1

+
| th β|
th 1

+
th γ

3
≤ 0; α, β, γ ∈ R

}
(5.12)

illustrated by the figure:

So, for the upper part of
|

H
|

|

3

| , that is for the

|

H
|upper
|

3

| = {(u, v, w) ∈
|

R3
|

: (|u| 1) (|v| 1) (w
|

3
|

) ≤
|

1
|

; w ≥ 0}

it is ”almost true”, that
|

H
|upper
|

3

| is the union B ∪ (
|

H
|

|

3

| ∩R3
0∞)∪ (

|

H
|

|

3

| ∩R3
Ω) because R3

0∞ ∩R3
Ω

is empty so there exists a gap

G =
{

(u, v,
|

2
|

) : |u| |v| ≤ area th
(th 1

3

)
≈ 0, 2595394547

}
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between R3
0∞ and R3

Ω. So, we have

|

H
|upper
|

3

| = B ∪ (
|

H
|

|

3

| ∩ R3
0∞) ∪ G ∪ (

|

H
|

|

3

| ∩ R3
Ω). (5.13)

Denoting −0∞ = (0, 0,
|

− 1
|

) and −Ω = (0, 0,
|

− 3
|

) with

G− =
{

(u, v,
|

− 2
|

) = |u| |v| ≤ area th
(th 1

3

)
≈ 0, 2595394547

}
for

|

H
| lover
|

3

|
= {(u, v, w) ∈

|

R3
|

: (|u| 1) (|v| 1) (w
|

3
|

) ≤
|

1
|

; w < 0
}

so,
|

H
| lover
|

3

|
= (

|

H
|

|

3

| ∩ R3
−0∞) ∪ G− ∪ (

|

H
|

|

3

| ∩ R3
−Ω (5.14)

is obtained.

Finally, having that
|

H
|

|

3

| =
|

H
|upper
|

3

| ∪
|

H
| lover
|

3

|
, using (5.13) and (5.14) we can see the giant

body
|

H
|

|

3

| piece by piece is

|

H
|

|

3

| = (
|

H
|

|

3

| ∩ R3
−Ω) ∪ G− ∪ (

|

H
|

|

3

| ∩ R3
−0∞) ∪ B ∪ (

|

H
|

|

3

| ∩ R3
0∞) ∪ G ∪ (

|

H
|

|

3

| ∩ R3
Ω).
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