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BAYESIAN  NETWORKS 

  IN  FORENSIC  IDENTIFICATION  PROBLEMS 
 

ANDRADE  Marina,  (P),   FERREIRA  Manuel  Alberto M., (P)  
 

Abstract. Paternity dispute and criminal identification problems are examples of situations in 
which forensic approach the DNA profiles study is a common procedure. In order to deal with 
the problems mentioned it is needed an introduction to present and explain the various concepts 
involved, since distinct areas must be considered. In the second paragraph some problems are 
presented. Here it is exhibited an algebraic treatment, for the simpler problems and with those 
the use of the object-oriented Bayesian networks is shown. Then the most complex kind of 
problems that may occur is presented. In the last paragraph some comments are added. 
 
Key words: Bayesian networks, DNA profiles, identification problems.  
 
Mathematics Subject Classification:  Primary 62C10; Secondary 62P99. 

 
 
1 Introduction 
 
The use of networks transporting probabilities began with the geneticist Sewall Wright in the 
beginning of the 20th century (1921). Since then their use had different forms in several areas like 
social sciences and economy – in which the used models are, in general, linear named Path 
Diagrams or Structural Equations Models (SEM), and in artificial intelligence – usually non-linear 
models named Bayesian networks also called Probabilistic Expert Systems (PES). 
 
Bayesian networks are graphical structures for representing the probabilistic relationships among 
a large number of variables and for doing probabilistic inference with those variables, Neapolitan 
(2004). Before we approach the use of Bayesian networks to our interest problems we briefly 
discuss some aspects of PES in connection with uncertainty problems. 
 
 
1.1 Probability concept 
 
The interpretation of probability has been and still is a subject of intense debate. It has important 
implications for the practice of probability modelling and statistical inference, both in general and 
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in expert systems applications. We believe that the main division may be stated between objective 
and epistemological, Gillies (1994), understandings of P(A), the probability of the event A; or more 
generally of P(A|B), the probability of A conditional on the happening of the event B. 
 
Objective theories consider such probabilities as real world attributes of the events they refer to, and 
are not affected by or related to our perception of them. The most influent objective interpretation 
has been the frequentist interpretation (Venn; von Mises, Reichenbach, etc.), to which probability is 
defined as the limit of the proportion of successes in an infinite sequence of experiments. It only 
allows the approach of repeatable events. Despite this important limitation this interpretation has 
been the dominant one and was the basis of Neyman and Pearson’s frequentist approach to 
statistical inference. 
 
Epistemological theories see P(A|B) as a state of mental uncertainty about A, in the knowledge of B 
– where A and B may be singular propositions and not necessarily repeatable events. These theories 
can be divided into logical and subjectivists theories. Logical theories suppose the existence of a 
single rational degree of uncertainty about A, in the knowledge of B. However, the problem is that 
it is not yet known a method for the evaluation of logical probabilities. The subjectivist 
interpretation has become more popular in the last years. Subjectivists regard probability as a 
degree of reasonable belief in a certain event, from an individual viewpoint; therefore probability is 
a numeric subjective measure of a particular person according his/her degree of belief, as long as it 
is ‘coherent’1.  
 
Obviously, from the objective part the critics can claim that it is an extremely vulnerable assertion. 
However, experience shows that distinct people, with different degrees of knowledge or information 
with respect to certain events, have different quantifications of the associated uncertainty. 
 
From a subjectivist perspective it is possible to specify probabilities of individual propositions, and 
even to treat unknown constants or parameters as random variables. Being unknown it is possible to 
assign them probabilities, under a coherent structure. The subjectivist interpretation is the one we 
follow here. 
 
 
1.2 Expert systems 
 
Expert systems are attempts to crystallize and codify the knowledge and skills of one or more 
experts into a tool that can be used by non-specialists, Cowell et al. (1999). An expert system can 
be decomposed as follows: 
 
 Expert system = knowledge base + Inference engine. 
 
The first term on the right-hand side of the equation, knowledge base, refers the specific knowledge 
domain of the problem. The inference engine is given by a set of algorithms, which process the 
codification of the knowledge base jointly with any specific information known for the application 
in study. 
                                                 
1The principle of coherence requires that an individual should not make a collection of probability assessments that 
could put him in the position of suffering a sure loss, no matter how the relevant uncertain events turn out, Cowell et al. 
(1999).  
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Usually it is presented in a software program, as the one we are going to show hereafter, but such is 
not an imperative rule. Each of those parts is important for the inferences, but knowledge base is 
crucial. The inferences obtained depend naturally on the quality of the knowledge base, of course in 
association with a sophisticated inference engine. The better those parts are the best results we can 
get.  
 
A PES is a representation of a complex probability structure by means of a directed acyclic graph, 
having a node for each variable, and directed links describing probabilistic causal relationships 
between variables, Dawid et al. (2002). Bayesian approach is the adequate for making inferences in 
probabilistic expert systems. 
 
1.2.1 Bayesian networks 
 
Bayesian networks are graphical representations expressing qualitative relationships of dependence 
and independence between variables. A Bayesian network is a directed acyclic graph G (DAG) 
having a set of V vertices or nodes and directed arrows. Each node � � V represents a random 
variable X� with a set of possible values or states. The arrows connecting the nodes describe 
conditional probability dependencies between the variables. 
 
The set of parents, pa(�), of a node � comprises all the nodes in the graph with arrows ending in �. 
The probability structure is completed by specifying the conditional probability distributions for 
each random variable X� and each possible configuration of variables associated with its parent 
nodes xpa(�). The conditional distribution of X� is expressed given Xpa(�) = xpa(�). The joint 
distribution is p(x) = � ��V p(x �| xpa(�)). There are algorithms to transform the network into a new 
graphical representation, named junction tree of cliques, so that the conditional probability p(x �| xA) 
can be efficiently computed, for all � � V, any set of nodes VA � , and any configuration xA of the 
nodes XA. The nodes in the conditioning set A are generally nodes of observation and input of 
evidence XA= xA, or they may specify hypotheses being assumed. 
 
Software such as Hugin2 can be used to build the Bayesian network through the graph G. That can 
be done by specifying the graph nodes, their space of states and the conditional probabilities p(x �| 
xpa(� )). In the compiling process the software will construct its internal junction tree representation. 
Then, by entering the evidence XA= xA at the nodes in A, and requesting its propagation to the 
remaining nodes in the network, the conditional probabilities p(x �| xA) are obtained. 
 
OOBN are one example of the general class of Bayesian networks. An instance or object is a 
regular network possessing input and output nodes as well as ordinary internal nodes. The interface 
nodes have grey fringes, with the input nodes exhibiting a dotted line and the output nodes a solid 
line. The instances of a given class have identical conditional probability tables for non-input nodes. 
The objects are connected by directed links from output to input nodes. The links represent 
identification of nodes. We use bold face to refer the object classes and math mode to refer the 
nodes. The modular flexibility structure of the OOBN is of great advantage in complex cases 
 

                                                 
2 http://www.hugin.com - OOBN a resource available in the Hugin 6.4 software. 
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1.2.2   STR markers and DNA profiles 
 
The development of the molecular biology, since the decade of 60, allowed the knowledge of the 
DNA structure and its implementation as a genetic information vehicular, so that it can also be used 
in the clarification of judicial forensic problems. 

 
Every human being has 23 pairs of chromosomes in the nuclear of human cell. One of those pairs 
determines the gender – XY for male, XX for female. The other 22 pairs are said homologous pairs. 
All of them are DNA molecules. A DNA molecule is a double helix composed by four different 
nucleotides: C, A, G and T, binding in pairs C-G and A-T. 
 
A locus, sometimes also named a gene for simplification, is an area on a chromosome and the DNA 
composition on that area is an allele. Thus, a locus corresponds to a random variable and the allele 
is its realized state. 
 
A DNA marker is a known locus where the allele can be measured in the laboratory, by the use of 
appropriate techniques. More recently, the techniques provide the use of Short Tandem Repeats 
(STR) markers, which avoid the possibility of measurement errors. STR markers are given by 
integers, but they can be codified even to protect the process or case. If an STR allele exhibits a 
value of 5, a certain expression (e.g. GTCCAG) is repeated exactly five times at that locus. 
 
A DNA profile for an individual is a measurement on several markers to which a genotype is 
observed. The genotype is an unordered pair of alleles, one inherited from the individual’s father 
and the other from the mother, although it is not possible to distinguish which is which. In this work 
we implement the product rule that is Hardy-Weinberg and linkage equilibrium assumptions; in 
practice it assumes the independence of the individual’s alleles both within and across markers. If a 
more complex genetic model was desired it could be implemented by introducing dependencies 
between founder nodes. 
 
 
1.3 Forensic identification 
 
The use of DNA profiles in forensic identification problems has become, in the last years, an almost 
regular procedure in many and different situations. Among those are: 1) disputed paternity 
problems, in which it is necessary to determine if the putative father of a child is or is not the true 
father; 2) criminal cases as if a certain individual A was the origin of a stain found in the scene of a 
crime; or 3) in more complex cases to determine if an individual or more did contribute to a mixture 
trace found. In criminal cases it is common to find traces with more than one single contributor. As 
it is known a person has at most two different alleles for each marker. If a trace exhibits more than 
two alleles to one or more markers then it is certainly a mixture trace. 
 
Mixture traces can happen in rape cases, where the vaginal swab typically will contain DNA from 
the victim as well as the perpetrator, and also from a consensual partner or several perpetrators. 
Homicides or robberies are other possible origin for mixture traces, where we can admit a fight that 
produces some material. 
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There are still some other forensic identification problems, however not too frequent ones. That is 
the case of an identification of a body found, together with is information of a missing person 
belonging to a known family, or the identification of more than one body resultant of a disaster or 
an attempt. And even immigration  cases in which it is important to establish family relations. 
 
We can say that the use of Bayesian arguments in forensic problems begun with a Dennis Lindley 
work in 1977. Since then there is a huge amount of published works in this area, in great part due to 
the evolution of the DNA profiling techniques. The interest in forensic identification problems was 
not exclusively of forensic scientists as it can be seen by innumerable articles made with the 
contribution of statisticians. 
 
 
2 Using Bayesian networks 
 
Dawid et al.'s (2002) work describes a new approach to the problems mentioned above. The 
construction and use of Bayesian networks to analyse complex problems of forensic identification 
inference was initially done there followed by Evett et al. (2002), Dawid et al. (2002), Mortera 
(2003) and Mortera et al. (2003) among others.  
 
Here we start with a simple graphical and numerical representation and extend our analysis to more 
complex problems, such as DNA mixtures and cases where the evidence is composed with more 
than one trace. 
 
 
2.1 Disputed paternity 

 
In a case of disputed paternity the genetic information of the child can be seen as partial information 
about the true father. In a simple case the paternity is imputed to a certain individual who rejects it. 
DNA profiles of the mother m, the child c, and the putative father pf are available. 
 
Becoming the paternity assumption litigious we can say that, in formal terms, two hypotheses are 
established, which for simplification we will name the prosecution and the defense hypotheses, i.e., 
 
HP: The true father is the putative father. 
 
vs 
 
HD: The true father is another individual randomly drawn from the population, and not genetically 

related with the mother or the putative father. 
 
We need to assess the likelihood function over the hypotheses as to the true father.  If we denote the 
data (mgt, cgt, pfgt) as the evidence E, then we want to evaluate the likelihood ratio: 
 

� �
� �D

P

HEP
HEPLR

|
|

� . 
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Naturally the court has to answer to the truly paternity of the child. If we want the court has to 
evaluate the ratio of the hypotheses in dispute. That is 
 

� �
� �

� �
� �

� �
� � .|

|
|
|

D

P

D

P

D

P

HP
HP

HEP
HEP

EHP
EHP

��  

 
If we admit that � � � �DP HPHP �  then  
 

� �
� �

� �
� �D

P

D

P

HEP
HEP

EHP
EHP

|
|

|
|

� . 

 
Before continuing let us briefly explain the equations above. 
Being the markers in different chromosomes (linkage equilibrium) and assuming random mating 
(Hardy-Weinberg equilibrium) we have independence between and within markers. Therefore we 
can obtain the LR for each marker separately and multiply the values to determine the overall 
likelihood ratio based on the data available for all markers.  
 
We want to determine the probability of the triplet E, under the two hypotheses. We can agree that 
before knowing any data on the child it is reasonable to assume that the identity of the true father is 
independent of the mother’s and the putative father’s. And supported on that, it is easily seen that 
we can determine the conditional probability of the child’s genotype, given the other two available 
genotypes. Thus, to determine � �PHEP |  we simply have to apply the Mendel’s laws. But the 
calculus of � �DHEP |  necessarily demands the knowledge of the population allele frequencies for 
the considered markers. 
 
Let us admit that for a certain marker the triplet E = (mgt, gtc, pfgt) is the following 

� � � � � �� �BABBBAE ,;,;,� , and pA and pB are the population allele frequencies for the considered 
marker. 
 

� � � � � �� �
� �� �
5.05.0                 

   ;|                 
;|;;|

��
�
�

pfgtmgtcgtP
pfgtmgtpfgtcgtmgtPHEP P

 

and 
 

� � � � � �� �
� �� �
B

P

p
rgtmgtcgtP

rgtmgtpfgtcgtmgtPHEP

��
�
�

5.0                 
   ;|                 

;|;;|
 

 
where rgt assigns the genotype of a random individual of the population, not related to the mother 
or the putative father. 
Therefore, 
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P

p

HEP
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�

�
 

The considered problem is, as shown, easily algebraically solved. However we will use it to 
illustrate the simplicity and the advantages of using this tool in more complex situations. Given the 
freedom of choice for the variables to include in the graphical representation, different 
representations can be obtained. Some of them simpler than others. To get a ‘good’ representation is 
very important to the efficiency and the viability of the computational routines. These are extremely 
sensible to the organization of the graphical structure. The first step consists on the identification 
and definition of the nodes for all the variables of interest to the problem.  
 
After that we are able to build the graph representation. In accordance with Dawid et al. (2002), in 
order to maximize the efficiency of the calculations as well as the logical clarity of the 
representation we chose to disaggregate each individual’s genotype into its constituent, 
unobserved, paternally and maternally inherited genes.     
 
Thus, in Fig. 1 we have the OOBN for the paternity case discussed in Dawid et al. (2002), 
considering a single marker. Each node (instance) in the network represents itself a Bayesian 
network. In this simple paternity case instances pfmg, pfpg, mpg and mmg are all of class 
founder, Fig. 2, and represent the ‘putative father’s maternal and paternal gene’, and similarly for 
the mother. Instances mgt, cgt and pfgt are of class genotype, Fig. 3, and consider the observed 
genotype. The instances tfmg and tfpg are of class whom, Fig. 4, and specify whether the 
correspondent allele is or is not from the putative father. And cpg and cmg of class inherit, Fig. 5 
represent the allele transmission through meiosis. The node tf=pf? represents the binary query ‘Is 
the true father the putative father?’ 
 

 
Figure 1: Simple paternity network. 

 
The instance founder contains a single node gene, having for its space of states all the possible 
alleles that can be presented for the specific case, and the correspondent population gene 
frequencies. 
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Figure 2: founder network. 

 
The genotype of an individual is an unordered pair of alleles inherited from paternal, pg, and 
maternal, mg, genes, here represented by gtmin:=min{pg, mg} and gtmax:=max{pg, mg}, where pg 
and mg are input nodes identical to the gene node of founder.    
 

 
Figure 3: genotype network. 

 
The instance whom describes the true father’s allele origin. If tf=pf? has true for value then the true 
father’s allele, tfg, will be identical with the putative father’s, pfg, otherwise the true father’s allele 
is chosen randomly from another man in the population, with otherg an instance of the class 
founder, and tfg:=if(tf=pf?= = true, pfg, otherg.gene). 
 

 

 
 

Figure 4: whom network. 
 

The network models the Mendel’s inheritance in which the child’s allele is chosen at random from 
the two parents, pg and mg, here as the sequence of the observed outcome of a fair coin toss. The 
node coin is modeled as a Binomial(1, 0.5), therefore cg:= if(fcoin.coin = =1, pg, mg). 

 

 
 

Figure 5: inherit network. 
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Following Dawid et al. (2002), the data for marker FES are child genotype cgt = {12, 12}, mother’s 
genotype mgt = {10, 12} and putative father’s genotype = {10, 12}. The population allele 
frequencies are p10 = 0.28425 and p12 = 0.25942. As the authors point out, this simple problem can 
be easily handled by an algebraic approach. But, the interest in it is to illustrate the simplicity and 
advantages of using this tool, and to extend its use to more complex problems. 
 
After specifying the network we can put it to run and then insert the evidence. Considering equal 
prior probabilities for the query node representing the hypotheses, we get the likelihood after 
inserting the evidence. The likelihood ratio, based on the data for this marker, is obtained from the 
marginal posterior distribution of the query node. Thus, � � 6584.0|:? ��� EtruepftfP  
and � � 3416.0|:? ��� EfalsepftfP , and 9274.1�LR , being these results in agreement with the 
algebraic approach. 
 
BN for more complex problems can be built out of the same fundamental local modules that we 
have already described for the simple problem above, Dawid et al. (2002). 
 

Connect with more complex paternity cases – indirect evidence: only one brother of the 
putative father available or a brother and another child (with a different mother) of the putative 
father; or admitting the possibility of mutation in transmission of the putative father’s alleles. 
 
2.2 Mixtures 

 
The advances achieved in the forensic biology have certainly encouraged the interest in problems of 
forensic identification also allowing a much more rigorous treatment of the problems in analysis. 
That is the case of problems of DNA mixtures - Mortera (2003) and Mortera et al. (2003). 
One of the complexities in the interpretation of the mixture traces is assigning the number of 
contributors to the mixture. In general, the trace suggests a lower bound for the total number of 
contributors but no upper bound. Lauritzen and Mortera (2002) gave a useful low upper bound on 
the number of contributors worth considering. 
 
In what follows we describe a complex mixture case and present the data to be considered in the 
analysis. After formulating the hypotheses we perform the analysis for one marker considering the 
information from one trace. Then we consider the two traces and finally we generalize the analysis 
considering two mixture traces and the three markers. 
 

The case considered 
 
A crime has been committed, and two persons were murdered, V1 and V2. At the scene of the crime 
two different mixture traces were found: T1 in the toilet and T2 in the victims' car. S2 is a potential 
suspect. S2's DNA profile was measured and found to be compatible with the mixture traces. 
 
If we accept that there was a fight during the assault and that produced some material, it is obvious 
that the individual who perpetrated the crime could have left some of his/her material in some but 
not in all traces. The non-DNA evidence indicates the possibility that two people were involved in 
the crime. 
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Excerpt of data 
 

In order to summarize the evidence we present in Table 1 the DNA profiles of the victims' and the 
suspect, S2.  In Table 2 we present the profiling results for the mixtures traces (T1 and T2), for the 
STR markers studied, respectively, and the allele frequencies for each marker. 
 

Marker V1 (f) V2 (m) S2 

TH01 D;E D;E B;C 
FES A;C C;C B;B 
FGA B;E B;C A;C 

Table 1: DNA profiles of the two victims and the suspect 
 

 TH01 FES FGA 
T1 B; C; D; E A; B; C A; B; C; E 
T2 B; C; D; E B; C A; B; C 
pA * 0.0129 0.0684 
pB 0.1696 0.3287 0.1740 
pC 0.1386 0.3664 0.1606 
pD 0.1984 * * 
pE 0.2748 * 0.0321 

 
Table 2: DNA mixture traces and allele frequencies and allele frequencies3  

In the traces there is biological material that must belong to some person other than the two victims. 
The allele frequencies used in this work are the Portuguese population frequencies collected in the 
worldwide database 'The Distribution of Human DNA-PCR Polymorphisms, since the case 
mentioned took place in Portugal. 
 
Here we consider that the crime traces can contain DNA from up to three unknown contributors, in 
addition to the victims and/or the suspect. In what follows we will explain how this is implemented. 
 
If the DNA from S2 is present in at least one of the traces this will place him at the scene of the 
crime and consequently as one of the possible perpetrators. Consideration of whether or not the 
suspect was a contributor to any of the mixture traces will give a measure of the strength. 
 

Hypotheses 
 
The court has to determine if the suspect is or is not guilty. These are described as the level III, or 
offence, propositions, Cook et al. (1998). However the forensic scientist does not typically address 
such propositions. In this case it appears more appropriate to address source level propositions. 
Hypotheses to be addressed: 
 

H1: S2 is one of the contributors to T1 but not T2. 

                                                 
3 we use * to refer values that are of no concern in the analysis. 
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H2: S2 is one of the contributors to T2 but not T1. 

H3: S2 is one of the contributors to both T1 and T2. 

H4: S2 did not contribute to trace T1 or T2. 
 

We are interested in measuring: 
 
� �	|       2 tracestheofoneleastattodcontributeSP , where 	  is the vector comprising the profiles 

observed of the traces found at the crime scene, the victims’ and the suspect profiles. This is 
equivalent to 

� � � �.|1| 4321 		 HPHHHP 
���  
 
 

2.1.1 One mixture trace and a single marker 
 
The network for one trace and a single marker follows Mortera et al. (2003), Fig. 4 section 3.2, an 
OOBN version considering up to three unknown contributors Fig. 6, marker network. Here we 
present the networks for the marker, FES4. 
 

 
 

Figure 6: marker network. 
 

The instance target follows the reformulation of the query presented by Mortera et al. (2003) in 
order to use simple arithmetic expressions avoiding the tedious construction of the states and tables 
for the nodes; this is presented in more detail in Fig. 7. 
 

                                                 
4The marker networks differ only in the number of alleles to consider, whether it is the space of states of the nodes 
referring the alleles or in the presence of one more allele to consider in the network. Since Hugin does not allow 
modification of the state of a node in order to reuse a network, for markers TH01 and FGA we started with a 
codification in the space of states of the node gene and put it in accordance with the alleles of each marker under 
consideration so that we could use the same network. 
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Figure 7: target network. 

 
The node vi_plus_s2 takes values 0,1,2,3 according to the number of true states in its parent nodes 
v1_in_mix?, v2_in_mix? and s2_in_mix?. Consequently the node total# takes values from 0 to 6 
being given by vi_plus_s2 + n_unknown. The node n_unknown accounts the number of possible 
unknown contributors to the mixture, between 0 and 3. Node vi_by_s2 takes values from 0 to 7, 
expressing the result values of the one-to-one correspondence with the eight joint configurations of 
its parent nodes v1_in_mix?, v2_in_mix? and s2_in_mix?. The target node has 32 states and is given 
by v_ by_s2 + 8 *n_ unknown. These 32 states of target node describe all the possibilities for 
contributors to the mixture, i.e., target has all states from v1&v2&s2&3u, v1&s2&3u,..., v1&v2&s2, 
..., null. Naturally, the unrealistic hypotheses (those incompatible with the minimum number of 
contributors) are excluded when the evidence is inserted. 
The nodes v1_in_mix?, v2_in_mix?, s2_in_mix?, target, vi_by_s2, and n unknown are given uniform 
prior distributions. The true or false states of the ui’s are indirectly given from the value of 
n_unknown and through the instance n_unk, Fig. 8. When n_ unknown is 0 then all the ui’s, in 
marker, are false, so none of this possible contributors is included in the mixture, when n_unknown 
= 1 then u1 is included in the mixture and similarly for states 2 and 3 of n_ unknown. This 
information is passed to the ui’s through n_unk and its respective nodes. Therefore, for example u1 
is considered in the mixture when n_ unknown is more or equal to 1, i.e., n_unk >= 1 is true if n_ 
unknown is more or equal to 1 else is false. Similarly for u2 and u3. 
 
 

 
Figure 9: n_unk network. 

 
In the marker network we defined a new instance for each individual, Fig. 10. 
 

 
Figure 10: individual network. 
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For each person, v1, v2, s2, u1, u2, u3, we have a repeated structure in which we consider the 
genetic background information – the paternal and maternal inheritance, pg and mg. These are 
instances of a class named founder, a network constituted by a simple allele node in which the 
population allele frequencies are used to specify the unconditional distribution. By taking this 
approach we implement the product rule that is Hardy-Weinberg and linkage equilibrium 
assumptions. If a more complex genetic model was desired it could be implemented by introducing 
dependencies between founder nodes. 
 
The individual’s genotype, known for v1, v2 and s2 and unknown for u1, u2 and u3, are indirectly 
inserted, for the known persons, through the instance allele_in shown in Fig. 11. 
 

 
Figure 11: allele_in network. 

 
The instances A, B, C and x5, instances of the class allele, Fig. 12, are expressing the logical 
conjunction between the query node and the presence or absence of the allele in the considered 
individual, given through allele_in. The node query represents a binary query mentioning if an 
individual (for example v1) is or is not in the mixture. 
 

 
Figure 12: allele network. 

 
The instance marker has also an instance named mix, Fig. 13, which for each allele, expresses the 
logical disjunction of the parent instances, e.g., allele A is in the mixture if Av1v2s2 is true or 
Au1u2u3 is true. Here we use k to refer that the allele came from the known individual’s v1, v2 or 
s2, in the same way that u is used for the unknowns. 
 

 
Figure 13: mix network. 

 

                                                 
5For marker FES A, B and C (possibly translate to 8, 9, 11, etc) are the alleles present in the mixture and we use x to 
represent all the alleles not observed for the marker. 
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In marker the instances Av1v2, ..., xu1u2u3 are expressing the possession of an allele by at least 
one of the individuals v1, v2, s2, u1, u2, u3, instances of logical disjunction, Fig. 14, i.e, Av1v2 is 
true if at least one of v1 or v2 has allele A. The node vi_by_s2 is identical to the same named output 
node of the instance target, and it refers the probabilities of the state given the evidence. For each 
trace vi_by_s2 is the node measuring the presence of the suspect at the scene of the crime. 
 

 
Figure 14: disjunction network. 

 
We can put the network marker to run and obtain the results for one of the traces. 
 
2.1.2 Two mixture traces and a single marker 

 
In the case mentioned there were two different traces found at the scene of the crime. So it is 
necessary to combine the information from both traces. To do so we defined an instance combine, 
Fig. 15. This instance has as parents the output nodes vi_by_s2 of the instance marker for trace T1 
and trace T2. The node T1_T2 combines the results obtained in the parent instances for node 
vi_by_s2 expressing the result values of the one-to-one correspondence with the eight joint 
configurations of its parent nodes v1_in_mix?, v2_in_mix?, s2_in_mix? in each trace (vi_by_s2_t1, 
vi_by_s2_t2) for the considered marker. 
 

 
Figure 15: combine network. 

Therefore, the node T1_T2  takes values 0, 1, 2, 3 corresponding to the hypothesis H4, H1, H2 and 
H3, respectively. T1_T2 is 0 if vi_by_s2 is less than 4 in T1 and T2; assumes value 1 if vi_by_s2 is 
equal to 4 or more in T1 and less than 4 in T2; takes value 2 if vi_by_s2 is less than 4 in T1 and equal 
to 4 or more in T2; and is 3 if vi_by_s2 is equal to 4 or more in both T1 and T2. We start with a 
uniform prior distribution for node T1_T2. 
 
We are now able to put the networks for each trace together and compute the information in which 
we are interested, Fig. 16. The instances FES trace_t1 and FES trace_t2 are of class marker in 
which all the individuals in any of the networks have the same structure (individual). Its 
differentiation is made when the evidence is inserted. 
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Figure 16: combine_T1_T2  network. 

 
When we combine the two traces in order to obtain a measure of the evidential weight associated 
with the possible presence of genetical material from the suspect in the traces found at the crime 
scene we get the results listed in the Tables below. For marker FES with different mixture traces we 
obtain: 

S2, V2, V1 trace T1 trace T2 
0 (FFF) 0.0048 0.1470 
1 (FFT) 0.1334 0.0000 
2 (FTF) 0.0068 0.1791 
3 (FTT) 0.1334 0.0000 
4 (TFF) 0.0072 0.1881 
5 (TFT) 0.3526 0.0000 
6 (TTF) 0.0092 0.4857 
7 (TTT) 0.3526 0.0000 

Table 3: results of the node vi_by_s2 
 
Where the state 0 corresponds to s2_in_mix? = False, v2_in_mix? =False and v1_in_mix? = False 
(FFF), and for simplicity the state 0 is read as S2; V2; V1 = FFF. 
 
In Table 4 it is shown the combined information for the two traces for marker FES. 
 

H1 0.2353 
H2 0.1876 
H3 0.4862 
H4 0.0908 

Table 4: results for the node T1_T2. 
 
Thus, 
 

� � 9092.0|        2 �	tracestheofoneleastattodcontributeSP . 
 
 

2.2 Generalizing two mixture traces and three markers 
 

Given the results obtained for one marker it is necessary to extend the reasoning in order to consider 
the information for the three markers, FES, TH01 and FGA. 
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The instances combine_T1_T2 express the results for each marker accounting for the information 
for the two traces. The node T1_T2  in each of these instances computes the results for each marker. 
Therefore we can extract the respective tables, similar to Table 4, for the other two markers. 
 
The instance accumulate having as inputs the output nodes of the instances combine T1_T2, with 
the results of each marker, incorporates the information for the two traces obtained separately, Fig. 
17. The node multi_markers combines the information from the different instances 
combine_T1_T2, i.e., multi_markers gives the results synthesizing the results of T1_T2 for the three 
markers. The node multi_markers with states 0, 1, 2 and 3 assumes the state 0 if all the input nodes 
are 0. Takes value 1 if all the input nodes are 1 or at least one of the input nodes has state 1 and the 
others have the state 06. The node multi markers is 2 if all the input nodes have state 2 or this state 2 
is combined between the states 0 and 2 of the input nodes. The node assumes state 3 if all the input 
nodes have state 3 or if the inputs are combining state 0, state 1 and state 2. 
 

 
Figure 17: accumulate network. 

 
When we join the networks for the three markers, each of which accounts for the two traces, we 
obtain the accumulate_three_markers network, Fig. 19. 
 

 
Figure 19: accumulate three markers network. 

 
Tables 5 and 6 display the results for the marker FGA and TH01 and the cumulative result for all 
three markers, rescaled to sum up to 1. This aims at the question of interest. 
 

S2, V2, V1 trace T1 trace T2 trace T1 trace T2 
0 (FFF) 0.0010 0.0084 0.0134 0.0134 
1 (FFT) 0.0150 0.0000 0.0342 0.0342 
2 (FTF) 0.0037 0.0476 0.0342 0.0342 

                                                 
6 e.g., multi markers=1 if 
T1_T2 =1 for marker1, marker2 and marker3; or T1_T2 =1 for marker1 and marker2 and 
T1_T2 =0 for marker3; or T1_T2 =1 for marker1 and marker3 and T1_T2 =0 for marker2; 
or T1_T2 =1 for marker2 and marker3 and T1_T2 =0 for marker1; or T1_T2 =1 for marker1 
and T1_T2 =0 for marker2 and marker3; or T1_T2 =1 for marker2 and T1_T2 =0 for 
marker1 and marker3; or T1_T2 =1 for marker3 and T1_T2 =0 for marker1 and marker2. 
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3 (FTT) 0.0290 0.0000 0.0342 0.0342 
4 (TFF) 0.0079 0.0977 0.0599 0.0599 
5 (TFT) 0.4644 0.0000 0.2748 0.2748 
6 (TTF) 0.0146 0.8463 0.2748 0.2748 
7 (TTT) 0.4644 0.0000 0.2748 0.2748 

Table 5: results for the eight configurations for markers FGA and TH01. 
 

H1 0.002114
H2 0.001568
H3 0.996313
H4 0.000003

Table 6: results for the node T1_T2 for markers FGA and TH01. 
 
Therefore, we can say that, 
 

� � 999997.0|       2 �	tracestheofoneleastattodcontributeSP  
 
When all the information for the two traces on the three markers is taken into account we get a very 
significant value for the quantity in which we are interested. 
 
 
3 Comments 
 
The use of DNA evidence analysis is commonly accepted nowadays in all courts. However, the 
presentation, interpretation and evaluation of this type of evidence sometimes raise some problems. 
And we are still far from a total incorporation of this kind of evidence, although in some cases it has 
been decisive for the conviction or absolution of the individuals. This is already a good support for 
justice, specially in disputed paternity cases. 
The statistical treatment of criminal evidence has raised new challenges to those that have to decide, 
in the basis of the presented results. Independently of the methodology used, the great difficulty 
inhabits in the interpretation of the evidence, which is summarized in a number – what does that 
value means? 

 
In the most complex problems, as the mentioned ones, the use of Bayesian networks for the analysis 
and interpretation of the evidence can be of great help. In a Bayesian network the complex inter-
relations between the variables are transformed into modular units.  

 
This tool – whose use is everyday more common in different areas – supplies, as a support to the 
decision, a number. It does not give the decision; it is a decision support instrument. Consequently 
it is important that the legal system knows how to evaluate and interpret correctly the information 
contained in it. However, there is still much to do. 
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ANALYSIS  AND  MODELLING  OF  FINANCIAL  POWER 

OF  CZECH  HOUSEHOLDS 
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Abstract. The process of transformation and subsequent process of globalization in the frames 
of EU resulted in many changes of economic, technical, political, legislative and legal spheres. 
These significantly (positively and even negatively) influenced the structure of economy and 
financial power of citizens. The transformation to market economic system, mainly the 
formation of new income sources and the process of significant differentiation of wages, has 
caused crucial changes to the income distribution. This paper concentrates on verification of 
validity of the statistical model of income distribution presently used in the Czech Republic. 
 
Key words. financial power, income distribution, probability model 
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1   Introduction 
 

The knowledge of financial power of the population and the possibility of its observation in 
various social-economic and spatiotemporal viewpoints is the demand for a well decision making in 
the sphere of health and social services, tax burden etc. Analysis of financial power of citizens is a 
datum for decision making in sphere of budget and social policy of the state. Observing the level, 
structure and progress of financial power of citizens is on the forefront also in a monitoring of 
expenditures and households amenities, buying intentions, abilities to service mortgages, debts etc. 

The speed and the quality of obtaining relevant knowledge is therefore important part of 
planning on the microeconomic level. There are models for these purposes which allow us to make 
simple withal sufficiently accurate approximations of very complex situations.  
 
 
2   Methods of analysis and modelling of financial power 
 

Up to date research focuses on analysis of financial power dynamics and its stability and on 
revealing factors that significantly affect incomes. This trend shows up in both theoretical and 
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applied contributions and papers presented at international level. Professor N. T. Longford’s paper 
(Longford – Pittau, 2006) deals with its stability in EU. Detailed analyses and modelling of the state 
and development of financial power in transitional economics are the main goal of PhD theses of 
two project participators, J. Bartošová (Bartošová, 2006a) and �. Sipková (Sipková, 2005a). 

Among popular methods of income distribution modelling, there are besides traditional 
methods of modelling (see e.g. Bartošová, 2007, Bartošová – Bína, 2007), also quintile modelling 
(e.g. Pacáková, 2005, Sipková, 2005). This progressive way of modelling is frequently based on 
application of properties of a quintile function of generalized lambda distribution (RS GLD), see 
Ramberg – Schmeiser, 1974), or Paret’s generalized distribution (see Luceno, 2006). 
 
 
2.1   Construction of income models 
 

Economic quantities, such as income, wages, turn-out, profits, expenses etc., are bounded 
below by nonnegative values. In past the three-parameter logarithm-normal distribution with 
parameters 2,�
  and � , where �  is the theoretical minimum, represented a good approximation of 
income distribution. Therefore, the probability distribution function of the chosen model is 
determined by the following relation 
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xf                                                              (2.1) 

                                                                 0                                                        otherwise, 
 

Where ),,;( 2 ��
xf  is probability distribution function and ��
 ,, 2  are parameters of the 
model. 

The basic aim for construction of the theoretic model is its maximum correspondence to the 
empirical distribution (Bartošová, 2006a, Bílková, 2008). Because of the fact that the sample file of 
household incomes in year 2005 is sufficiently large for the construction of logarithm-normal 
models with parameters 2,�
  and �  the maximal likelihood method was applied. It is based on the 
search for argument of the likelihood function supreme. 

 

 � �nxxL ,...,suparg 1
)(

�
�

�
� , (2.2) 

 

Where � �nxx ,...,1  are values of net annual financial incomes of households in particular 
groups and n  is sample size. 

The system of likelihood equations for estimation of parameters vector   is derived by 
maximization of the respective likelihood function and could be solved only numerically. 

The maximal likelihood estimate of parameter � of three parameter logarithmic-normal 
distribution is numerically calculated by the search of the minimum of likelihood ratio (see And�l, 
1985, Bartošová, 2006a) 

 

 ])),,(()([2),,( 22 nnpnLR ��
���
 ���� 
� , (2.3) 
 

Where p�  is vector of income empirical probability, ),,( 2 ��
��  vector of income theoretical 
probability and � �np�� , )),,(( 2 n��
���  are corresponding log-likelihood functions. 
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According to the fact that we treat only finite samples, the maximum likelihood estimates are 
not guaranteed to have sufficient quality. More detailed information about accuracy of the 
maximum likelihood estimates of parameter vector ),,( 2 ��
� �����

�  in logarithm-normal model of 
income distribution is presented in dissertation thesis (Bartošová, 2006a). 
 
 
3   Modelling of income distribution of Czech households in 2005 
 

After the Czech Republic accession to EU the former Microcenzus was replaced by the SILC 
survey. In 2005, a sample survey SILC was made in 0.15% of Czech households, which represented 
about 4 000 households. Complete non-aggregated sample set enabled us to gain quality estimates 
of parameters for distribution models. For the purposes of this research, following data were chosen  

• social class of the head of household, 
• net income of household (CZK per year). 
In connection with the economical transformation in progress, new sources of income arose 

and social structure of sample sets was changing accordingly. Prior to the “Velvet Revolution”, 
households were divided into classes of workers, cooperative farmers, employees and retired. Social 
structure of the sample sets of household income from year 2005 is depicted in the Table 1.  
 

Table 1. Structure of data sets. (Data source: SILC 2005). 

Social class Size % 

Employees 2148 49.37 
Self-employed 391 8.99 
Retired with economically active members  178 4.09 
Retired without economically active members 1425 32.75 

Unemployed 131 3.01 
Others 78 1.79 
All 4351 100.00 

 
It is apparent from the Table 1 that two biggest social classes, i.e. employees and retired 

without economically active members, formed 82.12% of all households in the Czech Republic in 
2005. Consequently, the character of income distribution all households will be mainly determined 
by the manner of income distribution in these three major classes.  
 
 
3.1   The results obtained 
 

In the Table 2 the values of likelihood ratio LR  are written for the constructed logarithm-
normal models with two and three parameters. In all social groups greater agreement of empirical 
distribution with model was achieved for three parametric logarithm-normal models. The use of 
three parametric logarithm-normal models led to the improvement of models validity. In the 
construction the method of minimization of likelihood ratio was used in order to estimate the value 
of parameter� . 
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Table 2. Comparison of conformity of empirical distribution with two- and three-parametrical 
lognormal models. (Data source: SILC 2005). 

Statistic LR 
Social class 

� = 0 �_LR 
Quantile 

�2
0,95 

Employees 59.723929 51.369312 81.381015 
Self-employed 27.306059 27.260379 43.772972 
Retired with economically active members 21.809623 21.642089 30.143527 
Retired without economically active members 565.20513 535.01713 68.669294 
Unemployed 7.3784923 7.2391322 24.995790 
Others 13.784844 12.339053 22.362032 

All 398.93645 397.66954 104.13874 
 

For the consideration of the models validity are the results of the construction supplemented by 
the values of LR  statistics and 95% quantiles of 2� distribution. From the Table 2 we could infer 
that in most cases the values of LR  and 2

95,0�  are comparable. Only in the case of retired without 
economically active members and all households the strong discrepancy between the empirical 
distribution and the model appears (see Bartošová, 2006b). In both above mentioned cases the LR  
statistics significantly exceed the value of the corresponding 2� quantile. For the retired without 
economically active members is 2

95,010 ���LR  and for all households is 2
95,03 ���LR . Those income 

sets have bimodal distribution (see Figure 1) and could not be modelled using simple parametrical 
models. Modelling of such mixtures is the topic of previous paper (see Bartošová – Bína, 2007).  
 

  
Figure 1. Three-parametrical models, empirical densities and kernel estimates for retired 

without EA members and all households.  (Data source: SILC 2005) 
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Figure 1 shows the three-parametrical lognormal models, the empirical densities and the kernel 
estimates of theoretical density of income distribution of retired without economically active 
members and all households in year 2005. On the mentioned figure we can see that the kernel 
estimates of theoretical density of the households of retired without economically active members 
are obviously bimodal, in the case of all households is this effect less significant. Three-
parametrical lognormal models, the empirical densities and the kernel estimates of theoretical 
density of income distribution in the other social classes (employees, self-employed, retired with 
economically active members and unemployed) are shown in Figure 2.  

 

Figure 2. Three-parametrical models, empirical densities and kernel estimates for employees, 
self-employed, retired with economically active members and unemployed.  (Data 
source: SILC 2005) 

 



 
 
 

Aplimat�–�Journal�of�Applied�Mathematics
 

�� volume�2�(2009),�number�3
 
 

36 

4   Conclusions 
 

It can be seen that for the majority of social classes the logarithm-normal distribution can be 
considered as suitable model of household income distribution. We can observe in the analysis 
aging of the population and increasing influence of income distribution of retired without 
economically active members. In this class, there’s a significant discrepancy between the empirical 
distribution and this model. The same situation appears in the case of all households, which is 
mainly influenced by this class. These income sets have bimodal distribution and could not be 
modelled using simple parametrical models. Bimodality of income distribution could be in both 
cases overcome by splitting the files into two subgroups – households with one member and 
households with more members.  
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PARETO  DISTRIBUTION  AND  WAGE  MODELS 
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Abstract. Pareto distribution is usually used as a model of the distribution of the largest wages, 
not for the whole wage distribution. The parameter b of the Pareto distribution is usually called 
the Pareto coefficient. It can be used as a characteristic of differentiation of 50 % highest wages.  
The Pareto distribution will be a good model of the wage distribution if the empirical 
differentiation of 50 % of the highest wages is similar to the differentiation that has the Pareto 
distribution i.e. the differentiation for which the following ratios are equal: Ratio of the upper 
quartile to the median; ratio of the eight decile to the sixth decile; ratio of the ninth decile to the 
eight decile. This property can be used as one of the criterion to measure the quality of fit of the 
Pareto distribution to some empirical wage distribution. If in a particular case the observed 
differences of the rates of the above mentioned quantiles are negligible, Pareto distribution will 
be an appropriate model of the considered wage distribution. In the case the differences are 
quite material, the approximation of the considered wage distribution with Pareto distribution 
will be more or less inappropriate. If the Pareto distribution is chosen as a model for a particular 
distribution we have to keep in mind that this model is only an approximation. The wage 
distribution will be only approximated and the relations derived from the model will also hold 
for the “true distribution” only approximately. 

 
Key words. Pareto distribution, Pareto coefficient, estimation methods for parameters, least 
squares method, wage distributions 
 
Mathematics Subject Classification:  Primary 62H10, 62H12; Secondary 62H15. 

 
 
1   Pareto Distribution 
 

Pareto distribution is usually used as a model of the distribution of the largest wages, not for 
the whole wage distribution. In this article we will consider using the Pareto distribution to model 
wages higher than median.  

The 100·P% quantile of the wage distribution will be denoted by xP, 0 < P < 1. This value 
represents the upper bound of 100·P % lowest wages and also the lower bound of  100·(1 – P) % 
highest wages. A particular quantile (denoted as xP0) which will be the lower bound of some small 
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number of the highest wages is usually set to be the maximum wage. If the following formula (1) 
holds for any quantile xP, the wage distribution is Pareto distribution   
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The parameter b of the Pareto distribution (1) is called the Pareto coefficient. It can be used as a 
characteristic of differentiation of 50 % highest wages. 

We will now consider a pair of quantiles xP1 and xP2, P1 < P2. It follows from (1) that 
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From what we can derive for the rate of xP2 to xP1 that  
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The rate 
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is an increasing function of the Pareto coefficient b. If the rate of quantiles increases, the relative 
differentiation of wages increases too. If only absolute differences between quantiles increase, only 
the absolute differentiation of wages increases. 

It follows from the equation (1) that once the values xP0 and b are chosen we can determine the 
quantile xP for any chosen P or the other way around for any value xP we can find the corresponding 
value of P. In the first case it is advantageous to write the equation (1) as 
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or after logarithmic transformation as 
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in the second case  
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or after logarithmic transformation as 
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The equations (2) and (3) will after logarithmic transformation have the following form 
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It follows from the equation (6.1) that instead of the Pareto coefficient b we can use any other 
quantile xP1 of the Pareto distribution and it follows from the equation (6.2) that the Pareto 
coefficient b can be calculated using any known quantiles xP1 and xP2. Then we can also determine 
the value xP0 using the formulas 
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The model characterized with the relationship (1) will be practically applicable if the following is 
known: 

� The value of the quantile that characterizes the assumed wage maximum and the value 
of the Pareto coefficient b; 

� The value of the quantile that characterizes the assumed wage maximum and the value 
of any other quantile; 

� The values of any two quantiles of the Pareto distribution.  
Any two quantiles can be written as xP and xP+k, where 0 < k < 1 – P . Using the equation (3), we 
can derive for the rate of these two quantiles 
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The rate (8) will be equal for such pairs of quantiles for which the following formula holds 
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where c is a constant, i. e. the rate will be the same for all pairs of quantiles for which 
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We will use the constant c = 2 in (9.2) and we will choose gradually P = 0,5; 0,6; 0,8. Then using 
the equation (8) we can show the equality of rates of some frequently used quantiles 
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From the relationship (10) we can conclude that Pareto distribution assumes such a wage 
differentiation for which the rate of the upper quartile to median is the same as: 

� The rate of  the 8th to the 6th decile; 
� And as the rate of the 9th to the 8th decile. 

If in a particular case the observed differences of the rates of the above mentioned quantiles 
are negligible, Pareto distribution will be an appropriate model of the considered wage distribution. 
In the case the differences are quite material, the approximation of the considered wage distribution 
with Pareto distribution will be more or less inappropriate. 
 
 
2   Parameter estimates 

 
If the Pareto distribution is chosen as a model for a particular distribution we have to keep in 

mind that this model is only an approximation. The wage distribution will be only approximated 
and the relations derived from the model will also hold for the “true distribution” only 
approximately. Which relations will hold more precisely and for which the precision will be lower 
will be mostly dependent on the method of parameter estimates. 

There are many possibilities to choose from. In the following text the quantiles of Pareto 
distribution will be denoted as xP and the quantiles of the observed wage distribution will be 
denoted as yP.   

First we need to decide which quantile to choose as xP0 . It this article we will assume that xP0 
= x0,99 . From the equation (1) we can see that the considered Pareto distribution will be defined by 
the equation 
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Then we need to determine the value x0,99 and the value of the Pareto coefficient b. Because it is 
necessary to estimate the values of two parameters we need to choose two equations to estimate 
from.  

A natural choice is the equation xP0 = yP0; that is in our case x0,99 = y0,99.  As the other equation 
we set a quantile xP1 equal to the corresponding observed quantile, i.e. xP1 = yP1. In this case, the 
parameters of the model will be 
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We can get different modifications using different choice of the maximum wage and the second 
quantile. If we use equation x0,99 = y0,99 and we use the median in the second equation, i.e.  x0,5 = y0,5 
we get a model with parameters 
 

  ,,990,990 yx �   (13.1)

.

,010
,50log

log
,50

,990

y
y

b �

 

(13.2)

 

Another possibility is setting any two quantiles of the model equal to the quantiles of the 
observed distribution 
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Using the formula (6.2) we get the following parameter estimates 
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and from (7.1) and (7.2) we get 
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With this alternative we can also get numerous modifications depending on the choice of quantiles 
yP1 and yP2 that are used. 

The third possibility is based on the request that xP0 = yP0 and that the rate of some other two 
quantiles of the Pareto distribution xP2/xP1 is equal to the rate yP2/yP1 of correspoding quantiles of 
the wage distribution observed. In this case we will estimate the parameters using (see (6.2)) 
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In this case notwithstanding that xP2/xP1 = yP2/yP1 hold, the equality of quantiles itself, xP1 	 yP1 and 
xP2 	 yP2, does not hold. In this case we can also arrive to numerous modifications depending on 
what maximum wage is chosen and what quantiles yP1 and yP2 are chosen. 

For all of the above methods the equality of two characteristics of the model and the observed 
distribution was required. There are also different approaches to the parameter estimates. 
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The least squares method is frequently used for the Pareto distribution parameter estimates as 
well.  We will consider the following quantiles of the observed wage distribution yP1, yP2, …, yPk 
and corresponding quantiles of the Pareto distribution xP1, xP2, …, xPk. The model distribution will 
be most precise when the sum of squared differences 

 

�
�


k

i
PiPi xy

1

2)(  
(18)

 

is minimized.  In this case closed formula solution does not exist. Therefore sum of squared 
differences of logarithms of quantiles is often considered 
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Minimizing the objective function (19), it is possible to derive the following estimates 
 

,

1
1

log
1
1

log

1
1

loglog
1
1

loglog

1 1

0
2

02

1 1

0

1

0

�
�

�
�

�
�

�
�

�
�

��
�

�
��
�

�

























�
k

i

k

i ii

k

i

k

i i

k

i Pi
i

Pi

P
P

P
P

k

P
P

y
P
P

yk
b

 

(20.1)

.
1
1

loglog
log

1

0

1
0 k

P
P

b
k

y
x

k

i i

k

i Pi
P

�
��

� 





�

 
(20.2)

 

In the case we use this estimating method, it is needed to keep in mind that the equality of model 
quantiles and observed quantiles is not guaranteed for any P. Again we can arrive to different 
results depending of what quantiles yP1, yP2, …, yPk  are used for the calculations. Furthermore the 
parameter estimates also depend on the choice of the maximum wage. 
 
3   Characteristics of the appropriateness of the Pareto distribution 
 

For the application of Pareto distribution as a model of the wage distribution, it is crucial that 
the model fits the observed distribution as close as possible. It is important that the observed 
relative frequencies in particular wage intervals are as close to the theoretical probabilities assigned 
to these intervals by the model as possible. 

It is needed to note that the same parameter estimation method does not always lead to the 
best results. It is of particular importance in “what direction” is the observed wage distribution 
different from Pareto distribution. Pareto distribution assumes such wage differentiation that the 
relations (10) hold.  With real data we can encounter many different situations 
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It follows from (21) that the observed distributions will more or less systematically differ from the 
Pareto distribution. In the case of (21.1) the differentiation of the observed wage distribution is 
higher; in the case of (21.2) the differentiation will be lower than in the case of Pareto distribution. 
Some bias occurs in cases (21.3), (21.4), (21.5) and (21.6) as well (but cannot be so specified). 
Systematical bias should be a signal for potential adjustment of the model which could be based for 
example on adding one or more parameters into the model. These adjustments usually lead to more 
complicated models. Therefore, the above mentioned bias is often neglected and simple models are 
preferred even though they lead to some bias. 
 
 
4   Wage distributions of male and female in Czech Republic in the years 2001 – 2006 
 

The data used in this article is the gross monthly wage of male and female in CZK in the 
Czech Republic in the years 2001 – 2006. Data were sorted in the table of interval distribution with 
opened lower and upper bound in the lowest and highest interval respectively. The source is the 
web page of the Czech statistical office. We were calculated the following quantiles: median y0,50, 
6th decile y0,60, upper quartile y0,75, 8th  decile y0,80, 9th decile y0,90 and 99th precentile y0,99 of gross 
monthly wages in the Czech Republic in the years 2001 – 2006 (total and split up to male and 
female separated). We have found that, with the exception of male in the year 2003, all other wage 
distributions have lower differentiation than Pareto distribution. The systematical error occurred 
also in the case of male in the year 2003. It follows from the empirical criterion (10) that in all cases 
the differences between the rates of the considered quantiles are negligible and therefore Pareto 
distribution can be used as the model of the distribution.  

The 99th percentile will be considered as a characteristic of the maximum wage. The 
parameters of the Pareto distribution are estimated using the above described methods. 

First we consider the conditions xP0 = yP0 a xP1 = yP1 and we chose median as the second 
quantile, i.e. x0,99 = y0,99 a x0,5 = y0,5 . We estimate the parameter b using the formula (13.2). The 
summary of the parameter estimates is in the table 1. 

Next we apply the conditions xP1 = yP1 and xP2 = yP2 and we choose 6th and 9th decile for yP1 
and yP2. We use the formulas (15) and (16) to estimate the parameters. The summary of the 
parameter estimates is in the table 1. 

Parameters of the Pareto distribution can also be estimated using the equations xP0 = yP0 and 
xP2/xP1 = yP2/yP1. We choose the 9th and 6th decile in the rate yP2/yP1. In this case we use the relations 
(17) to estimate the parameters. The summary of the parameter estimates is also in the table 1. 

In the end we also estimate the parameters of the Pareto distribution using the least squares 
method. We use the relations (20). In this method we choose 5th, 6th, 7th, 8th and 9th deciles of the 
observed wage distribution, i.e. k = 5. Parameters estimated using the least squares method are 
summarized in the table 2. The values of the sum of absolute differences of observed and theoretical 
absolute frequencies of all intervals calculated for all cases considered wage distributions are in the 
table 3. In the case of  the theoretical frequencies at first we determined theoretical probabilities 
using the formula (5.2). From these we determined theoretical absolute frequencies. 
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Table 1: Estimated parameters of Pareto distribution for different choice of the estimation 
equations 

Equations used 
 

x0,99 = y0,99, x0,5 = y0,5 
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Parameter estimates Parameter estimates Parameter estimates 
Total Year xP0 b xP0 b xP0 b 
 2001 

2002 
2003 
2004 
2005 
2006 

44 921 
47 172 
47 719 
56 369 
56 852 
57 326 

0,326 952 
0,283 758 
0,267 846 
0,295 969 
0,299 456 
0,275 468 

54 143 
61 890 
64 800 
67 096 
74 095 
79 614 

0,365 843 
0,348 293 
0,340 425 
0,334 192 
0,347 455 
0,354 083 

44 921 
47 172 
47 719 
56 369 
56 852 
57 326 

0,365 843 
0,348 293 
0,340 425 
0,334 192 
0,347 455 
0,354 083 

Equations used 
 

x0,99 = y0,99, x0,5 = y0,5 
 
 x0,6 = y0,6 , x0,9 = y0,9 y

y

x
xyx ,

,60

,90

,60

,90
990,990 , ��

 

Parameter estimates Parameter estimates Parameter estimates 
Male Year xP0 b xP0 b xP0 b 
 2001 

2002 
2003 
2004 
2005 
2006 

46 781 
48 047 
48 417 
57 514 
57 808 
58 104 

0,305 624 
0,265 814 
0,249 540 
0,278 536 
0,267 749 
0,257 739 

61 207 
72 613 
84 934 
78 632 
86 165 
93 098 

0,367 449 
0,368 246 
0,390 464 
0,353 784 
0,364 658 
0,373 653 

46 781 
48 047 
48 417 
57 514 
57 808 
58 104 

0,367 449 
0,368 246 
0,390 464 
0,353 784 
0,364 658 
0,373 653 

Equations used 
 

x0,99 = y0,99, x0,5 = y0,5 
 

x0,6 = y0,6 , x0,9 = y0,9 y
y

x
xyx ,

,60

,90

,60

,90
990,990 , ��

 

Parameter estimates Parameter estimates Parameter estimates 
Female Year xP0 b xP0 b xP0 b 
 2001 

2002 
2003 
2004 
2005 
2006 

37 526 
43 339 
44 883 
50 776 
52 508 
54 054 

0,319 087 
0,293 539 
0,283 055 
0,300 989 
0,296 625 
0,291 062 

39 196 
47 418 
48 172 
49 971 
54 551 
57 954 

0,316 679 
0,308 749 
0,291 217 
0,287 505 
0,297 414 
0,299 456 

37 526 
43 339 
44 883 
50 776 
52 508 
54 054 

0,316 679 
0,308 749 
0,291 217 
0,287 505 
0,297 414 
0,299 456 
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Table 2: Parameters estimated using the least squares method 
Total Year 
Parameter estimates 2001 2002 2003 2004 2005 2006 

xP0 56 562 64 026 67 219 69 311 76 310 81 721 
b 0,379 911 0,358 469 0,351 034 0,344 615 0,356 935 0,362 626

Male Year 
Parameter estimates 2001 2002 2003 2004 2005 2006 

xP0 63 774 73 770 85 080 80 310 88 251 95 225 
b 0,379 912 0,372 825 0,391 617 0,360 986 0,372 535 0,381 012

Female Year 
Parameter estimates 2001 2002 2003 2004 2005 2006 

xP0 42 520 49 188 51 125 52 763 57 413 60 917 
b 0,341 047 0,320 682 0,309 187 0,303 849 0,312 826 0,315 022

 

Table 3: Sums of the absolute diferences of the observed and theoretical frequencies 
Equations used  

 
 
Total 

 
 
 
Year 

 
x0,99 = y0,99 
 x0,5 = y0,5 

 
x0,6 = y0,6 
 x0,9 = y0,9 

x0,99 = y0,99 

y
y

x
x

,60

,90

,60

,90 �
 

 
Least squares 

method 

 2001 
2002 
2003 
2004 
2005 
2006 

37 459 
51 358 
73 388 

103 625 
167 946 
157 094 

23 255 
27 327 
36 520 
64 422 
69 930 
68 849 

85 795 
171 404 
204 535 
249 348 
353 661 
426 442 

23 859 
31 658 
39 722 
66 249 
68 679 
69 104 

Equations used  
 
 
Male 

 
 
 
Year 

 
x0,99 = y0,99 
 x0,5 = y0,5 

 
x0,6 = y0,6 
 x0,9 = y0,9 

x0,99 = y0,99 

y
y

x
x

,60

,90

,60

,90 �
 

 
Least squares 

method 

 2001 
2002 
2003 
2004 
2005 
2006 

20 603 
33 576 
47 909 
60 241 
81 505 
96 789 

10 089 
19 711 
23 576 
32 457 
35 349 
37 737 

56 291 
111 796 
96 863 

178 858 
220 276 
250 764 

 9 959  
20 298 
23 747 
33 076 
36 321 
37 653 

Equations used  
 
 
Female 

 
 
 
Year 

 
x0,99 = y0,99 
 x0,5 = y0,5 

 
x0,6 = y0,6 
 x0,9 = y0,9 

x0,99 = y0,99,  

y
y

x
x

,60

,90

,60

,90 �
 

 
Least squares 

method 

 2001 
2002 
2003 
2004 
2005 
2006 

24 256 
23 697 
37 215 
45 429 
51 793 
58 014 

23 926 
16 716 
30 902 
41 416 
41 615 
41 137 

23 687 
42 148 
40 237 
45 460 
52 493 
74 302 

21 270 
18 595 
30 011 
40 957 
41 449 
41 812 
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5   Conclusions 
 

The appropriateness of particular modifications of the Pareto distribution can be evaluated 
comparing the theoretic and empirical frequencies. It is possible to compare both the absolute and 
relative differences between the theoretic and observed empirical distributions. In this article we 
used the absolute differences. The values of sums these differences are in the table 3. The values 
seem to be relatively high. The question of appropriateness of a given theoretic wage distribution in 
the case of large samples was described for example in [1]. Some more general conclusions can be 
made from the values of the absolute differences of observed and theoretic distributions. 

With the exception of the wage distribution of women in the year 2001 the worst results are 
achieved using the equation  x0,99 = y0,99 and setting the ratio of other two quantiles of the Pareto 
distribution  x0,9/x0,6 equal to the ratio y0,9/y0,6 of the corresponding empirical quantiles. This fact is 
less obvious for female distribution and most obvious for total distribution. This is also due to the 
larger sample size of the total sample (in comparison with the sample size of the sub groups of male 
and female). Again with the exception of the wage distribution of women in the year 2001 the 
second worst model is the estimate based on the equations x0,99 = y0,99 and x0,5 = y0,5. This fact is 
again less obvious for female distribution and most obvious for total distribution. In the case of the 
wage distribution of women in the year 2001 the worst estimate is based on the equations x0,99 = 
y0,99 and x0,5 = y0,5. In the case of the total group is the third worst (second best) method the least 
squares method (with the exception of the year 2005). The best results are achieved with the method 
based on the equations x0,6 = y0,6 and x0,9 = y0,9. In the case of the total wage distribution in the year 
2005 is the third worst method based on the equations x0,6 = y0,6 and x0,9 = y0,9 and the best method is 
the least squares method. In the case of the wage distribution of male (with the exception of the 
years 2001 and 2006) the third worst (second best) results are again achieved using the least squares 
method. The best results are achieved with the method based on the equations x0,6 = y0,6 and x0,9 = 
y0,9. In the years 2001 and 2006 (set of men) is the third worst method the method based on the 
equations x0,6 = y0,6 a x0,9 = y0,9 and the best is the least squares method. In the case of the female 
group (with the exception of the years 2001, 2002 and 2006) is the third worst (second best) method 
based on the equations x0,6 = y0,6 and x0,9 = y0,9  and the most precise results are achieved with the 
least squares method. In the years 2001, 2003, 2004 and 2005 was for the group of women the most 
precise the least squares method. The very best method for the group of male in the year 2001 was 
the least squares method. In this case other methods had much higher values of the above 
mentioned sum of absolute differences. 

From the above described comparison, it is obvious that the simplest parameter estimating 
methods can be in the case of the Pareto distribution competing with more advanced methods. 
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Abstract. .A price level in the European countries depends on many indicators of general 
economic background, employment, innovation and research, science and technology. The 
values of these indicators vary among the European countries and, consequently the occurrence 
of outliers can be supposed in the analysis of the price level in the European countries. In such 
case, the classical statistical approach – the least squares method (LS) may be highly unreliable 
and the robust regression methods represent an acceptable and useful tool. The analysis 
performed is based on the data of the year 2006. 
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1 Regression analysis 
 The classical statistical approach – the least squares method (LS) may be highly unsatisfactory 
due to the presence of outliers which can be supposed in the analysis of the  European countries 
data. Robust regression techniques are an important complement to the classical least squares (LS) 
regression and are acceptable and useful tools because they provide a good fit to the bulk of the data 
and exposes the outliers quite clearly. 

Robust techniques provide results similar to LS regression when the data are linear with 
normally distributed errors. However, the results can differ significantly when the errors do not 
satisfy the normality conditions or when the data contain significant outliers. 

We can distinguish between different types of observations in regression. Thus, a regression 
dataset can include four types of points: regular observations, vertical outliers, good leverage points 
and bad leverage points.  Leverage points are observations (xi, yi) whose xi, are outlying; that is, xi  
deviates from the majority in x – space. We call such an observation (xi, yi) a good leverage point if 
(xi, yi) follows the linear pattern of the majority. On the other hand, if (xi, yi) does not follow this 
linear pattern, we call it a bad leverage point. An observation whose xi belongs to the majority in x – 
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space but where  (xi, yi) deviates from the linear pattern is called a vertical outlier. Leverage points 
attract the LS solution toward them, so bad leverage points are often not apparent in classical 
regression analysis.  

First, let us briefly mention the principles of selected robust methods. 

The least trimmed squares (LTS) estimator is obtained by minimizing 2
( )

1

h

i
i

r
�
� , where ( )ir  is 

the i-th order statistic among the squared residuals written in the ascending order, 
� �2 1/2h n p� � � �� � �	 
 � �� �  and [x] denotes the largest integer which is less or equal to x. 

The MM-estimates are defined by a three-stage procedure. At the first stage an initial 
regression estimate is computed – it is consistent, robust, with high breakdown-point but is not 
necessarily efficient. At the second stage, an M-estimate  of the errors scale is computed using 
residuals based on the initial estimate. Finally, at the third stage, an M-estimate of MM estimates is 
a combination of high breakdown value estimation and efficient estimate of the regression 
parameters based on a proper redescending "-function is computed.  

Reweighted least squares (RWLS) regression minimizes the sum of the squared residuals 
multiplied by weights iw , which  are determined from the LTS solution. The effect of the weights, 
which can only take values 0 or 1, is the same as deleting the cases for which iw  equals zero. 
Therefore, the RLS can be seen as ordinary LS on a “reduced” data set consisting of only those 
observations that received nonzero weights. The RWLS estimates have the same breakdown value as 
the initial LTS estimates and a much better  statistical efficiency and all the usual inferential output 
such t-statistics, F-statistics and R2 and the corresponding p-values can be obtained. 

A robust regression with high breakdown point LTS can be used to detect outliers, leverage 
points and influence points (the observations whose inclusion or exclusion result in substantial 
changes in the fitted model (coefficients, fitted values). 

 
 

2  Identification of outliers and leverage points 
 

 To detect leverage points in higher dimensions we must detect outlying xi  in x – space. For 
this purpose we can use the robust distances RDi defined as 

1( ) [ ] [ ]T
i i iRD x x X
� 
 
T(X) C(X) T(X)  (1) 

where T(X) and C(X) are the robust location and scatter matrix for the multivariates.  

On the other hand, we can see whether a point (xi, yi) lies near the majority pattern by looking at its 
standardized LTS residual ˆ/ir � . 

 Diagnostic plots are provided as a fundamental data mining graphical tools for quick 
identifying of an outlier and determining whether or not outliers have influence on the classical 
estimate. A regression diagnostic plot (a plot of the standardized residuals of robust regression 
versus the robust distances RD(xi,) proposed by Rousseeuw and Zomeren (1990)) indicates the 
corresponding cutoffs by horizontal and vertical lines. Points for which the standardized LTS 



 
 
 
Aplimat�–�Journal�of�Applied�Mathematics�

 

volume�2�(2009),�number�3�
 
 

49

residuals exceed the cutoff 2
1;1 / 2#� 
 are considered as regression outliers, whereas observations for 

which RD(xi) exceed the cutoff 2
;1 / 2p #� 
  are considered as leverage points.  

 
 

3 Methods of model selection 
 

 In the case of the classical LS regression, the classical R-square and the results of the 
significance of t-tests and F-tests are used. In the case of the robust regression, the decision which 
of candidate model may be preferred is based on the following robust diagnostic selection criteria: 
-  Robust index of determination R-squared for M (or MM) regression defined as 
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-  Robust deviance defined as the optimal value of the objective function on the �2-scale:  
 

� �2 ˆ
ˆ2

ˆ

T
i iy xD s

s
$%

� �

� � �� �

� �
�  (3) 

 

in formulas (2) and (3)  $̂  is the MM-estimator of  $, 
̂  is the MM estimator of location,  and ŝ  is 
the MM-estimator of the scale parameter in the full model.  
- Significance robust tests of variables for determining which of two candidate models is preferred: 
robust t-test ( t-statistics and p-value of the robust coefficient estimates for the robust fit computed 
using a robust covariance matrix for the parameter estimates),  robust F-tests and robust Wald test. 
- Robust selection information criteria (the best model has the lowest value) 

- Robust Akaike's Information Criterion (AICR) defined as 
 

;
1 1

ˆ
( ; , ) 2 ( ) 2

ˆ

Tn n
i i

i p
i i

y xAICR p r p p$# % % # % #
�� �

� �

� � � �� �� �

� �
� �  (5) 

 

;i pr  are regression residuals connected with MM-estimate of parameters, �̂  is robust estimate of �, 
p is the number of parameters.  
 - Robust Bayesian information criterion (BICR) (sometimes also named the Schwarz 
information criterion) defined as  

 

1

ˆ
2 ln( )

ˆ

Tn
i i

i

y xBICR p n$%
��

� �

� �� �� �

� �
�  (6) 

 

- Robust Final Prediction Error (RFPE) is generalized the AIC to a robust model. For a p-
dimensional model of p predictor variables, RFPE is calculated as 
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where .
ˆT

i i p i pr y x $� 
  and " %&�  is the derivative of the loss function. When considering a variety 
of model choices with respect to several different choices of predictor variables, the model with the 
smallest value of RFPE is preferred. 
 
 

4 Data set and variables analyzed 
 

 The data set analyzed contains the information about 29 European countries (27 members of 
the European Union, one candidate country (Turkey) and one non EU member (Norway). The data 
were obtained from Eurostat. The analysis is based on the data of the year 2006 ( the last year for 
which the data for analyzed countries were available). 
 The indicator analyzed (a dependent variable) is the Comparative Price Level (PL) which is 
indicator of price level differences across countries. The price level of each country in the 
comparison is expressed in relation to a group of countries (EU-27 =100%). However, the PL refer 
to the aggregate "Household Final Consumption expenditure", which includes expenditure on goods 
and services purchased by households. The PL for a given country is calculated as the ratio between 
that country's Purchasing Power Parity (PPP) and the nominal exchange rate of its currency against 
the euro. 

 The following indicators from different economic fields as explanatory variables have been 
taken into account. 
- Gross domestic product per capita in purchasing power standards (GDP) 
- Real GDP growth rate - Percentage Change (gGDP) 
- Labour productivity per person employed (GDP in PPS per person employed)  (LP) 
- Total investment (% of GDP) (INV) 
- Total state aid  - % of GDP (SA) 
-  Inflation rate (annual average rate of chance) (IR) 
- Total employment rate - % (EM) 
- Unemployment rate – total (as a share of the total active population) (UN) 
- Electricity prices  [Euro per kWh] (EP) 
- Energy intensity of the economy-gross inland consumption of energy divided by GDP (EN]  
- Gross domestic expenditure on R&D - % of GDP (GE) 
- ICT expenditure - % of GDP – communication expenditure (ICT) 
- ICT expenditure  - % of GDP- information technology expenditure (IT) 
- Turnover from innovation (% of innovative enterprises) (IN) 
- Export of high technology product as a share of total exports (HT) 
- Percentage of households having access to the internet at home (INT) 
- Total population having completed at least upper secondary education  (ED) 
- Early school leavers – total  (EX) 
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5 Regression analysis results of dependent variable the Comparative Price Level 
 

The following regression methods have been applied in our analysis: least squares methods 
(LS), least trimmed squares regression  (LTS),   MM – regression,  Reweighted least squares method 
(RWLS). 
  Software SAS 9.1 and S-PLUS 6.2. have been used. In the case of classical LS regression, the 
classical R-square and the results of significance of t-tests and F-tests were applied to selection 
acceptable model. In the case of robust regression, the decision which of candidate models may be 
preferred is based on the above mentioned robust diagnostic selection criteria. 

 As an example, the results of dependence of the Comparative Price Level (PL) on the 
combination of the explanatory variables GDP and GE  are demonstrated. This model belongs to 
acceptable ones from all points of view and satisfies the recommended ways for model selection. In 
this case two outliers and eight leverage points were detected by using LTS regression (the summary 
of the robust diagnostic is shown in Table 1, another diagnostic criteria see Table 4). 

 

Table 1  Robust diagnostics 

Observation 
Mahalanobis 

distance 
Robust MCD 

Distance Leverage 
Stand. Rob. 

Residual Outlier 
4 Dennmark 1.1053       1.6135             2.6269          * 
7 Ireland 0.9951       3.2144          * 0.6232  
8 Greece 1.0383 2.5526 * 0.3953  
11Italy 0.8551       2.7716          * -0.3560  
12 Cyprus 1.1914 2.6570 * 8.8735  
15Luxembourg 3.8622      10.5086         * -9.4022          * 
24 Finland 2.3779       3.9083          * 0.9963  
25 Sveden 2.6722       4.2748          * 0.0096  
27 Norway 1.7905       5.1902          * -0.4152  

 

As we can see, one observation (15 Luxembourg) are identified both as a leverage point and an 
outlier. Similar result can also be seen from the graphical outlier detection tool -  Standardized 
Residuals vs. Robust Distances  Plot. (see  Figure 1). 
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Figure 1                              Figure 2 
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Points outside the horizontal lines are regarded as residual outliers, and points to the right of the 
vertical line are leverage points. In our case, the LS fit produces one residual outlier, whereas the 
robust fit produces two outliers and eight leverage points. One point (15) is both outlier and 
leverage point. The interpretation is that this point has substantial influence on the LS fit. In such 
case when outliers are identified, the difference between the LS fit and the robust fit can be 
anticipated. In Table 2, the model fitting for example above-mentioned (PL ~ GDP + GE) is 
presented. 
  
Table 2  Model fitting results 
Method Coefficients Value Std.error t-value Pr(>�t�) Chi-sq. P(>Chi) 
Robust Intercept 22.2101 4.6349 4.7920 0.0001   
RWLS Intercept 22.2821 4.5857   23.61 <0.0001 

LS Intercept 40.4888 7.6599 5.2858 0.0000   
Robust GDP 0.6181 0.0549 11.2510 0.0000   
RWLS GDP 0.6177 0.0544   129.15 <0.0001 

LS GDP 0.2944 0.0689 4.2721 0.0003   
Robust GE 4.5407 2.2249 2.0409 0.0524   
RWLS GE 4.4774 2.2013   4.14 0.0420 

LS GE 13.3538 3.8762 3.4451 0.0021   

 
R-squares are 0.6822 for the LS fit and 0.7157 for the robust fit. However, with respect to 

existing bad leverage points and outliers, the use of a robust model is recommended. 

If no outliers and bad leverages are identified, LS and robust regressions should provide 
similar results. As an example, we present the dependence of PL ~ ICT + GE. In these cases, results 
of the classical LS regression are quite satisfactory. The results obtained by  robust regression are 
very close to the fit obtained by the classical LS regression.  

Further, very close coincidence in results obtained with the use of robust and classical 
regressions arises even in cases, when the same outliers are identified both by robust and classical 
diagnostic tools. This case can be demonstrated on the example of dependence of  PL ~ GDP+ IN 
where one outlier 4 (Dennmark) has been identified (but this point was not a bad leverage point). 
The results of this case are compiled in Table 3. The graphical diagnostic can be seen from Figure 
2. 

 
Table 3  Model fitting results 

Method Coefficients Value Std.error t-value Pr(>�t�) Chi-sq. P(>Chi) 
Robust Intercept -7.5337 12.5463 -0.6005 0.5543   
RWLS Intercept -7.5337 11.6073   0.42 0.5163 

LS Intercept -9.1872 14.9773 -0.6134 0.5459   
Robust GDP 0.5204 0.0777 6.6931 0.000   
RWLS GDP 0.5204 0.0719   52.34 <.0001 

LS GDP 0.5457 0.0925 5.8989 0.0000   
Robust IN 1.9930 0.7779 2.5621 0.0178   
RWLS IN 1.9930 0.7197   7.67 0.0056 

LS IN 2.0113 0.9292 2.1646 0.0415   
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 To describe the dependence of the Comparative Price Level (PL)  in the European countries, 
other acceptable regression models can be applied and considered as convenient. Some of them are 
compiled in Table 4, where the results of both the LS and robust fit and  goodness-of-fit tests for the 
robust models are presented.  

 In Table 4, only regression models suitable both in term of goodness-of-fit tests and satisfying 
t and chi-square tests for individual parameters are presented. More complicated models (with at 
least four parameters) didn’t provide significantly better results in the most examples. The last two 
models obtained using backward stepwise selection with RFPE contain some parameters with non-
significant tests. Points which are both outliers and leverage points are marked with bold type. 
 

Table 4   Some of  final competitive models      

Outliers 
Leverage points 

Robust MM model 
LS model 

R-sq. AICR BICR RFPE 

4,15  
7,11,15, 24,25,27 

22.210 + 0.618 GDP + 4.541 GE 
40.489 + 0.294 GDP + 13.354 GE 

0.7157 
0.6822

22.145 29.111 14.123

4,15 
2,3,6,13.14,15,20,21,23,27 

39.189 +0.570 GDP – 0.012 EN 
88.746 + 0.188 GDP – 0.039 EN 

0.7088 
0.7296

22.573 29.661 
             

14.544

4,15 
2,12,15,16,21,24,25   

11.776 + 0.742 GDP + 7.266 SA 
43.870 + 0.392 GDP + 7.118 SA 

0.7016 
0.4890  

21.248 28.227 14.096

4,15  
2,12,15,16,21,24,25 

8.352 + 0.783 LP + 11648 SA 
22.383 + 0.646 LP + 7.892 SA 

0.6366 
0.6715

21.664  29.136 17.480

4,25 
2,3,6,8,12,13,17,19,21,22,
25 

8.3784 -0.023 EN+ 5.932 IN 
9.462 – 0.0274 EN + 4.105 IN 

0.6799 
0.7910

20.439 27.374 17.970

4             
2,6,8,12,19,28 

34.779-7.677 ICT +3.698 IN 
36.198-8.116 ICT +3.762 IN 

0.7229 
0.8006

16.967 23.683 15.298

4 
7,8,11,22,25 

-7.533+0.520 GDP +1.993 IN 
-9.187 +0.546 GDP +2.011 IN 

0.7658 
0.8896  

19.667 26.159 12.887

4            
8,22,25 

-11.038 + 0.586 LP + 1.974 IN 
-16.222 + 0.578 LP + 2.296 IN 

0.7779 
0.8549  

20.471 26.797 12.153

0  
2,6,12,22,23 

121.314– 11.693 ICT + 10.047 GE 
121.314  11.693 ICT + 10.047 GE 

0.6752 19.999  25.995 12.895

4,15 
9,12,15,16,20,21,24 

36.708 +0.735 GDP +7.652 SA-
0.302 ED 
60.951 +0.383 GDP +7.377 SA -
0.203 ED 

0.7323 
0.4946

20.973 30.581 13.655

4,7,12,21,24  
2,3,12,16.21,24,25 

95.109– 0.035 EN + 2.156 GE -
18.244 SA  
93.376 -0.037 EN + 11.558 GE -
5.144 SA 

0.5339 
0.8042

17.681 27.084 24.364

4,7,19  
2,6,12,14,16,19,21,22,24 

51.325 -0.319 EM-11.497 SA -
0.024 EN +2.739 IN + 7.417 GE 
-13.614+0.701EM– 3.619 SA -
0.028 EN + 2.968 IN + 3.455 GE 

0.7763 
0.8555

13.237 28.013 15.446

4,7,12,21,24 
2,4,6,7,12,14,15,17,18,21,
2223,24,25 

167.054-3.334 gGDP + 7.985 INF- 
2.264 UN -20.324ICT +0.240 HTE 
163.92 +0.168 gGDP-0.685 INF-  
3.093 UN -13.019 ICT +0.130 HTE 

0.7161 
0.7836

17.432 31.450 21.119
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6 Conclusion 
 To select an acceptable regression model, the following way recommended in literature can 
be applied: compare  the LS and robust MM-estimate, if there is a significant difference, use results 
of robust regression method with high breakdown point (MM) especially when outliers and bad 
leverage points have been identified. Another applicable recommendation is to use backward 
stepwise variable selection with RFPE for selecting variables included in the final model. RFPE is 
computed at each step, and a variable is eliminated only if RFPE goes down. But the results 
obtained by this last approach can provide also nonsignificant tests of  parameters in some cases. 
When no outliers and bad leverage points are identified, the LS fits are satisfactory. 

 With a view to existing outliers and bad leverages, it is recommended to prefer a robust 
regression model against the classical LS one in the most cases. Unambiguous selection of suitable 
model describing the dependence of Comparative Price Level in European countries on selected set 
of explanatory variables is impossible unless we prefer only one criterion for the selection of 
suitable robust model. All resulting competitive robust regression models presented can be 
considered as satisfactory from statistical point of view. But the following economic stand-point is 
necessary for the selection of the final model to describe the dependence of Comparative Price 
Level in European countries on selected set of explanatory variables 
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Abstract. This paper deals with the estimation of the fixed effects parameters and the variance-
covariance matrix parameters in the mixed linear model with type II constraints. These 
estimates are based on the estimates of the parameters of the mixed linear model without 
constraints. The derived estimators are used in the numerical study of an uniformly accelerated 
movement. 
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1   Basic symbols 
 

I  identity matrix 
A+  Moore-Penrose generalized inverse of the matrix A 
M(A)  column space of the matrix A 
MA projection matrix (in the Euclidean norm) on a space orthogonal to 

M(A), (MA = I-AA+) 
r(A)  rank of the matrix A 
tr(A) trace of the matrix A, it is defined for square matrices as a sum of its 

diagonal elements 
Y ~ (X
, �) the mean value of the n-dimensional random vector Y is X
 and its 

covariance matrix is � 
Var�0 [ $̂ (�)] the variance-covariance matrix of the estimator $̂  when the parameter 

�0 is under consideration 

�i  the i-th component of the vector � 

 



 
 
 

Aplimat�–�Journal�of�Applied�Mathematics
 

�� volume�2�(2009),�number�3
 
 

56 

2   Mixed linear model with type II constraints 
 

We can meet a situation when we need to estimate a value of some variable that cannot be 
measured but depends on some other variables, values of which can be obtained. One of such cases 
is when we need to determine the starting acceleration which is achieved by the car take-off. This 
acceleration can be estimated by the help of the measured values of time and distance.  

Such situations can be described by the mixed linear model with type II constraints: 
                                                        ),(~ 1 �$ 'XY n  ,                                                                (2.1) 

02211 ��� bBB $$ .                                                             (2.2) 
This linear model is usually a result of linearization as we will see in the numerical study. Parameter 

1$  is indirectly measurable, parameter 2$  is to be determined from the condition (2.2) after we 
estimate 1$ . Let’s assume X is a kn�  matrix of full column rank k, 1B  is of 1kq� dimension, 
dimension of 2B  is 2kq�  and  � � qBBr �21 , , � � 22 kBr � , 212 kkqk �  . 
The variance-covariance matrix �'  is supposed to be of a form 

,var
1
�
�

�'�
r

i
iiVY ��                                                          (2.3) 

here r�� ,...,1  are unknown parameters – so-called variance components and rVV ,...,1  are known 
symmetrical matrices. Whereas �'  is supposed to be at lest positive semidefinite. The task is to 
estimate r��$$ ,...,, 1,21 . 
 
 
3   Estimators of the parameters of the mixed linear model without constraints 
 

Let us consider a mixed linear model without constraints 
   ),(~ �$ 'XY n .                                                            (3.1) 

X is a known matrix of a kn�  dimension which is of a full column rank k. 
 � �&� k$$ ,,1 �  is 
a vector of unknown fixed effects parameters. The variance-covariance matrix is of a form 

Var Y = �� = �
�

r

i
i

1
� Vi ,                                                      (3.2) 

where V1, …, Vr are known symmetrical matrices and 0,,1 !r�� �  are unknown variance 

components. As we consider a regular model we take into account only �= � � �&r�� ,,1 � S, where S  
is a set of such � for which �� is positive definite.  

Let us use a given �0�  SS  as a starting value of the variance components, it is usually received 
from the realization of the observation vector Y. We know that the �0–locally best linear unbiased 
estimator of the fixed effects parameters is (see [1]) 

$̂ (�0)= [X’(��0)-1X]-1X‘(��0)-1Y.                                          (3.3) 
Here ��0 denotes a matrix of type (3.2) with �0 instead of �. The variance-covariance matrix of this 
estimator (when we consider �0 to be the real value of �) is  

Var �0[ $̂ ( �0)]= [X’(��0)-1X]-1.                                          (3.4) 
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The variance components can be estimated via MINQE (MInimum Norm Quadratic Estimator) 
method. According to [3] the �0-MINQE of the variance components in model (3.1) is (according to 
[3]) 

� �

� � � �

� � � � ��
�
�

�

�

��
�
�

�

�

''

''
�

��

��



' �

YMMVMMY

YMMVMMY
S

XXrXX

XXXX

MM XX

00

010
1

'
...

'
ˆ

0

��

��

�
� .                         (3.5) 

Here � ��' XX MM
S

0�
 denotes a  matrix with  

� �� � � � � �� ���

'
''�� XXjXXijiMM

MMVMMVtrS
XX

00,0
��

�
                               (3.6) 

on its (i,j)-th position, for .,...,1, rji �  
The variance-covariance matrix of estimator (3.5) is (when we consider �0 to be the real value of the 
variance components) 

Var �0[ $̂ ( �0)]= � �
1

0
2 


' �
XX MM

S
�

.                                           (3.7) 

When computing the estimates we usually use the Moore-Penrose generalized inverse 
� ��' XX MM 0�  in this form (cf. [2]): 

� � � � 1
0

11
0

1
0

1
00 '' 




� '''
'�' ����� XXXXMM XX .                              (3.8) 

 
 
4   Estimators of the parameters of the mixed linear model with type II constraints 
 

Estimators of the unknown parameters in model (2.1), (2.2) can be derived from (3.3) and 
(3.5) when we transform model with type II constraints to an equivalent model without constraints 
(see [2] for more details on this transformation). Assume that 1K  is a � �qkkk 
� 211 ,  matrix and 

2K  is a � �qkkk 
� 212 ,  matrix meeting condition  
 

                                                           � � 0,
2

1
21 ���

�

�
��
�

�
K
K

BB  .                                                       (4.1)  

 

Let 
� �
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�

�
��
�

�
0

2

0
1

$
$

 be any vector satisfying � � � � 00
22

0
11 ��� bBB $$ . Then we can express: 
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� � ,
2

1
0
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1
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1 �
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�
��
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�
K
K

                                                   (4.2) 

 

for qkkR 
�� 21� . Model (2.1), (2.2) is equivalent to a model 
 

                                                    � � � ���$ '
 ,~ 1
0

1 XKXY n                                                   (4.3) 
without constraints. What we need to do is to estimate parameters � and r�� ,...,1  of model (4.3) 
according to (3.3) and (3.5). We get  

)('')''(ˆ )0(
1

1
01

1
1

1
01 $� �� XYXKXKXK 
''� 


                                     (4.4) 
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and 

� �
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�

XYMMVMMXY

XYMMVMMXY
S

XKXKrXKXK

XKXKXKXK

MM XKXK
,          (4.5) 

where 

� �� � � � � �� ���

'
''��

1111101
00

,
XKXKjXKXKi

jiMM
MMVMMVtrS

XKXK
��

�
 .,...,1, rji �             (4.6) 

(4.5) can be directly used as an estimator of variance components also in model (2.1), (2.2). 
Estimators for 1$  and 2$  will be based on (4.2) and (4.4). These estimators must satisfy  
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According to (4.7) we have for 1$̂X : 
)('')''(ˆˆ )0(
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For the estimator of 1$  we have 
YXMXMXMM

BBBB MBMBMBMB
1

ˆ''
1

ˆ''1 ')'(ˆ
21212121


�
 ''� ��$  

bMBBMBXXMXMXMMI BBMBMBMBMB BBBB

�
�
 ''

 )'(']')'([
2221212121 111

1
ˆ''

1
ˆ'' ��  

YXXMXMM
BBB MBMBMB

1
ˆ'

1
ˆ'' ')'(

212121


�
 ''� ��  

.)'(']')'([
22212121 111

1
ˆ'

1
ˆ'' bMBBMBXXXMXMMI BBMBMBMB BBB

�
�
 ''

 ��                  (4.8) 

 
Estimator of 2$  is 
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5   Numerical study – uniformly accelerated movement 
 

Let’s investigate following situation. We are interested in a time necessary for a given car to 
accelerate from 0 to 100 km/h. Let’s suppose the acceleration is constant during the whole time to 
simplify the mathematical model of such a situation. This means we can use formulas for uniformly 
accelerated movement. We could measure in four points of a takeoff runway, the distance between 
the starting line and that point (marked as 41 ,..., ss ) and the time necessary to reach the point 
( 41 ,..., tt ). This measurement was replicated ten times. Measured data are in Table 1. 

 
Table 1. Input data  

 Distance from the starting line [m] Time [s] 
Measurement 1s  2s  3s  4s  1t  2t  3t  4t  
1 30,0001 60,0010 89,9997 119,9997 4,15 5,91 7,14 8,27
2 30,0003 60,0004 89,9999 120,0004 4,18 5,87 7,10 8,33
3 30,0000 60,0006 89,9995 120,0007 4,18 5,90 7,21 8,34
4 29,9997 60,0004 89,9995 119,9995 4,18 5,83 7,16 8,30
5 30,0002 60,0006 90,0005 120,0004 4,16 5,93 7,27 8,30
6 30,0000 60,0003 89,9998 119,9995 4,20 5,86 7,13 8,33
7 30,0009 60,0003 90,0010 120,0006 4,15 5,87 7,14 8,38
8 30,0000 59,9995 90,0005 119,9998 4,16 5,87 7,23 8,32
9 30,0000 60,0009 90,0001 120,0005 4,28 5,84 7,17 8,38
10 29,9992 60,0002 90,0002 119,9999 4,27 5,94 7,15 8,35

 
 
5.1   Appropriate mixed linear model 
 

The main task is to estimate the acceleration during the take-off and dispersions of distance 
and time measurement. The acceleration estimation will be based on a distance formula for the 

uniformly accelerated movement 2

2
1 ats � , thus  

 

 02 2 �
 ii ats , 4,...,1�i                                                 (5.1) 
 

The next step is to compose an appropriate regression model. We have direct measurements 
of is  and it , 4,...,1�i , these will be elements of vector 1$ . Acceleration a is a non-measurable 
parameter 2$ , it will act in the constraints only. Let’s suppose the distance was measured with 
dispersion 2

s� , the time measurement dispersion was 2
t� , it means the wanted model has two 

variance components 2
s�  and 2

t� . Our situation can be described as follows: 
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 (5.4) 
 

Constraints (5.4) arise from (5.1) by linearization, upper index (0) denotes a prior value.  
 
 
5.2   Acceleration and variance components estimates  
 

In case of car take-off following prior values were chosen: � � ms 300
1 � , � � ms 600

2 � , 
� � ms 900
3 � , � � ms 1200

4 � , � � 20 46,3 
�� sma  (this value corresponds approximately with acceleration 
from 0 to 100 km/h in 8s according to a car producer statement), � � st 16,40

1 � , � � st 89,50
2 � , 

� � st 21,70
3 � , � � st 33,80

4 �  ( � �
� �

� �0

0
0 2

a
st i

i � , 4,...,1�i ). Final estimates of a ( 2$ ), 2
s�  and 2

t� (variance 

components) are listed in Table 2. 
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Table 2. Estimates – attempt 1 
Measurement â̂  2ˆ s�  2ˆ t�  
1 3,420 71026,2 
� 31081,2 
�  
2 3,426 71069,7 
� 31036,3 
�  
3 3,470 81069,3 
�  41003,1 
�  
4 3,422 71075,2 
� 41098,6 
�
5 3,475 71073,2 
� 31047,1 
�  
6 3,433 71039,6 
� 31011,2 
�  
7 3,446 71028,4 
� 31069,2 
�
8 3,458 81002,5 
� 41020,2 
�
9 3,473 61076,2 
� 31068,6 
�
10 3,478 61007,2 
� 31050,5 
�  

 
It’s obvious that the acceleration estimates are relatively stable but the variance components 

estimates differ even in decimal positions of valid numbers. We can expect less variability when 
using a bigger number of measurements. On this account another attempt was done. There were 
twelve points on the take-off runway and the distance and time were measured in each of them. This 
measurement was replicated five times and a mixed linear regression model with constraints 
analogous to (5.2), (5.3) was put together. The estimates of the variance components from this 
sekond attempt are in table 3. 

 
 

Table 3. Variance components estimates – attempt 2 
                                    

Measurement 2ˆ s�  2ˆ t�  
1 71052,2 
�  31079,1 
�  
2 71056,5 
�  41080,4 
�  
3 81083,6 
�  41031,6 
�  
4 71054,1 
�  41006,1 
�  
5 71065,5 
�  41092,5 
�  

  
We can see that the situation with the variance components estimates is similar to the one in 

the first attempt. 
 
 
5.3   Conclusions 
 

Input data were simulated from the normal distribution, distances with a standard deviation  
3105,0 
��s�  and times with a standard deviation 05,0�t� . Although the variance components 

vary significantly when we compare them to the squares of standard deviations s�  and t�  used for 
input data simulation we find that the estimates 2ˆ s�  and 2ˆ t�  don’t deflect from the expected 
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interval. However the accuracy of their determination is not too high. (This accuracy is 
characterized by the variance-covariance matrix of the variance components estimates 

� �
1

101
2 
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XKXK MM
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�
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ON THE INSENSITIVITY REGION FOR FIXED EFFECTS
PARAMETERS AND ITS RELATIVE POSITION TO

THE CONFIDENCE REGION FOR VARIANCE COMPONENTS

BOHÁČOVÁ Hana, (CZ)

Abstract. The maximum likelihood estimators of the fixed effects parameters β need a
suitable choice of a starting value θ0 of variance components in the mixed linear regression
models. The question is how to choose these starting values and what happens if we change
them with some small drift δθ. The task is to find a set of the admissible input variance
components values θ0 + δθ (for given θ0), it means a set of input values which cause
ε-multiple increase (for some small ε > 0 which is specified in advance) of the standard
deviation of the estimator of h′β at most (h is a given vector of the same dimension as β.
Such a set is called an insensitivity region for fixed effects parameters. This paper should
show an explicit formulation of this set, its properties and possible utilization.

Key words and phrases.Mixed linear regression model, maximum likelihood estimator,
fixed effect parameters, variance components, insensitivity region.

Mathematics Subject Classification. Primary 62J10, 62J12; Secondary 62P30.

1 Denotation

r(A) rank of matrix A
A+ Moore-Penrose generalized inverse of matrix A
M(A) column space of matrix A
MA projection matrix on an orthogonal complement of the column space of

matrix A (according to the Euclidean norm)
Yn ∼ Nn(Xβ,Σθ) random vector Y has the n-dimensional normal distribution with mean

Xβ and the variance-covariance matrix Σθ

Varθ0(Y) variance-covariance matrix of Y when we suppose the real value of θ to
be θ0
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2 Maximum likelihood estimators in the mixed linear regression model

Let us consider following linear regression model:

Y ∼ Nn (Xβ,Σθ) , (1)

X is a known matrix of n × k dimension which is of a full column rank r(X) = k, β =
(β1, β2, . . . , βk)′ is a vector of unknown fixed effects parameters. Let the covariance matrix Σθ

be of a form

Σθ =
r∑

i=1

θiVi. (2)

θ1, θ2, . . . , θr > 0 are unknown variance components andV1,V2, . . . ,Vr are known symmetrical
positive semideninite matrices, whereas the covariance matrix Σθ has to be positive definite.
The aim is to estimate the fixed effects parameters β = (β1, . . . , βk)

′ and the unknown para-
meters of the covariance matrix - the variance components θ = (θ1, . . . , θr)

′.
Maximum likelihood method will be used to determine the estimators. Let us denote β̂ and θ̂
the estimates of β and θ. The likelihood equations for this model are (cf. [9]):

X′Σ
bθ
−1Xβ̂ = X′Σ

bθ
−1Y (3)

Tr(Σ
bθ
−1Vi) = Y′ (MXΣbθMX)

+Vi (MXΣbθMX)
+Y, i = 1, . . . , r. (4)

As we suppose X to have a full column rank and Σθ to be regular (as it is positive definite),
matrix X′Σθ

−1X is also a regular matrix. In case the variance components included in θ are
known we can get the β - estimator directly from (3):

β̂ =
(
X′Σθ

−1X
)−1
X′Σθ

−1Y. (5)

This estimator is identical with the θ-locally best linear unbiased estimator of the fixed effects
parameters in model (1) (cf. [1]). As the variance components are supposed to be unknown we
have to follow a different procedure. We need to choose some starting value of the variance
components θ0. Then we can start an iterative process based on (4):

Tr(Σθk+1
−1Vi) = Y′ (MXΣθk

MX)
+Vi (MXΣθk

MX)
+Y, i = 1, . . . , r. (6)

for k = 0, 1, . . . , p. The iterations stop when θp = θp+1 for the first time and we consider θp to
be an estimate of θ:

θ̂ = θp.

Finally we use θp as an input value for (5) and count the estimate β̂.

3 Insensitivity region for a variance of an estimator of a linear function of the
fixed effects parameters

As described at the end of the first section we should estimate the variance components at
first (by means of the iterative procedure) and then use the final estimate of θ as an input
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value for the fixed effects parameters estimation. In some cases (especially when the variance
components are not the object of our interest) we do not need to come trough the iterations. It
should be enough when we base the estimate of β on some suitably chosen initial value θ0. We
just need to verify whether this simplification does influence the quality of the estimate. This
question can be answered by the help of the conception of insensitivity stated below.
When looking at the estimator (5) of the fixed effects parameters it is obvious that the

estimator is a function of variance components θ. We will denote it with β̂(θ) instead of β̂ in
the following text. Let’s say we will use an initial value θ0 of the variance components instead
of θ, we will get estimate β̂ (θ0). We need to find a criterion to decide whether the choice of the
prior value θ0 enables to determine trustfulness estimates. To investigate this let us see what
happens when we change θ0 with some small δθ = (δθ1, . . . , δθk). It seems to be reasonable
not to allow the dispersions of the componets of the estimate of vector β to increase too much
when using different prior value. Following two definitions are based on this restriction.

Definition 3.1 (Cf. [6]) Let h ∈ Rk. Within a mixed linear model (1) the expression

∂ĥ′β (θ)
∂θj

∣∣∣∣∣
θ=θ∗

is called the sensitiveness of a linear unbiasedly estimable function h′β with respect to θj,
j = 1, 2, . . . , r. Here θ∗ is an actual value of the parameter θ.

Definition 3.2 (Cf. [6]) Within a mixed linear model (1) the set Nh′β,θ0 that fulfills:

θ0 + δθ ∈ Nh,β,θ0 =⇒

=⇒
√
Varθ0

[
h′β̂(θ0 + δθ)

]
≤ (1 + ε)

√
Varθ0

[
h′β̂(θ0)

]
, (7)

is called the insensitivity region for the variance of the estimate of a linear function h′β. Here
ε > 0 is a given number.

Remark 3.3 When we choose h (a vector that designs a linear combination of the components
of vector β̂) to be an i-th unit vector ei (e1 denotes a vector having all the components zero
except the i-th one which is 1), Nh′β,θ0 is (for given prior value θ0) a set of all admissible
prior values which do cause only ε-multiple increase of the standard deviation of the estimator
of βi at most when compared to the standard deviation of the same estimator based on the prior
value θ0. When we find Ne′iβ,θ0 for all ei, i = 1, . . . , k and make their intersection

k⋂
i=1

Ne′iβ,θ0 ,

we get a set of those variance components whose utilization doesn’t cause too large increase of
a standard deviation of an estimator any component of β.
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According to (5) we have

Varθ0

[
β̂(θ0)

]
=
(
X′Σθ0

−1X
)−1

. (8)

Consequently

Varθ0

[
h′β̂(θ0)h

]
= h′

(
X′Σθ0

−1X
)−1
h. (9)

Further we need Varθ0

[
h′β̂(θ0 + δθ)

]
. Trough the use of the differential we can approximate

β̂(θ0 + δθ) ≈ β̂(θ0) +
∂β̂(θ)
∂θ′

∣∣∣∣∣
θ=θ0

δθ (10)

As the derivative is

∂β̂(θ)
∂θi

∣∣∣∣∣
θ=θ0

= −(X′Σθ0
−1X)−1X′Σθ0

−1ViΣθ0
−1
[
Y −Xβ̂(θ0)

]
,

we can approximately write

β̂(θ0 + δθ) ≈ β̂(θ0)−
r∑

i=i

(X′Σθ0
−1X)−1X′Σθ0

−1ViΣθ0
−1
[
Y −Xβ̂(θ0)

]
δθi. (11)

Let us dentote C(θ0) = X′Σθ0
−1X in what follows. As β̂(θ0) and

[
Y −Xβ̂(θ0)

]
are uncorre-

lated we can approximate Varθ0

[
β̂(θ0 + δθ)

]
using (11):

Varθ0

[
β̂(θ0 + δθ)

]
≈ Varθ0

{
β̂(θ0)

]
+Varθ0

[
r∑

i=i

C−1(θ0)XΣθ0
−1ViΣθ0

−1
[
Y −Xβ̂(θ0)

]
δθi

}

= Varθ0

[
β̂(θ0)

]
+Varθ0

{
C−1(θ0)X′Σθ0

−1ΣδθΣθ0
−1
[
Y −Xβ̂(θ0)

]}
= Varθ0

[
β̂(θ0)

]
+C−1(θ0)X′Σθ0

−1ΣδθΣθ0
−1 [Σθ0 −XC−1(θ0)X′]Σθ0

−1ΣδθΣθ0
−1XC−1(θ0)

= Varθ0

[
β̂(θ0)

]
+C−1(θ0)X′Σθ0

−1Σδθ(MXΣθ0MX)
+ΣδθΣθ0

−1XC−1(θ0). (12)

Let us consider an arbitrary vector h ∈ Rk and denote Lh′ = h′C−1(θ0)X′Σθ0
−1. For the

appropriate linear combination of the components of β̂(θ0 + δθ) we have

h′β̂(θ0 + δθ) ≈ h′β̂(θ0)−
r∑

i=1

Lh′ViΣθ0
−1
[
Y −Xβ̂(θ0)

]
δθi = h′β̂(θ0)

−
(
Lh′V1Σθ0

−1
[
Y −Xβ̂(θ0)

]
, ...,Lh′VrΣθ0

−1
[
Y −Xβ̂(θ0)

])
δθ = Lh′Y

−
(
Lh′V1Σθ0

−1
[
Y −Xβ̂(θ0)

]
, ...,Lh′VrΣθ0

−1
[
Y −Xβ̂(θ0)

])
δθ.
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Denote further ξ =

⎛⎜⎜⎝
Lh′V1Σθ0

−1
[
Y −Xβ̂(θ0)

]
. . .

Lh′VrΣθ0
−1
[
Y −Xβ̂(θ0)

]
⎞⎟⎟⎠, then ξ ∼r (0,Var(ξ)). Let

Varθ0(ξ) =Wh. Then we have

{Wh}i,j = cov
(
Lh′ViΣθ0

−1
[
Y −Xβ̂(θ0)

]
,Lh′VjΣθ0

−1
[
Y −Xβ̂(θ0)

])
= Lh′ViΣθ0

−1

·[Σθ0 −XC−1(θ0)X′]Σθ0
−1VjLh = Lh′Vi(MXΣθ0MX)

+VjLh. (13)

Lemma 3.4 (See [7])
Let us consider a given point θ0 ∈ R

r and the matrix

Wh =

⎛⎜⎝ Lh
′V1
...

Lh′Vr

⎞⎟⎠ [MXΣθ0MX]
+(V1Lh, . . . ,VrLh),

which is assigned to the function h(β) = h′β with h ∈ R
k. Then

M(Wh)⊥θ0.

Proof. [MXΣθ0MX]
+(V1Lh, . . . ,VrLh)θ0

= [Σθ0
−1 −Σθ0

−1X(X′Σθ0
−1X)−1X′Σθ0

−1]X(X′Σθ0
−1X)−1h = 0.

Corollary 3.5 According to lemma 2.4. Wh is a singular matrix.

When we compare (12) and (13) we can write

Varθ0

[
h′β̂(θ0 + δθ)

]
= Varθ0

[
h′β̂(θ0)

]
+ δθ′Whδθ. (14)

The resulting set Nh′β,θ0 is an insensitivity region for the variance of the estimate of a linear
function h′β from the definition 2.2. As we know from the mentioned definition√

Varθ0

[
h′β̂(θ0 + δθ)

]
≤ (1 + ε)

√
Varθ0

[
h′β̂(θ0)

]
should be satisfied. According to (13)√

Varθ0

[
h′β̂(θ0)

]
+ δθ′Whδθ ≤ (1 + ε)

√
Varθ0

[
h′β̂(θ0)

]
,

√√√√1 + δθ′Whδθ

Varθ0

[
h′β̂(θ0)

] ≤ 1 + ε,
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δθ′Whδθ

Varθ0

[
h′β̂(θ0)

] ≤ (1 + ε)2 − 1,

δθ′Whδθ

Varθ0

[
h′β̂(θ0)

] ≤ 2ε+ ε2.

δθ′Whδθ ≤ (
2ε+ ε2

)
Var[h′β̂(θ0)]. (15)

Theorem 3.6 The insensitivity region for the variance of the estimate of the linear function
h′β for given h ∈ R

k, given θ0 ∈ R
r and given ε > 0 is the following set

Nh′β,θ0 = {θ0 + δθ : δθ′Whδθ ≤ (
2ε+ ε2

)
Varθ[h

′β̂(θ0)]}. (16)

Proof. This assertion is an immediate consequence of the defintion 2.2 and (15).

Lemma 3.7 Nh′β,θ0 is influenced by the direction of the vector h but not with is norm ||h||.

Proof. According to (13) and (15) we have

r∑
i=1

r∑
j=1

δθiδθjh′C(θ0)−1X′Σθ0
−1Vi(MXΣθ0MX)

+VjΣθ0
−1XC−1(θ0)h

≤ (
2ε+ ε2

)
Varθ0 [h

′β̂(θ0)] = 2εh′C−1(θ0)h. (17)

Let us choose a fixed vector h0 ∈ Rk. Then for an arbitrary vector h ∈ R
k with the same

direction as h0 such k ∈ R exists that h = kh0. When we establish this into (17) we get

k2
r∑

i=1

r∑
j=1

δθiδθjh′0C(θ0)
−1X′Σθ0

−1Vi(MXΣθ0MX)
+VjΣθ0

−1XC−1(θ0)h0

≤ (
2ε+ ε2

)
k2h′0C

−1(θ0)h0.

As we can divide both the sides of the inequality above by k2 we have finally

r∑
i=1

r∑
j=1

δθiδθjh′0C(θ0)
−1X′Σθ0

−1Vi(MXΣθ0MX)
+VjΣθ0

−1XC−1(θ0)h0

≤ (
2ε+ ε2

)
h′0C

−1(θ0)h0.
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4 Utilization of the insensitivity region for a variance of an estimator of a linear
function of the fixed effects parameters

As we saw in the previous section the insensitivity regions are sets of such admissible input
values of the variance components that do not cause an undesirable increase of the variance of
the estimates. To be able to review the quality of the estimates β̂ we will compare them to the
confidence region for the variance components. For a special case of r = 2 (when we have two
variance components) we will determine the confidence region to be a rectangle which covers
the real value of the variance components with the given probability 1−α and centre of which
is the estimate β̂. According to the Chebyschev inequality (cf. [10])

P

{
|θ̂1(θ0)− θ1| ≤ k

√
Varθ0

[
θ̂1(θ0)

]}
≥ 1− 1

k2

and in a similar way

P

{
|θ̂2(θ0)− θ2| ≤ k

√
Varθ0

[
θ̂2(θ0)

]}
≥ 1− 1

k2
.

Both these inequalities are included in the Bonferroni inequality (cf [5]):

P

{
|θ̂1(θ0)− θ1| ≤ k

√
Varθ0

[
θ̂1(θ0)

]
∧ |θ̂2(θ0)− θ2| ≤ k

√
Varθ0

[
θ̂2(θ0)

]}

≥ 1− 2
k2

. (18)

The Bonferroni inequality is the fundamental of the confidence region we are looking for. We

need
(
1− 2

k2

)
= (1− α), which means k =

√
2
α
. The resulting confidence region (according to

(18)) for the variance components is a set which will be denoted by Eθ,θ0 , it’s explicit for is
following:

Eθ,θ0 =

{
θ =

(
θ1
θ2

)
: |θ̂1 (θ0)− θ1| ≤

√
2
α
Varθ0

[
θ̂1(θ0)

]

∧|θ̂2 (θ0)− θ2| ≤
√
2
α
Varθ0

[
θ̂2(θ0)

]}
(19)

Here θ̂1 (θ0) and θ̂2 (θ0) denote the estimates of particular variance componets θ1 and θ2 based
on the prior value of θ0 (they are the result of the first iteration (6)). It means we have

θ̂ (θ0) =

(
θ̂1 (θ0)
θ̂2 (θ0)

)
.

As mentioned above (19) gives a confidence region when θ is two-dimensional. According to
lemma 2.4 and its corollary 2.5 when r = 2 thenWh is of rank 1. The boundary of set (16) is
then a singular conic - two parallel lines and the insensitivity region is a zone in between these
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two lines. Looking at lemma 2.4 once more we can say that the direction of θ0 is orthogonal to
the lines specifying the insensitivity region.
In this special case we can compare the relative position of the insensitivity region and the

confidence region as they are both sets of some values of the variance components. When the
confidence region is a subset of the insensitivity region then the uncertainty arising when we
determine the estimate β̂ (θ0) (this uncertainty is expressed by the variance of the estimate)
is not too large so that we can trust the estimate and stop the iterations after the first step
already.
When the confidence region is not a subset of the insensitivity region then the uncertainty

is larger, the variance of the estimate could be large. We have to be careful when we decide to
use such an estimate.
However we still have some possibilities how to improve the estimate. We can continue with

the iterations and stop them after the results stabilize (if they do so) and then use an iterated
estimate of the variance components instead of the starting value θ0 and check the relative
position of appropriate insensitivity region and confidence region again. If it still doesn’t help
we could try to change the design of the experiment (if the situations allows to do so).
The theoretic background of the insensitivity region issue is in more detail described in [8]

and [7]. A numerical study focused on the relative position of the insensitivity region and the
confidence region for the variance components can be found in [4]. A further analysis of the
insensitivity region properties is in [3]. [2] is focused on the insensitivity region in case of the
mixed linear model with type I constraints and possible computational problems. Paper [4]
contains the derivation of the insensitivity region for an estimate of a linear function of the
variance components, further description and possible properties of the insensitivity region for
an estimate of a linear function of the variance components are the aim of future research.
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Abstract. Currently there are several methods of train position determination, safety 
verification of train position and view of driven trace on given time interval. Research in the 
area of Global Navigation Satellite Systems (GNSS) shows, that it is advantageous to use 
satellite navigation for these purposes. 
Described algorithms monitor the position integrity of the GNSS receiver. The aim of these 
algorithms is to verify that the GNSS position corresponds to the given train track and to find 
out that obtained GNSS position complies with safety requirements – Safety Integrity Level 
(SIL) – for given probability of undetected failure. The train track can be defined by a 
parametric equation, analytical function or discrete timely equidistant set of position 
coordinates. This paper is mainly devoted to introduction into the discrete algorithms. 
 
Key words. GNSS, Integrity Monitoring, Multivariate Statistical Analysis, Wishart matrix, 
Hotteling’s test statistics, Threshold Domain, Protection Level (PL) 
 
Mathematics Subject Classification:  Primary 62J05, 62F10, 62F03 

 
 
1 Introduction 
 
1.1 Global Navigation Satellite Systems 
 

The name Global Navigation Satellite System (GNSS) covers all existing satellite systems 
(e.g. GPS-USA, GLONASS-Russia, GALILEO-EU). GNSS receivers of satellite signal provide 
information about position and its precision to their users. Some GNSS receivers are able to collect 
signals from different satellite systems. More information about operation GNSS can be found in 
(Mervart, 1993), where algorithms for (x,y)-position of GNSS receiver determination are also 
described. GNSS have been successfully used in the automotive field (GPS navigation), geodesy, 
and modern telecommunication technology. In air transport, elaborate methods for safety position 
determination by the help of GNSS have been developed and used. 
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1.2 GNSS in railway transport 
 

Czech Railways perform tests and experiments with this new technology. GNSS receivers are 
installed on several selected locomotives and obtained GNSS data is compared with the map of 
train tracks. Trains can move only on tracks, so they can move only on the route, which has been 
strictly defined. This is the greatest advantage of GNSS usage for railway transport. For safety 
determination of locomotive position, it is enough to recognize in which track the reference point of 
the locomotive is situated. Then the determination of train position on this track is quite easy. 
Reasons for usage of this modern technology are evident – to reduce running costs and to increase 
effectiveness, safety and capacity of train operation. 

In Laboratory of Intelligent Systems (LIS) the new Train Position Locator (TPL) is developed 
and tested. TPL consists of the GNSS receiver and additional inertial on-board sensors (INS) such 
as an odometer, accelerometer, gyroscope and microwave Doppler speedometer. Acquired data is 
fused by a Kalman filter and projected to the track map. It is expected that GNSS/INS TPL will 
play an important role in future railway safety related applications. First TPL has been installed on 
selected locomotive type 130-023-3 and it is used for online tests. For laboratory tests of TPL Test 
Bed and simulator have been developed. More information about TPL could be found in (Filip 
et al., 2004). 

Nowadays GNSS database system for monitoring and prediction of locomotive position is 
also developed. Locomotive equipped with GNSS receiver send own positions every 5sec to central 
computer. All GNSS positions (with other information like train identification number, conductor 
number and track number) are saved to GNSS database. By the help of database it could by possible 
to describe (analytically or discretely) all used tracks, view driven trace of some train, safety verify 
current position of given locomotive. Algorithms which worked above GNSS database are named 
as GNSS Simplification (GNSS-SIM) algorithms. 
 
 
1.3 GNSS-PIM algorithms 
 

The GNSS Position Integrity Monitoring (GNSS-PIM) algorithms monitor the position 
integrity of the GNSS receiver. Let GNSS position of locomotive reference point be given by (x,y)-
coordinates. The aim of these algorithms is to verify that GNSS position corresponds to the given 
train track and to find out that obtained GNSS position complies with safety requirements – Safety 
Integrity Level (SIL) – for given probability of missed detection (PMD). For every GNSS position 
the Protection Level (PL) is computed. In statistical point of view the PL is the threshold domain, 
which is limited by probability of the second kind error. GNSS position integrity monitoring is 
provided by comparing of obtained PL with Horizontal Alert Limit (HAL), which is for given SIL 
already defined by user. If PL value is same or lower than HAL, then GNSS position has enough 
integrity and it could be regarded as safe. If PL is greater than HAL, the GNSS position doesn’t 
satisfy safety requirements and mustn’t be used for following safety related applications. 

For correct operation of GNSS-PIM algorithms it is necessary to ensure sufficient integrity of 
the GNSS signal. The GNSS signal integrity can be obtained by Ground Integrity Channel (GIC) 
report and by usage of Receiver Autonomous Integrity Monitoring (RAIM). Another necessary 
demand for correct operation of monitoring algorithms is the usage of safety track map. For this 
reason the track map must satisfy safety requirements and it is necessary to ensure sufficient 
integrity of this map. If the map contains position errors and hasn’t demanded precision, it mustn’t 
be used for safety related applications. 
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The GNSS-PIM algorithms could be divided in analytical, parametrical and discrete 

according to the train track definition. Another division of GNSS-PIM algorithms could be done by 
a character of the track. Tracks specification for railway traffic is linear, arch and cubic. Algorithms 
development begins from linear character of the track, arch and cubic algorithms are explored after. 
They are solved by linearization of gain statistical models. 

Analytical algorithms are used when the train track is defined by analytical 
function 0),( �yxf . Incepted problems could be described by statistical model with constraints. 
Analytical GNSS-PIM algorithms for linear and arch track are solved in M.S. theses (Dvorakova, 
2004).  

Parametrical algorithms are used when the train track is defined by parametrical equations 
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 with parameter t. Statistical description of these algorithms appears in 

(Heckenbergerova, 2007) and (Heckenbergerova, 2008). 
If the train track is defined by discrete timely equidistant set of position coordinates 
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� , then GNSS-PIM algorithms are called discrete. Discrete algorithms have great 

advantage against others, because knowledge of track character (line, arch, cubic) isn’t demanded. 
Discrete problems could be described by multivariate statistical model. This is the main 
disadvantage. Features of multivariate models like confidence area and insensitivity region hasn’t 
been described. Incepted problems in discrete GNSS-PIM algorithms are main aim of current 
research. Some basic discrete algorithms are described in conference proceedings (Dvorakova 
et al., 2005). 
 
 
2 Discrete GNSS-PIM algorithms 
 
2.1 Theoretical basement for discrete problem 
 
Definition 1: 
Let ),(~),...,,(~ 11 '' npnp NXNX 

  be independent stochastic vectors, i
 be p-dimensional 
columned vector for ni ,...,1�1 and � be matrix of type � �pp � .  

Let 
�
�
�

�

�

�
�
�

�

�

��
T
n

T

pn

X

X
�
1

X  and 
�
�
�

�

�

�
�
�

�

�

��
T
n

T

pn






�
1

M . 

Conjugate distribution of the elements of matrix XXY T� is called p-dimensional Wishart 
distribution with n degrees of freedom and with parameters �, M: 
 
'),(~ nWpY  central Wishart distribution (M = 0), 

 
' ),,(~ MY nWp  noncentral Wishart distribution (M 	 0). 
 
Definition 2: 
Let ),(~ 1 'cpN 
y , ),(~ 'kWpY  be independent and � be positive definite matrix. 
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Test statistics    yYy 12 
��� TkcT   
is called Hotelling t-square test statistics. 
 
Theorem 1: 

If  k > p-1 then ),(~1
1,

2

)�
�
�


� pkpF
k

T
p
pkF  

where 

) 1
'�� Tc  is noncentrality parameter of the F-distribution. 
 
 
2.2 Formulation of discrete problem 
 

The GNSS Position Integrity Monitoring (GNSS-PIM) algorithms monitor the position 
integrity of the GNSS receiver. Let Z be vector of GNSS position of locomotive reference point be 
given by (x,y)-coordinates. The aim of Discrete GNSS-PIM algorithms is to verify that GNSS 
position corresponds to the given train track defined by polygon Y. And then find out that obtained 
GNSS position complies with safety requirements – Safety Integrity Level (SIL) – for given 
probability of missed detection (PMD). For every GNSS position the Protection Level (PL) is 
computed. GNSS position integrity monitoring is provided by comparing of obtained PL with 
Horizontal Alert Limit (HAL). If PL value is same or lower than HAL, then GNSS position has 
enough integrity and it could be regarded as safe. If PL is greater than HAL, the GNSS position 
doesn’t satisfy safety requirements and mustn’t be used for following safety related applications. 
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Fig 1.  Graphical representation of described vectors 

First aim of the lower described algorithm is testing hypotheses, whether true positions of 
given locomotive lie on the supposed track given by discrete timely equidistant set of position 
coordinates Y. 
 
So null hypotheses: 
 
is tested against alternative hypotheses: 
 
for every j=1,…m so for every measured GNSS train position. 
 
Test statistics properties are introduced in following theorem. This theorem can be proved by 
Theorem 1 and Definitions 1, 2 using. 
 
Theorem 2:  Test of fit 

Let 
j for j=1,… ,m be a sequence of the projection residuals vectors and �
�

33�
m

j

T
jjmW

1
,2 be 

Wishart matrix type (2x2). Let 
m+1 be the projection residual vector correspondent with (m+1) 
GNSS position, then test statistics 
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It is obvious that minimal three GNSS positions are essential for algorithm first using. Let 

first three projection residual vectors 
1, 
2, 
3 be evaluate and test significance level � (probability 
of the first order error, false alarm probability) be select. Now, perform test of fit for third GNSS 

train position ��
�

�
��
�

�

2,3

1,3

Z
Z

, where the test statistics .~ 1,22
1

3
1
2,23 FWT T 33� 
  

If T � 2·F2,1(1- �), hypothesis H0 can not be refused on the given test significance level �, if 
T>2· F2,1(1- �), hypothesis H0 is refused in behalf of alternative hypothesis Ha on the given test 
significance level �.  

0) E(:H j0 �3

0) E(:H ja 43
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In case of hypothesis H0 refusal, 
3 is significantly differ from other projection residual 
vectors, so it’s necessary to generated error report and delete given GNSS position from safety 
related applications.. Then algorithm restart must be carry out.  

GNSS position seems to be right, when hypothesis H0 isn’t refused. Then PL for this 
measurement can be determinate and algorithm can pass on the next iteration. If obtained PL value 
is same or less than HAL value, which is previously defined by user, then the GNSS position has 
enough integrity and it can be regard as safety. If PL is greater than HAL, the GNSS position 
doesn’t satisfy safety requirements. 

Protection Level is the threshold domain, which is limited by the probability of the second 
kind error (probability of undetected failure, PMD). The threshold domain determinate how big 
difference between projection residual vector and mean-value of these vectors can be detected with 
given probability of undetected failure, PMD value is defined by safety requirements (SIL).  

Let � be the set of all plane vectors and let max) be solution of equation 
 
then 
 

PL = � �max
1

,22
1,: )

#5
6�7��8 

 uWuuu m

Tm  . 
 
 
2.3 Discrete GNSS-PIM algorithm 
 
Now the algorithm m-iteration description can be introduced: 

9 Evaluation of Wishart matrix W2,m 
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9 Determination of the projection residual vector 
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9 Evaluation of the test criteria value T 
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m
m FT  – PL determination and passing on the next 
iteration m+1 
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m
m FT – generation of error report and algorithm restart. 

 

           
 

Fig 2.  Numerical results of Discrete GNSS-PIM algorithm 
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Discrete GNSS-PIM algorithm can be negatively influenced by dependence of GNSS 
positions and their orthogonal projection, Wishart matrix become singular and can not be inverted. 
Because of singularity, it is necessary to decrease degree of freedom of F-distribution and 
generalized inverse matrix must be used for the test criteria. This problem increases time 
costingness of the whole algorithm. 
 
3 Conclusion 
 

During the realization of the mentioned research many difficult mathematical problems can be 
expected. For example up to now normal distribution of GNSS position errors is assumed and due 
to this assumption estimation procedures and testing of statistical hypotheses have been used in 
standard way. Usually variances of the actual errors in determination of train position are unknown 
and must be estimated. This fact influences heavily the procedure of confidence domain 
determination and power functions of statistical tests. Utilization of other measure techniques e.g. 
odometers, gyroscopes and Doppler radar, make the set of results heterogeneous, what need 
development of special numerical algorithms. Only satisfactory solution of mentioned problems has 
chance to utilize in the practice successfully and this way to increase effectiveness, safety and 
capacity of train operation. 

Aim of future research is integration PIM algorithms into existing software for train position 
determination, laboratory and online tests of whole positioning system. Confidence area, threshold 
domains and insensitivity regions in discrete PIM algorithms are essential part of future statistical 
problem. PIM algorithms could be used for car position verification too. Evolution of automobile 
safety position monitoring is also direction of future development. 
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EVALUATION  OF  GROWTH  CURVES  

VIA  LINEAR  MIXED  EFFECTS  MODEL 
 

JAROŠOVÁ Eva, (CZ) 
 
 

Abstract. The linear mixed effects model was applied to data representing the growth of yeast 
colonies. The growth was observed under optimal and stress cultivation conditions for fourteen 
days. Two temperatures (10 and 20°C) and three NaCl concentrations (0, 1 and 2%) were used 
according to the full factorial design. The colony diameter obtained by means of the method of 
image analysis was a response variable. S-PLUS program was used to analyze repeated 
measurements. Two-phase kinetics was confirmed and the mean growth rates in the second 
linear phase under various stress conditions were estimated. Confidence and prediction intervals 
for the time after which a colony reaches the specific diameter were calculated. 
 
Key words.  experimental design, repeated measures, confidence and prediction intervals 
 
Mathematics Subject Classification:  62P10, 62-07. 

 
 
1   Introduction 
 

The aim of the study was to evaluate the growth of yeast under optimal and stress cultivation 
conditions. Giant colonies of Rhodotorula mucilaginosa were cultivated at different temperatures 
and in the presence of different NaCl concentrations. The effect of temperature and NaCl 
concentration on the colony growth was examined. The temperature, concentration and time formed 
the full factorial design. As repeated observations of the specimens were made over time, the 
observations of the same specimen were correlated and, in addition, a higher correlation of adjacent 
observations than of those more distant in time could be expected.  

To take into account the special covariance structure of the data, the linear mixed effects 
model was used. A detailed description of mixed effects models (both linear and nonlinear) can be 
found in [4], covariance structure modelling is described e.g. in [2]. The SAS Help includes a good 
overview, too. The usual application of the mixed effects model consisting in prediction of the 
response of individual specimens was not of any use here. The mixed effects model was, however, 
needed to make a correct statistical inference such as hypothesis tests or confidence intervals. By 
means of the mixed effects model behaviour of specimens could be explored in more detail and the 
main sources of response variance could be identified. 
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Beside the analysis of temperature and NaCl concentration effects, confidence and prediction 
intervals for the response in the given time were constructed and by means of them the time it takes 
the response to reach the specific value was estimated. 

Although the paper deals with the data from food microbiology, similar problems can be 
found in various industrial branches. For example some degradation or deterioration processes are 
monitored and the time to a failure is predicted. The mixed effects model can be a suitable tool in 
such cases. The use of the model is not restricted to the functions linear in parameters; non-linear 
mixed effects models are applied in a similar way. Both linear and non-linear mixed effects models 
are implemented in most known commercial software products such as S-PLUS or SAS.  
 
 
2   Mixed effects model  
 

The linear mixed effects model  
 � � �y X� Zb e  (1) 
;

was used, where y is the Nx1 vector of responses, X is the known Nxp design matrix linking �  to y, 
�  is the px1 vector of unknown parameters (fixed effects), Z is the Nxq design matrix linking b to 
y, b is the qx1 vector of unknown random effects and e is the Nx1 vector of random errors. 
Assuming b ~ ( , )N 0 G , e ~ ( , )N 0 R , and b and e independent, the mean profile is given by 

( )E �y X�  and the covariance structure depends on the matrices G and R, namely 
var( ) = = +Ty V ZGZ R . G and R are determined by a set of h parameters (� ) that are estimated 
either by the maximum likelihood method or by the restricted maximum likelihood method. The 
corresponding likelihood functions are 
;

 11 1( ) log | | log(2 )
2 2 2

T Nl �
� 
 
 
� V r V r , (2) 
;

 1 11 1 1( ) log | | log | | log(2 )
2 2 2 2

T T
R

N pl �
 
 

� 
 
 
 
� V X V X r V r , (3) 

;

where 1 1( )T T
 
 
� 
r y X X V X X V y  and p is the rank of X. 
Solving the mixed model equations where the unknown G and R are replaced by their estimates 

;
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b Z R yZ R X Z R Z G � , (4) 

;

the empirical best linear unbiased estimator (EBLUE) and empirical best linear unbiased predictor 
(EBLUP) are obtained [1]  
;

 1 1ˆ ˆ ˆ( )T T
 
 
�� X V X X V y   (5) 
;

 1ˆ ˆˆ ( )T 
� 
b GZ V y X�� . (6) 
;

According to [3] the approximate covariance matrix of ( ˆ 
� � , 
b b� ) is 
;
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where 
;

 1
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ˆ ( )T 
 
�C X V X  
;

 1 1
21

ˆ ˆ ˆ ˆ( )T T
 
 
� 
C GZ V X X V X  
;

 1 1 1 1
22 21

ˆ ˆ ˆ ˆˆ ˆ( )T T
 
 
 
� � 
C Z R Z G C X V ZG . 
;

No account is made for the uncertainty in estimating G and R and so these covariance matrices tend 
to underestimate the true variability. The bias, however, should be small for fairly well balanced 
data [5].  

The confidence interval for T < =
> ?
@ A

�
k

b
, where k is a (p+q)x1 vector, is given by 

 1 / 2

ˆ ˆ( )T Tt # B


< =
C> ?

@ A

�k k Ck
b�

, (8) 

;

where 1 / 2,t # B
 is 1 / 2#
  quantile of the t-distribution with B  degrees of freedom, n p hB � 
 
 . 
 
 
3 Model of colony diameter growth 
 

Giant colonies were cultivated at 10 or 20°C for 14 days. Different NaCl concentrations 
(0, 1, 2%) were added to the media as a stress factor. Six specimens were observed under the same 
treatment conditions. The area of the colony was measured by the method of image analysis and the 
equivalent diameter was derived (the diameter of a circle having the same area as the colony). The 
camera and illuminating system used in the experiment did not enable to monitor the initial stages 
of colony growth due to a low contrast between the colony and the background. The first results 
were obtained after five days ( 0t = 5). From then on, most growth curves exhibited linear 
dependence of equivalent diameter on time (Figure 1). 

The equivalent colony diameter was a response variable. With time taken as continuous and 
on the assumption that our measurements record the period of linear growth, the diameter of the i-th 
colony at the j-th level of temperature, the k-th level of NaCl concentration and time lt  can be 
expressed in the form 
;

 0, 0, ( ) 1, 1, ( ) 0( )( )ij kl jk i jk jk i jk l ijkly b b t t e$ $� � � � 
 � , (9) 
;

where 0, jk$ corresponds to the mean diameter at 0t t� , 1, jk$  denotes the mean growth rate (in cm per 
day) in the “linear” period, random effects 0, ( )i jkb  represent variation of line intercepts around 0, jk$  
and random effects 1, ( )i jkb  correspond to variation of line slopes around 1, jk$ . Random errors ijkle  
denote departures of observations from the model.  
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Figure 1  Growth curves of giant colonies. 
 

Both parameters 0, jk$  and 1, jk$  are supposed to be affected by a treatment (note that 

0, jk$ does not represent the intercept at t = 0); the indices j and k stand for various treatment 
conditions. Columns of X in Eq. (1) correspond to the fixed part of the model (in notation used in S 
Plus)  
;

 ( )j k j k j k j kT NaCl T NaCl time T NaCl T NaCl time� � D � � � � D D ,  (10) 
;

where T is a two-level factor (j = 1, 2) and NaCl is a three-level factor (k = 1, 2, 3). Time is a 
continuous variable. 

Variances 2
0, jk�  and 2

1, jk� of random effects 0, ( )i jkb  and 1, ( )i jkb , respectively, lying on the main 
diagonal of G may or may not differ for various treatments. In case of equal variances we shall 
denote 0,ib  ( 1,ib ) and 2

0�  ( 2
1� ).  

For 0t t:  the mean profile at jT  and kNaCl  has the form 
;

 0, 1, 0( ( ) | , ) ( )j k jk jkE Y t T NaCl t t$ $� � 
 , (11) 
;

The confidence interval can be obtained following Eq. (8), i.e. 
;

 1 / 2 11
ˆ ˆ( )T Tt # B
Cx � x C x , (12) 

;

where Tx denotes the row vector corresponding  to Eq. (10) at time t. It can be expressed simply as 
 

 2
0, 1, 0 1 / 2 0, 0, 1, 1, 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( ) 2 ( , ) ( )( )jk jk jk jk jk jkt t t D C D t t#$ $ B $ $ $ $
� 
 C � � 
 . (13) 
;
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From Eq. (13) the confidence interval for the time *t  it takes the colony to reach the specific 
diameter *Y  can be obtained. The confidence limits are determined by solving the equation 
;

 
22

2 * 0 1 * 01
1 * 0 0 1 * 0 02 2 2

1 / 2, 1 / 2, 1 / 2,

ˆ ˆ ˆˆ ( ) ( )ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) 2 ( , ) ( ) ( ) 0Y YD t t C t t D
t t t# B # B # B

$ $ $$ $ $ $ $

 
 


� � � �
 


 
 
 � 
 � 
 �� � � �� � � �

� � � �
  (14) 

;

where indices j and k were omitted for clearness, D̂  and Ĉ  denote estimated variance and 
covariance, respectively.  

Further the prediction interval for the diameter at time t was considered. It is given by 
;

 2
1 / 2 11

ˆ ˆ ˆ ˆ( )T T Tt # B �
C � �x � x C x z Gz , (15) 
;

or in a more transparent form 
 0, 1, 0 1 / 2

ˆ ˆ ( ) ( ) ( )jk jk jkt t t V t#$ $ B
� 
 C , (16) 
where 
 2 2 2 2

0, 0, 0, 1, 0 1, 1, 0
ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ( ) ( ) 2 ( , )( ) [ ( ) ]( )jk jk jk jk jk jk jkV t D C t t D t t$ � $ $ $ � �� � � 
 � � 
 � . 

;

Similarly, the prediction limits for the time to reach the diameter *Y  can be determined by solving 
the equation 
;

 
2

2 2 * 0 11
1 1, * 0 0 1 * 02 2

1 / 2, 1 / 2,

ˆ ˆˆ ( )ˆ ˆ ˆ ˆˆ ˆ( ) ( ) 2 ( , ) ( )jk
YD t t C t t

t t# B # B
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 � 
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;

 
2

2 2* 0
0 0,2

1 / 2,

ˆ( ) ˆˆ ˆ ˆ( ) 0jk
Y D
t # B

$ $ � �
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 � . (17) 

 
 
4 Results 

 
Firstly, the structure of G and R was examined. Differences among 0, jk�  (standard deviations 

of random effects 0, ( )i jkb ) under different treatment conditions were apparent. As the systematic 
effect of NaCl on 0, jk�  was distinguishable, only three parameters corresponding to different 
concentrations and a single parameter for the random effects of slopes were included so that the 
overparametrization, manifesting itself by boundless confidence intervals for 0, jk� , should be 

avoided. The variance matrix of random effects had the form � �2 2 2 2
0,1 0,2 0,3 1, , ,diag � � � ��G . The 

matrix R corresponded to AR(1) scheme. The estimates of the standard deviations supplemented by 
the estimates of the matrix R parameters are in Table 1, where 0, jk�  represents the standard 
deviation of 0, ( )i jkb  dependent on NaCl, 1�  represents the standard deviation of 1,ib , the same for all 
treatment conditions, � denotes the error standard deviation, E  is the autocorrelation coefficient. 
According to the model of the covariance structure the response variance was composed of three 
components and varied with time, i.e. 2 2 2 2

0, 1 0( ) ( )kV y t t� � �� � 
 � . Increasing differences between 
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specimens that exceeded random error variation were evident especially at the highest NaCl 
concentration. It could be concluded that this pattern existed also before t = 5. 

 
 Table 1 Estimated parameters of the variance structure model 

Matrix G Matrix R 

NaCl [%] 0 1 2 1�̂  �̂  0.0211 

0,ˆ jk�  0.0142 0.0054 0.0593 0.0015 E  0.7569 
 

As for the fixed part of the model (Eq. (10)), all main effects and interactions were significant 
(all p-values < 0.0001). Considering the same initial mean diameter regardless of the treatment as a 
reasonable assumption, substantial differences among the estimates 0,

ˆ
jk$  (Table 2) reflected 

different mean rates under various treatment conditions in the previous growth period.  In addition 
to the effect of temperature a positive effect of higher NaCl concentration was observed both at 
lower and higher temperature. The effect was more distinguishable at the higher temperature. The 
effects of temperature and NaCl concentration on 1, jk$ were similar (Table 2). 

 
Table 2 Estimated parameters of the mean structure model with 95% confidence limits  

T [°C] NaCl[%] 0$̂  95% lcl 95% ucl 1̂$  95% lcl 95% ucl 

10 0 0.7088 0.6895 0.7282 0.0414 0.0388 0.0440 
10 1 0.7163 0.7001 0.7325 0.0523 0.0498 0.0549 
10 2 0.7540 0.7038 0.8041 0.0607 0.0581 0.0633 
20 0 0.9101 0.8908 0.9295 0.0611 0.0585 0.0637 
20 1 0.9787 0.9625 0.9949 0.0768 0.0742 0.0794 
20 2 1.0942 1.0440 1.1444 0.0932 0.0906 0.0958 

 
The estimated times to reach a double diameter ( * 0t̂ t
 ) under different treatment conditions 

are displayed in Table 3. It is obvious that the time becomes shorter with higher temperature and 
higher NaCl concentration. 
 
               Table 3 Confidence and prediction limits for time to reach double diameter  

T [°C] NaCl [%] * 0t̂ t
  95% lclm 95% uclm 95% lcl 95% ucl 

10 0 17.12 16.22 18.14 15.28 19.25 
10 1 13.68 13.13 14.28 12.39 15.12 
10 2 12.42 11.53 13.34 11.17 13.76 
20 0 14.90 14.35 15.48 13.80 16.11 
20 1 12.75 12.40 13.13 11.05 14.51 
20 2 11.74 11.17 12.33 10.26 13.26 
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5 Model validation 
 

Suitable covariance models were chosen based on the information criteria AIC and BIC (the 
lower the values of AIC and BIC the better).  
;

 2 2( )RAIC LL p h� 
 � �  
;

 2 ( ) logRBIC LL p h N� 
 � � , 
;

where LLR is the restricted log-likelihood at convergence and h is the number of parameters in G 
and R. Various forms of the matrix G determined by the random effects considered and two forms 
of the matrix R, i.e. AR(1) scheme or independent errors were examined (I is the identity matrix). 
Both criteria indicated RM3 as the best (Table 4). 
;

           Table 4 Covariance structure models  

Model G R AIC BIC 

RM1 0,ib , 1,ib  AR(1) -1416.333 -1358.406 

RM2 0,ib  AR(1) -1415.867 -1361.561 

RM3 0, ( )i kb , 1,ib  AR(1) -1431.083 -1365.916 

RM4 0, ( )i kb , 1,ib  2� �  -1362.538 -1300.991 

 
Q-Q plot (Figure 2a) is nearly straight, indicating no serious evidence against the assumption 

of normality. Plot in Figure 2b shows a very good agreement between the observed data and the 
fitted model including random effects and may serve as a further confirmation of the adequacy of 
both the mean and the covariance structure models.  
 

 
 

Figure 2 a) Q-Q plot, b) Comparison of fitted and observed values 
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6 Discussion 
 

Although it was impossible to measure the area at the beginning of the process in our 
experiment the data analysis indicated a two-phase kinetic profile. Intercepts of growth lines 
obtained by extrapolation for t = 0 differed across the experimental treatments and this phenomenon 
contradicted the reasonable assumption of only random variation of specimen sizes at t = 0. It 
followed that the extrapolation was not valid and in reality a distinct form of growth or at least a 
different growth rate occurred in the previous period.  

The mean growth rates in the observed linear phase under various stress conditions were 
estimated using the linear mixed effects model. The positive effects of temperature and NaCl 
concentration were obvious. The highest growth rate was observed in media with 2% of NaCl at 
20°C. A positive effect of temperature on the growth rate in the initial phase was recognized 
through the level of intercepts at t = 5.    

The growth rate of individual colonies varied and the most pronounced difference was 
observed at the highest NaCl concentration. Through the variation of intercepts at t = 5 the effect of 
NaCl concentration on the growth rate variation in the initial phase was recognized, which was in 
accordance with the variation in the observable linear phase.  

Although the data-based approach was used, the covariance structure model is reasonably 
interpretable. Variation of the higher growth rates is greater. Growth rates in both phases depend on 
temperature and NaCl concentration. It is not surprising that variation in the first period projects 
itself to different values of 0,k�  depending on the NaCl concentration.  

In case of linear dependence the time *t  after which a colony reaches the specific value of the 
diameter is inversely proportional to the corresponding growth rate. The estimate of the mean time 

*t  obtained from Eq. (11) is biased. The confidence or prediction limits obtained from Eq. (14) and 
(17), however, are true limits satisfying given probability. 
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STATISTICAL  ANALYSIS 

  OF  SUBCONSCIOUS  HUMAN  BEHAVIOUR  
 

KORDEK David, (CZ)  
 

Abstract. Statistical analysis is frequently used for studying people's behaviour in normal as 
well as critical situations. It is present in many works dealing with many different situations in 
which human behaviour is observed 
The aim of this work is to demonstrate that there is a mathematical dependence between the 
subconscious behaviour of two or more persons. There are numerous possibilities to study 
subconscious behaviour (yawning, etc.). However, it is necessary to discover a possibility that 
can be observed and measured objectively.  
Therefore, after accepting Professor Šeba’s advice, we suggested the following experiment: to 
observe the behaviour of people consuming beverages at restaurants and to record the drinking 
times of persons sitting at the same table. We assumed that the subconscious behaviour of 
persons sitting at the same table would influence one another. We recorded all the persons’ 
individual drinking times on a laptop computer using a special programme we had prepared 
beforehand.  
The output of the measurements was a multidimensional sequence of temporal data. These 
sequences consisted of individual persons' drinking times. We chose a correlation coefficient as 
the indicator of the level of dependence between the behaviour of each pair of persons at a table. 
If we prove mutual dependence between two persons’ drinking times, we can be further 
interested in the average delay in the drinking of the person who drinks under the influence of 
another person. We can discover this by means of the cross correlation function. 
As the results stated in the article reveal, we have proved that people sitting at the same table 
synchronise their consumption of beverages on an utterly subconscious basis, i.e. there is an 
interdependence of their subconscious behaviour.  
 
Key words. Statistical analysis, Gaussian curve, correlation coefficient 

 
1 Introduction 
 
Statistical analysis is a frequently used method of studying human behaviour. It is applied in papers 
dealing with a large number of situations in which human behaviour is studied, ranging from rather 
entertaining studies, such as the analysis of changes in human behaviour in the United Kingdom on 
Friday the thirteenth [1], to much more serious ones describing such things as the correlation 
between suicidal ideation and attempt among Chinese prostitutes [2]. 
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The objective of this paper is to prove the existence of a correlation between the subconscious 
behaviour of two and more individuals. There are certainly many possible phenomena on which the 
correlation can be studied (e.g., yawning, winking), but it is crucial to find such a phenomenon that 
is observable and measurable objectively. We have proposed the following experiment: to study the 
behaviour of public house guests when having drinks. In all cases, we were interested in a group of 
guests sharing a table; we recorded the drinking times of each individual. We presumed that the 
subconscious behaviour patterns of the people in a group (sharing a table) would influence each 
other. The individuals within a group would then receive yes-no information (have a drink – do not 
have a drink), which we considered to be of identical probability. Based on that, yes-no behaviour 
(have a drink – do not have a drink) would be exhibited in response to the received information. We 
also presumed that the surrounding ambience would be identical for all the individuals sharing a 
table and without any influence on their drinking behaviour. 
 
2 The Experiment 
 
We performed three measurements in various public houses in Hradec Králové. To the 
measurement we used the following programme; see Fig. 1. 
 

 
Fig. 1:  Programme, which is used to measure. (Programme notes times of drinking) 

 
Two pairs and a group of three were studied. The measurements resulted in finite multidimensional 
time-related data series: two two-dimensional ones and a three-dimensional one, specifically. The 
series elements represent the drinking times of the studied persons. If the time of the i-th drink by 
the j-th person is labelled � �ijF , the time series is then shown as � �� � jTi

Njj i ,,1
,,1

�
�

�

�
F , where jT  is the total 

number of drinks by the j-th person and N is the number of persons.  
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3 Data Handling Method 
 
We reason that if the time difference between two persons’ drinks is greater than h0, there is no 
correlation between the two persons’ drinks. For each group member, i.e., Nj ,,1��1 , the 
following function is defined on the set of real numbers: 
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�
� �

�
�

�
�
�
�
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�
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where 
2ln24

0h
�� . Thus, we placed the maxima of Gaussian curves with a half-width of 

0 2h h� to each drinking moment.  
 
Restriction of the functions to finite time interval and their discretization (with the step of 1 second) 
yields an N-dimensional time series � �� � Ti

Njj ix ,,0
,,1
�
�

�

�
, where the discrete time 0�i  corresponds, for 

example, to the time 
� �

ht jNj
3)1(min

,,1

�

�
F

�
 and Ti �  corresponds, for example, to the time 

� �
ht jNj

3)1(max
,,1


�
�

F
�

, so far as h is an integer (the stored values were one-second integers). 

The correlation coefficient of the functions jx~  and kx~ , or the time series jx  and kx was chosen as 
the measure of the dependence of the conscious behaviour patterns of the j-th and k-th individuals 
within the studied group: 
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If both studied persons drank synchronously, i.e. kj xx ~~ H , the correlation coefficient jkC~  would 
equal one. If taking into account, for instance, only one drink by each person in a studied group, 
delayed by the semi-width of the Gaussian curve h, a direct calculation (using the substitution 

2hxt �� ) yields 41~
�jkC .  

Let us now assume, to the contrary, that 0)()( hli kj :
FF . Under the assumption, the drinking of 
one individual is then not influenced by the drinking of another at all, and vice versa. Let us 
estimate the value of jkC~  from above. Let us denote 
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The denominator of the correlation coefficient is estimated from below, using the inequality 
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The numerator is estimated from above: 
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where the first equation uses the substitution � � 2)()( lixt kj FF ��� . In all, then, we have the 

estimate 82~ 
 kjjk TTC . Therefore, if the correlation coefficient value is greater than this estimate, 
there is a correlation between two persons’ drinking behaviour. 
 Let us note that the aforementioned estimate of the correlation coefficient from above is a 
very rough one. In reality, the time difference between only two closest drinks will be 
approximately h0; the estimate uses this limit for all pairs of drinks. 
 If we show a correlation between the drinking behaviour of two persons in the above way, we 
may further be interested in the delay with which a person under the drinking influence of another 
will drink. This may be established by means of a standard cross-correlation function (see, for 
instance, [3] section 9.1): 
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It is obvious that jkjk CK ~)0(~ � , or that jkjk CK �)0( . The positions of the local maximums of the 

function jkK~  correspond to the average delays with which a person under the drinking influence of 
another will drink. Specifically, the local maximum corresponding to a positive time t’ shows the 
delay with which the k-th person drinks after the j-th; the local maximum corresponding to a 
negative time t’ shows the delay with which the j-th person drinks after the k-th. 
 
 
4 The Results 
 
The limit time difference having a zero influence on the drinking behaviour was chosen to be h0=20 
sec. The values of the correlation coefficient Cjk are shown in the 6th column of Table 1. For 
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purposes of comparison, the fifth column shows the above derived limit of the drinking influence 
82


kjTT . The values of the correlation coefficient Cjk can also be seen in the graphs in Fig. 2, 

which plot out the time dependence of the cross-correlation function Kjk ( jkjk CK �)0( , as stated 
above). 
All the graphs in Fig. 2 exhibit a noticeable local maximum near the time t=0 sec. The position of 
that maximum corresponds to the most likely delay with which a person subconsciously drinking as 
a consequence of another’s drinking will drink. In some cases, the maximum will decompose into 
two if Gaussian curves with smaller semi-widths (e.g., h=2 sec) are used in the definition jx~ ; see 
Fig. 3. 
 

 
 

 
Fig. 2: Cross-correlation function for all the measured pairs. 

 
If the maximum does not decompose, it can be said that one of the persons drank first in most cases 
(the j-th person in the group mostly drank before the k-th person if the time co-ordinate of the 
maximum is negative and, contrariwise, the k-th person in the group mostly drank before the j-th 
person if the time co-ordinate of the maximum is positive). If the maximum does decompose, it 
yields the most likely delay with which the j-th person drinks after the k-th as well as the most 
likely delay with which the k-th person drinks after the j-th. The positions of the maximums 
(following a decomposition in two cases) are shown in the 7th column in Table 1. 
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Measurement 

Pair 
number 
(Fig. 2) 

Amount of 
drinks Tj 

Amount of 
drinks Tk 

Limit value
82


kjTT  
Correl. 
coeff. 

Cjk 

Position 
of maximum 

tmax(sec) 
1 1 22 29 0,0987 0,1337 -2 
2 2 24 16 0,0765 0,2509 -3 1 

3 19 13 0,0614 0,4793 2 
4 19 19 0,0742 0,3955 -3 5 

 
3 

5 13 19 0,0614 0,3097 -5 
Table 1: Correlation coefficient values for all measured pairs compared to the limit values and 

positions of the cross-correlation maximums. 
 

 
Fig. 3: Decomposition of the cross-correlation function maximum into two 

 (Pair 4 in Fig. 2) at h=2 sec. 
 
5 Discussion and Conclusions 
 
 As evident from the results shown in Table 1, we have identified correlation coefficient values 
that were higher than the theoretically calculated limit value (if the correlation coefficient assumed 
the limit or lower value, the drinking behaviour correlation would not be provable) and even several 
times higher in all cases except one (Pair 1). It can therefore be maintained that people drink 
synchronously in groups, that is, there is a correlation between their subconscious behaviour. The 
most likely delay between two persons’ drinks was (in absolute values) between 1 sec and 5 sec. 
The chosen value h0=20 sec – the time difference which does not allow any drinking behaviour 
influence – was therefore reasonable. 
 To improve the persuasiveness of our conclusions, we would need more experimental data. 
As is clear from the description of our experiment, however, the data collection is very time-
consuming. 
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MODIFICATION  OF  OBJECTS  SIMILARITY 

 FOR  SEARCHINGF  T-CLUSTERS 
 

ŽÁK Libor, (CZ) 
 
 

Abstract: This article deals with searching T continuous clusters. To find them we can use 
classical clustering methods (based on similarity and dissimilarity of objects) and the transitivity 
of closure of fuzzy relations. Thus we can use classical clustering methods to search T 
continuous clusters. 
 
Keywords: similarity, dissimilarity, clusters, T clusters. 

 
 
1 Introduction 
 

We often need to be able to recognize various shapes, especially contours, written and 
printed text etc. Generally we need identify n�k-dimensional objects in n-dimensional space (k > 0), 
it means we must cluster points describing such object. the cluster analysis can be used with 
success. The classical cluster analysis based on similarity (dissimilarity - distance) enables us to 
find objects of the same dimension as the dimension of the space is. To find objects of lesser 
dimension we can use a modification of clusters – so called T-clusters. There are many methods 
using classical similarity but more less methods to find T-clusters. This article deals with using 
standard clustering methods to search T-clusters. 
 
 
2 Cluster 
 

Let us have n objects and each object characterized by m parameters: 
 

O = {O1,..., On}, h-th object Oh =(xh1,..., xhm), where xhj�R  for h�{1,..., n}. 
 
An idea of „closeness“ of two objects is very important for clustering process. Such a „closeness“ 
can be described by I - similarity function. The function assigns to two objects a nonnegative 
number I : O�O J R+

0, for which holds: 
 

I(Oh, Os) : 0, 
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I(Oh, Os) = I(Os, Oh). 
 
There is often used a dissimilarity measure of objects instead of a similarity in clustering methods. 
The dissimilarity of objects is indicated d: O�O J R+

0 and it must satisfy: 
 

d(Oh, Os) = 0 K Oh = Os, 
d(Oh, Os) : 0, 

d(Oh, Os) = d(Os, Oh). 
 

d is often equal to any metric on Rm in real situations. 
 
We try to divide objects into clusters. We call cluster such subset A of set O, which satisfies: 
 

AOO ji �,
min I(Oi ,Oj) >

AOAO lk L� ,
max I(Ok ,Ol)   or   

AOO ji �,
max d(Oi ,Oj)  

AOAO lk L� ,
min d(Ok ,Ol). 

 
 
3 T-cluster 
 

Object Oh is T-continuous with object Os for given threshold T if there exists sequence of 
objects Oh = O1, O2, O3,..., Ok = Os, k >1, that d(Oi, Oi+1) 6 T for i = 1, 2,..., k
1, where d(Oi, Oi+1) 
is the coefficient of dissimilarity of objects Oi a Oi+1. T-continuous cluster (T-cluster) is a subset A 
M O, fitting following conditions: 
a) each couple of objects from A is T-continuous, 
b) no object from O 
 A is not T-continuous with any object from A. 
 

It is useful to define T-cluster using the similarity: 
Object Oh is T-continuous with object Os for given threshold T, if there exists sequence of objects 
Oh = O1, O2,..., Ok = Os, k >1, that I(Oi, Oi+1) : T for i = 1,..., k
1, where I(Oi, Oi+1) is the 
coefficient of similarity of objects Oi and Oi+1. T-continuous cluster (T-cluster) is a subset A M O, 
that holds: 
a) each couple of objects from A is T-continuous, 
b) no object from O 
 A is not T-continuous with any object from A. 
 
We define a new similarity IT(Oh, Os), to describe object Oh is T-continuous with object Os for 
given limit T: 
 

)},(),...,,(),,(min{max),(
211

21
,...,, siiiihOOOshT OOOOOOOO

k
kiIi

III�I , k�{1, 2. …, n-2}. 

Hence: 
)},(),,(min{max),( skTkhTOOshT OOOOOO

k

II�I
�

. 
 
The similarity holding above mentioned relation we call T-similarity. 
 

A dissimilarity is preferred in some clustering methods. Then we define also T-dissimilarity 
dT: 

)},(d),,(dmax{min),(d skTkhTOOshT OOOOOO
k�

� . 
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Then  we call T-cluster such a subset A of set of objects O, that holds:  
 

AOO ji �,
min IT(Oi ,Oj) >

AOAO lk L� ,
max IT(Ok ,Ol)  or  

AOO ji �,
max dT(Oi ,Oj)  

AOAO lk L� ,
min dT(Ok ,Ol). 

 

Usually we know the similarity I or dissimilarity d. We need to transform it congruously to T-
similarity. To find T-clusters we then may use clustering methods based on the „classical“ 
similarity.  
 
 
4 Modification of objects similarity I for finding T-similarity 
 

Let us have a set of n objects O = {O1,..., On} and their similarity I(Oh, Os). We can 
suppose: 

I(Oh, Oh) : I(Oh, Os), �Oh ,Os � O. 
 

Let I1(Oh, Os)= I(Oh, Os) and a new similarity I2(Oh, Os) be defined as 
 

)},(),,(min{max),( 112 skkhOOsh OOOOOO
k

II�I
�

. 

Let us have n objects O = {O1,..., On} and similarity I(Oh, Os). of them.  
 
Holds: 
a) I2(Oh, Os) : 0  �Oh ,Os � O, 
b) I2(Oh, Os) = I2(Os, Oh) �Oh ,Os � O, 
c) I2(Oh, Oh) = I1(Oh, Oh) �Oh � O, 
d) I2(Oh, Oh) : I2(Oh, Os) �Oh ,Os � O. 
Proof: 
a) )},(),,(min{max),( 112 skkhOOsh OOOOOO

k

II�I
�

,  

I1(Oh, Ok) : 0 �Oh ,Ok � O a I1(Ok, Os) : 0 �Ok ,Os � O, then  
 I2(Oh, Os) : 0  �Oh ,Os � O. 
 

b) )},(),,(min{max),( 112 skkhOOsh OOOOOO
k

II�I
�

= 

= )},(),,(min{max)},(),,(min{max 1111 hkksOOkshkOO
OOOOOOOO

kk

II�II
��

= I2(Os, Oh). 

c) I2(Oh, Oh) = )},(),,(min{max 11 hkkhOO
OOOO

k

II
�

 : 

: )},(),,(min{ 11 hhhh OOOO II =I1(Oh, Oh). 
 I1(Oh, Oh) : I1(Oh, Ok), �Ok � O, 

I1(Oh, Oh) : )},({max 1 khOO
OO

k

I
�

�Ok � O, 

 I1(Oh, Oh) : )},(),,(min{max 11 hkkhOO
OOOO

k

II
�

 = I2(Oh, Oh), 

 then I2(Oh, Oh) = I1(Oh, Os) �Oh � O. 
 

d) I2(Oh, Oh) = I1(Oh, Oh). 
 I1(Oh, Oh) : I1(Oh, Ok), �Ok � O, 
 I1(Oh, Oh) : )},({max 1 khOO

OO
k

I
�

�Ok � O, 



 
 
 

Aplimat�–�Journal�of�Applied�Mathematics
 

�� volume�2�(2009),�number�3
 
 

100 

 I1(Oh, Oh) : )},(),,(min{max 11 skkhOO
OOOO

k

II
�

= I2(Oh, Os) �Oh ,Os � O, 

 then I2(Oh, Oh) : I2(Oh, Os) �Oh ,Os � O.� 
 
Let a similarity Iq(Oh, Os) be defined as: 
 

)},(),,(min{max),( 11 skkhqOOshq OOOOOO
k

II�I 
�
. 

Holds: 
a) Iq(Oh, Os) : 0  �Oh ,Os � O, 
b) Iq(Oh, Os) = Iq(Os, Oh) �Oh ,Os � O, 
c) Iq(Oh, Oh) = Iq-1(Oh, Oh) �Oh � O, 
d) Iq(Oh, Oh) : Iq(Oh, Os) �Oh ,Os � O, 
The proof is of the same way as for I2(Oh, Os). 
Holds: There exist a number m, m � n-1, Im(Oh, Os) = Im+1(Os, Oh) �Oh ,Os � O. 
Proof: The similarity Iq(Oh, Os) can be expressed this way: 
 

Iq(Oh, Os) = )},(),...,,(),,(min{max
1211

121
111,...,, skkkkhOOOO

OOOOOO
q

qkkk






III
�

. 

If q : n-1, then some similarities will recur. Then for r = q+1 holds: 
)},(),...,,(min{max

11
121

11,...,, skkhOOOO
OOOO

q
qkkk






II
�

= 

= )},(),...,,(min{max
11

121
11,...,, skkhOOOO

OOOO
r

rkkk






II
�

.� 

 
Holds:  
The similarity Im(Oh, Os) complies: )},(),,(min{max),( skmkhmOOshm OOOOOO

k

II�I
�

. 

Proof: 
Im(Oh, Os) = Im+1(Os, Oh) = Im+2(Os, Oh) = …= Im+m(Os, Oh), where 

)},(),,(min{max),( skmkhmOOshmm OOOOOO
k

II�I
�� .� 

 
Then Im(Oh, Os) is the searched IT(Oh, Os). 
 
 
5 Algorithm for finding IT(Oh, Os) 
 
1) Let I be a similarity of objects and P1 a matrix of similarity of objects. 
P1=(p1

h,s)n,n, where p1
h,s = I(Oh, Os).  

2) We find matrix Pq+1: 
},min{max ,

1
,

..1
,

1
skkh

q

nk
sh

q ppp
�

� � . 

3) We compare Pq a Pq+1. 
If Pq = Pq+1, the algorithm stops and Pq = PT is the matrix of similarities. 
If Pq 	 Pq+1, then q:=q+1 and algorithm continues with step 2. 
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6 Conclusion 
 

We can obtain the T-clusters using the similarity matrix PT and standard methods of 
hierarchical and nonhierarchical clustering.  
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STRESS  TESTING  OF  INTEREST  RATE  RISK 

 
KLACSO Ján, (SK) 

 
 

Abstract: Interest rate risk refers to the risk of the decline of a bank’s interest rate income and 
market value of the security portfolio and interest rate derivatives portfolio because of 
unexpected changes in interest rates. This risk results from differences in the price sensitivities 
of assets and liabilities caused by maturity mismatch and duration mismatch in the banks 
balance sheet. In this paper, we examine what is the exposure of the Slovak banking sector to 
unexpected changes in the Basic interest rate of the National bank of Slovakia. We use error 
correction to model the transmission of the changes in the Basic interest rate to the inter-bank 
market rates, zero-coupon bond rates and client rates (interest rates for non-banks loans and 
deposits) and calculate how these changes affect the interest rate income, and the value of the 
securities and derivatives portfolio of the banking sector. 
 
Key words: interest rate risk, stress test, interest rate transmission, cointegration, error 
correction 

 
 
1. Introduction 

Commercial banks serving as financial intermediaries use different products to meet the 
demand of the customers and to execute business strategies. They take deposits, grant loans, 
purchase securities and bonds with different maturities and interest rates. Hence, they face different 
kind of risks resulting from their activities. These risks can be separated into few main categories: 

- credit risk 
- interest rate risk 
- operational risk 
- market risk 
- liquidity risk 
- other risks 

In this paper, we focus on the interest rate risk. Briefly said, this is the risk of the decline of a 
bank’s interest rate income and market value of the security portfolio and interest rate derivatives 
portfolio because of unexpected changes in interest rates.  

From the year 2000 the National Bank of Slovakia uses qualitative approach for conducting 
its monetary policy. It means that NBS controls the level of inflation by setting the value of the so 
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called Basic interest rate or the Policy rate. When changing the value of this rate these changes are 
gradually transmitted into the market rates – the inter-bank rates, zero-coupon bond rates and client 
rates. In this paper, we will assume that unexpected changes in the interest rates are the result of 
unexpected changes in the Policy rate. 

 The decline of the interest rate income is the result of the maturity mismatch, where typically 
loans are granted for longer and deposits are taken for shorter periods. From the economic theory, 
we assume that changes in the Policy rate are transmitted faster into the short-term deposit rates 
than into the long-term loan rates. It means that the increase of the Policy rate causes decrease of 
the net interest income. In case of the bond portfolio, we have to differentiate between fixed rate 
bonds and floating rate bonds. For floating rate bonds, changes of interest rates will affect the level 
of the coupon payment, where increase of the interest rates will increase the value of the coupon. 
The increase of the interest rates causes losses resulting from revaluation of bonds to fir value; these 
losses gradually decrease and are zero when the new value of the coupon is stated. For fixed rate 
bonds, changes of the interest rates don’t affect the value of the coupon directly; losses from 
reinvestment can be calculated in case interest rates increase. Losses from revaluation are increasing 
during the whole life of the bond. The portfolio of interest rate derivatives is usually used to hedge 
the interest rate risk of the securities portfolio; we assume that this portfolio consists of interest rate 
swaps. These instruments can be treated as a pair of bonds, one with fixed, one with floating coupon 
rate. 

When stress testing the interest rate risk, we test the robustness of the banking sector for 
sufficiently high and unexpected changes in the Policy rate. The scenario consists of an 
increase/decrease of the Policy rate by 2 percentage points as of 1. January 2008 and then remains 
unchanged for the next twelve months. We calculate the affect of this change on the value of the 
security portfolio, derivatives portfolio and the portfolio of loans and deposits. 

The paper is organized as follows. In section two, we describe the data and the models used. 
In section three, we discuss the results and conclude. 
 
 
2. Data set and modeling 

 
Our data set includes the Policy rate, inter-bank market rates of all maturities (overnight, 1-, 

2-weeks, 1-, 2-, 3-, 6-, 9-, and 12-months rates), zero coupon bond rates of longer maturities (from 
2- to 8-years rates), client rates (corporate and household loan and deposit rates) and volumes of 
client loans and deposits. All of the time series consists of monthly data from January 2004 to 
December 2007. Unit root tests (ADF) confirmed that time series of interest rates are non-stationary 
series integrated of order one (Table 1). The portfolio of dept securities and interest rate derivatives 
as of December 2007 was included. 
From economic theory, if Policy rate changes, the change is transmitted first into the inter-bank 
market rates and the coupon rates. These changes than affect the client rates and so the net interest 
income from loans and deposits; the coupon rates of the bond portfolio and so the net income from 
the coupon payments; and the real value of the bonds and interest rate derivatives. Based on this 
theory, first we modeled the behavior of the inter-bank market rates. We expected long-run 
relationship among these rates and the Policy rate, the existence of which was confirmed by 
Johansens cointegration tests (Table 2). Therefore we used error-correction model of the form: 

 t
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where tr  is the specific inter-bank market rate, trp  is the Policy rate, 1� and 2�  are long run 
coefficients, where 1�  is the relation among the inter-bank rate and the Policy rate in the long run 
(it explains, if there is a change in the Policy rate, to what extent is this change transmitted into the 
inter-bank market rate in he long run), 2�  is the long run spread among the rates, �  is the speed of 
reversion (it explains, how long does it take to the inter-bank rate to revert to the long run 
“equilibrium” in case there is a deviation from this equilibrium), u�  and v�  explain the direct effect 
of an upward or downward movement of the Policy rate (this allows us to catch the possible 
asymmetry in the reaction of the inter-bank rate), i�  and i�  are short run coefficients, p  is the 
number of lags included and t�  are stochastic perturbations, which are considered to be i.i.d. 
processes. 

This equation is also used for the modeling of the behavior of the zero coupon bond rates, 
where we also confirmed long run relationship among the Policy rate and the bond rates (Table 2). 
Here, tr  refers to the zero coupon bond rates instead of the inter-bank rate. 

The fair value or the net present value of the dept securities can be calculated by the formula 

  �



�

T

i
Ti

t

y
P

y
Pr

FV
1

, (2.2.) 

where P  is the principal paid at the maturity of the bond, tr  is the coupon rate at time t, so Prt  is 
the coupon paid, y  is the yield rate and T  is the time to maturity (in months in our case). If the 
coupon rate is floating, the rate tr  is changed at the date of the next fixation, if the bond has fixed 
coupon rate, rrt �  is constant. 

There are four categories of the impact of the changes of the interest rates on the bond 
portfolio. In case of floating coupon rate, increase of the interest rates means increase of the coupon 
paid (after the refixation is done). In case of fixed coupon rates, there is a reinvestment loss when 
interest rates increase, because the coupon paid does not increase with the interest rates. Losses 
from revaluation to fair value in case of the increase of the interest rates (increase of y ) are 
decreasing for bonds with floating coupon rates, and are zero when the coupon rate is changed 
(increase of tr ). For fixed rate bonds these losses are accumulating during the whole life of the 
bond, because tr  is not shifted in case of changes in interest rates. 

In case of the portfolio of interest rate derivatives, we assumed that all instruments are 
interest rate swaps (this assumption is based on banks reports about this portfolio). This derivative 
is used to change the type of the coupon paid, where two financial institutions can agree on this 
change. It means, that if there are two institutions, one paying fixed coupon, other paying floating 
coupon, and they want to pay the other type, they can agree on changing the payments. Therefore 
interest rate swaps can be separated into two parts; to a bond with fixed coupon rate and to a bond 
with floating coupon rate with the same principal, maturity and coupon period. This assumption 
allows us to calculate the profit/loss for this portfolio as for the portfolio of dept securities. 

The third portfolio is that of the loans and deposits. Here, we expected that loan and deposit 
rates are in long run relationship with one of the inter-bank market rates or with the policy rate, 
therefore here we also used error-correction for modeling the behavior of these rates. We used 
Johansens cointegration tests to confirm the existence of long run relationship (Table 2). In case 
results confirmed relationship between specific client rate and more inter-bank rates and/or the 
Policy rate, we made our choice among the rates based on Akaike and Schwartz information 
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criterion. In some cases, no cointegration was confirmed. We described the movements of these 
rates by simple autoregressive equations with constant and/or trend. 

In case of the existence of cointegration between specific client rate and the Policy rate, we 
used error-correction model as described in equation (2.1.), here, tr  refers to the client rate. If 
cointegration exists between the client rate and one of the inter-bank rates, we used error correction 
model of the form: 

  
 � t
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where C
tr  is the inter-bank rate. The difference between equation (2.1.) and (2.3.) is that in the latter 

we did not separate the direct effect of the upward and downward movement of the inter-bank rate. 
This is because the potential asymmetric reaction in this case is built in the reaction of the inter-
bank rate to the changes in the Policy rate. 

Volumes of loans and deposits were modeled as simple autoregressive processes with 
constant and/or trend: 

tt pARtccv ����
 )(21 , (2.4.) 
where tv  is the volume of the specific loan or deposit, t  refers to trend and p  is the number of 
lags. 

The interest rate risk refers to losses which are the result of unexpected changes of the Policy 
rate; therefore we need to estimate the expected changes of the inter-bank market for the year 2008 
of this rate. First conclusions can be drawn from the yield curve. 

The normal shape of the yield curve indicates that the market does not expect movements of 
the Policy rate, or expects just slight increase. To confirm this, we tried to create a simple equation. 
First, we calculated by interpolation the expected values of the 2 weak BRIBOR rate for the year 
2008, based on no arbitrage assumption. Than, values of expected Policy rates were calculated 
using the equation 

t
ew

t
e
t ARrccrp ����
 )2(_2

21 , (2.5.) 
where e

trp  is the expected value of the policy rate and ew
tr

_2  is the expected value of the 2 week 
BRIBOR rate. Results of the calculation confirmed the conclusions drawn from the shape of the 
yield curve. 

Figure 1 Yield curve as of December 2007 

 

3.  Results and conclusion 

The scenario for stress testing was created based on the calculated values of the expected 
Policy rate. We set up a 2 percentage point decrease/increase as of 1. January 2008 and expected no 
changes the rest of the year. 
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First, we estimated the movements of inter-bank market rates. Results show that rates of 
shorter maturities would react symmetrically to the increase/decrease of the Policy rate. After 
increase in the first half of the year 2008 slight decrease would be observable, changes of the Policy 
rate would be transmitted to full extent for rates of shorter maturities, but just partially for rates of 
longer maturities (Table 3). 

Zero coupon bond rates would react like the inter-bank rates, after increase in the first half of 
the year there would be a slight decrease, the transmission would not be complete. Also asymmetric 
reactions would be expected with higher movements in case of increase. (Table 3) 

Changes would not be fully transmitted into client rates; also the asymmetry would be 
smaller than in previous cases. (Table 4, Table 5) 

For the calculation of the profit/loss stemming from the movements stated in the scenarios, 
we used two approaches based on that the portfolio of banks can be separated into two parts. The 
first part consists of bonds and derivatives revaluated to fair value. For bonds, it is the Fair value 
and Trade portfolio (FV and TRD). We expected that interest rate derivatives are not used to hedge 
the portfolio of bonds which are not revaluated to fair value. The second part is the portfolio of 
bonds not revaluated to fair value and the client loans and deposits. The bonds not revaluated to fair 
value are bonds in the Held to maturity portfolio, and also bonds in the Available for sale portfolio 
are not revaluated against profit and loss (HTM and AFS). 
 

Figure 2 Impact of the increase of the Policy rate by 2 p.p., 1. approach 
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In the first approach, we assumed that only bonds in FV and TRD portfolio and interest rate 

derivatives are revaluated to real value. Results show that after the increase of the interest rate 
losses from the securities portfolio would be culminating during the first three months, slight 
decrease would be observable after this period. This decrease of losses is because the profit from 
coupon payment and also because of the movements of inter-bank rates. Results also show that 
reactions of the derivative portfolio would be the opposite of the reactions of the securities 
portfolio. This confirms the fact that interest rate derivatives are used for hedging the securities 
portfolio against interest rate risk. The total impact of the interest rate movements would be nearly 
zero, which means that the FV and TRD portfolio is completely hedged against interest rate risks on 
the aggregate level. 

The scenario of the decrease of the Policy rates showed the same results. Profit from the 
securities portfolio would be balanced by losses from derivative portfolio; total impact would be 
nearly zero. 
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Figure 3 Impact of the decrease of the Policy rate by 2 p.p. , 1. approach 
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In the second approach we expected that the entire securities portfolio is revaluated to real 
value. This is a reasonable assumption because in case of trouble bank may sell instruments from 
HTM portfolio, too and in this case the bank has to revaluate also this portfolio. Results show that 
in case of increase of the Policy rate, the security and the derivatives portfolio would react like in 
the previous case. However, losses from the security portfolio would be much greater than profit 
from derivatives portfolio, which means that the HTM and AFS portfolio is not hedged fully against 
the interest rate risk on the aggregate level. Losses from the portfolio of loans and deposits would 
be accumulating during the whole period. As in case of increasing Policy rate there are large losses 
for the banking sector, the case of the decrease of the Policy rate is not as interesting. 

Figure 4 Impact of the increase of the Policy rate by 2 p.p., 2. approach 
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In sum, we may conclude that interest rate risk is an issue for banks, as the portfolio of 

securities, interest rate derivatives and loans and deposits would react to changes of the Policy rate. 
However, banks seem to be hedged against this risk, as results do not show large impact and losses 
in the first approach, losses are calculated using the second approach, but these are more theoretical 
and not so realistic. 
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Appendix 
 
Table 1 Results of ADF unit root tests 
 

Level 1st difference Interest rate 
t-statistics p-value t-statistics p-value 

Policy rate * -2.46 0.13 -6.94 0.00 

O/N BRIBOR * -1.76 0.40 -12.05 0.00 

1W BRIBOR * -1.60 0.47 -8.69 0.00 

2W BRIBOR * -1.55 0.50 -7.47 0.00 

1M BRIBOR * -1.74 0.41 -5.76 0.00 

2M BRIBOR * -1.82 0.37 -5.08 0.00 

3M BRIBOR * -1.88 0.34 -4.88 0.00 

6M BRIBOR * -1.90 0.33 -4.56 0.00 

9M BRIBOR * -1.96 0.30 -4.48 0.00 

12M BRIBOR * -1.92 0.32 -4.56 0.00 

Bond 2y * -1.51 0.52 -5.07 0.00 

Bond 3y * -2.06 0.26 -3.89 0.00 

Bond 4y * -1.98 0.29 -4.29 0.00 

Bond 5y * -2.04 0.27 -4.31 0.00 

Bond 6y * -2.01 0.28 -4.53 0.00 

Bond 7y * -1.96 0.30 -4.82 0.00 

Bond 8y * -1.95 0.31 -4.96 0.00 
Corporate loans and deposits rates 

Level 1st difference Interest rate 
t-statistics p-value t-statistics p-value 

Loans with maturity up to 1 year * -2.64 0.09 -7.50 0.00 
Loans with maturity 1 to 5 years ** -2.26 0.19 -3.48 0.01 
Loans with maturity more than 5 years ** -1.87 0.34 -3.35 0.02 
Sight deposits * -1.91 0.33 -10.90 0.00 
Saving deposits * -1.99 0.29 -13.78 0.00 
o/n deposits * -2.15 0.23 -14.98 0.00 
Deposits with maturity up to 7 days * -1.78 0.39 -8.94 0.00 
Deposits with maturity 7 days to 1 month 
* -1.56 0.50 -9.77 0.00 
Deposits with maturity 1 to 3 months * -1.54 0.51 -5.07 0.00 
Deposits with maturity 3 to 6 months * -2.08 0.25 -6.24 0.00 
Deposits with maturity 6 to 12 months * -1.60 0.48 -7.44 0.00 
Deposits with maturity 1 to 2 years * -1.72 0.42 -7.89 0.00 
Deposits with maturity 2 to 5 years * -2.41 0.14 -6.08 0.00 
Deposits with maturity more than 5 years 
* -0.74 0.83 -6.69 0.00 
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Households loans and deposits rates 

Level 1st difference Interest rate 
t-statistics p-value t-statistics p-value 

Loans with maturity up to 1 year * -0.76 0.82 -8.71 0.00 
Loans with maturity 1 to 5 years * -2.46 0.13 -7.56 0.00 
Loans with maturity more than 5 years * -0.91 0.78 -7.99 0.00 
Sight deposits * -1.92 0.32 -12.01 0.00 
Saving deposits * -1.63 0.46 -5.87 0.00 
o/n deposits ** -2.36 0.16 -3.32 0.02 
Deposits with maturity up to 7 days * -2.03 0.28 -8.64 0.00 
Deposits with maturity 7 days to 1 month 
* -1.58 0.49 -5.27 0.00 
Deposits with maturity 1 to 3 months * -1.17 0.68 -4.57 0.00 
Deposits with maturity 3 to 6 months ** -1.65 0.45 -2.92 0.05 
Deposits with maturity 6 to 12 months ** -2.72 0.08 -2.82 0.01 
Deposits with maturity 1 to 2 years ** -2.19 0.21 -2.02 0.04 
Deposits with maturity 2 to 5 years * -1.73 0.41 -8.23 0.00 
Deposits with maturity more than 5 years 
* -1.31 0.62 -7.62 0.00 

*   1% significance level 
** 5% significance level 
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Table 2 Results of tests of cointegration 
 

Cointegrating time series Number of CE(s) Eigenvalue Trace Statistic p-value 

None 0.45 37.99 0.00 O/N BRIBOR, Policy rate 
At most 1 0.05 2.94 0.09 

None 0.33 25.89 0.00 1W BRIBOR, Policy rate 
At most 1 0.05 3.06 0.08 

None 0.30 24.02 0.00 1M BRIBOR, Policy rate 
At most 1 0.05 3.18 0.07 

None 0.31 24.78 0.00 2M BRIBOR, Policy rate 
At most 1 0.06 3.29 0.07 

None 0.31 24.75 0.00 3M BRIBOR, Policy rate 
At most 1 0.06 3.42 0.06 

None 0.28 22.25 0.00 6M BRIBOR, Policy rate 
At most 1 0.06 3.29 0.07 

None 0.27 21.88 0.00 9M BRIBOR, Policy rate 
At most 1 0.06 3.48 0.06 

None 0.27 21.71 0.01 12M BRIBOR, Policy rate 
At most 1 0.06 3.34 0.07 

None 0.34 26.45 0.00 Bond 2y, Policy rate 
At most 1 0.12 6.24 0.01 

None 0.33 26.02 0.00 Bond 3y, Policy rate 
At most 1 0.13 6.60 0.01 

None 0.31 24.49 0.00 Bond 4y, Policy rate 
At most 1 0.12 6.17 0.01 

None 0.27 21.89 0.00 Bond 5y, Policy rate 
At most 1 0.12 6.20 0.01 

None 0.25 20.60 0.01 Bond 6y, Policy rate 
At most 1 0.13 6.57 0.01 

None 0.22 19.42 0.01 Bond 7y, Policy rate 
At most 1 0.13 6.98 0.01 

None 0.20 18.18 0.02 Bond 8y, Policy rate 
At most 1 0.14 7.30 0.01 

 



 
 
 
Aplimat�–�Journal�of�Applied�Mathematics�

 

volume�2�(2009),�number�3�
 
 

113

 

Corporate loans and Inter-bank rates/Policy rate 

Cointegrating time series Number of CE(s) Eigenvalue Trace Statistic p-value 

None 0.30 23.98 0.00 Loans with maturity up to 1 year , 3M BRIBOR 
At most 1 0.06 3.62 0.06 

None 0.37 31.14 0.00 Loans with maturity 1 to 5 years, 3M BRIBOR 
At most 1 0.07 4.09 0.04 

None 0.29 22.89 0.00 Loans with maturity more than 5 years, 6M BRIBOR 
At most 1 0.06 3.40 0.07 

None 0.29 22.36 0.00 Sight deposits, 2W BRIBOR 
At most 1 0.05 2.83 0.09 

None 0.33 26.98 0.00 Saving deposits, 3M BRIBOR 
At most 1 0.06 3.84 0.05 

None 0.32 25.08 0.00 o/n deposits, Policy rate 
At most 1 0.05 2.96 0.09 

None 0.30 23.96 0.00 Deposits with maturity up to 7 days, 2W BRIBOR 
At most 1 0.05 2.89 0.09 

None 0.24 20.51 0.01 Deposits with maturity 7 days to 1 month, 1M BRIBOR 
At most 1 0.08 4.76 0.03 

None 0.40 32.21 0.00 Deposits with maturity 1 to 3 months, 2M BRIBOR 
At most 1 0.05 3.02 0.08 

None 0.42 34.90 0.00 Deposits with maturity 3 to 6 months, 12M BRIBOR 
At most 1 0.06 3.67 0.06 

None 0.18 12.62 0.04 Deposits with maturity 6 to 12 months, 3M BRIBOR 
At most 1 0.01 0.85 0.41 

None 0.25 20.07 0.03 Deposits with maturity 1 to 2 years, 1M BRIBOR 
At most 1 0.06 3.48 0.06 

None 0.17 12.83 0.04 Deposits with maturity 2 to 5 years, 1M BRIBOR 
At most 1 0.04 2.07 0.18 

None 0.41 34.29 0.00 Deposits with maturity more than 5 years, Policy rate 
At most 1 0.06 3.47 0.82 
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Households loans and Inter-bank rates/Policy rate 

Cointegrating time series Number of CE(s) Eigenvalue Trace Statistic p-value 

None 0.22 19.38 0.01 Saving deposits, 2M BRIBOR 
At most 1 0.08 4.91 0.03 

None 0.44 37.16 0.00 o/n deposits, 9M BRIBOR 
At most 1 0.06 3.85 0.05 

None 0.18 14.25 0.08 Deposits with maturity up to 7 days, 2W BRIBOR 
At most 1 0.05 2.87 0.09 

None 0.12 9.03 0.36 Deposits with maturity 7 days to 1 month, 1M BRIBOR 
At most 1 0.03 1.81 0.18 

None 0.23 18.37 0.02 Deposits with maturity 1 to 3 months, 1M BRIBOR 
At most 1 0.06 3.30 0.07 

None 0.32 26.21 0.00 Deposits with maturity 3 to 6 months, 12M BRIBOR 
At most 1 0.07 3.92 0.05 

None 0.21 14.40 0.02 Deposits with maturity 6 to 12 months, 12M BRIBOR 
At most 1 0.01 0.80 0.43 

None 0.26 20.31 0.00 Deposits with maturity 1 to 2 years, Policy rate 
At most 1 0.04 2.26 0.16 

None 0.25 19.87 0.01 Deposits with maturity 2 to 5 years, Policy rate 
At most 1 0.05 3.23 0.07 

 
 
Table 3 Estimated short term coefficients, number of lags and the adjusted R2 for the inter-bank 
market rates and zero coupon bond rates 
 

 �  1�  2�  p R2 
o/n BRIBOR 1.7 1.0 -0.4 2 64% 
1W BRIBOR 1.0 1.0 -0.2 3 46% 
1M BRIBOR 0.7 1.0 -0.1 2 40% 
2M BRIBOR 0.5 1.0 -0.0 1 42% 
3M BRIBOR 0.4 1.0 0.1 1 46% 
6M BRIBOR 0.3 0.9 0.5 1 46% 
9M BRIBOR 0.2 0.8 0.7 1 47% 
12M BRIBOR 0.2 0.7 1.0 2 47% 
Bond 2y 0.3 0.7 1.5 2 51% 
Bond 3y 0.2 0.4 2.4 2 48% 
Bond 4y 0.2 0.5 2.2 2 40% 
Bond 5y 0.6 0.7 1.2 7 37% 
Bond 6y 0.5 0.6 1.6 5 38% 
Bond 7y 0.5 0.6 1.7 5 37% 
Bond 8y 0.5 0.6 1.9 5 35% 
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Table 4 Estimated short term coefficients, number of lags and the adjusted R2 for the corporate loan 
and deposit rates 
 

 �  1�  2�  p R2 rC 

Loans with maturity up to 1 year  0.2 0.9 2.0 2 73% 3M BRIBOR 
Loans with maturity 1 to 5 years 0.1 0.9 2.2 3 83% 3M BRIBOR 
Loans with maturity more than 5 years 0.2 1.2 0.6 2 84% 6M BRIBOR 
Sight deposits  1.0 0.3 -0.5 1 63% 2W BRIBOR 
Saving deposits  0.3 0.7 -0.7 1 58% 3M BRIBOR 
o/n deposits 1.4 1.0 0.9 1 66% Policy rate 
Deposits with maturity up to 7 days  1.3 0.9 -0.3 1 68% 2W BRIBOR 
Deposits with maturity 7 days to 1 month  0.4 0.9 0.0 2 89% 1M BRIBOR 
Deposits with maturity 1 to 3 months  0.5 1.0 -1.0 1 74% 2M BRIBOR 
Deposits with maturity 3 to 6 months  0.4 1.0 -0.7 1 47% 12M 

BRIBOR 
Deposits with maturity 6 to 12 months  0.4 0.7 -0.3 1 59% 3M BRIBOR 
Deposits with maturity 1 to 2 years  0.7 0.8 -0.9 1 63% 1M BRIBOR 
Deposits with maturity 2 to 5 years  0.4 0.8 -0.2 2 41% 1M BRIBOR 
Deposits with maturity more than 5 years  0.3 0.1 2.2 3 33% Policy rate 

 
Table 5 Estimated short term coefficients, number of lags and the adjusted R2 for the households loan 
and deposit rates 
 

 �  1�  2�  n R2 rC 

Loans with maturity up to 1 year        
Loans with maturity 1 to 5 years       
Loans with maturity more than 5 years       
Sight deposits        
Saving deposits  0.5 0.6 -0.7 4 60% 2M 

BRIBOR 
o/n deposits 1.3 1.0 -1.4 1 64% 9M 

BRIBOR 
Deposits with maturity up to 7 days  0.4 0.7 -0.7 3 69% 2W 

BRIBOR 
Deposits with maturity 7 days to 1 month  0.3 0.7 -0.7 0 69% 1M 

BRIBOR 
Deposits with maturity 1 to 3 months  0.2 0.6 -0.1 2 76% 1M 

BRIBOR 
Deposits with maturity 3 to 6 months  0.2 0.8 -0.9 2 84% 12M 

BRIBOR 
Deposits with maturity 6 to 12 months  0.1 0.7 -0.2 2 73% 12M 

BRIBOR 
Deposits with maturity 1 to 2 years  0.2 0.6 0.3 3 47% Policy rate 
Deposits with maturity 2 to 5 years  0.1 1.1 -2.4 1 17% Policy rate 
Deposits with maturity more than 5 years        
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MODELS OF INTEREST RATE EVOLUTION -
VAŠÍČEK AND CIR MODELS
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Abstract. This paper is devoted to one-dimensional stochastic models of interest rates.
We focused to Vaš́ıček model and Cox-Ingersoll-Ross model which are still quite popular
and provide their analysis and improved parameter estimation, based on exact integration
of interpolated interest rates, with respect to real LIBOR data.
Key words and phrases. Interest rates, parameter estimation, Vaš́ıček model, CIR
model.
Mathematics Subject Classification. Primary 60A05, 08A72; Secondary 28E10.

1 Introduction

The interest rates play an important role in all transactions based on lending and borrowing.
Their importance has risen with developing of World economics. In this paper we focus to one
dimensional mathematical models of interest rates which are used for predicting of future rates
to estimate that the lending and borrowing operations will be profitable for us. Let us aim to
well-known Vaš́ıček and CIR models.

2 Vaš́ıček Model

Vaš́ıček model is a mathematical one-factor model describing an evolution of interest rates. It
describes interest rate movements as driven by only one source of market risk. The model can
be used in the evaluation of interest rate derivatives and it has been also adapted for credit
markets. It was introduced in 1977 by Oldřich Vaš́ıček, [7]. The equation has following form

dr(t) = a(b − r(t))dt + σdW (t), (1)
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where W (t) is a Wiener process which models the random market risk factor. Parameter σ is
a standard deviation parameter and it determines the volatility of the interest rate. Value of
parameter a stands for rate of convergence to the mean, a > 0, and b is long-term expected
interest rate.

The model has property mean reversion. This property is typical for behavior of interest
rates, in the case that rate is higher than value b the value of rate is forced down. On the other
hand, if rate r(t) is lower than b its drift is positive and leads r(t) to expected interest rate b.

2.1 Simulation of Vaš́ıček Model

The simulation of Vaš́ıček interest rate model can be performed by discretization of basic
Vaš́ıček equation (1) in the form

r(t + Δt) = r(t) + Δr � r(t) + a(b − r(t))Δt + σΔW (t) (2)

The random process ΔW (t) can be simulated by μt

√
Δt, where μt is generated random number

from N (0, 1), cf. [5]. Simulations on Figures 1, 2 illustrate the behavior of this model. One
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0.00
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Figure 1: Vaš́ıček model for a =
0.02, b = 0.04, σ = 0.1, Δt = 0.001
with positive spot rates
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Figure 2: Vaš́ıček model for a =
0.02, b = 0.04, σ = 0.1, Δt = 0.001
with negative spot rates

can observe the most problematic point of Vaš́ıček model – the spot rates can become negative.
For parameters σ = 0.1, long term interest rate b = 0.04 and starting value r(0) = 0.03 we can
get many negative values r(t). Moreover Vaš́ıček model can have negative expected value. In
the case that r(t) is for some t negative, as it was illustrated in the Figure 2, the conditional
expected value of interest rate

E[r(T )|r(t)] = b + (r(t) − b)e−a(T−t) (3)

can be negative too. This is an inconvenient property of this model. On the other hand, if we
consider real interest rates with respect to inflation, the negative rates can occur, [5].

118 volume 2 (2009), number 3



Aplimat - Journal of Applied Mathematics

2.2 Yield Curve

The yield curve is a representation of the dependence of interest rates R(t, T ) on the time t to
the maturity T . Yield curve, sometimes called term structure, is well studied object because
it helps to give an idea of future interest rates by measuring expectations based on current
market conditions. There exist three main types of these curves - normal, inverted and flat
shaped curve. The shape of these curves basically identifies the market behavior, cf. [2].

Let us determine the value of zero bond with risk neutral approach, cf. [5, p. 92]. By
integration of Vaš́ıček equation (1) from t to T and using variation variable method we get

r(T ) = r(t)e−a(T−t) + b(1 − e−a(T−t)) +

∫ T

t

e−a(T−t−s)dW (4)

One can see that r(T ) has normal distribution and it can be proven that the conditional
expected value is defined by (3) and variance has following form

var[r(T )|r(t)] =
σ2

2a

(
1 − e−2a(T−t)

)
, (5)

cf. [6, Theorem 1.69, p. 286].
The price of zero bond at the time t with nominal value 1 is equal to

P (t, T ) = E[e−
R T

t r(s)ds]. (6)

After several steps, cf. [6, p. 294], we get the formula for zero bond in the form

P (t, T ) = eA(t,T )−B(t,T )r(t) where A(t, T ) =
a2b − σ2/2

a2
(B(t, T ) − (T − t)) − σ2B2(t, T )

4a
(7)

and B(t, T ) =
1

a

(
1 − e−a(T−t)

)
.

To get the interest rate R(t, T ) from time t to T we use

R(t, T ) = − 1

T − t
ln (P (t, T )).

Thus

R(t, T ) = R +
1

aT
(r(t) − R)

(
1 − e−aT

)
+

σ2

4a3T

(
1 − e−aT

)2
, where R = b − σ2

2a2
. (8)

If we pass T → ∞ we get limT→∞ R(t, T ) = R which is a yield of the bond. Therefore we can
see that the yield does not depend on the initial value of interest rate r(t). Figures 3, 4 and
5 illustrates the behavior of yield curves for Vaš́ıček model. It was shown that the curve has
inverted shape for r(t) > R + σ2

4a
; it is increasing(normal shaped) for r(t) ≤ R − σ2

4a
and it has

humped structure for r(t) ∈ [R− σ2

4a
, R+ σ2

4a
), cf. [7]. Let us remark the difficulty to get humped

yield curve for real data due to the narrowness of the interval [R − σ2

4a
, R + σ2

4a
).
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Figure 3: Inverted shaped
yield curve for (1).
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Figure 4: Humped structure
of yield curve for (1).
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Figure 5: Normal shaped
yield curve for (1).

2.3 Parameter Identification

Now, let us focus to the finding of the values of parameters a, b and σ to determine yield curve
for real interest rates in the time interval [0,T]. Classical discretization scheme for stochastic
equation which has been used for simulation of Vaš́ıček model (2) is not one of the best.

Let us recall equation (1) and integrate it from tk to tk+1, where tk are quoted values, i.e.
tk ∈ [0, T ], k = 0, . . . , n. Hence we obtain

rk+1 = rk +

∫ tk+1

tk

a(b − r(t))dt +

∫ tk+1

tk

σdW , where rk = r(tk), rk+1 = r(tk+1). (9)

A classical choice of the approximation of
∫ tk+1

tk
(·)dt is a substitution of the integrand by

constant function a(b − rk) which leads to the Euler scheme, cf. [3, p. 183],[5].
But the economists usually work with values rk and they interpolate values between quoted

data linearly, cf. [4]. Let us take advantage of this approach and compute the integral
∫ tk+1

tk
(·)dt

exactly for interpolating function between neighboring quoted rates rk and rk+1 in the form∫ tk+1

tk

a(b − r(t))dt = abΔt − aΔt

2
(rk + rk+1). (10)

This approach is more natural than standard Euler discretization scheme and it is suitable for
parameter identification method. The stochastic integral can be computed as∫ tk+1

tk

σdW = σ(W (tk+1) − W (tk)) (11)

where the difference ΔWk = W (tk+1)−W (tk) has normal distribution N (0, Δt), Therefore we
can model this process by some randomly chosen values with normal distribution N (0, Δt).

If we employ (10), (11) to identity (9) we obtain system of n linear algebraic equations

rk+1 = αrk + β + γΔWk, k = 0, . . . , n − 1 (12)

with

α =
1 − a

2
Δt

ν
, β =

abΔt

ν
, γ =

σ

ν
and ν = 1 +

a

2
Δt.
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The system of equations (12) can be solved for unknown α, β and γ by least square method.
Now, let us put γ := 0 and solve the system (12) to get values of α and β. Let us define

function r̃(tk + 1) = αr̃(tk) + β, for k = 0, . . . , n − 1 and investigate the difference g(tk) :=
r(tk)− r̃(tk). Due to using least square method the set {g(tk)}n

k=0 has zero mean value and some
positive variance v(g). Since the interest rates rk are real, we cannot expect ”pure” normal
distribution of g. Thus we recommend to compare Cumulative distribution function of g with
normal distribution function N (0, v(g)).

If we solve the system (12) with ΔWk := g(tk) we get the same values of parameters α, β
and γ =

√
v(g). These values are then considered as a solution of (12). By substitution back

to (10) and (11), we get values of original parameters a, b and σ in the form

a =
2

Δt

1 − α

1 + α
, b =

β

1 − α
and σ =

2γ

1 + α
. (13)

Thanks to this values we can find upper bound ru and lower bound rl estimate for future
interest rate using 3σ-rule. Let us recall condotional expected value of r (3) and variance (5)
then upper bound estimate is defined by

ru(t, T ) = b + (r(t) − b)e−a(T−t) + 3σ

√
1 − e−2a(T−t)

2a
, (14)

the lower estimate in the form

ru(t, T ) = b + (r(t) − b)e−a(T−t) − 3σ

√
1 − e−2a(T−t)

2a
(15)

and the main function rm of r(t) is defined by

rm(t, T ) = b + (r(t) − b)e−a(T−t). (16)

The main function corresponds to the theoretical Vaš́ıček model for σ = 0. Thanks to these
bounds we justify the assumption a ≥ 0. In the case that a < 0 the model is unstable and
bounds defined above diverges with increasing T .

3 CIR Model

The Cox-Ingersoll-Ross model (CIR) in also well-known mathematical model which describes
interest rate movements as driven by only one source of market risk. It was introduced in 1985
by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross as an extension of the Vaš́ıček
model. It has following form

dr(t) = a(b − r(t)) + σ
√

r(t)dW (t), (17)

where W (t) is a Wiener process which models the random market risk factor. Parameter σ is a
normalized standard deviation parameter and it determines the volatility of the interest rate.

The difference of CIR model and Vaš́ıček model is in the fact that CIR model does not
admit negative values of interest rates, cf. [5]. If r(0) > 0 then r(t) ≥ 0 for all t > 0.
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Data
EUR 3M USD 3M

Parameters a b σ a b σ

VAS 0.015013 2.1372 0.00729136 0.00860017 2.46422 0.0676337
CIR 0.0150526 2.11576 0.00506814 0.00941037 2.24241 0.0349574

VAS-CIR −0.00003961 0.021506 −0.00222322 −0.0008102 0.221804 −0.0326763

Table 1: Values of parameters for Vaš́ıček model (VAS) and CIR model for given data with
their comparison (absolute and relative difference).

The analysis of bond prices is similar to Vaš́ıček model. For more details we refer to [5] and
[6]. The parameter estimation procedure is based on the same idea as used in Vaš́ıček method
therefore we omit the implementation to the reader.

4 Application to LIBOR data

Let us deploy these models to the real London Interbank Offered Rate data(LIBOR) provided by
British Bankers Association, [1]. In this paper we present analysis of interest rates for LIBOR
for USD from 1.11.2007 to 31.10.2008, illustrated on the Figure 7, and for 3-month EUR data
from 16.11.2003 to 27.5.2005 its history of interest rates is illustrated on the Figure 8.
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Figure 6: EUR LIBOR 3M data from
16.11.2003 to 27.5.2005.
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Figure 7: USD LIBOR 3m data from
1.11.2007 to 31.10.2008.

Now we try to fit the Vaš́ıček and CIR model to this LIBOR data. We solve system of
equations (12) to get parameters α, β and γ. Then we substitute these values back to (13)
and get values of original parameters a, b and σ for Vaš́ıček model. Parameters for CIR model
are computed analogously. The values of parameters for given interest rates are presented in
Table 1.

One can observe that we get similar values for Vaš́ıček and CIR model which is in corre-
spondence with the fact that these models has quite similar behavior, [5], [6].
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Figure 8: CDF for ΔWt for data EUR LI-
BOR 3M with respect to CDF of N (0, Δt).
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Figure 9: CDF for ΔWt for data USD LI-
BOR 3M with respect to CDF of N (0, Δt).

Thanks to this values, we are able to determine the term structure for some given spot
interest rate r(t) by formula (8). The illustration of term structures R(t, T ) for Vaš́ıček model
applied to EUR LIBOR 3M data is presented on Figure 10 and its contours are shown on Figure
11.

Figure 10: R(t, T ) for EUR data.
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Figure 11: Contours of R(t, T ) for
EUR data.

We are also able to compute expectation of interest rate by using 3σ rule. By defini-
tion of upper bounds (14) and lower bounds (15) we can predict the behavior of interest
rates by values of current and past rates. On Figures 12 and 13 one can see the upper
bounds displayed by blue curves and lower bounds by brown curves. The main function
rm is illustrated by thick orange curve. The blue area above dashed line enclose values of
r(t) lying in the interval [mean[r(t)], mean[r(t)] + std[r(t)]] and red area enclose values in
[mean[r(t)] − std[r(t)], mean[r(t)]].

The behavior of CIR model is illustrated on the Figures 14 and 15.
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Figure 12: EUR LIBOR 3M data with ex-
pected value and upper and lower bounds for
Vašiček model.
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Figure 13: USD LIBOR 3M data with ex-
pected value and upper and lower bounds for
Vašiček model.
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Figure 14: EUR LIBOR 3M data with ex-
pected value and upper and lower bounds for
CIR model.
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Figure 15: USD LIBOR 3M data with ex-
pected value and upper and lower bounds for
CIR model.
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A STRATEGIC PROFIT MODEL 

TO MEASURE INDIAN APPAREL RETAIL PERFORMANCE 
 

SELVARASU A., (I),  FILIPE  J. A., (P),  FERREIRA  M. A. M., (P), 
  PEDRO M. I.,  (P) 

 

Abstract. The strategic profit model (SPM) has been used to measure the performance 
of three Indian retail companies that focus in apparel. In the study three companies have 
been chosen to represent three groups of companies viz., large, medium and small 
corporate. In the case of large size, medium size and small size corporate, Pantaloon 
retail is considered with a turnover of Rs.3,031 crores, Shoppers’ stop retail with a 
turnover of Rs.849 crores and Provogue with a turnover of Rs.228 for the year 2007 
have been included for the study, respectively. In order to find out the suitable strategies 
for the companies in the categories, the comparison has been done with its best 
performance as well as the indicators in relation to peer averages. The ROA has been 
noticed around 5 percent and the study attempt to reveal the appropriate strategy to 
increase it by 10 percent. The study has been carried out to indicate suitable strategies to 
maximize the performance in the future years for Indian apparel retail sector in line with 
the measure of RONW. 
 
Key words: Retail strategy, competitiveness, Strategic Profit Model 
 
 

1 Introduction 
 
Indian textile industry is one of the largest sectors in Indian economy in terms of its 

contribution to foreign exchange earnings and employment. It has been estimated that one out of 
every six households in India is directly or indirectly dependant on this sector. It contributes about 
14 percent to industrial production, 9 percent to excise collections, 18 percent of employment in 
industrial sector around 16.63 percent to foreign exchange earnings and 4 percent to GDP of India. 
This sector employs more than 35 million people and is the second largest employer in the country 
after agriculture. The per capita consumption of cloth in India is Rs. 1,391 for the year 2006. 

In India, the retail industry contributes about 10% to national GDP and 8% towards 
employment. The share of rural market accounted for 55% of total retail market in 2006. India is the 
fourth largest economy in terms of Purchase Power Parity. It is expected to be the third largest 
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economy in terms of PPP behind U.S.A. and China by 2010. According to the reports of Images 
Retail Study 2007 and FICCI Research 2007, Indian retail market caters to be 2nd largest markets in 
India. The total size of Indian retail market is about Rs 10, 63,800 crore out of which organised 
retail sector enjoys a small share of around 4.6% which is Rs 48,934.8 crore in value terms. It is 
estimated that organised retail sector is expected to contribute about 22% to total retail market over 
Rs 3, 70,500 crore by 2010. As per the recent study on city wise size of retail market, top 6 cities in 
India accounted for 66% of the total organised retail sales. As per Merrill Lynch India Retail Report 
March 2007, textile and apparel sector enjoys a major share in Indian organized retail industry 
which is around 39%.  

 
 

1.1 Need for the study 
 
Increasing organized apparel retail market results in more competitive situation among Indian 

companies, which makes top management of the respective companies to think how to curb upon 
increasing excessive expenditure without disturbing the rising sales for enhancing profit curve. At 
the same time, they have to keep in mind about the interest of shareholders also. A company 
performance is measured in terms of their effective allocation of available resources for increasing 
the value of their shareholders. In other words, measurement of company’s Return on Asset (ROA), 
cash flow and Return on Networth (RONW) reflects financial soundness and overall performance 
of the company. These acts a indicator upon which top management generally considers for drafting 
futures strategies. A company’s profit performance is determined by the profit earned in relative to 
the capital invested. In this direction, there is need to study Indian apparel retail sector at three 
levels spread across small, medium and large companies. 

 
 

1.2  Objective of the study 
 
In accordance with strategies of the Indian apparel retail companies in the categories of small, 

medium and large, four objectives have been set as below; 
1. To draw the interrelationship of various retail financial indicators of companies for 

the year 2007 
2. To compare the retail financial ratio used for establishing SPM for three years from 

2005 to 2007 
3. To analyze the deviation of COGS, total expenses and current assets from its peer 

average for the year 2005(bench mark-the best performance so far) and its peer average for the year 
2007 

4. To suggest measures to maximize ROA by 10% as target upon ROA for the year 
2007 focusing change in sales, COGS, expenses, inventory etc.  

 
 

2 Review of literature  
 
A company’s which keeps in mind the interest of their shareholders and perform accordingly, 

exercise a huge inflow of capital from the investors. A value created by the company towards its 
share holders helps decision makers in drafting and implementing certain strategies as it is 
considered as one of the best metric of performance. To measure value created by the company for 
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there share holders and stake holders along with performance of the company certain methods are 
used .They are as Customer Satisfaction and customer value added (CVA), Strategic Profit Model 
(SPM), Economic value –added (EVA), Profitability Analysis, Total cost analysis, Market value-
added (MVA) and Balance Scorecard. The review of studies pertinent to application of SPM model 
has been presented. Mackay (1992) has studied firm’s financial road map which leads to 
profitability. In this paper, SPM has been applied to study the profit performance of the firm. 
Koenig, Harold F. (1994), has taken SPM as a example regarding presenting in a easy alternative 
form using Hypermedia to make marketing class an attractive one. Lambert, Douglas M, Renan, 
Burduroglo (2000) has discussed the significance of logistics in measuring and selling the value 
provided to customers along with the impact assessment of customer satisfaction and customer 
value –added for achievement of higher shareholder value using SPM. Andrew Stapleton, Hanna, 
Joe B , Steve Yagla,Jay Johnson , Dan Markussen (2002) has applied SPM to six different firm ( 
Nike , Adidas , Fila , Reebok , Converse & K-Swiss) in the footwear industry to provide an insight 
by offering a predictive ability to the logistics manager of each firm to improve upon ROA using 
SPM. Evas, R.Joel (2005) has studied the performance of large retailers of U.S. from 1982-2001 
using SPM. N. Viswanadham and Poornima Luthra (2005) have studied the performance in terms of 
measuring and creation of shareholder value of four players in the IT industry using SPM.  

 
 

3 Research Methodology 
 
Decision without use of any proper technique can result to the adaptation of irrelevant 

approach to a particular strategy. Thus, a suitable tool of retail finance viz., SPM is used study the 
indicators affecting company’s growth and reputation. Our study is focused on measuring the 
performance of retail companies focusing on apparel. For this purpose, three companies have been 
selected representing three different levels as small, medium and large based on the turnover. These 
companies occupy a unique position in their categories.  

In case of large category of companies, Pantaloon India (Retail) Ltd. founded by Mr. 
Kishoreji Biyani in 1987 has been selected for the study. It is the flagship company of the future 
group headquartered at Mumbai. In the year 1992, IPO (Initial Public Offering) was made. Its 1st 
outlet was opened at Kolkata in 1997. It operates with multiple formats i.e. value and lifestyle 
segments of the Indian consumer market. Company has over 7 million sq. ft. retail spaces 
comprising of more than 1000 stores across 51 cities providing employment to over 25000 people. 
Company has been awarded with many distinguished awards and honors. It was awarded as the 
International Retailer of the Year 2007 by the US-based National Retail Federation (NRF) and the 
Emerging Market Retailer of the Year 2007 at the World Retail Congress held in Barcelona. Some 
of its leading retail formats includes Pantaloons, Big Bazar, Central, Fashion station, aLL, Depot, 
Brand Factory, an online portal futurebazzar.com etc. Future Group’s vision is to, “deliver 
Everything, Everywhere, Every time to Every Indian Consumer in the most profitable manner.” The 
group considers ‘Indian-ness’ as a core value and its corporate credo is - Rewrite rules, Retain 
values. Turnover of the company in 2007 was about 3,031.44 crores 

In case of medium category of companies, Shopper’s Stop Ltd. founded by K.Raheja Corp. 
Group (L.Charu Chandra Group) in 1991 has been identified for the study. It is headquartered at 
Mumbai. Shopper’s Stop Ltd. is India’s largest retail chain of departmental stores having 20 
Shoppers’ stop and 2 Home Stop covering an area over 1.1 million sq. feet across 11 cities. These 
stores offer more than 200 different and finest national and international brands. They attract more 
than 19.95 million shoppers every year with more than 54,000 footfalls everyday. Company made 
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its IPO (Initial Public Offering) in 2005. It is the only Indian member of the Inter Continental 
Group of Department Stores (IGDS) along with 29 other experienced retailers from all over the 
world. Company has been awarded with many distinguished awards and honour. In 2006, it was 
awarded as “Retailer of the Year – Department Store” at Images India Retail Forum 
(2006).Turnover of the company in 2007 was about 846.31 crores. 

In case of small category, Provogue (India) Ltd. formerly Acme Clothing Private Ltd. 
founded by Nikhil Chaturvedi and Deep Gupta in 1997 has been included as representative sample 
of study. It is headquartered at Mumbai. The Company launched the fashion brand ‘Provogue’ in March 1998. It 
operates over 100 Provogue stores and shop in shop across 56 cities and Promart stores which offers 
more than 100 brands in apparel as well as home furnishings and accessories at discounted price 
round the year. In 2007, first Promart store was opened in Ahmadabad covering an area of around 
40,000 sq. feet. Provogue brand was ranked 5th amongst brands in all categories in a national 
customer loyalty survey conducted by Business World in 2006. Company’s vision is to evolve 
Provogue as retail-centric group of branded business focused on customer needs. Turnover of the 
company in 2007 was 228.27 crores.  

In order to draw the interrelationship of various retail financial indicators of companies for the 
year 2007, the values have been extracted from company’s published income and expenditure 
statement, balance sheet, schedules of income and expenditure and annual reports for the year 2005-
06 and 2006-07. In addition, the retail financial values have been obtained for three years from 2005 
to 2007. It is understood from the annual report of the companies in this sector that the performance 
of all the companies have been reported as exemplary in the year 2005 and hence the values of the 
same year is considered as benchmark for the study in terms its actual and peer average. The retail 
financial ratios have been used for establishing SPM for three years from 2005 to 2007 in all three 
categories. In the pursuit of identifying strategies, the deviation financial values of COGS, total 
expenses and current assets have been analyzed for all three companies from its peer average for the 
year 2005 and its peer average for the year 2007. As a measure of prediction to maximize ROA by 
10% as target upon ROA for the year 2007 ‘what if’ analysis goal seek option have been used 
focusing change in sales and its corresponding change in COGS, expenses, inventory etc.  

 
 

3.1 Strategic Profit Model (SPM) 
 
The strategic profit model is used to study the performance of the Indian apparel retail 

companies with peer averages as benchmarks. According to Oxford Dictionary benchmarking refers 
to setting a standard point of reference with which other points can be compared and thus evaluated. 
Benchmarking is systematic process of searching for innovative, effective and operative ideas and 
procedures to fuel the growth line improving upon performance capability. It enables an 
organization in readdressing their strategies through comparison of their key performance with their 
competitors and other industry leaders. Generally companies take financial performance measures 
as their key performance. It helps top management in taking right decision at the right time to 
improve their bottom line. These financial performances have been estimated from balance sheet, 
Profit and loss a/c and cash flow statements. 

Performance of retail companies is measured by the use of Strategic Profit Model (SPM). 
Strategic profit model is the result of subsequent research formularization of DuPont model, useful 
system of analysis of which considers important inter-relationships based on the information found 
in financial statements. It explains how RONW is dependent on other functions factors .i.e. 
financial leverage, ROA (net profit margin (%) x asset turnover ratio). Financial leverage provides a 
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relationship between total equity of the firm with the total investment made by the shareholders. 
Financial leverage measures how effectively a firm is using an outside fund for its operation to 
increase firm’s RONW whereas ROA measures how much profit is being returned by the 
investment made in the asset. 

 
 
 
 
 
 
 
 
SPM involves the application of ratio analysis method for the calculation of Net profit 

margin, asset turnover, financial leverage, ROA and RONW for which required data is obtained 
from financial statement of the firm available publicly. In other words  

 
Figure No-1:Pantaloon Retail (India) Ltd. (Rs. Cr.) 

 
Individual firm performance is measured in terms of ROA and RONW by comparing it with 

other firm’s performance.RONW measures how effectively a firm is using shareholders investment. 
In other terms, it measures the value which is being created by the firm for its shareholder. Figure 1 
provides an outline of the available SPM model which consist of financial leverage and ROA which 
further consist of two parts .i.e. net profit margin (%) and asset turnover (%). Net profit margin tells 
at what rate a firm is earning a profit on the sales and also how effectively a company is 
manufacturing and selling its products and services. Net profit is calculated after deduction total 
operating expenses and income tax from gross sales which is obtained after deducting cost of goods 
sold from the net sales. Net sales means sales obtained after the payment of excise duty and other 
taxes such as Sales tax and VAT. This information has been obtained from the company’s Profit 
and Loss a/c. While asset turnover ratio indicates number of times total asset is being used for 
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generating sales in a year. It is calculated by dividing net sales by total asset. Further total asset is 
divided into fixed asset and current asset. Fixed asset is a tangible long lived resources used for 
producing goods and services whereas current asset is generally converted into cash during the 
operating cycle of the firm. These information can easily be obtained from the company’s balance 
sheet. SPM is used for comparing firm’s performance with the peer average .Thus helping in taking 
strategic decisions for improving upon required component/ areas to achieve desired ROA and 
RONW. RONW of the company can be increased by applying certain changes. The strategies are 
focused in such way to attempt decreasing financial leverage and increasing ROA. Similarly ROA 
can be increased through implementation of increasing sales and other income sources on one hand 
and decreasing cost of goods sold, operating expenses and income taxes, inventory, accounts 
receivable, cash and other current asset on the other. 

 
 

3.2 Assumptions 
 
The study encompasses various levels of apparel retail in the context of Indian market in 

which there are value segment and lifestyle segments promoting apparel as separate entity and also 
as assortments. In the process of extracting data for the study, there are specific methods of 
adjusting the data have been done. The ways and means of obtaining data from financial statements 
is altered based on the type of auditing and reporting formats of annual reports. The following are 
the specific assumptions proposed for all the three companies in Indian apparel business.  

1. In case of Pantaloon Retail India Ltd., financial data has been extracted from 
company’s annual report 2005-06 (Pg. No. 86, 87, 93, 94 & 95) and 2006-07 (Pg.No.62, 63, 70 
& 71) respectively. The net sales is obtained after adjusting for excise duty, sales tax and VAT 
and the other operating income is included for obtaining total value of other income. In the case 
of total expenses, the personal costs, manufacturing & other costs, financial charges and 
depreciation have been included. 

2. In case of Shopper’s Stop Ltd., financial data has been extracted from company’s 
annual report 2005-06 (Pg. No. 60, 61, 71 & 72)  and 2006-07 (Pg. No. 68, 69, 79 & 80). The 
net sales has been obtained after adjusting the own merchandise, consignment merchandise for 
VAT and sales tax. The other income is adjusted for other retail operating income as in the case 
of large companies in apparel as above. The COGS has been adjusted with the cost of 
consignment merchandise. The total expenses have been adjusted for employee cost, operating 
and administrative expenses, interest, financial charge, depreciation and amortisation. 

3. In case of Provogue (India) Ltd., financial data has been extracted from company’s 
annual report 2006-07(Pg. No.62, 63, 71 & 72) and 2005-06 (Pg. No. 60, 61, 68 & 69). The net 
sale has been obtained after adjusting the gross sales for excise duty and sales tax. The other 
income has been arrived after adjusting export benefits, incentives, gain on foreign exchange 
fluctuation, royalty income and other income. The cost of goods sold has been adjusted for 
increase in stock. 

4. All the Investments are considered as a long term investment. It is also assumed that 
income taxes and fixed asset remains that same.  

5. Since cost of goods sold, total expenses, account receivable and inventory are 
independent variable where as sales is a dependent variable, an increase in sales will result in 
increase in these variables also. So, to calculate effect on these variables, it is assumed that this 
variable remains constant percentage of the sales through out the period. 
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6. It is also assumed that all variable will remain constant, when a variable other than 
sales is calculated to achieve the desired ROA % using what if analysis tool. 

7. It is assumed for that total expenses include both variable and fixed expenses. As it is 
difficult to differentiate among them due to terminology used to define them differs from 
company to company. 

8. Peer average performance is considered as the average industry performance to 
facilitate research process. 

 
 

3.3 Limitations 
 

1. General economic conditions, competition, local factors and policy adopted by the 
management affect financial results of the company or business. Thus, any change in ratio or other 
financial indicators must be considered with the above factors while taking any decision. 
2. Sample size for the study is restricted with three companies in their respective categories .i.e. 
large, medium and small due to non availability of valid financial data source as there is limited no. 
of players in Indian organised apparel retail sector. 
3. Any interpretation about the financial conditions and performance of the firm is a result of 
correct diagnosis of the study of combined effect of the various financial indicators in the SPM not 
alone. 
4. Financial indicators analysed in the SPM are only the preliminary steps in interpretation 
which helps a business in drawing attention towards the area which requires further analysis and 
investigation.  
5. This model does not tell how to increase or decrease various financial factors like COGS, 
sales, expenses, cash, account receivable etc. 
6. Research provides only the suggestions to improve company performance. 

 
 

4 Analysis and interpretation 
 
 The retail financial indicators have been used for the purpose of understanding the strategic 

focus of the companies in apparel business in India. The retail financial performance of the 
companies has been compared for the period of three years from 2005 to 2007as intra company 
comparison. Similarly, the retail financial performance has been compared with its peer average as 
best performance in the history of their business which is for the year 2005 and the same is also 
compared for the current year peer average for the year 2007. The results of the retail financial 
performance have been presented for Pantaloon, Shoppers’ stop and Provogue under separate 
sections.  
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Figure No – 2: Shopper’s Stop Ltd. (Rs. Cr.) 
 

 
4.1 Interrelationship of various financial indicators of Indian apparel companies 
 for the year 2007 (Table No.2) 

 
The financial indicators of the companies in large, medium and small categories have been 

drawn for Pantaloon (large), shoppers’ stop (medium) and Provogue (small). Profit margin of 
Provogue (8.59%) is much higher in comparison to Pantaloon (3.96%) and Shopper’s Stop (3.09%) 
indicating Provgue management effectiveness to curb upon the manufacturing and other operating 
expenses to increase their bottom line. But at the same time Provogue is facing a problem in 
generating enough sales from the investment made in their asset. Asset turnover of Provogue (0.62) 
which tells that firm is able to generate only 62 paise from the Re 1 investment made in the asset is 
much below accepted level indicating that firm is facing problems like excess stock, high account 
receivable due to lenient credit policy , unused cash , idle or improperly used assets etc. But 
Shopper’s Stop is the leader in generating sales from the all the financial resources committed by it 
indicating high asset turnover ratio (1.55) result of better asset management by the company. 
Pantaloon is also generating enough sales to cross the accepted level of asset turnover ratio (1.08). 
As, high profit margin able Provogue to generate enough profit from the investment made in the 
total asset. Lowering the effect of their low asset turnover ratio which acts as a retarding force for 
accelerating ROA. Provogue is the leader in earning profit from their asset .i.e. ROA (5.33%) 
followed by Shopper’s Stop (4.78%) whose better sales generation from the asset acts as an 
energizer for strengthening profit margin. Thus ROA while on the other side Pantaloon in spite of 
having decent profit margin is not able to generate better sales from their asset all though above 
accepted level resulting in lowering ROA (4.27%) . Higher leverage ratio indicates that more asset 
generation or acquisition through debt .Company’s aggressiveness in utilizing debt for the 
generating asset.. Pantaloon with their aggressive policy of generating or acquiring more asset from 
the debt lead to have highest leverage ratio (2.57) followed by Shopper’s Stop (1.86) and Provogue 
(1.40). It tells that big, medium and small company are generating or acquiring Rs 2.57 , Rs 1.80 
and Rs. 1.40 respectively for every Rs.1in the net worth. This further affects their RONW. 
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Pantaloon with high leverage ratio and low ROA is the leader company in providing maximum 
value to their share holders. It also tells about Pantaloon’s management effectiveness regarding the 
use of resources by the owners for maximizing shareholders and owner’s welfare. But Provogue in 
spite of having high ROA is not able to achieve high RONW due to its low leverage ratio. 
Shopper’s Stop RONW is the second highest among the sample due to its decent ROA and 
consistent policy of generating or acquiring asset through debt for viable use. Thus for the large, 
medium and small companies, RONW is 10.99%, 8.88% and 7.46%, respectively. Further figure 2, 
would provide further details of financial indicators performance for 2007.  

 

 
 

Figure No – 3: Provogue (India) Ltd. (Rs. Cr) 
 
 

4.2  Comparing the financial ratio used for establishing SPM for three years from 2005 
 to 2007(Table No.1) 

 
Financial ratio is used as an index and yardstick for evaluating the financial position and 

performance of the firm. It helps in analysis for making qualitative judgments about the company’s 
financial position and performance. Financial ratios which have been used for establishing SPM are 
net profit margin (%), asset turnover ratio, return on asset (ROA), financial leverage and return on 
net worth (RONW). The description of retail financial indicators has been presented for Pantaloon, 
shoppers’ stop and Provogue separately. 

 
4.2.1 Pantaloon Retail Ltd. 

 
Net Profit margin (%) has been decreased by 3.63% in 2006 along with low generation of 

sales from the asset as a result of which asset turnover ratio is lowered by 18.02%. as a combined 
effect of these indicators is seen on ROA and financial leverage which also is further decreased by 
21.00%. and 11.43% respectively. Since RONW is dependent on ROA and financial leverage, it is 
also decreased by 30.02%. All these changes indicates that company’s cost of goods sold and other 
operating expenses has been increased rapidly in proportion to sales .Pantaloon has idle or 
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improperly used assets which increases the need for costly financing and expenses for maintenance 
and up keeping .  

In 2007, net profit margin shows a positive sign with an increment by 8.49% .But Pantaloon 
is not able to sustain the effect of this change on other factors also. Asset turnover ratio is further 
lowered by 13.93 %. Increment in net profit margin is over ridden by lowering asset turnover ratio 
as a result of which ROA is further lowered by 6.62% along with financial leverage by 3.38%, thus 
lowering RONW by 9.78%. As company’s RONW is falling that indicates that company is 
borrowing more money for the expansion of their retail operations followed by the under utilization 
of it in generating asset. Company should improve RONW by getting rid of excessive and idle 
asset. Thus investing that fund for other purposes like implementation of cost reduction techniques, 
expansion, paying advances to suppliers to avail maximum purchase benefit etc. 

 
4.2.2 Shopper’s Stop Ltd. 

 
In 2006, net profit margin increased by 9.65% but asset turnover ratio showed a downward 

trend lowering it by 22.1% .As a result of which ROA is declined by 14.59%. Financial leverage is 
also declined by 41.45% indicating that company is not generating enough amounts of assets from 
the money borrowed by them which in term reduces their RONW by 50%.  

In 2007, net profit margin declined by 27.52% indicating an increase in COGS and other 
operating expenses. On the other hand, Shopper’s Stop management gave importance to 
management of their asset which resulted in a marginal increment of asset turnover ratio by 0.52% 
.But this marginal increment is sufficient enough to increase ROA. Resulting in a decline of 27.12% 
in ROA indicating that profit generated from the investment made in asset is reduced to 4.78 from 
6.56. Financial leverage increased by 21.27 % pointing towards proper management of the 
investment made in the asset .It is not enough to increase RONW which registered a negative 
growth of 11.62%. Company should improve RONW by improving upon their operating expenses 
such as selling, distribution etc which acts as a barrier in facilitating net profit growth and avoid 
holding unnecessary cash balance. 

 
4.2.3 Provogue India Ltd. 

 
A tremendous increment .i.e.22.22 % in net profit margin in 2006 marked Provogue followed 

by a tremendous decline in asset turnover ratio by 33.81% indicating about ineffectiveness of the 
management in handling asset. Company might be facing problems like high stock carrying, slow 
debt collection, high capital blocked in fixed asset etc. which acts a dominating force further 
affecting ROA and financial leverage by 18.85% and 18.06% respectively effecting RONW which 
registered a negative growth by 33.31%. 

Year 2007 embarks net profit margin with an increment of 7.24% indicating company’s 
management effectiveness in curbing upon COGS and other operating expenses But Company’s 
ineffectiveness regarding managing their asset put increment of net profit margin in vain which 
lowers asset turnover ratio by 20.31% which further affected ROA and financial leverage ratio. 
Both registered a negative growth of 14.54% and 20.42% respectively which affected RONW by 
31.99% adversely. Company should improve RONW by effectively managing their assets by 
avoiding high stocks, slow debt collection, not availing unlimited credit, blocking capital in fixed 
and idle or unused asset  
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4.3 To analyze the deviation of COGS, total expenses and current assets from its 
 peer average for the year 2005(bench mark-the best performance so far) and 
 its peer average for the year 2007 
 
In every business, the concept of increasing return on asset (ROA) can be achieved by 

improving upon two factors .i.e. profit maximization (increasing sales and sustaining expenses) and 
reduction in unutilized asset. In year 2005, ROA performance of Pantaloon, Shopper’s Stop and 
Provogue was a bench mark performance so far. Peer group average performance for year 2005 is 
far than year 2007. There is drastic increase in expenses, followed by other income sources and 
assets embarking up rising top line figures from 2005 to 2007. Industry average(peer average) for 
items/sales has significantly increased by .i.e. COGS (3.35%) , other income (157.5%) , expenses 
(5.55%) , account receivable (37.5%) , inventory (17.50%) , cash (346.50) , other current asset 
(19.35%) whereas sales (155%) . In spite of increase in sales, companies are not able to reach or 
cross the bench mark level performance. This deviation plays a major role in determining the 
strategies for enhancing the performance of various financial indicators to achieve the desired level 
of performance. Each sample has been examined separately. Here each item of individual sample is 
expressed as percentage of sales and then compared for year 2005 & 2007. To study deviation of 
items .i.e. COGS, expenses and current asset between bench mark year (2005) and current year 
(2007) difference between company’s individual item/sales(%)of year 2005 v/s 2007 and peer 
average of 2005 v/s 2007 

 
4.3.1 Pantaloon Retail Ltd. 

 
Pantaloon sales have increased by 182.1% but other expenses and current asset rises 

unproportional. From year 2005 to 2007 changes in items/sales(%) are as follows :-  COGS by 
5.62% ; other income by 166.30% ; expenses by 5.56% ; inventory by 7.86% ; account receivable 
by 77.69% ; cash by 176.30% ;and other current asset by 126.60%. At the same time when these 
items are compared among the peer average of year 2005 and 2007 certain difference in items has 
been noticed. They are as follows: COGS by 2.48%; other income by 2.67% ; expenses by -0.65% ; 
account receivable by 40.36% ; inventory by -7.53% ; cash by 44.42% ;and other current by -
3.07%. Here increment in any item is referred to an increase in that item in respect to share of 
difference between actual item/sales (%) v/s peer average value of current year and actual item/sales 
(%) v/s peer average value of previous year  

 
4.3.2 Shopper’s Stop Ltd. 

 
Shopper’s Stop sales have increased by 73.18%. From year 2005 to 2007 changes in 

items/sales(%) are as follows :-  COGS by -4% ; other income by 89.44% ; expenses by 9.94% ; 
inventory by 16.08% ; account receivable by 62.26% ; cash by 5,775% ;and other current asset by 
8.72%. At the same time when these items are compared among the peer average of year 2005 and 
2007 certain difference in items has been noticed. They are as follows: COGS by -7.5% ; other 
income by -69.86% ; expenses by 4.27% ; account receivable by 62.18% ; inventory by -2.32% ; 
cash by 702.21% ;and other current by 14.73%. 
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4.3.3 Provogue (India) Ltd. 
 
Provogue sales have increased by 107.12%. From year 2005 to 2007 changes in 

items/sales(%) are as follows :-  COGS by -4.16% ; other income by -32.84% ; expenses by -1.08% 
; inventory by 35% ; account receivable by 19.44% ; cash by 278.37% ;and other current asset by 
6.40%. At the same time when these items are compared among the peer average of year 2005 and 
2007 certain difference in items has been noticed. They are as follows: COGS by -8.5% ; other 
income by -190.34% ; expenses by 5.66% ; account receivable by -1.8% ; inventory by 8.94% ; 
cash by 14.84%; and other current by -41.91%. 

 
 

5. Recommendation to increase ROA 10% 
 

5.1 Pantaloon Retail India Ltd. 
 
Basic strategies that Pantaloon’s management can apply are increase sales, increase other 

income sources, reduce cost of goods sold, reduce expenses, reduce inventory, reduce account 
receivable and/or reduce cash and other current asset. It is assumed that they desire to increase ROA 
by 10% keeping parallel to targeted growth of India’s GDP. SPM model has been applied 
independently to various factors like sales; COGS, etc. study the various changes independently. To 
achieve a 10% increase in the ROA, Pantaloon management would have to increase sales by 
12.88%.To achieve this sale , company would have to corresponding increase its cost of goods sold 
(COGS) ; expenses ; inventory ; other income sources ; account receivable ; cash and other current 
asset. As a result of which net profit remains the same time asset turn over ratio increase helping 
ROA to increase by 10%. 

Next strategy is to increase other income sources, assuming all remain same .Other income 
sources have to be increase by Rs 11.95 cr (4.02%). As company’s other income sources are above 
of peer average. It is not possible to increase it. It might divert the attention of the firm from its 
regular business course. It is only a short term gain followed by long term diversion of business. 

Another strategy is to reduce cost of goods sold (COGS) and expenses, assuming all remains 
the same. Then COGS is to be reduced by Rs.11.94 cr (0.54%) to achieve an increase in ROA by 
10%. Likewise, if an expense is reduced by Rs.11.95 cr (1.27%) same result can be achieved. 
Reducing COGS and expenses simultaneously by Rs 11.95 cr would be another better way to 
increase ROA by 10% .Reduction in COGS and expenses would increase the profit margin resulting 
in an increase in ROA. 

Reducing current asset .i.e. inventory, cash, account receivable and other current asset is the 
last set of strategy to be applied to achieve the desire ROA .Assuming all remains same. Each asset 
is to examined separately in order to achieve an desired ROA. Then inventory has to be reduced by 
Rs 254.20 cr (28.69%) which might result in a loss in sale due to stock outs. Another ways to 
reduce cash by Rs 71.30 cr (43.75%) .As Company’s cash balance is well below the peer average 
indicates that company is follows a policy of holding less cash. Then it is advisable not to decrease 
cash balance. It might increase the risk of crisis of short term capital for meeting day-to-obligations. 
Reducing account receivable by Rs.254.31cr. (389.95%) indicating that company has to follow a 
strict policy regarding giving credit to its customers. This appears to be an unrealistic scenario as 
Pantaloon’s account receivable is already below than peer average. It indicates that max. sale of the 
company is in cash. In the last desired ROA can be achieved by reducing other current asset by 
Rs254.11 cr (40%). This change is substantial which may result in loss in purchasing goods at a low 
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and attractive price from its suppliers by making advance payment along with attracting world 
famous brands to its counter who generally ask for some type of special deposits before providing 
goods. 

It appears best and suitable policy for Pantaloon to increase ROA by 10% lies in the 
combination of increasing sales and decrease its cost of goods sold expenses. As discussed above 
decrease in inventory, cash, account receivable and other current asset is affecting firm’s 
performance adversely in spite of increasing ROA. Company’s success lies in increasing sales and 
decreasing expenses. So, the model suggests that a modest increase in sales by 1.5% followed by a 
decrease in COGS by 0.5% is sufficient enough to increases ROA by 10%. As these changes are 
easily to achieve without any special effort. 

 
 

5.2 Shopper’s Stop Ltd. 
 
Using SPM, financial data are analysed. These data forms the base on the basis of which 

financial indicators are identified and calculated. Among the samples Shopper’s Stop is found to the 
best in the area of managing asset effectively .In order to achieve an increase in ROA by 10% , 
Shopper’s Stop management can apply following strategies .i.e. increase sales & other income 
sources , decrease expenses .i.e. COGS and expenses and / or finally reduce asset .i.e. inventory, 
account receivable , cash and other current assets. Other current assets include loans and advances 
also.  

If a sale of Shopper’s Stop is increased by Rs.71.76 cr (8.46%), then ROA can be increased 
by 10%. To achieve this sale company correspondingly has to increase its other income, COGS, 
expenses, account receivable, inventory, cash and other current asset. As a result of which profit 
margin would remain almost the same while asset turn over ratio increases. Thus acts as a catalyst 
in achieving desired ROA. Increasing sales in a short span of time appeared to be a little tough 
exercise. It requires a handsome amt. of effort to push sales up equivalent to India’s GDP growth 
rate (about 10%). Another strategy is to increase other income sources, keeping all things constant. 
Then it requires an increment of Rs.2.61 cr (10.12%) which is below the peer average. But 
increasing this might result in the deviation from the vision and mission of the company. 

A successful company is one which is able to curb upon the expenses. It is considered to be 
one of the foremost strategies. Assuming all things remain the same, Shopper’s Stop management 
can cut COGS by Rs2.6 cr (0.46%) to achieve the desired ROA. As, company’s COGS is far below 
the peer average giving an indication that the further reduction in COGS is not possible. Another 
method is to reduce expenses by Rs.2.61 cr (1.03%). It would be more realistic scenario when 
combination of both COGS and expenses is applied simultaneously to reduce cost by Rs 2.6cr to 
achieve desired ROA.  

Another similar approach is to decrease current asset .i.e. inventory, account receivable, cash 
and other current asset. Assuming all things remain the same, inventory is to be reduced by 
Rs.49.53cr (42.92%). This reduction might result in loss of sale due to stock out. Shopper’s Stop 
inventory levels are far below peer average of inventory to sales .So, it is not favourable for the 
company to reduce stock. Another way is to reduce account receivable level by Rs49.56 cr 
(680.77%) but it is not suggested to do so .Already Company’s account receivable level is much 
better than industry peer average. So, further reduction is not possible. It indicates that company is 
following a controllable credit policy. Cash plays an important role in carrying out day-to-day 
business transaction. To achieve the desired level of ROA, cash level can be reduced by Rs49.51cr 
(49.77%). Company’s cash to sales ratio is greater than industry peer average indicating company’s 
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ineffectiveness in the management of cash. Suddenly reducing cash to such extent might result in 
cash shortage. It can be reduce to a certain extent only. The final approach is to reduce other current 
asset by Rs. 49.41 (39.81%). As Shopper’s stop other current asset to sales ratio is much better than 
industry peer average then further reduction can effect the growth of the company.  

Shoppers Stop management should look after those are area which is under performing 
relative to the peer average. So combination of certain factors would help in achieving the 
increment in ROA with an ease. It is recommended that to increase sales by 2% along with 
reduction in expenses by 0.5% and cash by 11%. 

 
 

5.3 Provogue India Ltd. 
 
Among the samples, Provogue India Ltd. is first in terms of ROA but last in terms of RONW. 

So, to increase its ROA by 10% company’s management can increase the sales by Rs153.71 cr 
(67.34%). To get this sale company correspondingly has to increase its other income, COGS, 
expenses, account receivable, inventory, cash and other current asset. Nevertheless to get this much 
sale in short span is not easy to achieve.  

Another strategy that Provogue management can apply is to increase other income sources by 
Rs 1.96 (24.59%) by keeping all things remain same. It is not advisable to increase other income 
source because it is an uncertain source of income. It is only for a short term. 

On of the most secret weapon which is often generally used by management to increase ROA 
is to reduce expenses and increase profit margin. Another approach is to reduce COGS by Rs 1.99 
cr (1.44%) keeping all things same. Further reduction in COGS is further not possible to achieve. 
Since Provogue’s COGS is much lower than industry peer average indicating management 
effectiveness in purchasing / manufacturing goods at a lower price but selling than at a high rate. 
Similarly reducing expenses by Rs2.56 cr (3.29%) keeping all thing remain the same. As operating 
expenses is more than industry peer average which acts as a slow poison in eating away the 
advantage of low COGS. In a realistic situation it is possible to curb upon excessive operating 
expenses to neutralise the effect of slow poison and acts as a lifesaver.  

Another approach is to reduce current asset. Each component of current asset is examined 
keeping all thing remain same. Reducing inventory by Rs 33.41cr (32.62%) to achieve the desired 
increment in ROA .i.e. 10%. Company is having excess of stock with them. This is supported by 
the fact that its inventory peer average is much more than industry peer average. So, it is advisable 
to decrease stock which would result in increase in asset turn over ratio. On other hand account 
receivable can be reduced by Rs.33.41cr (74.38%). As company’s account receivable to sales is 
much above the industry level indicating towards company’s lenient credit policy. Company is 
adopting a policy providing credit to generate sales. It is not possible to reduce account receivable 
to such a extent since it can result in loss of sale due to tight credit policy. But an optimum level of 
reduction is possible. Another approach is to reduce cash by Rs 33.42 cr (209.08%) to achieve the 
increase in ROA by 10%. It is not possible to decrease cash to such an extent as company cash level 
is almost equivalent to industry peer average. Reducing cash can adversely affect the day-to-day 
working of the company. Final approach is to reduction of other current asset by Rs.33.42 (79.39%) 
to increase ROA by 10%. It is not a realistic situation to reduce other current asset as it is already 
below industry norms. 

As Provogue management should look toward reducing unused and unutilised asset. So, a 
combination of change can be applied to modestly increase sales by 2% tripled with decrease in 
expenses by 2% ; inventory also by 2% and account receivable by 2% to increase ROA by 10%. It 
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is further advised to Provogue management that further increment in ROA can be achieved by 
working upon the under performance area in comparison to industry peer average.  
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THE RISK OF A SMALL CURRENCY PORTFOLIO
—

BACKTESTING RESULTS BY COPULA APPROACH

TICHÝ Tomáš, (CZ)

Abstract. For financial institutions, foreign exchange (FX) rates commonly constitute
the most important part of the market risk. In order to assess the risk of opened position
various models can be used. However, since real FX returns exhibit higher than normal
kurtosis and since the very far tails of the distribution should also be measured, the
Monte Carlo simulation of multidimensional Lévy processes seems to be the most efficient
approach. In this paper we apply two basic copula functions to connect multidimensional
Lévy models and provide a model for portfolio probability distribution. Next, VaR (and
AVaR) is calculated and the backtesting procedure is carried out.

Key words and phrases. FX rate portfolio, multidimensional Lévy models, VaR, AVaR,
backtesting.
Mathematics Subject Classification. 60G35, 60G70.

1 Introduction

Standard approaches to model the evolution of financial quantities (such as stock prices, interest
rates, foreign exchange rates) are based on the Gaussian distribution (through the application of
a Wiener process or a Brownian motion) with possible combination with the Poisson distribution
(a pure jump process). More advanced models belong to the family of Lévy processes, processes
with infinite activity of jumps. Up to now, there have been introduced various types of such
models, with some of them defined as subordinated (geometric) Brownian motions. Hence, the
standard clock time is replaced by a suitable stochastic process, obviously a nonegative one, to
model the arrival of a new information.

From the riskmanagement perspective, it is important to measure the risk of overall position,
ie how the portfolio value can change during the passage of time. Generally, the value of any
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portfolio is sensitive to the evolution of several distinct stochastic factors. As an implication,
when the portfolio risk is estimated, the dependency among particular sources of randomness
must be taken into account.

The intention of this paper is to make a further contribution to the theory and practice
of portfolio modeling by multidimensional Lévy models (VG and NIG models) via elliptical
copula functions (Gaussian and Student). For more details on other alternatives and previous
research with the same date, see [10] and [17].

We proceed as follows. In Section 2, we start with the definition of the Lévy models family,
including the tools for multidimensional problems. In Section 3 we describe the data set of
six distinct FX rate market quotes taken over last 8 years, each with respect to CZK (Česká
koruna) and finally, in Section 4 the results are obtained. More particularly, GBM, VG, and
NIG models are applied to estimate a one day VaR and AVaR of an equally weighted portfolio
by Monte Carlo simulation approach assuming either Gaussian or Student copula approach.
The parameters of the models are regularly estimated on the basis of 1 000 preceding business
days for each day over the last four years of the time series available.

2 Lévy models

The processes, which belong to the broadly defined Lévy-type models family,1 can be character-
ized by independent and stationary increments. Another typical feature is a so called stochastic
continuity – the probability, that a jump will occur within a particular time interval τ is zero.

2.1 Formal definition

The key step within the definition of advanced Lévy models is to formulate a characteristic
function φ. Its use allow us to avoid several problems connected with the application of prob-
ability distribution function of a random variable X, FX(x). The relationship between the
characteristic function of random variable X, φX(u), and its distribution function, FX(x), is
given by Fourier-Stieltjes transformation:

φX(u) = E[exp(ıuX)] =

∫ ∞

−∞
exp(ıux)dFX(x). (1)

For a characteristic function, it holds in general, that φ(0) = 1 and |φ(u)| ≤ 1 for all u ∈ R.
It also holds, that a characteristic function always exists, is continuous and determines the
distribution function of a given probability distribution uniquely.

Suppose a probability distribution, which is infinitely divisible. Then, a Lévy process is a
stochastic process X(t) with zero origin and independent and stationary increments defined
for all such infinitely divisible distribution. Moreover, increments of such processes over time
interval τ ≥ 0, i.e. Xt+τ − Xt, has characteristic function (φ(u))τ .

1For more on Lévy models see [4] or [1].
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Cumulant of the characteristic function Φ(u) = ln φ(u) is denoted as a characteristic expo-
nent and fulfills the Lévy-Khintchin formula:

Φ(u) = ıγu − 1

2
σ2u2 +

∫ ∞

−∞

(
exp(ıux) − 1 − ıuxI|x|<1

)
ν(dx). (2)

Here γ ∈ R, σ2 ≥ 0 and ν is a measure on R\{0} with∫ ∞

−∞
inf[1, x2]ν(dx) =

∫ ∞

−∞
(1 ∧ x2)ν(dx) < ∞. (3)

For a given infinitely divisible distribution, we can define a so called triple of Lévy character-
istics,

{γ, σ2, ν(dx)}.
The former two define the drift of the process (deterministic part) and its diffusion. The latter
is a Lévy measure. If it can be formulated as ν(dx) = u(x)dx, it is a Lévy density. It is similarly
to the probability density, with the exception that it need not be integrable and zero at origin.

2.2 Subordinated exponential Lévy models

The admissible prices of financial assets are usually restricted only to positive values, so that
exponential Lévy models, i.e. models with a Lévy process X(t) in the exponential should be
preferred. It gives us the following formula to describe the dynamic of an asset price S(t):

S(t) = Seeeμt+X(t). (4)

Here, in the exponential part of the model the Lévy process X(t) is accompanied by a deter-
ministic drift term, μ.

Many Lévy models commonly applied in Finance are formulated as a (geometric) Brownian
motion driven by a particular intrinsic process (subordinator/subordinated process). From an
economic point of view, such processes can be understood as a GBM within a (random) business
time (it depends on economic activity, arrival of new information, etc.).

Denoting Z(t; σ, μ) as a Wiener process in dependency on time t with parameters μ = 1
and σ =

√
t, i.e. Zt = ε

√
t, ε ∈ N (0; 1), we can define Brownian motion X(t; θ, ϑ) with drift θ

and volatility ϑ driven by another Lévy process �(t) with a unit mean and a variance specified
by ν simply when we replace t by �(t). Thus

Xt = θ�(t) + ϑZ(�t), (5)

which can be rewritten as:
Xt = θ�(t) + ϑε

√
�(t). (6)

This relation can be interpreted in such a way that the increment dX within an infinitesimal
time interval dt is of normal distribution with mean θ�(dt) and variance ϑ2�(dt). The mean of
the driving process �(t) should be dt and its variance will determine the fat tails. Similarly, the
mean controls the asymmetry.
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Very useful subordinators are a gama proces leading to the Variance gamma model (the
variance is not given by standard time but by the so called gamma-time, hence the Variance
gamma model) and an inverse Gaussian process leading to NIG model (Normal inverse Gaus-
sian model).2

Concerning the parameter estimation, we can get them e.g. by maximization of the likeli-
hood function (on the basis of a Lévy process density and the set of real data set) or solving the
equations for particular moments (on the basis of the characteristic function and the empirically
estimated moments of the distribution).

2.3 Multidimesional Lévy models

The approaches to model the dependency structure of random terms differs due to the probabil-
ity distribution we consider. Since the standard approach to market risk modeling is still based
on the application of a (geometric) Brownian motion, ie the higher moments of the underlying
distribution are ignored, Cholesky decomposition is sufficient. However, the subordinated Lévy
models introduced in the preceding section are defined by means of two distinct distributions.
Furthermore, the subordinator is not Gaussian. This fact obviously does not allow us to apply
the Cholesky decomposition if we are not equipped by other more advance tools. Bellow, we
provide the theoretical analysis of multidimensional subordinated Lévy models.

Suppose that the evolution of a financial quantity can be described well only by the Lévy
model (5). Consider two assets. Since each process consists of two random terms, the sub-
ordinator �i and the Wiener process εi, the covariance formula for two possibly dependent
subordinated processes of the Lévy type, X1 and X2, is the following:

cov[X1,X2] = θ1θ2cov[�1, �2] + ϑ1ϑ2E[
√

�1�2]E[ε1ε2]. (7)

It is useful to derive also its correlation counterpart:

cor[X1,X2] =
cov[X1,X2]

var[X1]var[X2]

=
θ1θ2cov[�1, �2] + ϑ1ϑ2E[

√
�1�2]E[ε1ε2]√

ϑ2
1 + ν1θ2

1

√
ϑ2

2 + ν2θ2
2

. (8)

Looking at either (7) or (8), we can see that the dependency between both processes can
arise either through the dependency of subordinators � or through the dependency of Wiener
processes – standard normal variables ε (recall that � and ε should be mutually independent).

Another possibility is to take the advantage of suitable copula functions.

2For more details on Variance gamma model see e.g. Madan and Seneta [12] (for symmetric case) and Madan
and Milne [11] and Madan et al. [13] (for asymmetric case). Similarly, Normal Inverse Gaussian (NIG) model
is due to Barndorff-Nielsen [2] and [3] and its generalisation the Hyperbolic model was introduced in Eberlein
and Keller [9].
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2.4 Dependency via copula functions

A useful tool of dependency modeling are the copula functions,3 i.e. the projection of the
dependency among particular distribution functions into [0, 1],

C : [0, 1]n → [0, 1] na R
n, n ∈ {2, 3, . . .}. (9)

In fact, it can be regarded as a multidimensional distribution function with marginals in the
form of standardized uniform distribution.

For simplicity assume once again two potentially dependent random variables with marginal
distribution functions FX , FY and joint distribution function FX,Y . Then, following the Sklar’s
theorem:

FX,Y (x, y) = C(FX(x), FY (y)). (10)

If both FX , FY are continuous a copula function C is unique. Sklar’s theorem implies also an
inverse relation,4

C(u, v) = FX,Y (F−1
X (u), F−1

Y (v)). (11)

Formulation (10) above should be understood such that the joint distribution function gives
us two distinct information: (i) marginal distribution of random variables, (ii) dependency
function of distributions. Hence, while the former is given by FX(x) and FY (y), a copula
function specifies the dependency, nothing less, nothing more. That is, only when we put both
information together, we have sufficient knowledge about the pair of random variables X, Y.

For the modeling purposes, we can combine e.g. VG and NIG marginals by means of Gaus-
sian or Student copula function. Since with the latter we can stress the tails, it might be more
suitable for financial returns modeling.

3 Description of FX rate data

The data set we consider comprises of daily effective FX rates for EUR, GBP, HUF, PLN,
SKK, and USD with respect to CZK as published by the Czech National Bank, ie generally
the market quotes at 2 p.m. We monitor the market data starting on January 1, 2000. The
last quotes were taken on December 31, 2007. It follows that we dispose of a time series of
2014 observations for log-returns of six distinct FX rates. For each FX rate basic descriptive
statistics – mean, standard deviation, variance, skewness and kurtosis – of daily log-returns
(per annum, if applicable) were evaluated, see Table 1.

We can see that the mean returns p.a. (the drift over the whole length) varies substantially
between −1% (SKK) and −9% (USD). The standard deviation of two FX rates is around 5%
(SKK, EUR), another two are close to 8% (GBP, HUF) and the last two are slightly above 10%
(PLN, USD). Except the SKK rate, the skewness is significantly negative, the highest is for
HUF (−0.8). By contrast, the highest kurtosis can be observed for the PLN rate (12), while the

3Basic reference for the theory of copula functions is [14], while [15] and [7] target mainly on the application
issues in finance.

4To simplify the notation, F−1
X (u) is the inverse to the distribution function, if it exists, or at least its

generalization F−1
X (u) = inf{x : F (x) ≥ u}.
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Table 1: Descriptive statistics of daily log-returns (p.a.)

Parameter EUR GBP HUF PLN SKK USD
mean μ −0.038 −0.058 −0.038 −0.019 −0.009 −0.086
variance σ2 0.0028 0.0067 0.0062 0.010 0.0034 0.0112
standard deviation σ 0.053 0.082 0.079 0.100 0.058 0.106
skewness κ3 −0.297 −0.411 −0.790 −0.533 0.0646 −0.122
kurtosis κ4 7.432 5.320 9.748 12.209 7.618 4.047

USD is not very far from the Gaussian. When testing if the distribution can be regarded to be
the Gaussian, several tests of Jarque-Bera type can be used. Here, the hypothesis of normality
must be strongly rejected for all FX rates, including the USD rate data.

In order to simplify further calculations, the portfolio construction and to concentrate our
attention on the non-linearity and non-normality, we can normalize the vectors of returns to get
standardized time series with zero mean and unit variance. Bellow, we report the correlation
matrix.

R =

⎛⎜⎜⎜⎜⎜⎜⎝
1. 0.54 0.45 0.24 0.61 0.40

0.54 1. 0.25 0.35 0.37 0.65
0.45 0.25 1. 0.46 0.50 0.17
0.24 0.35 0.46 1. 0.35 0.38
0.61 0.37 0.50 0.35 1. 0.22
0.40 0.65 0.17 0.38 0.22 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

4 Portfolio modeling

Consider a portfolio with equal sensitivity to each variable (FX rate)

ΠB = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6).

The true loss on a one-day window of the portfolio, ie. return with minus sign, incurred during
last four years is depicted in (Figure 1).

The modeling by Lévy processes allows us to fit also the higher moments of the distribu-
tion. However, it simultaneously make the estimation of the parameters more data demanding
(kurtosis is commonly less stable than variance). We therefore use 4 preceding years to fit the
model, in such a way, the instability of the kurtosis and skewness fitting should be prevented,
and estimate the risk (by MC simulation, assuming 500 000 trials) for the next day considering
VG model, NIG model and GBM, each of them either coupled together by Gaussian or Student
copula function in order to obtain a multidimensional distribution.

Each model is considered for three distinct significance levels, α = {0.05, 0.01, 0.001}. Hence,
the first level corresponds to the Basel II requirement, while the others are related to the
Economic capital calculation for banks with good or very good ratings. Next, the estimated
VaR is compared to the true loss incurred on a given day. If the VaR is exceeded, we get an
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Figure 1: True loss over the last four years

Table 2: Backtesting results, Gaussian copula

Assumption VG NIG GBM
VaR (0.05) 50 31 31 31
VaR (0.01) 10 7 7 9
VaR (0.001) 1 1 1 3

exception day. This procedure is repeated over 4 years. The backtesting results are depicted
in Table 2.

Since the last confidence level is very high, the data we have should provide us with one
exception only.5 Another interesting results are apparent from Figure 2. While the left part
depicts VaR estimation, on the right we can observe the magnitude of AVaR. Particular curves
depicts the evolution in time for α = 0.05 (lower two) and α = 0.001. Since the results for
VG and NIG are almost interchangeable, we produce only one of them (VG, gray curves)
accompanied by the GBM (black curves).

It is interesting to see that although the data are normalized (variance is still one and the
average return is zero), the VaR and AVaR slightly decline for each combination of the model
and probability. The reason might be the dependency among particular assets – since the linear
correlation falls slightly, there was a bigger effect of diversification. Moreover, we observe that
the VG and NIG models provide us with not very stable results. This might be give by (a) the
changes in the skew and kurtosis for various intervals; and (b) the complexity of the model, ie
many trials are needed to get a smooth results.

Next, we proceed to the Student copula, ie the dependency in both tails is emphasized and
so is the probability of the extremal scenarios. In theory, distinct numbers of degrees of freedom

5The confidence of the results can be tested e.g. by Kupiec’s statistic LR: LR = −2 ln[(1 − α)N−MαM ] +
2 ln[(1 − M/N)N−M (M/N)M ].
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might be used for particular models, however, for simplicity, we assume it to be 7.
The backtesting results (Table 3) indicates no clear difference among the Gaussian copula

and Student copula, when the significance is 5%. The overestimation is the same. Surprisingly,
the error (more particulary, the overestimation of the loss magnitude) is increased for 1%
significance. Moreover, considering α = 0.1%, the number of exception is identical with the
assumption, even for the GBM model, which is quite surprising.

Table 3: Backtesting results, Student copula

Assumption VG NIG GBM
VaR (0.05) 50 32 31 32
VaR (0.01) 10 5 5 7
VaR (0.001) 1 1 1 1

By inspection of Figure 3 it is apparent that the higher significance of the correlation in
tails results into apparent increase of the estimated risk, both by V aR and AV aR, especially
for both Lévy models.

5 Conclusions

The assessment of the market risk of the portfolio is a crucial issue of the risk management unit
of financial institutions. Since real market returns commonly departure from the Gaussianity,
the models fitting well the fatter tails (mainly left) are desired. A large group of models targeting
on higher moments of the distribution (skewness and kurtosis) are so called subordinated GBMs
from the Lévy models family (VG, NIG). However, the dependency modeling of such models is
further complicated.

In this paper, we focused on a FX rate portfolio. First, we normalized the series of six
distinct FX log-returns to get zero mean and unit variance. In this way, the data on equally
weighted portfolio differ only due to the skewness and kurtosis. Next, we modeled the FX
returns independently with a standard model (GBM) and two subordinated alternatives (VG
and NIG). Each model of the marginal distribution of FX returns was evaluated with two
elliptical copula functions, either Gaussian or Student.

It was documented that although the Gaussian copula is symmetric with no emphasis on the
tails, the fat tailed marginals (VG, NIG) provide us with considerable improvements against
the standard market model – both, the skewness and kurtosis are preserved. Clearly, the
Student copula allows us to fit the heaviness of the tails leaving the skewness to be controlled
only slightly by the marginals. For the series we considered, VG model needs more degrees of
freedom than NIG model.

All the results were obtained for the overall series of data, it might be therefor interesting
to compare particular models of the marginal distribution jointly with various copula functions
within the predictive task.

The preliminary backtesting results indicate important improvements of copula approach
with Lévy marginals for risk assessment. However, the data series should be studied more care-
fully before final conclusion could be made (subseries, clusters, various weighting). Moreover,
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since not only the probability of a loss is important, also its magnitude should be measured. In
such a case, however, the fitting is more problematic. Finally, the results can be used to obtain
risk adjusted performance measures, such as RORAC or RAROC.
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Figure 2: VaR and AVaR estimation, Gaussian copula for VG (black) and GBM (grey) models
assuming significations of 0.05 (bottom) and 0.001 (top).
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Figure 3: VaR and AVaR estimation, Student copula for VG (black) and GBM (grey) models
assuming significations of 0.05 (bottom) and 0.001 (top).
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Abstract. At present, two main approaches to the volatility modelling exist: the GARCH and 
stochastic volatility models. In this paper, the GARCH models have been applied both to 
selected Czech capital market and exchange rates time series. The goal of this investigation 
consists in possible differences in behaviour with respect to time scale (days, weeks, months). 
The second level is given by differences between stock prices and exchange rates. Finally, 
besides univariate models, multivariate GARCH were also applied to discover possible dynamic 
relations among different time series. 
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1 Elementary descriptive statistics 
 
 The main aim of this study is to compare the behaviour of stock returns and exchange rate 
returns at Czech financial markets. Input data are given as daily values of corresponding time series 
values tx  during the period 2001-2007, i.e.1757 daily values of stock prices. We have selected four 
most liquid stocks: CEZ (energetics), KB  (finance), TEL (telecommunication) and UP 
(petrochemicals). As for exchange rates, there are 1302 daily values observed within 2003-2007, 
and, namely, CHF, EUR, GBP and USD. The subject of our analysis were daily logarithmic returns 
expressed as percentage and computed as 
 

  
 �1100 ln lnt t ty x x 	
 	  (1.1) 

 
Similarly, 5-day (weekly) and 21-day (monthly) returns were computed too using non-overlapping 
intervals. Thus, lengths of corresponding weekly time series are 364 (stocks) and 273 (exchange 
rates). Monthly time series have lengths 86 (stocks) and 65 (exchange rates). 
 First, some elementary  summary statistics related to daily returns were computed. The results 
obtained are compiled in the folowing tables. 
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Table 1: Summary statistics for stock returns 
 
 Average Median StDev LowerQ UpperQ InterQ Skewness Kurtosis 

CEZ_01 0.15 0.17 1.95 -0.81 1.20 2.01 -1.11 13.33 
CEZ_05 0.75 1.03 3.53 -1.06 2.83 3.89 -0.45 1.89 
CEZ_21 2.95 3.87 8.53 -3.19 8.19 11.38 -0.21 0.56 
KB_01 0.09 0.14 1.83 -0.94 1.08 2.02 -0.08 2.38 
KB_05 0.43 0.71 3.52 -1.63 2.65 4.28 -0.33 0.72 
KB_21 1.58 3.00 8.72 -3.57 7.44 11.01 -0.45 -0.01 
TEL_01 0.00 0.02 2.07 -0.82 0.87 1.69 -0.45 5.78 
TEL_05 0.02 0.32 3.90 -1.46 1.90 3.36 -0.62 3.09 
TEL_21 0.08 0.98 9.74 -4.02 4.58 8.60 -0.33 2.96 
UP_01 0.09 0.12 2.29 -0.75 1.03 1.78 -0.61 10.54 
UP_05 0.48 0.55 4.63 -1.47 2.68 4.15 -1.39 12.28 
UP_21 1.79 1.95 11.54 -3.24 7.48 10.72 -0.07 1.93 

 
Table 2:  Summary statistics for exchange rate returns 
 
 Average Median StDev LowerQ UpperQ InterQ Skewness Kurtosis 

CHF_01 -0.02 -0.02 0.44 -0.26 0.20 0.46 0.15 13.12 
CHF_05 -0.11 -0.10 0.64 -0.62 0.37 0.99 -0.07 -0.36 
CHF_21 -0.47 -0.52 1.04 -1.34 0.31 1.65 -0.19 -0.43 
EUR_01 -0.01 -0.01 0.33 -0.20 0.18 0.38 0.10 2.69 
EUR_05 -0.07 -0.06 0.55 -0.42 0.29 0.71 -0.24 0.28 
EUR_21 -0.30 -0.44 0.99 -1.00 0.52 1.52 0.03 -0.86 
GBP_01 -0.02 0.00 0.50 -0.33 0.29 0.62 0.04 1.18 
GBP_05 -0.12 -0.08 0.84 -0.64 0.44 1.08 -0.15 0.22 
GBP_21 -0.51 -0.56 1.68 -1.68 0.63 2.31 0.08 0.02 
USD_01 -0.04 -0.02 0.66 -0.41 0.35 0.76 0.04 1.33 
USD_05 -0.20 -0.24 1.21 -0.98 0.52 1.50 0.26 0.19 
USD_21 -0.83 -0.66 2.46 -2.36 1.07 3.43 -0.35 -0.22 
 

 
2 Univariate modelling 

 
 The next step is the possibility of modelling of return time series. First, the behaviour of daily 
returns was investigated. In general, ACF values statistically significant at 5% level  occured up to 
relatively high orders. Therefore, combined AR-GARCH models suitable for the modelling in the 
presence of heteroscedasticity were employed . The governing equations are [4], [8] 
 

  

 �

1 1

2 2 2
1 1

...

0,1
t t m t m t t t t

t t t t

y y y e
e N

� � � � �

� � �� ��
	 	

	 	


 � � � 



 � � �
 (2.1) 

where t�  denotes conditional standard deviation and te  is normal white noise. First, we employed 
the simplest GARCH(1,1) model, which was quite efficient in most cases.  
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 Second, EGARCH(1,1) model was employed to model possible asymmetric reaction with 
respect to positive and negative shocks te . General form of conditional variance in EGARCH 
models can be written as [7] 
 

 
 � 
 �2 2

1 1
log log

p q
t i t i

t j t j i i
j i t i t i
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� �

	 	
	


 
 	 	

� �

 � � �� �� �

� �
� �  (2.2) 

Clearly, if  1 0� 
 , then both positive and negative shocks exert the same influence on volatility. On 
the other hand, for 11 0�	 � � , positive shocks influence volatility less than negative ones. Indeed, 
this second case actually occurs, as can be seen from the Table 5. In all cases, EGARCH (1,1) 
model led to slightly better results in comparison with GARCH (1,1). 
 
Table 3: Estimated parameters of AR-EGARCH models  for daily stock returns (SL=0.05) 
 
 � (1) � (2) � (4) � (05) � (7) � (8) � � � � 

CEZ_01 0.054 - - - - 0.054 - 0.241 0.892 -0.085 
KB_01 0.072 - 0.058 - -0.047 - -0.075 0.216 0.924 -0.079 
TEL_01 0.048 - - - - - -0.174 0.267 0.996 - 
UP_01 0.052 0.037 - - - - -0.170 0.420 0.940 -0.090 

 
Obviously, there is strong direct dependence of conditional standard deviation on its previous 
values, manifested itself by large values of  � parameter. Second, � values vary only slightly among 
individual stocks returns. On the other hand, GARCH (1,1) models proved to be sufficient for 
exchange rate daily returns and the results are presented in the Table 4. 
 
Table 4: Estimated parameters of AR-GARCH models for daily exchange rate returns 
(SL=0.05) 
 
 � (1) � (3) � (6) � � � 

CHF_01 -0.056 - - - 0.036 0.946 
EUR_01 -0.072 - -0.055 0.002 0.053 0.929 
GBP_01 - -0.052 - - 0.023 0.971 
USD_01 - - - - 0.029 0.967 

 
 As for weekly stock returns, the matter is more stratified. There is no need for GARCH model 
in the case of KB and EGARCH is more efficient only for TEL. Again, this situation is summarized 
in the Table 5. 
 
Table 5: Estimated parameters of AR-EGARCH models  for weekly stock returns (SL=0.05) 
 
 � (1) � (2) � (3) � (4) � (5) � � � � 
GARCH(1,1)          

CEZ_05 0.307 - - - - - - 0.864 - 
KB_05 0.190 - - - - - - - - 
UP_05 0.235 - 0.097 -0.113 0.067 - 0.159 0.742 - 

EGARCH(1,1)          
TEL_05 0.261 -0.148 - - - 0.085 - 0.985 -0.139 
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 On the contrary, the modelling weekly exchange rate returns does not demand GARCH at all 
and simple AR models are quite sufficient. 
 
Table 6: Estimated parameters of AR models  for weekly exchange rate returns (SL=0.05) 
 
 CHF_05 EUR_05 GBP_05 USD_05 

AR (1) 0.140 0.209 0.201 0.291 
AR (2) -0.121 -0.161 - - 

 
As for monthly stock returns, classical ARMA models are fully satisfactory. 
 
Table 7: Estimated parameters of ARMA models  for monthly stock returns (SL=0.05) 
 
 CEZ_21 KB_21 TEL_21 UP_21 

AR (7) - -0.633 - - 
AR(10) -0.403 - - - 
MA(7) - 0.891 0.268 0.271 

MA(10) 0.878 - - - 
 
The same is true for 21-day exchange rate returns. Moreover, only MA models are needed. 
 
Table 8: Estimated parameters of MA models  for monthly exchange rate returns (SL=0.05) 
 
 CHF_05 EUR_05 GBP_05 USD_05 

MA (1) - 0.290 0.244 0.283 
MA (3) - - - -0.345 
MA (5) 0.427 - - - 
MA (7) - - - -0.763 
MA (9) -0.507 - -0.512 - 

MA (10) - - -0.531 - 
 
 

3 Multivariate modelling 
 
 First of all, the values of cross-correlation function for zero time lag were computed. Clearly, 
it is the case of synchronous correlation between all  time series of returns under consideration. 
 
Table 9: Estimated values of sample cross-correlation function for stock returns  (SL=0.05) 
 

 CEZ CEZ CEZ KB KB TEL 
 KB TEL UP TEL UP UP 

daily 0.465 0.362 0.417 0.408 0.349 0.276 
       

weekly 0.397 0.294 0.438 0.368 0.256 0.236 
       

monthly 0.465 0.302 0.558 0.288 - 0.236 
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Table 10: Estimated values of sample cross-correlation function for exchange rate returns  
(SL=0.05) 
 

 CHF CHF CHF EUR EUR GBP 
 EUR GBP USD GBP USD USD 

daily 0.689 0.456 0.324 0.638 0.531 0.634 
       

weekly 0.748 0.442 0.425 0.572 0.593 0.615 
       

monthly 0.739 0.492 0.516 0.660 0.629 0.633 
 
 To investigate dynamical dependence among individual returns, Granger causality test was 
applied in two-dimensional system of jointly stationary time series [1]. We say, variable x Granger 
cause variable y, if delayed values of x variable improve prediction of y, despite that delayed values 
of y are introduced as explanatory variables. The model assumed is bivariate VAR(p) in the form 

  
1 1 1 1
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 (3.1) 

Then the test of Granger causality in direction x y�  can be understood as F-test of parameters 

21 22 2, ,..., p� � �  in the regression model (4), whereas the test of Granger causality in direction 
y x�  is related to parameters 11 12 1, ,..., p� � � . The results obtained are summarized in the Table 11. 
 
Table 11: Results of testing Granger causality 
 

1-DAY CEZ � UP TEL � KB - - - 
P-value 0.021 0.047 - - - 

5-DAY CEZ � UP KB � CEZ UP � KB - - 
P-value 0.045 0.048 0.008 - - 

21-DAY - - - - - 
P-value - - - - - 

1-DAY USD  � EUR USD � CHF EUR � CHF   
P-value 0.016 0.014 0.001   

5-DAY USD � EUR     
P-value 0.029     

21-DAY USD  � EUR USD  � GBP GBP  � USD GBP  � CHF GBP  � EUR
P-value 0.049 0.006 0.005 0.004 0.002 
 

 Further, it is of interest to generalize univariate GARCH(1,1) employed former to multivariate 
case. This approach allows us to study time-varying behaviour of conditional covariances, which is 
an important problem in portfolio theory. A general multivariate GARCH model related to k-
dimensional random process t�  can be written in the form [6] 
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 �t 1 ,..., T
t t t t kt� � � �
 
e H  (3.2) 

 
where te  is a k-dimensional iid process with zero mean and covariance matrix equal to identity one. 
As a generalization of univariate case, tH  denotes time-varying conditional covariance matrix that 
needs to be specified. A general representation for the multivariate analogue of the GARCH(1,1) is 
so-called VEC model [5] 
 
  
 � 
 � 
 �* * *

t t 1 t 1 t 1
Tvech vech vech� �	 	 	
 � � �H A B H  (3.3) 

 
where vech operator stacks the lower portion of a matrix in a vector. For example, in the simplest 
bivariate case, this expression takes the form 

 

* * * * 2 * * *
11 11 11 12 13 1, 1 11 12 13 11, 1

* * * * * * *
12 12 21 22 23 1, 1 2, 1 21 22 23 12, 1

* * * * 2 * * *
22 22 31 32 33 2, 1 31 32 33 22, 1
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 (3.4) 

 
containing 21 parameters to be estimated, and, generally, (k(k+1)/2)*(1+2(k(k+1)/2)). Thus, to 
overcome this shortcoming, diagonal VEC model was constructed with elements [3] 
 
  , 1 , 1 , 1 , 1, 2,...,ijt ij ij i t j t ij ij th h i j k� � � � �	 	 	
 � � 
  (3.5) 

 
containing generally 3(k(k+1)/2) parameters. Again, written explicite for bivariate case k=2 
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 (3.6) 

 
and there are 9 parameters to be estimated. 

 Bollerslev developed an alternative approach by assuming time-invariant conditional 

correlations ij"  between the elements of t� (CCC model). This model can be written as [2] 
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The results of computation are summarized in the tables below. 
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Table 12: Estimated parameters of diagonal VEC-GARCH model for daily stock returns. 
Parameters ij"  were computed using  CCC model 
 

 � (1) � � � � 
CEZ 0.055 0.241 0.094 0.851  
KB 0.078 0.145 0.076 0.893  
TEL 0.052 0.019 0.077 0.919  
UP 0.051 0.194 0.131 0.830  

CEZ_KB  0.057 0.044 0.914 0.432 
CEZ_TEL  0.032 0.053 0.912 0.401 
CEZ_UP  0.071 0.067 0.876 0.389 
KB_TEL  0.016 0.041 0.937 0.372 
KB_UP  0.051 0.046 0.907 0.352 
TEL_UP  0.018 0.052 0.915 0.300 

 

Table 13: Estimated parameters of diagonal VEC-GARCH model for daily exchange rate 
returns. Parameters ij"  were computed using  CCC model 
 
 � (1) � � � � 

CHF -0.078 0.005 0.060 0.904  
EUR -0.053 0.002 0.044 0.932  
GBP - 0.002 0.025 0.966  
USD - 0.003 0.021 0.971  

CHF_EUR  0.002 0.054 0.919 0.758 
CHF_GBP  0.002 0.030 0.935 0.475 
CHF_USD  0.002 0.038 0.912 0.323 
EUR_GBP  0.002 0.029 0.944 0.615 
EUR_USD  0.002 0.030 0.939 0.519 
GBP_USD  0.001 0.020 0.970 0.616 
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Figure 1:  Time-varying conditional correlation between daily stock returns 

 
Table 14: Estimated parameters of diagonal VEC-GARCH model for weekly stock returns. 
Parameters ij"  were computed using  CCC model 
 
 � (1) � � � � 

CEZ 0.229 - 0.033 0.919  
TEL 0.227 - 0.047 0.941  
UP 0.210 0.772 0.064 0.889  

CEZ_TEL  - 0.073 0.625 0.366 
CEZ_UP  - 0.015 0.969 0.393 
TEL_UP  - 0.068 0.625 0.309 

 
Again, like in univariate case, there was no need for multivariate GARCH model in the case of 
weekly exchange rate returns. 
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Figure 2:  Time-varying conditional correlation between daily exchange rate returns 

 
 
Conclusion 
 
     As for descriptive statistics, there is clear tendency to positive kurtosis and negative skewness in 
the case of  daily and weekly stock returns. One the other hand, these findings are not repeated in 
exchange rate returns. Thus, GARCH models proved to be unavoidable for the modelling of daily 
and mostly also weekly stock returns and daily exchange rate returns. Second, asymmetric 
EGARCH(1,1) model capable to capture non-symmetry in reaction to positive and negative shocks 
was needed in the case of daily stock returns. It was manifested that positive shocks influenced 
volatility less than negative ones. On contrary, the modelling of weekly and monthly exchange rate 
returns demands only ARMA models. The same is true also for monthly stock returns. 
      Further, the values of cross-correlation function were always positive, signalizing some measure 
of coherent movement among time series. The measure of cross-correlation is higher in the case of 
exchange rate returns. Granger causality test revealed some directions of possible influence, exerted 
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by lagged values of explanatory time series (for example the influence of lagged CEZ returns on UP 
ones and lagged USD returns on EUR ones). Finally, the use of multivariate GARCH(1,1) model 
led to the possibility of modelling dynamical time-varying correlations among individual daily 
returns. In practice, this can help in the problems connected with portfolio theory. 
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Figure 3:  Time-varying conditional correlation between weekly stock returns 
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VECTORIZED TABLE DRIVEN ALGORITHMS FOR
DOUBLE PRECISION ELEMENTARY FUNCTIONS USING

TAYLOR EXPANSIONS

BARRERA Tony, (SE), SP̊aNGBERG Daniel, (SE), HAST Anders (SE),
BENGTSSON Ewert (SE)

Abstract. This paper presents fast implementations of the inverse square root and arc-
sine, both in double precision. In single precision it is often possible to use a small table
and one ordinary Newton-Raphson iteration to compute elementary functions such as the
square root. In double precision a substantially larger table is necessary to obtain the
desired precision, or, if a smaller table is used, the additional Newton-Raphson iterations
required to obtain the precision often requires the evaluation of other expensive elemen-
tary functions. Furthermore, large tables use a lot of the cash memory that should have
been used for the application code.
Obtaining the desired precision using a small table can instead be realised by using a
higher order method than the second order Newton-Raphson method. A generalization
of Newton’s method to higher order is Householder’s method, which unfortunately often
results in very complicated expressions requiring many multiplications, additions, and even
divisions.
We show how a high-order method can be used, which only requires a few extra additions
and multiplications for each degree of higher order. The method starts from the Taylor
expansion of the difference of the value of the elementary function and a starting guess
value for each iteration. If the Taylor series is truncated after the second term, ordinary
Newton iterations are obtained. In several cases it is possible to algebraically simplify the
difference between the true value and the starting guess value. In those cases we show that
it is advantageous to use the Taylor series to higher order to obtain the fast convergent
method. Moreover, we will show how the coefficients of a Chebyshev polynomial can be
fitted to give as little error as possible for the functions close to zero and in the same time
reduce the terms in the Taylor expansion.
In the paper we benchmark two example implementations of the method on the x86 64
architecture. The first is the inverse square root, where the actual table (to 12 bit precision)
is provided by the processor hardware. The inverse square root is important in many
application programs, including computer graphics, and explicit particle simulation codes,
for instance the Monte Carlo and Molecular Dynamics methods of statistical mechanics.
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The other example is the arcsine function, which has a slow converging Taylor expansion
and where no tables are provided by the hardware.
The vectorized versions of the implementations of the inverse square root are 3.5 times
faster than compiled code on the Athlon64 and about 5 times faster on the Core 2. The
scalar version of the arcsine function is, depending on order and table size, between 2 and
3 times faster than the compiled code, and the vectorized version is between 3 and 4 times
faster on the Athlon64, while it is between 4 and 5 times faster than the compiled version
on the Core 2.
Key words and phrases. Vectorized algorithms, Taylor expansion, Double precision

Mathematics Subject Classification. Primary 60A05, 08A72; Secondary 28E10.

1 Introduction

For many years it has been said that using table driven algorithms to compute elementary
functions on modern processors is inefficient due to the replacement of application program
data cache lines by table entries of the elementary function. Still many attempts to implement
efficient table algorithms has been done such as [1, 2, 3]

In single precision it is often possible to use a small table and one ordinary Newton-Raphson
iteration. In double precision a substantially larger table is necessary to obtain the desired
precision, or, if a smaller table is used, the additional Newton-Raphson iterations required to
obtain the precision often requires the evaluation of other expensive elementary functions.

Obtaining the desired precision using a small table can instead be realised by using a higher
order method than the second order Newton-Raphson method. A generalization of Newton’s
method to higher order is Householder’s method, which unfortunately often results in very
complicated expressions requiring many multiplications, additions, and even divisions.

We have developed a new high-order method which only requires a few extra additions and
multiplications for each degree of higher order. The method starts from the Taylor expansion
of the difference of the value of the elementary function and a starting guess value for each
iteration. If the Taylor series is truncated after the second term, ordinary Newton iterations
are obtained. In several cases it is possible to algebraically simplify the difference between the
true value and the starting guess value. In those cases we show that it is advantageous to use
the Taylor series to higher order to obtain the fast convergent method.

In practice, when a fixed precision is required (such as single or double precison) it is more
efficient (fewer table entries or fewer terms in the expansion) to replace the Taylor expansion
by a Chebyshev polynomial. The drawback of using the Chebyshev polynomial is that the
magnitude of the obtained absolute errors are of the same size over the whole function range,
so for values of the elementary function close to zero, the relative errors become large, and
therefore do not give proper double precision results. For this reason we have fitted polynomial
coefficients to obtain the desired relative errors over the whole function range.

For a fixed precision, such as our selected double precision, the size of the table varies,
depending on the order of the method. More terms in the polynomial are required for smaller
tables, so depending on the cache-use of the application program, there exist an optimal com-
bination.

We benchmark two example implementations of the method on the x86 64 architecture.
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The first is the inverse square root, where the actual table (to 12 bit precision) is provided by
the processor hardware. The inverse square root is important in many application programs, in-
cluding computer graphics, and explicit particle simulation codes, for instance the Monte Carlo
and Molecular Dynamics methods of statistical mechanics. The other example is the arcsine
function, where no tables are provided by the hardware, so we have developed four different
versions, depending on order and table size. The arcsine function is generally hard to compute
since many coefficients of the Taylor series is needed for double precision [4]. Nonetheless this
paper presents a fast algorithm for double precision arcsine.

2 Theory

The general Taylor series of a function, f(p), expanded around the point pk is given by

f(p) = f(pk) +
f (1)(pk)

1!
(p − pk) +

f (2)(pk)

2!
(p − pk)

2 + · · · + f (m)(pk)

m!
(p − pk)

m (1)

Truncating the Taylor series after the linear term, rearranging and dividing with f (1)(pk),
returns

p = pk − f(p) − f(pk)

f (1)(pk)
, (2)

which is identical to Newton’s method, provided that the function, f(p), has a zero at p.
However, here, we keep the higher terms in the Taylor series, to provide for higher convergence.
In general, the residual error can be written as

ε = p − pk, (3)

although it is advantageous to have more elaborate error functions. For each general function
we wish to find a function in the residual error:

R = R(p, pk, x) (4)

Below we show appropriate such functions for the inverse square root and the arcsine functions.

2.1 Inverse square root

The inverse square root is used in many applications in computer graphics and molecular
dynamics and it can also be computed in many ways, using the Newton-Raphson method [5, 6]
or by computing its Taylor expansion [7].

The inverse square root, p = 1/
√

x, does not have a Taylor series. Therefore we use the
well known variable substitution x = 1 − z to obtain the Taylor expansion around z = 0, [7]:

1√
1 − z

= 1 +
1

2
z +

3

8
z2 +

5

16
z3 . . . (5)
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Setting the residual error function to

R = 1 − xp2
k = 1 − p2

k

p2
, (6)

which is small when pk is a close starting guess to p, and noting that

1√
x

=
pk√
xp2

k

=
pk√

1 − R
(7)

allows the calculation of p:

p = pk

(
1 +

1

2
R +

3

8
R2 +

5

16
R3 . . .

)
(8)

Truncating this series gives a new, better, estimate of p, pk+1, and the series can be iterated
to arbitraty precision. If the series is truncated already after the linear term, iterations identical
to the Newton method is obtained.

2.2 Arcsine

The acsine can generally be computed by the CORDIC algorithm [8], however here we will show
how we can compute it efficiently using the proposed technique. The arcsine, p = arcsin(x),
can be Taylor expanded around x = 0:

arcsin(x) = x +
1

6
x3 +

3

40
x5 +

5

112
x7 +

35

1152
x9 +

63

2816
x11 . . . (9)

Setting the residual error to
p − pk = arcsin(R), (10)

returns the residual error function, R:

R = sin(pk − arcsin(x)), (11)

and using the trigonometric addition formulae and the relation cos(arcsin(x)) =
√

1 − x2, yields

R =
√

1 − x2 sin(pk) − x cos(pk), (12)

or alternatively

R = x
√

1 − x2
k − xk

√
1 − x2, (13)

where pk = arcsin(xk). Thus, when xk is close to x, R is small. The final value of p can be
found by iterating

p = pk − R − 1

6
R3 − 3

40
R5 − 5

112
R7 − 35

1152
R9 − 63

2816
R11 . . . (14)
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3 Method

3.1 Implementation

For practical reasons it may be inefficient to have a short polynomial expansion and iterating
several times. For instance, in the case of the arcsin function, the values of cos(pk) and sin(pk)
are needed every iteration, and they are about as expensive to evaluate as the arcsin function
itself. However, by providing a table of initial guesses for a number of xk ≈ x, i.e. pk =
arcsin(xk), as well as cos(pk) and sin(pk) and providing a polynomial expansion of sufficient
order it is possible to give the desired precision in a single iteration.

We have implemented the inverse square root, square root and arcsine in x86 64 assembler
using gcc extensions and inline assembly to allow for easy calling of the routines from C. The
implementation of the routines allow the evaluation of a single (scalar), 2, 4, 8, and a large
number of values at a time (vector). To minimize the amount of code having to be written, we
have written a number of macros which can be combined to form the various routines. The use
of these macros generates code where the subsequent instructions are dependent on each other.
For this reason a simple scheduler was written which is capable of scheduling the instructions
from various macro blocks together. The goal of the scheduler is to place loads as early as
possible and to place dependent instructions as far as possible from each other.

The program code, including the macro processor and scheduler can be downloaded from
http://www.uppmax.uu.se/Members/daniels/fastmath/fastmath

3.2 Benchmarks

The benchmarks were run by generating a vector containing random numbers in an appropriate
range. The implemented functions were then called to evaluate all the values in the vector.
The same vector was evaluated 108/n times, where n is the length of the vector. This makes
the test for each vector length last on the order of one second. The vector length was varied
from 10 elements to about 106 elements, and the timing for the routines were estimated where
the performance drops off due to the vector no longer fitting in the cache (apart from the arcsin
implementation using the very large tables, where the values were taken for vector lengths
corresponding to about 3 MB in size, as noted in the text). The tests were rerun and checked
for consistency.

4 Results and Discussion

4.1 The inverse square root function

4.1.1 Implementation

In the case of the inverse square root function, the x86 64 instruction set contains an instruction
rsqrtps, which is capable of at the same time give four 12 bit accurate estimates to the inverse
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square root from single precision inputs [9, 10, 11].
While it is possible to use a fifth order method to give at least double precision accuracy,

if the initial 12 bit estimates are converted to double precision directly, a higher performance
version is possible, by first doing an ordinary Newton iteration in single precision, since it is
possible to do single precision math at twice the speed of double precision math [9, 10, 11],
and then convert the now 23 bit estimates to double precision and do a third order iteration to
obtain the full double precision. Our implementation is shown in the appendix A.1.1.

4.1.2 Performance

Table 1 shows the performance of the inverse square root implementation. The performance of
our implementation (Newton+New) is higher in all cases (scalar to vector) than the compilers
library code, with the vector version beeing 3.5 times faster on the Athlon 64 and 4.7 times
faster on the Core 2.

The reason for the increased performance of the routines computing two values or more
at the same time over the scalar versions comes from two sources. First, the throughput of
multiply and addition instructions on four single precision values at a time is twice that of
double precision operations for the AMD64 processor [9]. On the Intel Core2 and AMD Family
10h processors the throughput of double precision operations on two values at the same time is
two times as high as scalar operations, while the throughput of single precision operations on
four values at the same time is four times that of scalar operations [10, 11]. Second, when more
values are processed at a time, unrolling the loops and scheduling places dependencies further
apart, allowing for improved software pipelining.

4.2 The square root function

The square root of a value can be estimated quickly if the inverse square root of the value has
been computed: √

x =
x√
x

(15)

However, if the square root of zero is being computed, the above formula does obviously not
work. If evaluated as it stands it returns a NaN (not a number) for

√
0. However, the x86 64

Table 1: The performance of the inverse square root implementation on the AMD Athlon 64
and the Intel Core2 in cycles per determined value.

Implementation scalar 2 at a time 4 at a time 8 at a time vector
AMD Athlon 64

Compiler (gcc 4.1.2) 43.6
Newton+New 36.1 24.6 18.0 13.0 12.2

Intel Core 2
Compiler (gcc 4.1.2) 39.8

Newton+New 26.2 31.5 17.3 10.2 8.4
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instruction set contains an instruction, cmpordpd, which returns true (all bits 1) if the two num-
bers compared are ordered (normal numbers) and zero (all bits 0) if the two numbers are NaNs.
Since the double precision representation of zero corresponds to all bits zero, the value returned
from the formula can therefore be masked using the return value of the cmpordpd instruction.
Our implementation of the square root function is shown as part of the appendix A.1.2.

4.3 The arcsine function

4.3.1 Implementation

No hardware assisted initial estimate tables are available for the arcsine function in the x86 64
instruction set. In this case we therefore derive our own tables. The goal is to quickly find the
value of R, the residual error function, which is later to be fed into a polynomial expansion of
arcsin(R). The residual error function is:

R =
√

1 − x2 sin(pk) − x cos(pk). (16)

We compute the value
√

1 − x2 using the routines described in section 4.1. We also look up
the values pk, cos(pk), and sin(pk) in a table. The value pk corresponds to arcsin(xk), where xk

is a value close to the original x:

xk =
ent(C(x + 1))

C
, (17)

where C depends on the size of the table. Our implementation is shown in the appendix A.1.2

The Taylor expansion of the arcsine function to order 11 is

x +
1

6
x3 +

3

40
x5 +

5

112
x7 +

35

1152
x9 +

63

2816
x11 (18)

The Chebyshev polynomial approximation to arcsin(x) in the range x = −0.0125 to 0.0125
with the largest absolute error slightly larger than 3 · 10−17 is

1.00000000000001863010738x+.166666665712817591075834x3+.0750122087145561933868722x5

(19)

The drawback of using a Chebyshev polynomial is that the magnitude of the obtained
absolute errors are of the same size over the whole function range, so for values of arcsin(x)
close to zero, the relative errors become large. For this reason we have fitted polynomial
coefficients to obtain the desired relative errors over the whole function range, combining the
best of the Taylor and Chebyshev polynomials.

For the arcsin function four different polynomial expansions were derived using a weighted

volume 2 (2009), number 3 177



Aplimat - Journal of Applied Mathematics

least squares method. The expansions are

a5(x) = x + .166666666128655128623305x3 + .0750102402435589252147405x5 (20)

a7(x) = x + .166666666697905743727427x3 + .0749998976581682564288784x5

+ .0447430277805142540387078x7 (21)

a9(x) = x + .166666666660021198679299x3 + .0750000074913513465934439x5

+ .0446400652478188988218734x7 + .0308048137417453317015142x9 (22)

a11(x) = x + .166666666668909687657315x3 + .0749999986822425537069629x5

+ .0446431286336327379508746x7 + .0303566327173391778421622x9

+ .0234621319976202529139291x11 (23)

The range with a largest relative error (see later) of about 6 · 10−15 for the different poly-
nomials is different. For the a5(x) polynomial the range is ±0.00125, for the a7(x) polynomial
it range is ±0.04, for the a9(x) polynomial ±0.085, and for the a11(x) polynomial it is ±0.14.

Figure 1 gives the absolute error for the a5(x) polynomial in the range x = −0.0125 to
0.0125, in comparison with the Chebyshev polynomial (eqn. 19) and the Taylor expansion to
fifth order. The smallest absolute error is obtained with the Chebyshev polynomial, while the
error of the Taylor expansion becomes very large at the larger range. Close to x = 0 the slope
of the absolute error of the Taylor and a5(x) polynomials is zero, while it is largely positive
for the Chebyshev polynomial due to the first term (1.00000000000001863010738x). Figure 2
shows the relative error for x close to zero for the three polynomials. The relative error for the
Chebyshev polynomial is 1.863 · 10−14. The largest relative error for the a5(x) polynomial is
5.7475 · 10−15 at x = ±0.01087.

The largest possible range for each polynomial must not be smaller than the largest error
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Figure 1: Absolute error in the polynomial expansions to fifth order to the arcsin(x) function
in the range −0.0125 to 0.0125.
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Figure 2: Relative error in the polynomial expansions to fifth order to the arcsin(x) function
in the range −0.001 to 0.001.

from each starting guess. Table 2 shows the number of starting guesses required and the
obtained largest error in each table in combination with the different polynomials. Each part
of the table contains three values: The starting guess (pk = arcsin(xk)) and the sine and cosine
of the starting guess (sin(pk), cos(pk)).

Figure 3 shows the resulting error of the arcsin implementation over the whole range. The
relative difference to the compiler library code is mostly in the last bit.

4.3.2 Performance

Table 3 shows the performance of the arcsine implementation. The performance is higher in all
cases than the compilers library code. In the case of the scalar implementation, the speedup is
2-3 on the Athlon 64 and Core 2. The vector implementation is up to 3.6 times faster on the
Athlon 64 and 5.3 times faster on the Core 2. It should be noted that the shortest polynomials
(a5(x) and a7(x)) need fairly large tables, which will have negative effects on application code,
since the values in the table will replace application data in the cache. However, the small

Table 2: The size of the tables of starting guesses and the two other values required for the
evaluation of the arcsin function using the different polynomials.
Polynomial Largest starting guess error Number of starting guesses Size of table (kB)

a5(x) 0.001238 6528 153
a7(x) 0.03958 640 15.0
a9(x) 0.08496 140 3.28
a11(x) 0.1264 64 1.50
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Figure 3: Resulting absolute difference between the implementation in this paper and the
compilers library code over the whole range from -1 to 1 using the a9(x) polynomial.

tables required by the a9(x) and a11(x) polynomials, 3.28 kB and 1.50 kB, respectively, should
usually not cause any problems. The speedup using the a11(x) polynomial is 3.2 on the Athlon
64 and 4.5 on the Core 2.

5 Conclusions

We have shown that it is possible to use the Taylor expansion in order to implement very
efficiently the computation of such functions as the inverse square root and the arcsine functions.
The proposed method is especially efficient when high precision is necessary. The vectorized
versions of the implementations of the inverse square root are 3.5 times faster than compiled
code on the Athlon64 and about 5 times faster on the Core 2. The scalar version of the arcsine
function is, depending on order and table size, between 2 and 3 times faster than the compiled
code, and the vectorized version is between 3 and 4 times faster on the Athlon64, while it is
between 4 and 5 times faster than the compiled version on the Core 2.
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A Appendix

A.1 Example implementations

Here the implementation of the macros / functions for the inverse square root and arcsin
function for four values at a time using the shortest polynomial a5(x) are shown.

Note that the macros for doing the inverse square roots and square roots are used by the
arcsin implementation.

A.1.1 Inverse square root

The routine for obtaining four inverse square roots at a time is named fast math quad isqrt:

static double __attribute__ ((aligned (16))) dual_one[2]={1.,1.};

static double __attribute__ ((aligned (16))) dual_c1[2]={0.5,0.5};

static double __attribute__ ((aligned (16))) dual_c2[2]={0.375,0.375};

static float __attribute__ ((aligned (16))) quad_onehalff[4]={1.5f,1.5f,1.5f,1.5f};

static float __attribute__ ((aligned (16))) quad_halff[4]={0.5f,0.5f,0.5f,0.5f};

void fast_math_quad_isqrt(double *x, double *y)

{

register double *x0 __asm__("rdi")=x;

register double *y0 __asm__("rsi")=y;

__asm__ __volatile__ ( "\n\t" /* */ \

SCHEDULE

"movlpd (%%rdi),%%xmm0\n\t" /* */ \

"movhpd 8(%%rdi),%%xmm0\n\t" /* */ \

"movlpd 16(%%rdi),%%xmm1\n\t" /* */ \

"movhpd 24(%%rdi),%%xmm1\n\t" /* */ \

MACRO EXPAND quad_isqrt(%%xmm0,%%xmm1,%2,%3,%4,%5,%6,%%xmm2,%%xmm3,%%xmm4,%%xmm5, \

%%xmm6,%%xmm7,%%xmm8,%%xmm9)

"movlpd %%xmm0,(%%rsi)\n\t" /* */ \

"movhpd %%xmm0,8(%%rsi)\n\t" /* */ \

"movlpd %%xmm1,16(%%rsi)\n\t" /* */ \

"movhpd %%xmm1,24(%%rsi)\n\t" /* */ \

END SCHEDULE

:

:

"r" (y0),

"r" (x0),

"m" (*quad_onehalff),

"m" (*quad_halff),

"m" (*dual_one),

"m" (*dual_c1),

"m" (*dual_c2)

: "memory","xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7","xmm8","xmm9");

}

The macro quad isqrt:

MACRO DEFINE quad_isqrt(xinout0,xinout1,xval1.5f,xval0.5f,xval1.0,xval0.5,xval0.375,xr0,xr1,xr2,xr3,xr4,xr5,xr6,xr7)

"movapd xinout0,xr5\n\t" /* lo copy input values */ \

"movapd xinout1,xr6\n\t" /* hi copy input values */ \

"cvtpd2ps xinout0,xr0\n\t" /* lo input values in single precision */ \

"cvtpd2ps xinout1,xr7\n\t" /* hi input values in single precision */ \

"movlhps xr7,xr0\n\t" /* all input values in single precision */ \
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MACRO EXPAND quad_isqrt_single(xr0,xval0.5f,xval1.5f,xr1,xr2)

"cvtps2pd xr2,xr0\n\t" /* lo g=better precision inverse square root */ \

"movhlps xr2,xr2\n\t" /* hi value in single precision */ \

"cvtps2pd xr2,xr7\n\t" /* hi g=better precision inverse square root */ \

MACRO EXPAND dual_isqrt_double(xr5,xr0,xval1.0,xval0.375,xval0.5,xr3,xr4,xinout0)

MACRO EXPAND dual_isqrt_double(xr6,xr7,xval1.0,xval0.375,xval0.5,xr3,xr4,xinout1)

END MACRO

The macro quad isqrt single:

MACRO DEFINE quad_isqrt_single(xinput,xval0.5f,xval1.5f,xr0,xoutput)

"rsqrtps xinput,xr0\n\t" /* tmp=inverse square root 12 bit precision */ \

"mulps xval0.5f,xinput\n\t" /* 0.5*x */ \

"mulps xr0,xinput\n\t" /* 0.5*x*tmp */ \

"mulps xr0,xinput\n\t" /* 0.5*x*tmp*tmp */ \

"movaps xval1.5f,xoutput\n\t" /* 1.5 */ \

"subps xinput,xoutput\n\t" /* 1.5-0.5*x*tmp*tmp */ \

"mulps xr0,xoutput\n\t" /* tmp*(1.5-0.5*x*tmp*tmp) better precision inverse square root */ \

END MACRO

The macro dual isqrt double:

MACRO DEFINE dual_isqrt_double(xinputx,xinputguess,xval1.0,xval0.375,xval0.5,xr0,xr1,xoutput)

"mulpd xinputguess,xinputx\n\t" /* g*x */ \

"mulpd xinputguess,xinputx\n\t" /* g*g*x */ \

"movapd xval1.0,xr0\n\t" /* 1.0 */ \

"movapd xr0,xoutput\n\t" /* 1.0 */ \

"subpd xinputx,xr0\n\t" /* R=1.0-g*g*x */ \

"movapd xr0,xr1\n\t" /* R */ \

"mulpd xr0,xr0\n\t" /* R2=R*R */ \

"mulpd xval0.375,xr0\n\t" /* c2*R2 */ \

"mulpd xval0.5,xr1\n\t" /* c*R */ \

"addpd xr0,xoutput\n\t" /* 1.+c2*R2 */ \

"addpd xr1,xoutput\n\t" /* 1.+c*R+c2*R2 */ \

"mulpd xinputguess,xoutput\n\t" /* result g*(1.+c*R+c2*R2) */ \

END MACRO

A.1.2 Arcsine

The table that contains all the 6528 required starting guesses and other values is named
fast math arcsin table6528 and is not shown here. The routine that can be called from
a C program is named fast math quad arcsin 4:

#define AS_4_C1 .166666666128655128623305

#define AS_4_C2 .0750102402435589252147405

static double __attribute__ ((aligned (16))) dual_arcsin_4_c1[2]={AS_4_C1,AS_4_C1};

static double __attribute__ ((aligned (16))) dual_arcsin_4_c2[2]={AS_4_C2/AS_4_C1,AS_4_C2/AS_4_C1};

static double __attribute__ ((aligned (16))) dual_arcsin_c_table_6528[2]={(double)(6528-1)/2.,(double)(6528-1)/2.};

void fast_math_quad_arcsin_4(double *x, double *y)

{

register double *x0 __asm__("rdi")=x;

register double *y0 __asm__("rsi")=y;

__asm__ __volatile__ (

"\n\t" /* */ \

SCHEDULE

"movupd (%%rdi),%%xmm0\n\t" /* */ \

"movupd 16(%%rdi),%%xmm1\n\t" /* */ \

"lea %10,%%rax\n\t" /* table base */ \

MACRO EXPAND quad_arcsin4(%%xmm0,%%xmm1,%2,%3,%4,%5,%6,%7,%8,%9,%%rax,6528,%%r8,%%r9,%%r10,%%xmm2,%%xmm3,%%xmm4, \

%%xmm5,%%xmm6,%%xmm7,%%xmm8,%%xmm9,%%xmm10,%%xmm11,%%xmm12,%%xmm13,%%xmm14,%%xmm15)

"movupd %%xmm0,(%%rsi)\n\t" /* */ \

"movupd %%xmm1,16(%%rsi)\n\t" /* */ \

END SCHEDULE
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:

:

"r" (y0),

"r" (x0),

"m" (*quad_onehalff),

"m" (*quad_halff),

"m" (*dual_one),

"m" (*dual_c1),

"m" (*dual_c2),

"m" (*dual_arcsin_c_table_6528),

"m" (*dual_arcsin_4_c1),

"m" (*dual_arcsin_4_c2),

"m" (*fast_math_arcsin_table6528)

:

"memory","rax","r8","r9","r10","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6", \

"xmm7","xmm8","xmm9","xmm10","xmm11","xmm12","xmm13","xmm14","xmm15");

}

The macro quad arcsin4:

MACRO DEFINE quad_arcsin4(xinout0,xinout1,xval1.5f,xval0.5f,xval1.0,xval0.5,xval0.375,xval_arcsin_c,xval_arcsin_c1, \

xval_arcsin_c2,rbasetable,tablesize,r0,r1,r2,xr0,xr1,xr2,xr3,xr4,xr5,xr6,xr7,xr8,xr9,xr10,xr11,xr12,xr13)

"mov $0xFFFFFFFF,r2\n\t" /* Address offset mask */ \

MACRO EXPAND dual_arcsin_r2(xinout0,xval1.0,xr0,xr2)

MACRO EXPAND dual_arcsin_r2(xinout1,xval1.0,xr1,xr3)

MACRO EXPAND quad_sqrt_less_reg(xr2,xr3,xval1.5f,xval0.5f,xval1.0,xval0.5,xval0.375,xr4,xr5,xr6,xr7,xr8,xr9)

MACRO EXPAND dual_arcsin4_part(xinout0,xr2,xval1.0,xval_arcsin_c,xval_arcsin_c1,xval_arcsin_c2, \

rbasetable,tablesize,r0,r1,r2,xr10,xr11,xr12,xr13)

MACRO EXPAND dual_arcsin4_part(xinout1,xr3,xval1.0,xval_arcsin_c,xval_arcsin_c1,xval_arcsin_c2, \

rbasetable,tablesize,r0,r1,r2,xr4,xr5,xr7,xr0)

END MACRO

The macro dual arcsin r2:

MACRO DEFINE dual_arcsin_r2(xinput,xval1.0,xr0,xoutput)

"movapd xinput,xr0\n\t" /* x=input value */ \

"movapd xval1.0,xoutput\n\t" /* 1.0 */ \

"addpd xval1.0,xr0\n\t" /* 1.0+x */ \

"subpd xinput,xoutput\n\t" /* 1.0-x */ \

"mulpd xr0,xoutput\n\t" /* r**2=1-x**2=(1.0-x)*(1.0+x) */ \

END MACRO

The macro dual arcsin4 part:

MACRO DEFINE dual_arcsin4_part(xinout,xrval,xval1.0,xval_arcsin_c,xval_arcsin_c1,xval_arcsin_c2,rbasetable, \

tablesize,r0,r1,r2,xr0,xr1,xr2,xr3)

MACRO EQUATE sin_offset tablesize*8

MACRO EQUATE cos_offset tablesize*16

"movapd xinout,xr0\n\t" /* x=input value */ \

"addpd xval1.0,xinout\n\t" /* x+1. */ \

"mulpd xval_arcsin_c,xinout\n\t" /* c*(x+1.) */ \

"cvttpd2dq xinout,xinout\n\t" /* index=(int)(c*(x+1.)) */ \

"movd xinout,r0\n\t" /* index */ \

"mov r0,r1\n\t" /* index */ \

"and r2,r0\n\t" /* low index */ \

"shr $32,r1\n\t" /* high index */ \

"movlpd (rbasetable,r0,8),xinout\n\t" /* low pk */ \

"movhpd (rbasetable,r1,8),xinout\n\t" /* high pk */ \

"movlpd sin_offset(rbasetable,r0,8),xr1\n\t" /* low sin(pk) */ \

"movhpd sin_offset(rbasetable,r1,8),xr1\n\t" /* high sin(pk) */ \

"movlpd cos_offset(rbasetable,r0,8),xr2\n\t" /* low cos(pk) */ \

"movhpd cos_offset(rbasetable,r1,8),xr2\n\t" /* high cos(pk) */ \

"mulpd xrval,xr1\n\t" /* r*sin(pk) */ \

"mulpd xr0,xr2\n\t" /* x*cos(pk) */ \

"subpd xr2,xr1\n\t" /* R=r*sin(pk)-x*cos(pk) */ \

"movapd xr1,xr2\n\t" /* R */ \

"movapd xr1,xr3\n\t" /* R */ \
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"mulpd xr1,xr1\n\t" /* R2=R*R */ \

"mulpd xr1,xr2\n\t" /* R3=R2*R */ \

"mulpd xval_arcsin_c1,xr2\n\t" /* c1*R3 */ \

"mulpd xval_arcsin_c2,xr1\n\t" /* c2*R2 */ \

"addpd xval1.0,xr1\n\t" /* 1.+(c2*R2) */ \

"mulpd xr2,xr1\n\t" /* c1*R3*(1.+(c2*R2)) */ \

"addpd xr3,xr1\n\t" /* R+c1*R3*(1.+(c2*R2)) */ \

"subpd xr1,xinout\n\t" /* arcsin(x)=pk-(R+c1*R3*(1.+(c2*R2))) */ \

END MACRO
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The macro quad sqrt less reg:

MACRO DEFINE quad_sqrt_less_reg(xinout0,xinout1,xval1.5f,xval0.5f,xval1.0,xval0.5,xval0.375,xr0,xr1,xr2,xr3,xr4,xr5)

"movapd xinout0,xr4\n\t" /* Store input value */ \

"movapd xinout1,xr5\n\t" /* Store input value */ \

MACRO EXPAND quad_isqrt_less_reg(xinout0,xinout1,xval1.5f,xval0.5f,xval1.0,xval0.5,xval0.375,xr0,xr1,xr2,xr3)

"mulpd xr4,xinout0\n\t" /* Resulting square root: x*(1./sqrt(x)) */ \

"movapd xinout0,xr0\n\t" /* Store resulting value */ \

"cmpordpd xr0,xr0\n\t" /* ordered compare. true if both numbers are ordinary numbers */ \

"andpd xr0,xinout0\n\t" /* Mask out bad nan values to zero */ \

"mulpd xr5,xinout1\n\t" /* Resulting square root: x*(1./sqrt(x)) */ \

"movapd xinout1,xr1\n\t" /* Store resulting value */ \

"cmpordpd xr1,xr1\n\t" /* ordered compare. true if both numbers are ordinary numbers */ \

"andpd xr1,xinout1\n\t" /* Mask out bad nan values to zero */ \

END MACRO

The macro quad isqrt less reg:

MACRO DEFINE quad_isqrt_less_reg(xinout0,xinout1,xval1.5f,xval0.5f,xval1.0,xval0.5,xval0.375,xr0,xr1,xr2,xr3)

"cvtpd2ps xinout0,xr0\n\t" /* lo input values in single precision */ \

"cvtpd2ps xinout1,xr3\n\t" /* hi input values in single precision */ \

"movlhps xr3,xr0\n\t" /* all input values in single precision */ \

MACRO EXPAND quad_isqrt_single(xr0,xval0.5f,xval1.5f,xr1,xr2)

"cvtps2pd xr2,xr0\n\t" /* lo g=better precision inverse square root */ \

"movhlps xr2,xr2\n\t" /* hi value in single precision */ \

"cvtps2pd xr2,xr3\n\t" /* hi g=better precision inverse square root */ \

MACRO EXPAND dual_isqrt_double_less_reg(xinout0,xr0,xval1.0,xval0.375,xval0.5,xr1,xr2)

MACRO EXPAND dual_isqrt_double_less_reg(xinout1,xr3,xval1.0,xval0.375,xval0.5,xr1,xr2)

END MACRO

The macro dual isqrt double less reg:

MACRO DEFINE dual_isqrt_double_less_reg(xinout,xinputguess,xval1.0,xval0.375,xval0.5,xr0,xr1)

"mulpd xinputguess,xinout\n\t" /* g*x */ \

"mulpd xinputguess,xinout\n\t" /* g*g*x */ \

"movapd xval1.0,xr0\n\t" /* 1.0 */ \

"subpd xinout,xr0\n\t" /* R=1.0-g*g*x */ \

"movapd xval1.0,xinout\n\t" /* 1.0 */ \

"movapd xr0,xr1\n\t" /* R */ \

"mulpd xr0,xr0\n\t" /* R2=R*R */ \

"mulpd xval0.375,xr0\n\t" /* c2*R2 */ \

"mulpd xval0.5,xr1\n\t" /* c*R */ \

"addpd xr0,xinout\n\t" /* 1.+c2*R2 */ \

"addpd xr1,xinout\n\t" /* 1.+c*R+c2*R2 */ \

"mulpd xinputguess,xinout\n\t" /* result g*(1.+c*R+c2*R2) */ \

END MACRO
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Abstract. The paper deals with mathematical modelling of two-stage frequency converter. 
Two special methods of investigation are used here. The first one, method of complex 
conjugated amplitude, is used for steady-state investigation. The second one, orthogonal 
Park/Clarke transformation is suitable for investigation of three-phase electric circuits. The 
combination of both methods is very useful for analysis of three-phase electric motors in steady-
state condition. 
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1   Introduction – Methods Used for Modelling and Calculation  
 

It is well known in electrical engineering, that, since �–function method [1] is generally used 
for transient state solution, the method of complex amplitude has been introduced by Takeuchi [2] 
for analysis of converter circuit supplied electric machines in steady-state. The principle is based on 
substitution of trigonometric function by exponential one with complex argument. After 
determination of investigated variable in complex form, the variable can be that transformed back 
into time domain. Regarding to non-harmonic time waveforms of converter quantities the Fourier 
analysis is used for variables as the first step. Similar approach, but not the same, has been used by 
Kneppo in the seventies of the 20th century [3]. This way of investigation in electrical engineering 
has been called symbolic calculus. 

Method of orthogonal transformation for electrical quantities was introduced by Park [4] for 
three-phase electric machines. The method makes possible to transform symmetrical 3-phase 
system into equivalent two-phase orthogonal system. This transformation decreases number of 
differential equations (from 3 to 2), and removes variable coefficients in the equations. Besides, 
trajectories of the quantities in complex Gauss plane denote themselves by six-side symmetry, thus 
the steady-state quantities can be calculated in only one sixth of time period. Clarke's multiplicative 
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transformation constant (equal 2/3) provides the invariances of voltage and current quantities in the 
both coordinating systems. 
 
 
2 Using of Complex Conjugated Amplitude Methods for Electrical Circuit Fed 
 by Single-Phase Inverter 
 
 

For rectangular form of electric voltage (current), the sum of its odd harmonic components can be 
written as: 

 

 � � � ��
�

� �
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�
0

0

12
12sin4

� �
	�



tU

tu , (2.1) 

 
for non-negative integer � (from interval � 0; �)), constant supply voltage of inverter U0 and 
constant angular frequency (= 2�f0)  
 

 
Fig. 1 Rectangular time-waveform of single phase inverter voltage with sine harmonic components 

 
Let us apply such a voltage to passive R-L circuit whose complex impedance is: 
 

 � � 12
1212 12 �
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�� 	� jeZLjRZ  (2.2) 
 
where: 12 ��Z  complex impedance, 
 R resistance of the circuit, 
  j complex unit � �1
� , 
 L inductance of the circuit, 

 12 ��Z  module (magnitude) of complex impedance � � �
�
��

�
� ��� 2222 12 LR 	� , 

 �2�+1 argument (phase angle) of Z
� �

�
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�
�
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�

R
L	� 12arctan . 

Using Euler relations the non-harmonic voltage can be expressed as: 
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Then corresponding complex current is: 
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that can be written in complex conjugated magnitude form: 
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where complex magnitude of current will be: 
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and complex conjugate current magnitude: 
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Finally, by adapting of (2.5), for current form in time domain one will obtain: 
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Note: Eq. (8) is approximated numerical solution of ordinary differential equation: 
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The relation for resulting current wave-form can be obtained also in compact closed form using 
classical analytical solution, Laplace transform or z-transform [7]: 
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where � is time constant of the circuit: R
L

��  . 

Anyway, the solution (2.8) makes possible to analyse more exactly each harmonic component 
comprised in total waveform. 
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The waveforms whose Fourier series analysis leads to cosine functions of the harmonics can 

be expressed by the similar way, Fig. 2. 

U(t)

t

-U0

0

 
Fig. 2 Rectangular time-waveform of single phase inverter voltage with cosine harmonic components 
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3 Electrical Model of 2-Stage Frequency Converter 
 
 
Scheme of the 2-stage converter is shown in Fig. 3. It comprises two semiconductor type of 

converters [6]: 

 single-phase voltage inverter as the first stage, 

 three-phase matrix converter or cykloconverter as the second stage. 

The first stage operates with constant voltage U0 and fixed frequency f0. The second one 
supplies passive R-L or active load (electric motor) with variable output frequency and which is 
muchlesser then frequency of AC interlink between stages. 

 

 
Fig. 3 Overall schematic diagram of 2-stage 3phase DC/AC/AC converter 
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Control of such system is described in greater detail in [5]. It is possible to use control 
methods based on fuzzy logic described in [6]. 

Considering rectangular form of the phase-current length of 2�/3 radians with I0 equal U0/R, 
the scheme can be reconfigurated to the scheme of three-phase current inverter with R-L load [2],  
Fig. 4, whereas commutating capacitors could be omitted because of switches of inverter are 
switch-off capability. 

 

 
Fig. 4 Transfigurated scheme of three-phase current inverter with R-L load in delta connection 

 
 

4 Mathematical Modeling using Complex Magnitudes Method and Park/Clarke  
 Transformation 

 
 
The output phase current of three-phase current inverter (Fig.5) can be expressed by Fourier 

series: 
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where coefficients an and bn will be equal zero for even n. The coefficients for odd n will then be: 

 

 
� �

12

12
3

2

sin
2 0

12 �

�
�� �

�



�
I

a      and   
� �

�
�
�
�

�

�

�
�
�
�

�

�

�

�

�� 12

12
3

2

cos1
2 0

12 �

�



�
I

b . (4.2) 

 



 
 
 

Aplimat�–�Journal�of�Applied�Mathematics
 

�� volume�2�(2009),�number�3
 
 

194 

 
Fig. 5 Time-waveform of output phase current of the inverter 

 
Using equations (4.1)-(4.2) and complex magnitudes method, the current will be: 
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4.1 Implementation of orthogonal transformation 
 
 

Based on definition of complex-time vector by Park ([4] and others): 
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the real- and imaginary parts of the vector can be obtained: 
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Considering sum of phase currents to be zero: 
 

 � � � � � � 0��� tititi cba , (4.6) 
 
real- and imaginary parts will be: 
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3
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� . (4.7a,b) 

 
Fig. 6 Phase position of the a-phase current for transformation 

 
Current of a-phase of the inverter then will be more simply than that of (4.3): 
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Current of b-phase lags the current of a-phase, thus: 
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4.2 Determination of line-to-line voltage uab , ubc ,uca of the inverter in steady-state: 
 
 

Let the investigated quantities of the inverter, that means voltage on capacitors, i.e. uab , ubc , 
uca be state-variables. To derive their time-waveforms it is necessary to know  line-to-line currents, 
at first (Fig. 7). 
 

t
T/6 T/20

�3.iab

�3.ibc

�3.ica

T/3

 
Fig. 7 Time-waveforms of line-to-line currents considering capacitors 
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Based on (4.5b), (4.7b) the differences of the phase currents are, indeed, the  -componets of 

Park complex time-vector, multiplied by constant �3.  
Then the difference of phase-currents ib – ic , i.e. i� x �3: 
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and the difference of phase-currents ia(t) – ib(t): 
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Note: it is to be aware of the fact that Eqs. (4.8) and (4.10) create orthogonal series for i� and 
i� [7], [8]-[10], [11], which can be processed by orthogonal Fourier series rules. 

Since 
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and   � � � � � � 0��� tututu cabcab  (4.12a) 
 
then 
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Line-to-line voltage uab then will be: 
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After substituting ia(t) – ib(t) by (23b) the line-to-line voltage can be expressed as: 
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This can also be written in complex conjugated magnitude form: 
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where complex magnitude of line-to-line voltage will be: 
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After completing of (4.15): 
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where 
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Time relations for other line-to-line voltages ubc and uca can be obtained by the similar way: 
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and finally: 
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5 Simulation Experiment Results 

 
 
The following time functions and time-waveforms have been programmed in MatLab 

programming environment: 
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– current of single-phase inverter, Eq. (2.8), 
– time-waveforms of phase currents ia(t), ib(t), ic(t), Eq. (4.8), (4.10), 
– time-waveforms of orthogonal series i! and i� of Eqs. (4.3) and (4.7b), 
– time-waveforms of phase currents ia(t) and voltage uab , 
– time-waveforms of state-space quantities, i.e. line-to-line terminal voltages uab , ubc , uca, by the 

Eqs. (4.17) and (4.20a,b). 

Parameters of the circuit: R = 1 Ohm, L = 5 mH, C = 50 "F, U0 = 100 V, I0 = 10 A. 

Parameters of the simulation: time increment #T = 1 "s, number of considered odd harmonic 
componens from 1 up to 999.  

Version of MatLab programming environment: R2007b 
Corresponding results of simulation experiments are given in Fig. 8a,b, Fig. 9a,b,c, Fig. 10a,b, 

Fig. 11a,b and Fig. 12a,b,c. 
 

  
Fig. 8a,b  Time-waveform of supply voltage 
(up), current response (bottom) 

Fig. 9a,b,c  Time-waveforms of phase currents 
ia(t), ib(t), ic(t) from up to bottom 

 

  
Fig. 10a,b Time-waveforms of i!(t) and i�(t) Fig. 11a,b Time-waveforms of i!(t) and uab(t) 
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Fig. 12 Time-waveforms of line-to-line voltage uab (a), line-to-line voltage ubc (b), line-to-line voltage uca (c)  
 
 
6 Conclusions 

 
The simulation experiments have shown very good coincidences of theoretical and simulated 

results. The time-waveforms of line-to-line voltages uab , ubc , uca are very sensitive to choice of the 
values of inductors and capacitors of the inverter. Similarly, ripple of input current of the inverter 
depends on value of input smoothing inductor. 

The plans for the near future are: investigation of the time waveforms of state-space quantities 
under operation with electrical induction motor [5], and also dynamical behaviour of the system of 
two-stage frequency converter connected to wheel motor. 
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COMPARISON OF TWO METHODS FOR SOLVING
NONLINEAR PARABOLIC MODEL IN POROUS MEDIA
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Abstract. We consider characteristics-based method for solving nonlinear convection
diffusion equations. These equations arise in the transport of contaminant in porous
media. We present two kinds of combinations to the derivatives with respect to time in
the convection term. Numerical results are given.
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1 Introduction

In this paper we compare two schemes to the following model:

∂tC(x, t) + ∂tψ(C(x, t)) + q · ∂xC(x, t) + D∂xxC(x, t) = 0, t ∈ (0, T ), (1)

C(−∞, t) = C(∞, t) = 0, (2)

which arises in the contaminant transport in porous media, C is the concentrative of contami-
nant, ψ(C) is a nonlinear (degenerate) function and q, D (constants) represent convection and
diffusion coefficients, where q is much more than D.

Firstly, we consider the scheme that has been developed by Kačur and Mahmood in [4] (see
also [5, 7, 3]). At the time t = ti we find Ci from solving the following linear system:

(Ci,l − Ci−1 ◦ ϕi, v) + (λi,l(Ci,l − Ci−1), v) + τ(D∂xCi,l, ∂xv) = 0,
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λi,l =
ψn(Ci,l) − ψn(Ci−1)

Ci,l − Ci−1

, λi,0 = ψ′(ti, Ci−1), (3)

for l = 1, .... If |λi,l − λi,l−1|∞ ≤ cτ (cτ is given) we put l = li, where li represents the number
of iterations in time ti, ϕi is a characteristic position and τ is a time step size. Then λi = λi,li

and Ci = Ci,li .The inner product (Ci−1 ◦ ϕi, v) represents the approximation of the transport
part

∂tC + q · ∂xC,

which can be computed using e.g. Bermejo approach [1].
In the degenerate case we replace ψ by ψn in the approximation scheme (3) where

ψn(s) = max{τ, min{ψ(s), τ−1}}, (4)

is a regularization of ψ.
Knabner et.al. [6] have developed the following formulation of the equation (1):

∂tψ(C) − α(x)∂tC+

(1 + α(x))

[
∂tC +

q

1 + α(x)
∂xC

]
= 0. (5)

The scheme which they have proposed is called FIS (full implicit scheme):

Ci
j + ψ(Ci

j) = (1 + αi
j)C

i−1 ◦ ϕi
j − αjC

i−1
j + ψ(Ci−1

j ), (6)

where Galerkin characteristics discretization have been used [1](the indices i, j denote the time
and space discretizations), where

ϕi
j = xj − qτbj−1/2, b(x) =

1

1 + α(x)
, (7)

ϕi
j = xj−m + bj−m−1/2

[
m∑

k=1

(
h

bj+1/2−k

)
− qτ

]
, (8)

where

bj−1/2 =
1

2
(b(xj) + b(xj−1)), h = xj − xj−1,

m ≥ 0 is the first integer for which

m+1∑
k=1

(
h

bj+1/2−k

)
> qτ.

They have suggested for choosing αi
j to be

αi
j =

{
ψ(Ci−1(ϕi

j))−ψ(Ci−1
j )

Ci−1(ϕi
j)−Ci−1

j

, if Ci−1
j 	= Ci−1

j (ϕi
j)

ψ′(Ci−1
j ), otherwise

(9)
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When α = 0 we get our scheme (3) which we call FVS scheme (field velocity scheme). In the
degenerate case we regularize the function ψ as in (4) or substituting it by ψε which differs only
in [0, ε], e.g. defined by ψε(s) = ψ(ε)/εs. Solution of nonlinear system has been avoided by the
relaxation procedure using α as in (9). Then we need to interpolate the function ψ(Ci−1(ϕi

j))
in (9). This can be done by using the linear basis function or cubic spline interpolation.

2 Numerical implementation

The question is: which scheme we prefer? To answer this question we have done a rigorous
practical analysis for these two schemes carefully for convection dominant problem (Similar
comparison can be done for hyperbolic problem). We have used

ψ(C) = (C)0.5, q = 1, D = 0.01.

We restrict our attention to the following points. These results were tested for different initial
conditions and we have chosen an example for each point:

Firstly, it seems that the scheme (6) is not stable for hyperbolic (convection-dominant) problem,
because accurate characteristic position needs to solve (6) iteratively and this leads the scheme
(6) to be very expensive and also makes the scheme sensitive to the refinement in the space. For
the convection- dominant problem the error of the nonaccurate characteristic position will exist
in three places: in the convective part, in the degenerate part and in the diffusion part. While
this situation does not exist for the scheme (3) because we have generally accurate characteristic
position (we do not need to find it iteratively). In addition we add the justification by Douglas
et al. [2] (see also [8]) for nonconstant coefficients problems, where the mass balance failure
for Galerkin characteristics approach (Mass balance can be obtained by integral (1) over (0, T )
and the space) was used. Consequently, one can see that the scheme (3) has better reservation
for the profile much more than the scheme (6) when we use smaller step size h = Δx and the
mass balance problem still arises. We have used the following initial condition

C(x, 0) =

{
1, x ∈ (0.25, 0.5)
0, otherwise

(10)

(see Figures (1, 2)).

Secondly, it seems that the mass balance problem for the scheme (3) is much more than in the
scheme (5). Here the initial condition is

C(x, 0) =

{
1, x ∈ (0.25, 0.3)
0, otherwise

(11)

see Figure (3).
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[4] KAČUR, J., MAHMOOD, M.:Solution of Solute transport in unsaturated porous media by
the method of characteristics. Numer. Methods Partial Differential Eq. 19, pp. 732-761,
2003.
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SOLUTION OF TORSION OF PRISMATIC BAR
WITH TRIANGULAR CROSS SECTION AREA

USING PROGRAM MATHEMATICA

JANČO Roland, (SK), KOVÁČOVÁ Monika, (SK)

Abstract. In real design of bar and beam which is load by torque we need properties of
cross section area. No all time you have circular cross section area in real problems. For
solution of non-circular cross section area we used Saint-Venant’s principle. In this paper
is short introduction how to used Saint-Venant’s principle to solution of triangular cross
section area. Theoretical solutions for triangular cross section are compared by numerical
solution solved in program Mathematica with package Structural Mechanics.
Key words and phrases. Torsion, Saint-Venant’s principle, triangular cross section.

Mathematics Subject Classification. Primary 74A10, 74B05, 74G50 ; Secondary 74K10.

1 Introduction

Because many engineering structures, such as beams, shafts, and airplane wings, are subjected
to torsional forces, the torsional problem has been of practical importance in structural analysis
for a long time. Saint-Venant (1885) was the first to provide the correct solution to the problem
of torsion of bars subjected to moment couples at the ends. He made certain assumptions about
the deformation of the twisted bar, and then showed that his solutions satisfied the equations
of equilibrium and the boundary conditions. From the uniqueness of solutions of the elasticity
equations, it follows that the assumed forms for the displacements are the exact solutions to
the torsional problem. The Saint-Venant principe is adopted in Structural Mechanics packages.

In this paper is contains of theoretical background of solution triangular cross-section area
properties for torsional problems using Saint-Venant principle and comparison of theoretical
solution with solution from Structural Mechanics package in Mathematica.
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2 Theoretical background

If bar is loaded by equal and opposite torques T on its ends, we anticipate that the relative
rigid-body displacement of initially plane section will consist of rotation, leading to a twist per
unit length ϑ. These sections may also deform out of plane, but this deformation must by same
for all values of z. These kinematic considerations lead to the candidate displacement field

ux = −ϑ z y; uy = ϑ z x; uz = ϑ f(x, y) , (1)

where f is an unknown function of x,y describing the out-of-plane deformation.
Substituting these kinematic consideration into the strain-displacement relations eij =

1

2

(
∂ ui

∂ xj

+
∂ uj

∂ xi

)
yields

exy = 0; ezx =
ϑ

2

(
∂ f

∂ x
− y

)
; ezy =

(
∂ f

∂ y
+ x

)
(2)

and it follow from Hooke’s law in form σij = λ emm δij + 2 μ eij [1] that

σxx = σyy = σzz = 0 (3)

and

σxy = 0; σzx = μϑ

(
∂ f

∂ x
− y

)
; σzy = μϑ

(
∂ f

∂ y
+ x

)
. (4)

There are no body forces, so substitution into the equilibrium equations
∂ σij

∂ xj

+ Pi = 0 from

[1] yields
∇2 f = 0. (5)

The torsion problem is therefore reduced to the determination of harmonic function f such that
the stresses (4) satisfy the traction-free condition on the curved surfaces of the bar. The twist
per unit length ϑ can be determined by evaluating the torque on the cross-section Ω

T =

∫ ∫
Ω

(xσzy − y σzx)dx dy . (6)

2.1 The bar of triangular cross-section area

For solution of the rectangular bar we used Prandtl’s stress function defined by

τ ≡ iσzx + jσzy = curlkφ (7)

or

σzx =
∂ φ

∂ y
; σzy = −∂ φ

∂ x
. (8)
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With this representation, the traction-free boundary condition can be written

τ .n = σzn =
∂ φ

∂ t
= 0 (9)

where n is the local normal to the boundary of Ω and n, t are a corresponding set of local
orthogonal coordinates respectively normal and tangential to the boundary, Thus φ must be
constant around the boundary and for simply-connected bodies this constant can be taken as
zero without loss of generality giving the simple condition

φ = 0 (10)

on the boundary and from this boundary condition we obtain

∇2 φ = −2 μ ϑ . (11)

a

a
3

b

A

B

C=0

D

x

y

Figure 1: Definition of cross section area

This results can be used to obtain an approximate solution for torsion of the triangular bar

−a

3
< x <

2a

3
, − b

2
< y <

b

2
, where b =

2a√
3
.

The stress function (10) satisfied the governing equation (11) and the boundary condition
on the AB lines

φ = 0; y = − b

2a
x +

b

3
, (12)

on the line DA

φ = 0; x =
b

2a
x − b

3
, (13)

but it does not satisfy the corresponding boundary condition on the line BD

φ = 0; x = −a

3
. (14)

Stress function, which satisfied the both boundary conditions (12), (13) and (14) is

φ = C

[(
x +

a

3

) (
x +

√
3 − 2

3
a

)(
x −

√
3 − 2

3
a

)]
, (15)
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where C is a arbitrary constant. When we put stress function (15) to (10), we get

∇2 φ = 2 C = −2 μ ϑ (16)

Integrating eqn. (6) by parts and using the fact that φ = 0 on the boundary of Ω, we obtain
the simple expression

T = 2

∫ ∫
Ω

φdx dy . (17)

The transmitted torque is obtained from equations (17, 15) as

T = 2

∫ 2a

3

−
a

3

∫ −
b

2a
x+

b

3
b

2a
x−

b

3

C

[
1

2

(
x2 + y2

) − 1

2a

(
x3 − 3xy2

) − 2

27
a2

]
dx dy . (18)

After integration of eqn. 18, we get

T = − a4

15
√

3
C . (19)

From eqn. (16) and eqn. (19), we have

C = −15
√

3

a4
T and ϑ = −C

μ
=

15
√

3

a4μ
T . (20)

The torsional rigidity of the section K is generally defined K = μ JK such that

T = μ ϑ JK (21)

The torsional rigidity of triangular section K using eqn. (20) and eqn. (21) is

K = μ JK = μ
a4

15
√

3
= μ

3
√

3 b4

240
(22)

The maximum shear stress occurs at the point
(
−a

3
, 0

)
and is

τmax =

∣∣∣∣∂ φ

∂ x

(
−a

3
, 0

)∣∣∣∣ =

∣∣∣∣∣−15
√

3T

a4

[
x − 3x2 − 3y2

2a

]∣∣∣∣∣ =
15
√

3T

2a3
=

20T

b3
. (23)

2.2 Equation for solution the equilateral triangle bar in Mechanics of Materials

In mechanics of material [3] we used for solution of maximum shearing stress the equation

τmax =
20 T

b3
(24)

and angle of twist is defined by

ϕ =
46 T �

b4 G
, (25)

where � is the length of bar, G is the shear modulus of elasticity for the material.
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3 Solution of torsion in program MATHEMATICA

For solution of torsional problems in program MATHEMATICA we were used the package
”Structural Mechanics”, which consist of solution the following types of cross sections:

• circular cross sections

• elliptical cross sections

• rectangular cross sections

• equilateral-triangular cross sections

• sectorial-type cross sections

• semicircular cross sections

3.1 Triangular Cross Section - Graphically

First, generate the graphical representation of the equilateral triangle with height a using the
coordinates of the vertices given in points. Here plot the shape of the cross section for a = 1
in the Fig. 2. In the Fig. 3 is displayed of cross section of area.

In[1]:= �� StructuralMechanics‘

In[2]:= $DefaultFont � �"Courier", 7�;

In[3]:= points � ���a�3, �a�Sqrt�3��,

��a�3, a�Sqrt�3��, �2�a�3, 0�, ��a�3, �a�Sqrt�3��� �. a � 1;

Figure 2: Definition of cross section area

Visualization of equilateral-triangular beam twisted by θ = π/(4 �) is in the Fig. 4, where
the beam length is �z = 7. The end of the beam at z = 7 is rotated by π/4 with respect to
the root cross section at z = 0. In the Fig.5 is shown how the section at z = 1 is rotated after
the force is applied.

3.2 Torsional Analysis Functions for Rectangular Cross Sections

In package Structural Mechanics you can calculate the analytical equation for rectangular
cross section which is including. Definition of torsional rigidity in Mechanics of Materials [3]
is G Jk for triangular cross section G b4/ 46 = a4 G/(15

√
3), which is defined by equation 25.

Result from program Mathematica is in Fig. 6 which is same from theoretical solution, see eqn.
22.

To avoid replacing x, y, and z in the stress components, use the following replacements for
only the right-hand side of the replacement rules. Result is shown in Fig. 7.
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In[5]:= ss � CrossSectionPlot�points, PlotRange � ���1, 1�, ��1, 1��,

Frame � True, DefaultFont � �"Courier", 12�, Axes � None�;

-0.75-0.5-0.250 0.250.50.75 1
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1

Figure 3: Quilateral triangle cross section area
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Figure 4: Deformation of triangular bar

Next extract the traction components Txz, Tyz from the stress tensor str, see Fig. 8.

In the Fig. 9 is the stress component σyz a varies along the x axis from −1

3
to

2

3

Similarly, you can obtain a plot showing (Fig. 10) how the value of σyz a changes along the
y axis.
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In[23]:= RotatedCrossSection�points �. a � 1, 1, Π �28, DefaultFont � �"Courier", 12��;

-0.4 -0.2 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.2

0.4

Figure 5: Twisting of cross section area

In[7]:= Clear�a, G�

TorsionalRigidity�EquilateralTriangle, �a�, G�

Out[8]=
a4 G
�����������������
15 ����3

Figure 6: Torsional rigidity K

In[9]:= str � TorsionalStresses�EquilateralTriangle, �a�, G, Θ, �x, y��

Out[9]= �0, 0, 0, 0, �G �y � 3 x y
�������������
a
� Θ, G �x � 3 x2 � 3 y2

�������������������������
2 a

� Θ�

Figure 7: Stress vector

In[18]:= �Txz, Tyz� � �Σxz, Σyz� �. str

Out[18]= ��y � 3 x y, x �
1
����
2
��3 x2 � 3 y2	�

Figure 8: Selected component from stress vector

4 Conclusion

In this paper is presented the theoretical solution of torsion properties for triangular cross sec-
tion area of bar loading by torque. This properties was derived using Saint-Venant’s principle.
Result is presented by equation (22) and (23). In program MATHEMATICA was implemented
Saint-Venant’s principle in package Structural Mechanics. This package include two way
solution of non-circular cross section area, first way is graphically and second way is solution of
analytically. Both this way is described in this paper. When we compare theoretical solution
derived in this paper by numerical solution using package Structural Mechanics, the results
are identically.
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In[20]:= Plot�Tyz �. y �
 0, �x, �1�3, 2�3�,

PlotRange �
 All,

Frame �
 True, DefaultFont � �"Courier", 12�,

AxesLabel �
 �"x", ""��;
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-0.4

-0.3

-0.2

-0.1

0

0.1
x

Figure 9: The stress component σyz a varies along the x axis

In[21]:= Plot�Tyz �. x �
 �1�3, �y, �1�2, 1�2�,

PlotRange �
 �All, �.0, �.6��,

Frame �
 True , DefaultFont � �"Courier", 12�,

AxesLabel �
 �"y", " "��;
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Figure 10: The stress component σyz a varies along the y axis
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RELIABILITY LIKELIHOOD RATIO CONFIDENCE BOUNDS 

 
KOVÁČOVÁ  Monika,  (SK) 

 
Abstract. One of the most confusing concepts to a novice reliability engineer is estimating the 
precision of an estimate. This is an important concept in the field of reliability engineering, 
leading to the use of confidence intervals (or bounds). In this paper, we will try to briefly 
present the concept in relatively simple terms but based on solid common sense.[5]  
We will present one method for calculating confidence bounds thorough the likelihood ratio 
bounds (LRB) method. Conceptually, this method is a great deal simpler than that of the Fisher 
matrix; although that does not mean that the results are of any less value. In fact, the LRB 
method is often preferred over the FM method in situations where there are smaller sample 
sizes. 
We will show in this paper how to use computing software MATHEMATICA for calculating 
confidence bounds. 
 
Key words and phrases. confidence bounds,  computing software MATHEMATICA, reliability 
 
Mathematics Subject Classification. 60K10, 62F25 
 

 
1.  Introduction 
 
We will display some basic ideas of parametric maximum likelihood methods and their usability in 
reliability engineering. First we will show how to construct the likelihood (probability of the data) 
function and the basic ideas behind using this function to estimate a parameter will be explain. Due 
to usability these methods for the engineers we will describe the progress in computation in 
programming system MATHEMATICA. We will compute one of three possible different situations – 
methods for computing confidence intervals for parameters and functions of parameters. 
 As is known, parametric distribution, e.g. widely known Weibull distribution, when used 
appropriately, can provide a simple, versatile, visually appealing failure-time model. Maximum 
likelihood is perhaps the most versatile method for fitting statistical models to data. The appeal of 
maximum likelihood estimation stems from the fact that it can be applied to a wide variety of 
statistical models and kinds of data (e.g. continuous, discrete, categorical, censored, truncated) 
where other popular methods, like least squares, are not, in general, satisfactory. 
In typical applications, the goal is to use a parametric statistical model to describe a set of data or a 
process or population that generated a set of data. Modern computing software had expanded the 
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feasible areas of application for maximum likelihood methods and allowed engineers to compute 
that estimations in hand without specific software need. 
 Statistical theory shows that, under standard regularity conditions, maximum likelihood 
estimators are “optimal” in large samples. More specifically, this means that maximum likelihood 
are consistent and asymptotically (as the sample size increased) efficient. That is, among consistent 
competitors to maximum likelihood estimators, none has a smaller asymptotic variance. 
 Statistical modeling, in practice, is an iterative procedure of fitting proposed models in search 
of a model that provides an adequate description of the population or process of interest, without 
being unnecessarily complicated. Application of maximum likelihood methods generally starts with 
a set of data and a tentative statistical model for the data. The tentative model is often suggested by 
the initial graphical analysis, physical theory, previous experience with similar data, or other expert 
knowledge. 
 
 
2. Parametric Likelihood in General 
 
Using a parametric model of the observed data the likelihood function can be viewed as the 
probability of the observed data, written as a function of the model’s parameters. For a parametric 
model, the number of parameters is usually small relative to the nonparametric models. Most 
popular are Exponential and Weibull distributions in reliability engineering. 
 The exponential distribution has only one parameter and its hazard function is constant. 
Hazard function of this distribution sometimes mean failure rate. The Weibull distribution has a 
hazard rate function that is not constant over time. It is used to model for both increasing and 
decreasing failure rates. Weibull is a distribution that can be used to model a wide range of 
phenomena. It is used to model the infant mortality or the wear-out period in the bathtub curve. 
Weibull analysis is extensively used to study mechanical, chemical, electrical, electronic, material, 
and human failures. The primary advantages of Weibull analysis are its ability to  

 Provide moderately accurate failure analysis and failure forecasts with extremely small data 
samples, making solution possible at the earliest indications of a problem. 

 Provide simple and useful graphical plots for individual failure modes that can be easily 
interpreted and understood, even when data inadequacies exist. 

 Represent a broad range of distribution shapes so that the distribution with the best fit can be 
selected. 

 Provide physics of failure clues based on the slope of the Weibull probability plot. 
Although the use of normal or lognormal distribution generally requires at least 20 failures or 
knowledge from prior existence, Weibull analysis works extremely well when there are as few as 3-
5 failures, which is critical when the result of a failure involves safety or extreme costs. Parameters 
for the Weibull distribution for most components can be found in many references [4]. 
 
For a set of n  independent observations, the likelihood function can be written as the following 
joint probability 

 
1

( ) ( , ) ( , )
n

i i
i

L L data c L data  


    (1) 

The quantity c  in term (1) is a constant term that does not depend on the data or on   (in general   
be a vector). For computation purposes, let 1c  . In reliability engineering, if a failure time is 
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known to have occurred between times 1it   and it , the probability of this event is contribution terms 

( , )i iL data  

 
1

1( , ) ( ) ( , ) ( , ) ( , )
i

i

t

i i i i i

t

L data L f t dt F t F t    


     (2) 

For a given set of data,  L   can be viewed as a function of  . The dependence of  L   on the 

data will be understood and is usually suppressed in notation. The values  of   for which  L   is 

relatively large are more plausible than values of   for which the probability of the data is 
relatively small. There may or may not be a unique value of   that maximizes  L  . Regions in 

the space of   with relatively large  L   can be used to define confidence regions for  . One can 

also use maximum likelihood to estimate functions of  . We will show how to make these concepts 
operational for the two parameter Weibull dinstribution, using simple examples for illustration. 
 
 
2.1. Likelihood Function and its Maximum 
 
Given a sample of n  independent observations, denoted generically by idata , 1,...,i n  and a 

specific model, the total likelihood  L   for the sample is given by equation (1). For some 

purposes, it is convenient to use the log lokelihood  ( ) logiL L     . For all practical problems 

( )L   will be representable in computer memory without special scaling [which is not so for  L  ] 

because of possible extreme exponent values, and some theory for maximum likelihood is 
developed more naturally in terms of sums like 

 
1

( ) log ( )
n

i i
i

L L L  


      , 

rather than in terms of the product in equation (1). Note that the maximum of ( )L  , if one exists, 
occurs at the same value of   as the maximum of ( )L  . 
 
 
2.2. Likelihood Confidence Intervals for   
 
The likelihood function provides a versatile method for assessing the information that the data 
contains on parameter, or functions of parameters. Specifically, the likelihood function provides a 
generally useful method for finding approximate confidence intervals for parameters and functions 
of parameters. 
An approximate 100(1 )%  likelihood-based confidence interval for   is the set of all values of 
  such that  

   2
(1 ,1)2 log ( )R      

or, equivalently, the set defined by  

 2
(1 ,1)( ) exp / 2R       . 

The theoretical justification for this interval would be explained as follows. 
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 Assume that we want to estimate 1 , from the partition 1 2( , )   . Let 1r  denote the length 

of 1  ( 1  means in general vector). The profile likelihood for 1  is  

 1 2
1

( , )
( ) max .

ˆ( )

L
R

L

 


 
  

 
 (3) 

When the length of 2  is 0 (as in one-parameter exponential distribution) is a relative likelihood for 

1  . Otherwise we have a “maximized relative likelihood” for 1 . In either case, 1( )R   is 

commonly known as a “profile likelihood” because it provides a view of the profile of ( )L   as 

viewed along a line that is perpendicular to the axes of 1 . 

  When 1  is of length 1, 1( )R   is a curve projected onto plane. 

 When 1  is of length 2 or more, 1( )R   is a surface projected onto a three-dimensional hyper-

plane. 
In either case the projection is in a direction perpendicular to the coordinate axes for 1 . When 1  is 

of length 1 or 2, it is useful to display 1( )R   graphically. 

 Asymptotically,  1 1( ) 2 log ( )nLLR R    when evaluated at the true 1 , has a chi-square 

distribution with 1r  degrees of freedom. To do a likelihood-ration significance test, we would reject 

the null hypothesis that 0  , at the   level of significance, if 

  
1

2
1 (1 , )( ) 2 log ( )n rLLR R       . 

So one-sided approximate 100(1 )%  confidence bound can be obtained by drawing the 

horizontal line at 2
(1 2 ,1)exp / 2     and using the appropriate endpoint of the resulting two-sided 

confidence interval. 
 
 
2.3. Relationship between Confidence Intervals and Significance Tests 
 
Significance testing (or sometimes called hypothesis testing) is a statistical technique widely used in 
many areas of science. The basic idea is to assess the reasonableness of a claim or hypothesis about 
a model or parameter value, relative to observed data. One can test a hypothesis by first 
constructing a 100(1 )%  confidence interval for the quantity of interest and then checking to see 
if the interval encloses the hypothesized value or not. If not, then the hypothesis is rejected “at the 
  level of significance”. If the interval encloses the hypothesized value, then the appropriate 
conclusion is that the data are consistent with the hypothesis (it is important, however, to note that 
failing to reject a hypothesis is not the same as saying that the hypothesis is true).  
 Most practitioners find confidence intervals much more informative than yes/no result of 
an significance test. See e.g. Hahn and Meeker (1991) and other references for further discussion of 
this subject. 
 To be more formal, a likelihood ratio test for a single parameter model can be done by 
comparing the maximum of the likelihood under the “null hypothesis” to the maximum of the 
likelihood over all possible values for the parameter. A likelihood much smaller under the null 
hypothesis provides evidence to refute the hypothesis. 
 Specifically, for the Exponential distribution, the single-point null hypothesis 0   should 

be rejected if 



 
 
 

Aplimat – Journal of Applied Mathematics
 

volume 2 (2009), number 2 
 
 

221

 
 

20
(1 ,1)

( )
2 log

ˆ
L

L


 




 
  
 
 

, (4) 

where ̂  is the maximum likelihood estimate of  . Rejection implies that the data are not 
consistent with the null hypothesis. Using the previous definition from the section 2.2, it is easy to 
see that the a likelihood-based confidence interval is the set of all values of   that would not be 
rejected under the likelihood ratio test defined in (4). 
 
 
3. Likelihood Ratio Confidence Bounds 
 
In the next section we will present a method for calculating confidence bounds via the likelihood 
ration bounds (LRB) method. To calculate confidence bounds for distributions parameters is a one 
of key questions in modeling MTBF. Conceptually, as was seen in the previous section, this 
method is a great deal simpler than that of the Fisher matrix, although that does not mean 
that the results are of any less value. In fact, the LRB method is often preferred over the 
Fisher matrix method in situations where there are smaller sample sizes. Note, even through 
LRB bounds are conceptually simpler, they are computationally intensive and require a much 
longer time to plot than Fisher matrix bounds. 
It is need to note that especially for time failure data sets modeled by Weibull distribution function 
is the estimation for likelihood confidence bound has a great deal. 
 
Likelihood ratio confidence bounds are based on the equation [2, 6, 7]: 

 


2
,

( )
2.log

( )
k

L

L


 


 
  

 
 (5) 

where: 
 - ( )L   is the likelihood function for the unknown parameter vector   

 - ˆ( )L   is the likelihood function for the unknown parameter vector ̂  

 - 2
,k  is the chi-squared statistic with probability   and k  degrees of freedom, where k  is 

the number of quantities jointly estimated. 
 Let x  be a continuous random variable with pdf: 1 2( , , ,..., )kf x    , where 1 2, ,..., k    are k  

unknown constant parameters that need to be estimated, one can conduct an experiment and obtain 
R  independent observation 1 2, ,..., Rx x x  which correspond in the case of life data analysis to failure 

times. The likelihood function is given by: 

 1 2 1 2 1 2
1

( , ,..., | , ,... ) ( , , ,... )
R

R k i k
i

L x x x L f x     


   1, 2,...i R  

The maximum likelihood estimators (MLE) of 1 2, ,..., k    are obtained by maximizing L . These 

are representing by the  ˆL   term in the denominator of the ratio in equation (5). Since the values 

of the data points are knows, and the values of the parameter estimates ̂  have been calculated 
using MLE methods, the only unknown term in eq. (5) is the ( )L   term in the numerator of the 
ratio. It remains to find the values of the unknown parameter vector   that satisfy eq. (5).  
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 For distribution that have two parameters (such as two-parameter Weibull distribution.), the 
values of the parameters that satisfy this equation will change based on the desired confidence level 
  , but at a given value   there is only a certain region of values for 1 , 2  for which eq. (5) holds 

true. That region can be represented graphically as a contour plot. The region of the contour 
plot essentially represents a cross-section of the likelihood function surface that satisfies the 
condition of eq. (5). If   is the confidence level, then a   for two-sided bounds and 2 1    
for one-sided. 
 The bounds on the parameters are calculated by finding the extreme values of the contour 
plot on each axis for a given confidence level. Since each axis represents the possible values of a 
given parameter, the boundaries of the contour plot represent the extreme values of the parameter 
that satisfy 

� �
21 2

,

1 2

( , )
2.log

( , )
k

L

L


  
 

 
   

 
 

For two-parameter distributions, the contour plot will be a two dimensional plot.  
 This equation can be rewritten as 

   � � 
2

,1

2
1 2 1 2, , .L L e



   


  (6) 

The task now becomes to find the values of parameters  1  and 2  so that the equality in eq. (5) is 

satisfied. Unfortunatelly, there is no closed-form solution, thus these values must be arrived at 
numerically. One method of doing this is to hold one parameter constant and iterate on the other 
until an acceptable solution is reached. This can prove to be rather tricky, since thre will be two 
solutions for one parameter if the other is held constant. In situations such as these, it is best to 
being the iterative calculation with values close to those of the MLE values, so as to ensure that 
one is not attempting to perform calculations outside of the region of the contour plot where no 
solution exists. 
 Let us present now to computing the confidence bounds for our pseudo-random numbers 
generating via pseudorandom generator. 
 

In[1]:= x  RandomRealWeibullDistribution1.5, 30, 5
Out[1]= 25.3153, 6.02835, 13.9177, 44.6242, 41.471  
 

Five units were put on a reliability test and experienced failures at previous output. Assuming a 
Weibull distribution, the MLE parameter estimates are calculated (or taking from our previous 

example)  to be ˆ 1.5   and ˆ 30  . We want to calculate the 90 % two-sided confidence bounds 
on these parameters using the likelihood ratio method described in the previous section. 
 The first step is to calculate the likelihood function for the parameter estimates. 

 

ˆˆ 15
ˆ

1 1

ˆ
ˆ ˆˆ ˆ( , ) ( , , ) . .

ˆ ˆ

ixN
i

i
i i

x
L f x e


   

 

  
 
 

 

 
   

 
   

 

1.5
1.5 15

930

1

1.5ˆ ˆ( , ) . . 5.39525 10
30 30

ix

i

i

x
L e 

     



    
 

  

where ix  are the original time-to-failure data points.  
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In[4]:= ps  ls ExpInverseCDFChiDistribution1, 0.9^22
Out[4]= 1.39479μ 10-9

 
 

We can now rearrange eq. (2) to the form  

 

2
,1

2ˆ ˆ( , ) ( , ). 0L L e


   


   
Since our specified confidence level,  , is 90%, we can calculate the value of the chi-squared 
statistics 2

0.9,1 2.705543  . We then substitute this information into the equation 

 
2.705543

9 92( , ) 5.39525 10 . ( , ) 1.39479 10 0L e L   


        

  9, 1.39479 10 0L       

or in MATHEMATICA® notation  
  9, 1.39479 10 0ff       (see the next picture) 

 

In[5]:= ff_, _  ApplyTimes, f, , x  ps

Out[5]= 5.16885μ 106 b-1 b5 h-5 b

exp -15.9203b
1

h

b

- 20.7877b
1

h

b

- 22.7351b
1

h

b

- 23.1297b
1

h

b

- 29.7009b
1

h

b

- 1.39479μ 10-9

 
 

The values of the parameters that satisfy this equation will change based on the desired confidence 
level  . The region can be represented graphically as a Contour Plot MATHEMATICA® function. 
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The solution is an iterative process, that reguires setting the value of   and finding the appopriate 
values of  . 

 
 

In[12]:= TableFormbody1 ;; 15,
TableHeadings  None, "  ", " min ", " max "

Out[12]//TableForm=
h min b max b

14 1.41302 1.41302
15 1.20252 1.20252
16 1.13245 2.92151
17 1.09345 3.54451
18 1.06918 4.25105
19 1.05361 5.06153
20 1.04381 5.99341
21 1.03817 23.2302
22 1.03569 1.03569
23 1.03574 1.03574
24 1.0379 1.0379
25 1.04188 1.04188
26 1.04748 1.04748
27 1.05457 1.05457
28 1.06309 1.06309  

 
 
 
 
 
 



 
 
 

Aplimat – Journal of Applied Mathematics
 

volume 2 (2009), number 2 
 
 

225

As we can determined from the table, the lowest calculated value for   is 1.03569  while the 
highest is 23.2302 . These represent the two-sided 90 % confidence limits on this parameter. Since 
solution for the equation do not exist for values of   bellow 14 or above 44, these can be considere 
the 90 % confidence limits for this parameter. 
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THE BEST LEAST ABSOLUTE DEVIATION
LINEAR REGRESSION:

PROPERTIES AND TWO EFFICIENT METHODS

Kuzmanović I., (HR), Sabo K., (HR), Scitovski R., (HR), Vazler I., (HR)

Abstract. For the given set of data, among which outliers (wild points) are expected,
the problem of determining the best Least Absolute Deviations (LAD) linear regression
is considered. Particularly, the problem of determining the best weighted LAD-line and
the best LAD-plane is considered and efficient algorithms for solving these problems are
given. Algorithms are illustrated by several examples as well as compared with other
methods known in literature. The proposed methods proved to be sufficiently efficient for
being considered as giving a solution in real time. Therefore, they are suitable for various
applications, as e.g. in robotics.
Key words and phrases. Torsion, Saint-Venant’s principle, triangular cross section.

Mathematics Subject Classification. 65D10, 65C20, 62J05, 90C27, 90C56, 90B85, 34K29

1 Introduction

The problem of determining parameters of the hyperplane, in order to have its graph passing as
close as possible (in some sense) to the given points, is an old problem which has been solved in
various ways. Most frequently it is assumed that the errors can occur only in measured values
of the independent variable. In this case, if we use the l2 norm, it is the Ordinary Least Squares
(OLS) problem. In many technical and other applications (where the so-called “outliers” can
be expected) using the l1 norm is much more interesting. In literature this approach is better
known as the Least Absolute Deviations (LAD) problem (see e. g. [3], [13], [16]). For example,
while calculating movements of robots, based on the data obtained from a stereographic camera,
it is important to estimate the position of a hyperplane efficiently and in real time (see e. g.
[5]). At the same time, the so-called outliers among the data should not affect the obtained
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results. It is known that this sort of problems can be solved by applying the LAD approach
(see e. g. [4], [12]).

If one assumes that the errors can occur in measured values of both (dependent and inde-
pendent) variables, and then in general the lp norm is used, it is called the Total-Least-p (TLp)
problem (see e. g. [1]).

In this paper we give an overview of basic properties and facts related to estimation of
parameters of the best LAD-line and LAD-plane and propose an efficient method for searching
optimal parameters. Our methods have been compared to numerous other methods known
from literature, and have shown to be much more efficient.

At the beginning let us give an important lemma whose proof can be seen in [14], and which
is used in various situations throughout the whole text.

Lemma 1.1 Let (ωi, yi), i ∈ I, I = {1, . . . , m}, m ≥ 2, be the data, where y1 ≤ y2 ≤ . . . ≤ ym

are real numbers, and ωi > 0 corresponding data weights. Denote

ν0 = max{ν ∈ I :
ν∑

i=1

ωi − 1

2

m∑
i=1

ωi ≤ 0}.

Furthermore, let F : R → R be a function defined by the formula

F (α) =
m∑

i=1

ωi|yi − α|. (1)

(i) If
∑ν0

i=1 ωi < 1
2

∑m
i=1 ωi, then the minimum of the function F is attained at the point

α� = yν0+1.

(ii) If
∑ν0

i=1 ωi = 1
2

∑m
i=1 ωi, then the minimum of the function F is attained at every point

α� from the segment [yν0 , yν0+1].

Corollary 1.2 Let y1 ≤ y2 ≤ . . . ≤ ym, m > 1 be the data with weights ω1 = · · · = ωm = 1.
Then

(i) if m is odd (m = 2k + 1), then the minimum of the function F is attained at the point
α� = yk+1;

(ii) if m is even (m = 2k), the minimum of the function F is attained at every point α� from
the segment [yk, yk+1].

Remark 1.3 If the minimum of the function F defined by (1) is attained in real number α∗,
then

F (α) =
m∑

i=1

ωi|yi − α| ≥
m∑

i=1

ωi|yi − α∗|,

where the equality holds if and only if α = α∗.
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2 The best weighted LAD-line

Let I = {1, . . . , m}, m ≥ 2 be a set of indices, Λ = {Ti(xi, yi) ∈ R
2 : i ∈ I} a set of

points in the plane, and ωi > 0 corresponding data weights. The best weighted LAD-line
should be determined, i.e. we should determine optimal parameters a∗, b∗ ∈ R of the function
f(x; a, b) = ax + b such that

G(a∗, b∗) = min
(a,b)∈R2

G(a, b), G(a, b) =
m∑

i=1

ωi|yi − axi − b|. (2)

Proof of the following existence problem is simple, and it can be proved by means of the
principle applied in [8], [9].

Theorem 2.1 Let I = {1, . . . , m}, m ≥ 2 be a set of indices, Λ = {Ti(xi, yi) ∈ R
2 : i ∈ I} a

set of points in the plane, and ωi > 0 corresponding data weights. Then there exists the best
weighted LAD-line, i.e. the problem (2) has a solution. Especially, if x1 = · · · = xm =: ξ, then
there exist infinitely many best LAD-lines of the form y = a�(x − ξ) + μ, whereby a� is an
arbitrary real number, and μ a weighted median of the data y1, . . . , ym.

The following lemma shows that for a linear function whose graph passes through some
point T0(x0, y0) ∈ R

2 there is the best weighted LAD-line whose graph passes also through
some point Ti(xi, yi) ∈ Λ, for which xi 	= x0. Especially, point T0 can be one of the points of
the set Λ. In that case, the lemma claims that there exists the best weighted LAD-line whose
graph passes through one more point Ti(xi, yi) ∈ Λ, for which xi 	= x0.

Lemma 2.2 Let I = {1, . . . , m}, m ≥ 2 be a set of indices and

(i) Λ = {Ti(xi, yi) ∈ R
2 : i ∈ I} a set of points in the plane, such that min

i∈I
xi < max

i∈I
xi.

(ii) ωi > 0, i ∈ I corresponding data weights,

(iii) T0(x0, y0) ∈ R
2,

(iv) f(x; a) = a(x−x0)+y0, a linear function whose graph passes through the point T0(x0, y0) ∈
R

2.

Then there exists a∗ ∈ R such that

G(a∗) = min
a∈R

G(a), G(a) =
m∑

i=1

ωi|yi − f(xi; a)| =
m∑

i=1

ωi|yi − y0 − a(xi − x0)|, (3)

and the graph of the linear function x 
→ f(x; a∗) passes through at least one more point
Tν(xν , yν) ∈ Λ, whereby xν 	= x0.
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Proof. Denote I0 = {i ∈ I : xi = x0}. It can be seen that I \ I0 	= ∅, i.e. that there exists
i0 ∈ I, such that xi0 	= x0. Otherwise it would be xi = x0, ∀i ∈ I, which contradicts assumption
(i). Functional (3) can be written as

G(a) =
∑
i∈I0

ωi|yi − y0| +
∑

i∈I\I0
ωi|xi − x0|

∣∣∣∣ yi − y0

xi − x0

− a

∣∣∣∣ . (4)

According to Lemma1.1, there exists ν ∈ I \ I0 such that

G(a∗) = min
a∈R

G(a) =
∑
i∈I0

ωi|yi − y0| +
∑

i∈I\I0
ωi|xi − x0|

∣∣∣∣ yi − y0

xi − x0

− yν − y0

xν − x0

∣∣∣∣ ,

from where there follows a∗ = yν−y0

xν−x0
.

It can be simply seen that the graph of function x 
→ f(x; a∗) = yν−y0

xν−x0
(x − x0) + y0 passes

through at least one point Tν(xν , yν) ∈ Λ, for which xν 	= x0. �

Theorem 2.3 Let I = {1, . . . , m}, m ≥ 2 be a set of indices, Λ = {Ti(xi, yi) ∈ R
2 : i ∈ I} a

set of points in the plane, such that min
i∈I

xi < max
i∈I

xi, and ωi > 0 corresponding data weights.

Then there exists the best weighted LAD-line which passes through at least two different points
from Λ.

Proof. According to Theorem2.1, there exists the best weighted LAD-line f(x, a∗, b∗) =
a∗x + b∗ with optimal parameters a∗, b∗.

According toLemma1.1, there exists μ ∈ I, such that the minimum of the functional

G(a∗, b) =
m∑

i=1

ωi|yi − a∗xi − b|,

is attained for b+ = yμ − a∗xμ, i.e.

G(a∗, b∗) = min
b∈R

G(a∗, b) = G(a∗, b+).

It means that also at the point (a∗, b+) functional G attains its global minimum, and since
yμ = a∗xμ + b+, it means that there exists the best weighted LAD-line passing through the
point Tμ(xμ, yμ), given by

f(x; a∗) := f(x; a∗, yμ − a∗xμ) = a∗(x − xμ) + yμ.

According to Lemma2.2, then there exists at least one more point from the set Λ\{Tμ}, through
which there passes the best weighted LAD-line. �

Remark 2.4 Notice that Theorem 2.3 is proved by using Lemma 2.2, whereas Lemma 2.2 is
proved by applying Lemma 1.1. Thus, generally the best weighted LAD-line does not have to be
unique. See also e. g. [11], [16].
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2.1 Methods for searching the best LAD-line

For solving this problem we can use general minimization methods without derivatives, e.g.:
Differential Evolution, Nelder Mead, Random Search, Simulated Annealing, etc. (see e. g. [10]).
There is also a certain number of methods which are based on Linear Programming (see e. g.
[2], [13]) or they can be different special cases of the Gauss-Newton method (see e. g. [6], [13],
[16]). Moreover, there are some methods specialized for solving this problem (see e. g. [12],
[18]).

2.1.1 Two Points Method

For the purpose of developing the algorithm for searching the best LAD-line, first note that
Theorem2.3 refers to the fact that the best LAD-line should be searched for among those lines
which pass through at least two different points of the set Λ. The following algorithm is based
on that fact. To get as close as possible from the beginning to the best LAD-line, as the initial
point we can choose the centroid of the data Tp(xp, yp), where

xp =
1

ω

m∑
i=1

ωixi, yp =
1

ω

m∑
i=1

ωiyi, ω =
m∑

i=1

ωi, (5)

which are quickly calculated, and probably pass closely to the best LAD-line. After that, in
accordance with Lemma2.2, the following algorithm is developed.

Algorithm [Two Points]

Step 1: Give m ≥ 2, input points Ti(xi, yi), i ∈ I, I = {1, . . . , m}, and corresponding data
weights ωi > 0; According to (5), determine the point Tp(xp, yp) and define the set
I0 = {i ∈ I : xi = xp};

Step 2: In accordance with Lemma2.2,

• solve the LAD problem for the function f(x; a) = a(x − xp) + yp by minimizing
functional (4), denote the solution by a1 and determine a new point Ti1(xi1 , yi1) ∈ Λ
for which xi1 	= xp;

• Put b1 = −a1xp − yp and calculate G1 =
∑m

i=1 ωi|yi − a1xi − b1|;

Step 3: Define the set I0 = {i ∈ I : xi = xi1}. In accordance with Lemma2.2,

• solve the LAD problem for the function f(x; a) = a(x − xi1) + yi1 by minimizing
functional (4), denote the solution by a2 and determine a new point Ti2(xi2 , yi2) ∈ Λ
for which xi2 	= xi1 ;

• Put b2 = −a2xi1 − yi1 and calculate G2 =
∑m

i=1 ωi|yi − a2xi − b2|,

Step 4: If G2 > G1, put {i1 = i2, G1 = G2} and go to Step 3; If not, STOP.
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It can be shown (see [14]) that Algorithm [Two Points] in finitely many steps leads to the
best LAD-line. From the Algorithm and Lemma2.2 it is clear that the number of steps is less
than the number of given points T1, . . . , Tm. Practically, considering a favourable choice of the
initial point according to (5), the number of steps will be considerably smaller from m. In this
way maximum efficiency of the algorithm is ensured, which is implementable in real time.

Example 2.5 We are given the set of points Λ = {Ti(xi, yi) ∈ R
2 : i = 1, . . . , 8}, where

ω1 = . . . = ω8 = 1, and
xi 1 2 3 4 5 6 7 8
yi 7 14 10 17 15 21 26 23

Algorithm [Two Points] is initialized so that first the centroid of the data has been calculated
Tp(5, 17) 	∈ Λ. After that, the algorithm chooses the first point T1(1, 7) ∈ Λ and determines the
linear function f1(x) = 2.5 x + 4.5, whose graph passes through those two points (see the left
illustration in Figure 1). The sum of absolute deviations is G1 = 18.

After that, the algorithm fixes the point T1(1, 7) and chooses a new point T6(6, 21) and a
new linear function f2(x) = 2.8 x + 4.2, whose graph passes through those two points (see the
right illustration in Figure 1). The sum of absolute deviations is now G2 = 17.4, which also
shows a global minimum for this problem.

Naturally, the same result is obtained by applying the module NMinimize using the Nelder-
Mead method from the software tool Mathematica (see also [10], [19]).
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Figure 1: Illustration of the Algorithm[Two Points]

Example 2.6 We are given the set of points Λ = {Ti(xi, yi) ∈ R
2 : i = 1, . . . , m}, where

xi = 10i
m

, ωi = 1, i = 1, . . . , m,

yi = 3xi + 2 + εi, εi ∼ N(0, σ2).

Efficiency of algorithms Algorithm [Two Points] will be compared with some special meth-
ods for searching the best LAD-line: Wesolowsky(1981) and Li and Arce (2004), but also
with general minimization algorithms, which are also included in software tool Mathematica:
DifferentialEvolution, NelderMead, RandomSearch, and SimulatedAnnealing (see also
[10], [19]).
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m 10 100 500 1 000 5 000 10 000

Algorithm [Two Points] 2(0) 3(0.03) 3(0.42) 2(1) 2(24.5) 3(75)

Algorithm (Li-Arce, [12]) 2(0) 2(0.04) 3(1.03) 4(4.53) 1(105.8) 1(529)

Algorithm (Wesolowsky, [18]) 3(0) 3(0.04) 3(1.09) 3(4.34) 3(127.8) 3(635)

Differential Evolution (0.3) (0.44 ) (1.86 ) (6.95 ) (194 ) (825 )

Nelder-Mead (0.14 ) (0.16 ) (1.36 ) (6.42 ) (186 ) (775 )

Random Search (0.25 ) (0.47 ) (3.2 ) (14.75 ) (322 ) (1168 )

Simulated Annealing ( 0.25) (0.17 ) (1.66 ) (6.53 ) (209 ) (852 )

Table 1: Comparison of algorithms for solving the LAD problem

For m = 10, 100, 500, 1 000, 5 000, 10 000 by means of every method we will measure time
in seconds (numbers in brackets given in Table 1), and with Algorithm [Two Points], Algo-
rithm[Wesolowsky](1981) and Algorithm[Li and Arce] (2004) also the number of iterations.

As it can be seen, Algorithm [Two Points] comes to a global minimum in only few steps (most
often 2–3 steps). Required time with Algorithm [Two Points] is a bit longer, which is probably
the result of a direct application of Mathematica-module Sort. Considering development and
low complexity of this algorithm, it can be expected that with careful programming this time
would be significantly shorter. From Table 1 it can be seen that there is significant superiority
of both proposed algorithms in relation to other compared methods, which can be further
improved by careful programming.

3 The best LAD-plane

Let I = {1, . . . , m}, m ≥ 3 be a set of indices, Λ = {Ti(xi, yi, zi) ∈ R
3 : i ∈ I} a set of points in

space. The best LAD-plane should be determined, i.e. we should determine optimal parameters
a∗, b∗, c∗ ∈ R of the function f(x, y; a, b, c) = ax + by + c such that

G(a∗, b∗, c∗) = min
(a,b,c)∈R3

G(a, b, c), G(a, b, c) =
m∑

i=1

|zi − axi − byi − c|. (6)

All assertions that follow might be easily proved also in the case if data have corresponding
weights ωi > 0. Analogously to Theorem2.1 there holds the following theorem.

Theorem 3.1 (Theorem on the existence of the best LAD-plane) Let I = {1, . . . , m}, m ≥ 3 be
a set of indices, and Λ = {Ti(xi, yi, zi) ∈ R

3 : i ∈ I} a set of points in space. Then there exists
the best LAD-plane, i.e. problem (6) has a solution. Especially, if the data (xi, yi), i = 1, . . . , m
lie on some line αx + βy + γ = 0, α2 + β2 	= 0, then there exist infinitely many LAD-planes.

Lemma 3.2 Let I = {1, . . . , m}, m ≥ 3 be a set of indices and

(i) Λ = {Ti(xi, yi, zi) ∈ R
3 : i ∈ I} a set of points in space such that min

i∈I
xi < max

i∈I
xi,

min
i∈I

yi < max
i∈I

yi, whereby the data (xi, yi), i ∈ I do not lie on a line.
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(ii) T0(x0, y0, z0) ∈ R
3,

(iii) f(x, y; a, b) = a(x− x0) + b(y − y0) + z0, (a, b) ∈ R
2 a linear function whose graph passes

through the point T0(x0, y0, z0) ∈ R
3.

Then there exists (a∗, b∗) ∈ R
2 such that G(a∗, b∗) = min

(a,b)∈R2
G(a, b), where

G(a, b) =
m∑

i=1

|zi − f(xi, yi; a, b)| =
m∑

i=1

|zi − z0 − a(xi − x0) − b(yi − y0)|, (7)

and the graph of the linear function x 
→ f(x, y; a∗, b∗) passes through at least two different
points Tν(xν , yν , zν), Tμ(xμ, yμ, zμ) ∈ Λ, whereby (xμ, yμ) 	= (x0, y0), and (xν , yν) 	= (x0, y0).

PROOF. Let I0 = {i ∈ I : yi = y0} and I1 = I \ I0. Notice that due to condition (i) there
holds I1 	= ∅. It can be written

G(a, b) =
∑
i∈I1

|yi − y0|
∣∣∣∣zi − z0

yi − y0

− a
xi − x0

yi − y0

− b

∣∣∣∣ +
∑
i∈I0

|(zi − z0) − a(xi − x0)|

According to Lemma1.1, there exists μ ∈ I1, such that

G(a, b) ≥ ∑
i∈I1

|yi − y0|
∣∣∣ zi−z0

yi−y0
− axi−x0

yi−y0
−

(
zμ−z0

yμ−y0
− axμ−x0

yμ−y0

)∣∣∣ +
∑

i∈I0
|(zi − z0) − a(xi − x0)|

=
∑

i∈I1\{μ}

∣∣∣(zi − z0) − (yi − y0)
zμ−z0

yμ−y0
− a

(
xi − x0 − (yi − y0)

xμ−x0

yμ−y0

)∣∣∣ +
∑
i∈I0

|(zi − z0) − a(xi − x0)|

= G
(
a, zμ−z0

yμ−y0
− axμ−x0

yμ−y0

)
.

Obviously

min
(a,b)∈R2

G(a, b) = min
a∈R

G

(
a,

zμ − z0

yμ − y0

− a
xμ − x0

yμ − y0

)
.

Let J1 = {i ∈ I1 \ {μ} : xi − x0 − (yi − y0)
xμ−x0

yμ−y0
= 0} and J0 = {i ∈ I0 : xi = x0}. Notice

that due to condition (i) at least one of the sets I1 \J1 or I0 \J0 is non-empty. It can be written

G
(
a, zμ−z0

yμ−y0
− axμ−x0

yμ−y0

)
=

=
∑

i∈I1\J1

∣∣∣(zi − z0) − (yi − y0)
zμ−z0

yμ−y0
− a

(
xi − x0 − (yi − y0)

xμ−x0

yμ−y0

)∣∣∣ +
∑
i∈J1

∣∣∣(zi − z0) − (yi − y0)
zμ−z0

yμ−y0

∣∣∣
+

∑
i∈I0\J0

|(zi − z0) − a(xi − x0)| +
∑
i∈J0

|(zi − z0)|.

According to Lemma1.1, there exists ν ′ ∈ I1 \ J1, i.e. there exists ν ′′ ∈ I0 \ J0, such that∑
i∈I1\J1

∣∣∣(zi − z0) − (yi − y0)
zμ−z0

yμ−y0
− a

(
xi − x0 − (yi − y0)

xμ−x0

yμ−y0

)∣∣∣
≥ ∑

i∈I1\J1

∣∣∣(zi − z0) − (yi − y0)
zμ−z0

yμ−y0
− a′

ν

(
xi − x0 − (yi − y0)

xμ−x0

yμ−y0

)∣∣∣ ,
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i.e. ∑
i∈I0\J0

|(zi − z0) − a(xi − x0)| ≥
∑

i∈I0\J0

|(zi − z0) − aν′′(xi − x0)|,

where

aν′ =
(zν′ − z0) − (yν′ − y0)

zμ−z0

yμ−y0

xν′ − x0 − (yν′ − y0)
xμ−x0

yμ−y0

, aν′′ =
zν′′ − z0

xν′′ − x0

.

Notice that ν ′, ν ′′ 	= μ and that there holds

min
(a,b)∈R2

G(a, b) = min
a∈R

G

(
a,

zμ − z0

yμ − y0

− a
xμ − x0

yμ − y0

)
= min

{
G

(
aν′ ,

zμ − z0

yμ − y0

− aν′
xμ − x0

yμ − y0

)
, G

(
aν′′ ,

zμ − z0

yμ − y0

− aν′′
xμ − x0

yμ − y0

)}
,

It can be simply seen that the plane

z = aν′(x − x0) +

(
zμ − z0

yμ − y0

− aν′
xμ − x0

yμ − y0

)
(y − y0) + z0

passes through mutually different points (x0, y0, z0), (xμ, yμ, zμ), (xν′ , yν′ , zν′), whereby (xμ, yμ) 	=
(x0, y0) and (xν′ , yν′) 	= (x0, y0), whereas the plane

z = aν′′(x − x0) +

(
zμ − z0

yμ − y0

− aν′′
xμ − x0

yμ − y0

)
(y − y0) + z0

passes through mutually different points (x0, y0, z0), (xμ, yμ, zμ), (xν′′ , yν′′ , zν′′), whereby (xμ, yμ) 	=
(x0, y0) and (xν′′ , yν′′) 	= (x0, y0). �

The following theorem shows that under natural conditions on the data there exists the best
LAD-plane. This result will be used for developing an efficient algorithm for searching the best
LAD-plane.

Theorem 3.3 Let I = {1, . . . , m}, m ≥ 3 be a set of indices and Λ = {Ti(xi, yi, zi) ∈ R
3 :

i ∈ I} a set of points in space, such that min
i∈I

xi < max
i∈I

xi, min
i∈I

yi < max
i∈I

yi, whereby the data

(xi, yi), i ∈ I do not lie on a line.
Then there exists the best LAD-plane passing through at least three different points from Λ.

Proof. According to Theorem3.1, there exists the best LAD-plane f(x, y; a∗, b∗, c∗) = a∗x+
b∗y + c∗ with optimal parameters a∗, b∗, c∗.

According to Lemma1.1, there exists μ ∈ I, such that the minimum of the functional

G(a∗, b∗, c) =
m∑

i=1

|zi − a∗xi − b∗yi − c|,

is attained for c+ = zμ − a∗xμ − b∗yμ, i.e.

G(a∗, b∗, c∗) = min
c∈R

G(a∗, b∗, c) = G(a∗, b∗, c+).
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It means that also at point (a∗, b∗, c+) functional G attains its global minimum, and since
zμ = a∗xμ + b∗yμ + c∗, it means that there exists the best LAD-plane passing through the point
Tμ(xμ, yμ, zμ) given by

f(x, y; a∗, b∗) := f(x, y; a∗, b∗, zμ − a∗xμ − b∗yμ) = a∗(x − xμ) + b∗(y − yμ) + zμ.

According to Lemma3.2, then there exist at least two more different points from the set Λ\{Tμ},
through which there passes the best LAD-plane. �

Remark 3.4 Notice that Theorem 3.3 is proved by using Lemma 3.2, whereas Lemma 3.2 is
proved by applying Lemma 1.1. Thus, generally the best weighted LAD-line does not have to be
unique. See also e. g. [3], [16].

3.1 Methods for searching the best LAD-plane

As with the LAD-line, this problem might be solved by applying general minimization methods
without using derivatives (see e. g. [10]), methods based on Linear Programming (see e. g. [2],
[16]) or various specializations of the Gauss-Newton method (see e. g. [6], [13], [16]).

3.1.1 Three Points Method

For the purpose of developing an algorithm for searching the best LAD-plane, notice first that
Theorem3.3 refers to the fact that the best LAD-line should be searched for among those planes
which pass through at least three different points of the set Λ. The following algorithm is based
on that fact. To get as close as possible from the beginning to the best LAD-line, as the initial
point we can choose the centroid of the data Tp(xp, yp, zp), where

xp =
1

m

m∑
i=1

xi, yp =
1

m

m∑
i=1

yi zp =
1

m

m∑
i=1

zi (8)

Let us first choose initial approximation (a0, b0), e.g. by solving the OLS problem

∑
i∈I0

(yi − yp)
2

(
zi − zp

yi − yp

− a
xi − xp

yi − yp

− b

)2

, I0 = {i ∈ I : yi 	= yp}, (9)

and define the plane passing through the centroid f(x, y) = a0(x−xp)+ b0(y− yp)+ zp. Define
also

G(a, b) =
m∑

i=1

|zi − zp − a(xi − xp) − b(yi − yp)|. (10)

For c0 = zp − a0xp − b0yp denote G0 = G(a0, b0, c0).

In initialization of the algorithm the following two mutually different points will be searched
for in the set Λ, such that each of them decreases the value of the minimizing function.
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Notice first that if there exists such i0 ∈ I that Tp = Ti0 , then the term of the sum (10) for
i = i0 vanishes. Denote I ′ = I \ {i0} and I0 = {i ∈ I ′ : yi = yp}. Now it can be written

G(a0, b0) = 0 +
∑
i∈I0

|zi − zp − a0(xi − xp)| +
∑

i∈I′\I0
|yi − yp|

∣∣∣∣zi − zp

yi − yp

− a0
xi − xp

yi − yp

− b0

∣∣∣∣ . (11)

By solving the weighted median problem for the second sum in (11) we obtain a new point

Ti1(xi1 , yi1 , zi1), i1 ∈ I ′\I0 from the set Λ and a new value of the parameter b1 =
zi1

−zp

yi1
−yp

−a0
xi1

−xp

yi1
−yp

.

Notice that for c1 = zp − a0xp − b1yp there holds G1 = G(a0, b1, c1) < G0. Therefore, it holds

G(a0, b0) ≥
∑
i∈I

∣∣∣∣zi − zp − a0(xi − xp) −
(

zi1 − zp

yi1 − yp

− a0
xi1 − xp

yi1 − yp

)
(yi − yp)

∣∣∣∣ =: G(a0). (12)

Notice that this sum cancels out for i ∈ {i0, i1}. By means of notations I ′ = I \ {i0, i1} and

I0 = {i ∈ I ′ : (xi − xp) − xi1
−xp

yi1
−yp

(yi − yp) = 0} functional (12) can be written as

G(a0) =
∑
i∈I0

∣∣∣zi − zp − zi1
−zp

yi1
−yp

(yi − yp)
∣∣∣

+
∑

i∈I′\I0
|xi − xp − xi1

−xp

yi1
−yp

(yi − yp)|
∣∣∣∣∣ zi−zp−

zi1
−zp

yi1
−yp

(yi−yp)

xi−xp−
xi1

−xp

yi1
−yp

(yi−yp)
− a0

∣∣∣∣∣ .
(13)

By solving the weighted median problem for the second sum in (13) we obtain a new point

Ti2(xi2 , yi2 , zi2), i2 ∈ I ′\I0 from the set Λ and a new value of the parameter a1 =
zi2

−zp−
zi1

−zp

yi1
−yp

(yi2
−yp)

xi2
−xp−

xi1
−xp

yi1
−yp

(yi2
−yp)

.

Notice that for c1 = zp − a1xp − b1yp there holds G2 = G(a1, b1, c1) < G1 < G0.
Now we can move on to algorithm development.

Algorithm [Three Points]

Step 1: Input points Ti(xi, yi, zi) ∈ Λ, i ∈ I = {1, . . . , m} and check conditions from Theorem3.3

Step 2: Determine point Tp according to (8) and initial approximation (a0, b0) by solving the OLS
problem (9); Put c0 = zp − a0xp − b0yp and calculate G0 = G(a0, b0, c0).

Step 3: Put I ′ = I \ {i0} and I0 = {i ∈ I ′ : yi = yp} and by solving the weighted median problem
for the second sum from (11) determine a new point Ti1(xi1 , yi1 , zi1), i1 ∈ I ′ \ I0 from the

set Λ and a new value of the parameter b1 =
zi1

−zp

yi1
−yp

− a0
xi1

−xp

yi1
−yp

; Put c1 = zp − a0xp − b1yp

and calculate G1 = G(a0, b1, c1).

Step 4: Put I ′ = I \ {i0, i1} and I0 = {i ∈ I ′ : (xi − xp) − xi1
−xp

yi1
−yp

(yi − yp) = 0} and by

solving the weighted median problem for the second sum from (13) determine a new
point Ti2(xi2 , yi2 , zi2), i2 ∈ I ′ \ I0 from the set Λ and a new value of the parameter

a1 =
zi2

−zp−
zi1

−zp

yi1
−yp

(yi2
−yp)

xi2
−xp−

xi1
−xp

yi1
−yp

(yi2
−yp)

; Put c1 = zp − a1xp − b1yp and calculate G2 = G(a1, b1, c1).
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Step 5: Knowing points Ti1 and Ti2 , in accordance with Lemma3.2 define the set

I1 = {i ∈ I \ {i2} : yi 	= yi1 & xi − xi1 − (yi − yi1)
xi2 − xi1

yi2 − yi1

	= 0},

in accordance with Lemma1.1 solve the weighted median problem∑
i∈I1

∣∣∣∣(zi − zi1) − (yi − yi1)
zi2 − zi1

yi2 − yi1

− a

(
xi − xi1 − (yi − yi1)

xi2 − xi1

yi2 − yi1

)∣∣∣∣ → min
a

,

and by ν1 ∈ I1 denote the index for which the minimum a3 is attained; Put b3 :=
zi2

−zi1

yi2
−yi1

− a3
xi2

−xi1

yi2
−yi1

and G3 = G(a3, b3, zi1 − a3xi1 − b3yi1);

Step 6: In accordance with Lemma3.2, define the set I2 = {i ∈ I : yi = yi1 & xi 	= xi1};
If I2 	= ∅, in accordance with Lemma1.1, solve the weighted median problem∑

i∈I2

|(zi − zi1) − a(xi − xi1)| → min
a

,

and by ν2 ∈ I2 denote the index for which the minimum a4 is attained; Put b4 :=
zi2

−zi1

yi2
−yi1

− a4
xi2

−xi1

yi2
−yi1

and G4 = G(a4, b4, zi1 − a4xi1 − b4yi1);

else G4 = G3.

Step 7: If
[
G4 < G3, G3 = G4; a3 = a4; b3 = b4

]
;

If
[
G3 < G2, put G2 = G3; Ti1 = Ti2 ;

If
[
G3 < G4, put Ti2 = T (xν1 , yν1 , zν1),

else put Ti2 = T (xν2 , yν2 , zν2)
]
;

and go to Step 5;

else STOP
]

Solution: parameters: a3, b3, c3 = zi1 − a3xi1 − b3yi1 .

Example 3.5 Let a set of points Λ = {Ti(xi, yi, zi) : i = 1, . . . , 20} be given, where numbers
(xi, yi, zi) are given in the table below.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
xi 8.8 9.9 2.8 9.5 9.1 4.1 3.7 6.5 8. 4.5 9.5 6 6. 4.7 3. 1.1 2.5 2 8.1 8.8
yi 6.5 5.6 6. 3.6 9.3 3.9 9.6 7 9.2 9.2 7.5 8 4.4 3.4 7.1 10. 0.9 4 3.1 0.8
zi 41 38 23 26 48 18 36 36 44 33 43 31 33 25 25 33 3 13 30 16

Algorithm [Three Points] is intialized such that first the centroid Tp(5.93, 5.955, 29.75) 	∈ Λ
of the data is calculated. After that, the algorithm chooses two new points T2(9.9, 5.6, 38),
T5(9.1, 9.3, 48) ∈ Λ and determines a linear function f0(x, y) = −3.41774 + 2.3655x + 3.21416y,
whose graph passes through these three points (see Initial approximation in Fig. 1). The sum
of absolute deviations is G0 = 50.3662. After that the algorithm fixes points T2(9.9, 5.6, 38),
T5(9.1, 9.3, 48) ∈ Λ, chooses a new point T6(4.1, 3.9, 18) and determines a new linear function

238 volume 2 (2009), number 3



Aplimat - Journal of Applied Mathematics

2 4 6 8 10

2

4

6

8

10

2nd approximation

1
2

3

4

5

6

7

8

910

11
12

13

14

15

16

17

18
19

20

2 4 6 8 10

2

4

6

8

10

3rd approximation

1
2

3

4

5

6

7

8

910

11
12

13

14

15

16

17

18
19

20

2 4 6 8 10

2

4

6

8

10

Initial approximation

1
2

3

4

5

6

7

8

910

11
12

13

14

15

16

17

18
19

20

2 4 6 8 10

2

4

6

8

10

1st approximation

1
2

3

4

5

6

7

8

910

11
12

13

14

15

16

17

18
19

20

Tp

Figure 2: Illustration of Algorithm[Three Points]

f1(x, y) = −4.88782+2.49781x+3.24277y, whose graph passes through these three points (see
1st approximation in Fig. 2). The sum of absolute deviations is now G1 = 49.3085.

In the next step the algorithm fixes points T5(9.1, 9.3, 48), T6(4.1, 3.9, 18) ∈ Λ, chooses a new
point T7(3.7, 9.6, 36) and determines a new linear function f2(x, y) = −4.84344 + 2.40705x +
3.32681y, whose graph passes through these three points (vidi 2nd approximation in Fig. 2).
The sum of absolute deviations is now G2 = 48.7143.

In the next step the algorithm fixes points T6(4.1, 3.9, 18), T7(3.7, 9.6, 36) ∈ Λ, chooses a new
point T11(9.5, 7.5, 43) and determines a new linear function f3(x, y) = −4.86313 + 2.41155x +
3.32713y, whose graph passes through these three points (see 3rd approximation in Fig. 2). The
sum of absolute deviations is now G3 = 48.6958.

In the next step the algorithm fixes points T7(3.7, 9.6, 36), T11(9.5, 7.5, 43) ∈ Λ, chooses
a new point T6(4.1, 3.9, 18). Since this combination of points has repeated, the process is
completed.

Naturally, the same result is obtained by applying the module NMinimize using the Nelder-
Mead method from the software system Mathematica (see also [10], [19]).
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[15] H. SPÄTH, G. A. WATSON, On orthogonal linear l1 approximation, Numerische Mathe-
matik 51(1987) 531–543

[16] G. A. WATSON, Approximation Theory and Numerical Methods, John Wiley & Sons,
Chichester, 1980

[17] G. A. WATSON, On the Gauss-Newton method for l1 orthogonal distance regression, IMA
J. Num. Anal. 22(2002) 345-357

[18] G. O. WESOLOWSKY, A new descent algorithm for the least absolute value regression
problem, Communications in Statistics, Simulation and Computation, B10(1981) 479-491

[19] S. WOLFRAM, The Mathematica Book, Wolfram Media, Champaign, 2007

Current address
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SOME   PROBLEMS   OF  MICROHARDNESS   OF  METALS 

 
NAVRÁTIL  Vladislav, (CZ),  NOVOTNÁ  Ji�ina, (CZ) 

 
Abstract. The purpose of our contribution was to study the load dependence of the 
microhardness. This well known phenomena is called the Indentation Size Effect (ISE) and was 
investigated for two sets of specimen: pure copper and zinc. Variation of the microhardness 
with depth of indent (or applied load) was compared with various existing models. For the 
materials investigated the ISE is not artefact and can be explained by the hypothesis of presence 
of geometrically necessary dislocations, i.e. dislocations produced to accomodate the gradient in 
strain surrounding the indent. 
 
 

MATHEMATICAL MODELS OF HARDNESS 
 

Abstrakt. .Cílem našeho p�ísp
vku je studium závislosti mikrotvrdosti na hloubce vtisku (nebo 
na aplikovaném zatížení). Tato závislost je zpravidla klesající a je známa jako Indentation Size 
Effect (ISE). Studovali jsme ji pro 
istou m
� a zinek a výsledky porovnali se známými 
modely. Nam
�ené výsledky ukazují, že pro námi vyšet�ované materiály (Cu a Zn) není ISE 
artefaktem, ale je vlastností materiálu. Kvalitativn
 lze tento jev objasnit pomocí p�edpokladu o 
existenci tzv. „geometricky nutných dislokací“, tj. dislokací, vznikajících v okolí vtisku.. 

 
 
1 Introduction 
 
 According to definition Hardness of material is ability of a body to resist permanent 
deformation. Hardness measurements usually fall into three main cathegories: scratch hardness, 
indentation hardness and dynamic hardness. The methods most widely used in determining the 
hardness of metals are static indentation methods. In the Brinell test [1] the indenter consist of a 
hard steel ball made of tungsten carbide or even of diamond. Another type of indenter which has 
received wide use is the conical or pyramidal indenter as used in the Ludvik [2] and Vickers [3] 
hardness tests respectively. These indenters are now usually made of diamond. There are other 
types of indenters (Knoop, Berkovich) and other various methods (Rockwell) very well described in 
[3].  
 The diamond pyramidal indenter was first introduced in hardness measurements by Smith and 
Sandland [4] and was later developed by Messrs. Vickers – Armstrong , Ltd. The indenter is in the 
form of a square pyramid and the opposite faces make an angle of 1360 with one another. The 
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choice of this angle is based on an analogy with the Brinell test. Vickers hardness HV is defined as 
the load divided by the surface area of the indentation: 
 

  HV = 0,927 P (1) 
(P is yield pressure). 
 
In making Vickers hardness measurements the lengths d of the diagonals of the indentation are 

measured. If the mean value of the diagonal is d, the yield pressure is 2

2
d

P  (P is the load).  

Hence the Vickers hardness is 
 

  2

2927,0
d

PHV �  (2) 
 

The loads usually rang from 10 to 1200 N (diagonal length is less than 1 mm). Smaller loads may 
also be used when a micro-hardness or nano-hardness is needed. 
 
 
2. Indentation Size Effect 
 
 According to experimental results are mechanical properties, such as flow stress or hardness 
size dependent. This dependency is clearly observed when the size becomes significantly small, 
practically less than a micron (i.e. microhardness or nanohardness). This is in contrast to classical 
continuum mechanics plasticity theory where it is usually assumed that the mechanical properties of 
a material do not depend on scale. 
 In reference to indentation testing, the phenomenon whereby the indentation hardness 
increases with decreasing size is called the Indentation Size Effect (ISE). 
 Earlier researchers had offered different explanations for the ISE. All of these suggestions 
have some merit and are likely to have contributed to the ISE. There are some of the explanations of 
the ISE: 

- abroaded surface layers and oxides, 
- chemical contamination, 
- inadequate measurement capability of small areas of indents, 
- elastic recovery of indents, 
- indenter-specimen friction. 

However it has become clear that the inherent size dependence in many cases is not an artifact 
caused by oxide and friction. In the last two decades a number of authors [5,6,7] have argued that 
the ISE resulted from an increase in dislocation density at decreased loads caused by the presence of 
geometrically necessary dislocations, that is, dislocations produced to accommodate the gradient in 
strain surrounding the indent. 
The simplest relationship describing ISE was proposed by Meyer [3]: 
 

  2.... 
�� nn dCHVeidAP  (3)  
 

Where A, n and C are constants.  
According to energy-balance considerations and “Proportional Specimen Resistance” (PSR) model 
[8] the relationship between the applied load and the resulting indentation size is 
 

  1
12

2
21 ... 
���� dbbHVeidadaP  (4) 
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Fröhlich et al. [9] related the a1d term in (9) to the energy consumed in creating new surface 
(indentation facets and microcracking) while Li and Bradt [10] related this term to frictional and 
elastic contribution in their PSR model. The a2d2 term was thought to be the work of permanent 
deformation [9] or the volume energy of deformation [10]. 
According to Gong et. al. [11] the modified equation should considered: 
 

  2
1

1
2

0
2

210 .., bdbdbHVeidadaaP ������ 

   (5) 
 

Where a0, a1, a2, b0, b1, b2 are constants 

In present work the new form of hardness-indentation depth h ( dh
7
1

� ) is proposed: 
 

  hbeayy .
0 . 
��   (6) 

 

Where y0 = HV0 is Vickers hardness extrapolated for great loads, y = HV is Vickers hardness for 
indentation depth h and a and b are constants.  
 
 
3. Experimental procedure 
 
 The samples studied were 99,99 % pure copper and zinc polycrystals. Microhardness 
measurements were made with Zeiss Neophot microscope and Hannemann microhardness tester. 
The diagonals of the indentation prints were measured by optical way. In order to minimize error, 
the hardness measurements were repeated to ten times. 
 
 
4. Results and Conclusion 
 
 The results of our experiments are shown in Fig.1 and 2. To conclude, the ISE is not any 
artifact (unlike the results of Iost and Bigot [8]). From the Fig.1 we can see that for zinc (h.c.p. 
structure) the ISE exist unlike copper (f.c.c. structure – Fig.2), where ISE was not observed. 

 
Fig.1. Hardness-indentation depth dependence for Zn 
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Fig.2. Hardness-indentation depth dependence for Cu 

Our results confirm the theory of ISE based on the presence of geometrically necessary 
dislocations, i.e. dislocations produced to accommodate the gradient in strain surrounding the 
indent. At the beginning of indentation process the dislocations in f.c.c. metals have best conditions 
for moving in various slip planes (cross slip), than dislocations in h.c.p. metals. From the point of 
view of this qualitatively explanation the hardness of f.c.c. metals is independent on depth of indent 
unlike of h.c.p. metals, where the dislocations have not such conditions (so much alternative slip 
planes) and the ISE is observed. 
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